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Abstract The 1,1,1,2-tetrafluoroethane (HFC-134a), an important alternative to CFC-12 in accordance with
the Montreal Protocol on Substances that Deplete the Ozone Layer, is a high global warming potential
greenhouse gas. Here we evaluate variations in global and regional HFC-134a emissions and emission trends,
from 1995 to 2010, at a relatively high spatial and temporal (3.75° in longitude × 2.5° in latitude and 8 day)
resolution, using surface HFC-134a measurements. Our results show a progressive increase of global
HFC-134a emissions from 19± 2Gg/yr in 1995 to 167± 5Gg/yr in 2010, with both a slowdown in developed
countries and a 20%/yr increase in China since 2005. A seasonal cycle is also seen since 2002, which becomes
enhanced over time, with larger values during the boreal summer.

1. Introduction

As a consequence of the Montreal Protocol and its amendments, hydrofluorocarbons (HFCs) have been intro-
duced as replacement compounds for both chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs)
since they do not deplete stratospheric ozone. The most abundant HFC measured in the atmosphere is
HFC-134a [Carpenter et al., 2014]. HFC-134a has a steady state lifetime of 14 years; it is mainly removed from
the atmosphere by its reaction with hydroxyl radicals (OH) and to a lesser extent by oxidation and photolysis
in the stratosphere [Carpenter et al., 2014]. Its global average mixing ratio reached about 68ppt (parts per tril-
lion) in 2012 and has steadily increased, with a growth rate of 5 ppt/yr over the period 2011–2012 [Carpenter
et al., 2014], similar to the growth rate of 4.7 ppt/yr over the period 2005–2008 [Montzka et al., 2011].

While posing no threat to stratospheric ozone, HFC-134a is nevertheless of concern because of its long life-
time, combined with a relatively high global warming potential (GWP) of 1500 over the 100 year horizon
[Forster et al., 2007; Harris et al., 2014]. Indeed, the HFC-134a contribution to atmospheric radiative forcing
has grown from negligible in 1995 to 12 ± 0.2mW/m2 in recent years [Rigby et al., 2014] following the sharp
emission rise over this period. Within current scenarios of continued HFC emission growth, its contribution to
the radiative forcing of the climate system could be equivalent to 9–19% of carbon dioxide emissions by the
year 2050 [Velders et al., 2009; Daniel et al., 2011]. Amendment proposals to address HFCs under the Montreal
Protocol have been submitted in May 2014 [Environmental Protection Agency (EPA), 2014]. Since low GWP pro-
ducts exist for replacement of HFC-134a and for use in refrigeration and air-conditioning systems, HFC-134a is
a key candidate for climate mitigation and it has come into the focus of international climate policy [Molina
et al., 2009]. There is a growing interest in better estimating global and regional emissions of this species.
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HFC-134a has been the preferred replacement gas of CFC-12 (CCl2F2) in developed countries. According to
the Alternative Fluorocarbons Environmental Acceptability Study (www.afeas.org), in 2001, over 80% of the
worldwide sales of HFC-134a fall into two categories: mobile air conditioning (MAC) and commercial refrig-
eration (in order of importance, HFC-134a from MAC reaching 70% of the global emissions [Montzka et al.,
2014]). These emission sources are the most important in Europe [Schwarz and Harnisch, 2003] and in the
U.S. [EPA, 2008]. HFC-134a is emitted from air-conditioning systems to the atmosphere during use, servicing,
repair, and vehicle end of life [Clodic et al., 2005; Kuijpers, 2011]. Wimberger [2010] took HFC-134a samples
from vehicles on dismantler lots in California and found that on average only 27% of the initial HFC-134a
remained in the mobile air-conditioning system before dismantlement, meaning that 73% had been released
into the atmosphere.

Very large uncertainties remain in the inventory-based quantification of global and regional HFC-134a emis-
sions [Barletta et al., 2011], due to the diversity of emission processes and consumption habits [Clodic et al.,
2005; Atkinson et al., 2003; Rugh et al., 2004]. For instance, estimations of the HFC-134a emission rate from
traffic [Wallington et al., 2008] and domestic sector suffer from large uncertainties. The usage of HFC-134a
for air conditioning varies not only with climate but also with region-specific equipment rate of air-
conditioning systems in cars or national commitments within the United Nations Framework Convention
for Climate Change (UNFCCC).

In this context, attempts have been made to deduce HFC-134a emission maps from HFC-134a atmospheric
mole fraction measurements by statistical top-down methods. Stohl et al. [2009] developed their own global
gridded HFC-134a emission inventory based on UNFCCC reporting and optimized it from atmospheric mea-
surements using an inverse procedure and a Lagrangian transport model for years 2005 and 2006. Other stu-
dies focused on subcontinental regions: the U.S. [Millet et al., 2009; Manning and Weiss, 2007; Hu et al., 2015],
Europe [Keller et al., 2012], and East Asia [Stohl et al., 2010; Kim et al., 2010]. Some disagreements exist
between these top-down estimates: Stohl et al. [2009] found that U.S. emissions in 2006 were 53% higher
than the estimate of Manning and Weiss [2007] (28 Gg and 43Gg, respectively). Stohl et al. [2009] also
significantly increased the estimate made in the (Emissions Database for Global Atmospheric Research)
EDGAR-v4.0 inventory (source: EC-JRC/PBL, http://edgar.jrc.ec.europa.eu/, 2010) for Chinese emissions in
2005. These various studies were restricted to short periods: years 2005–2006 for Stohl et al. [2009] and year
2008 for Stohl et al. [2010]. Therefore, they could not assess the global and regional emission growth rates
since the enforcement of the Montreal Protocol in 1994 (Copenhagen Amendment).

This study aims to evaluate the evolution of HFC-134 emissions to the Montreal Protocol at the global and
regional scales as seen from atmospheric measurements over the period 1995–2010.

The atmospheric inverse system includes a global chemistry transport model at a resolution of 3.75° × 2.5°.
This allows the assessment of HFC-134 surface fluxes at the grid resolution, at an 8 day frequency, with a
simultaneous optimization of OH concentrations in four latitudinal bands. Details on the inverse system
and on themethodology are given in section 2. The inferred fluxes are analyzed in section 3 in terms of global
and regional trends as well as seasonal variability.

2. Methodology

Our strategy follows the one applied by Fortems-Cheiney et al. [2013] for the study of HCFC-22 emissions.
In our inverse system, a state vector x, representing the emissions, is optimized in order that both the
distance between the atmospheric observations y and the simulated concentrations H(x), and the distance
between x and a prior knowledge on the emissions xb, are minimized given the respective uncertainties of
y and xb. Their error covariance matrices R and B, respectively, represent these uncertainties. The Bayesian
cost function J defined below is minimized iteratively and provides a solution, called posterior in
the following.

J xð Þ ¼ x� xbð ÞTB�1 x� xbð Þ þ H xð Þ �yð ÞTR�1 H xð Þ �yð Þ

Theminimization is performed by the M1QN3 limited-memory quasi-Newtonminimization algorithm [Gilbert
and Lemaréchal, 1989] and exploits the adjoint operator of H. We reduce the norm of the gradient of J by
more than 99%.
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H represents the chemistry transport model and the nonlinear observation operator. The transport model is
the offline version of the atmospheric general circulation model LMDz [Hourdin et al., 2006]. The main sink of
HFC-134a in the troposphere is its reaction with the radical hydroxyl OH: CH2FCF3 +OH ·→CHFCF3 +H2O.
The chemical scheme coupled to LMDz represents only the interaction between the radical hydroxyl OH
and HFC-134a, and the other sinks are neglected. We use the reaction rate k= 1.05 × 1012 exp(1630/T)
cm3molecule�1 s�1, as recommended by Sander et al. [2011]. The OH distribution is also optimized by
the inverse system. The prior OH 3-D fields result from a simulation with full chemistry of the model
LMDz-INtéractions Chimie et Aérosols [Hauglustaine et al., 2004].

As a result, our state vector x includes (1) HFC-134a initial concentrations for 1 January 1995 at 00:00 at the
model resolution (3.75° × 2.5° in longitude, latitude) and (2) HFC-134a surface emissions at an 8 day and at
3.75° × 2.5° resolution, for the 1995–2010 period—four factors to scale the OH prior atmospheric concentra-
tions at an 8 day resolution, for four latitude bands (90°S–30°S, 30°S–0°, 0°–30°N, 30°N–90°N).

2.1. Prior Setup

Our griddedHFC-134a prior emissions in xb aremostly taken from the EDGAR-v4.2 inventory (source: EC-JRC/PBL,
http://edgar.jrc.ec.europa.eu/, 2011), which provides yearly estimates until 2008. We adapted this prior source
specifically for China following Stohl et al. [2010]. Indeed, the small HFC-134a emissions in China (ranging
from 0 in 1995 to about 1Gg in 2008) suggested by the EDGAR-v4.2 inventory is not consistent with (1)
the large development of air-conditioning systems in Chinese vehicles and (2) the ban of CFC-12 production
in this country since the end of year 2010.

Hu et al. [2009], using an inventory-based approach, estimated that the Chinese HFC-134a emissions from
automobile (including cars, bus, and trucks) air conditioners have increased from 7.3Gg/yr in 2005 to
21.2 Gg/yr in 2010. Applying a growth rate of 23%/yr of mobile air conditioners from 1995 to 2010 and assum-
ing that automobile air conditioners account for two thirds of total HFC-134a emissions like Stohl et al. [2010],
we obtain prior Chinese HFC-134a emissions ranging from less than 1Gg/yr in 1995 to 21Gg/yr in 2010
(see Table 1).

For the rest of the world, wemade no effort to adjust the EDGAR-v4.2 inventory to the years 2009 and 2010 in
the prior. Figures 1a and 1e displays the grid point prior emissions in 1995 and 2010. Whereas HFC-134a emis-
sions are mostly localized around industrial sites in Europe (Benelux), in the USA (Silicon Valley, California;
Silicon Prairie, Texas; Research Triangle, North Carolina; and Route 128, Massachusetts), and in Japan in
1995, large emissions are less localized but more spatially distributed over these continents in 2010. A
broader distribution of HFC-134a emissions is also supported by the inversion analysis of atmospheric data
provided in Hu et al. [2015].

Table 1. Global and Regional HFC-134a Emissions Before the Inversion (Prior) and After the Inversion (Posterior) in Gg/yr Over the Period 1995–2010a

USA Europe Japan China Globe

Prior Post Prior Post Prior Post Prior Post Prior Post

1995 10 ± 4 10 ± 2 4 ± 1 4 ± 1 4 ± 1 2 ± 1 <1 <1 20 ± 4 18 ± 2
1996 16 17 7 7 4 4 <1 <1 33 33
1997 22 23 9 9 5 6 <1 <1 43 44
1998 29 31 12 13 7 8 <1 <1 55 60
1999 37 35 15 16 8 9 <1 <1 71 70
2000 44 36 18 18 10 10 2 2 86 78
2001 50 42 21 20 11 11 2 2 98 89
2002 55 47 23 23 12 12 3 3 109 102
2003 59 50 26 25 13 13 5 5 121 110
2004 64 54 29 28 14 12 7 7 133 119
2005 68 ± 24 57 ± 9 30 ± 9 29 ± 5 15 ± 8 13 ± 4 9 ± 3 9 ± 2 145 ± 29 128 ± 5
2006 73 55 33 30 16 12 12 11 157 130
2007 77 61 35 31 16 12 15 14 170 138
2008 81 60 37 34 17 12 20 18 183 147
2009 81 59 37 34 17 11 20 18 183 147
2010 81 ± 29 71 ± 11 36 ± 11 37 ± 6 17 ± 11 12 ± 2 21 ± 8 20 ± 4 183 ± 34 167 ± 5

aAs a trade-off between computing resources and completeness, we only estimate the posterior 1 sigma uncertainty for the years 1995, 2005, and 2010.

Journal of Geophysical Research: Atmospheres 10.1002/2015JD023741

FORTEMS-CHEINEY ET AL. HFC-134A EMISSIONS 11,730

http://edgar.jrc.ec.europa.eu


The grid point standard deviations of the prior errors assigned to the HFC-134a prior emissions are set at
100% of the flux. Prior error correlations in space are represented by an e-folding length of 500 km over land
and temporal correlation by an e-folding length of 8weeks. These prior error statistics lead to annual global
HFC-134a budgets of 20 ± 4Gg/yr for year 1995 and of 183 ± 34Gg/yr for year 2010 (from now on, the plus-
minus signs represent the 1 sigma standard deviation), leading to a large 20% 1 sigma uncertainty. The result-
ing prior error uncertainty is ± 30% for Europe and about ± 35% for the U.S. and China, which fairly represents
the large and uncertain interannual variability of the regional HFC-134a emissions in recent years.

The errors assigned to the scaling factors of OH are of 10% (1 sigma), based on the differences between
various estimates of OH concentrations [Prinn et al., 2001; Krol and Lelieveld, 2003; Bousquet et al., 2005].

2.2. Assimilated Observations

Our observation data set includes measurements of HFC-134a dry air mole fractions made at 21 sites, listed in
Table 2, from December 1994 to March 2011. It was downloaded from the World Data Center for Greenhouse
Gases (http://ds.data.jma.go.jp/gmd/wdcgg/, accessed 15 November 2012), except for the Gosan data. We
use both flasks (from the NOAA/Earth System Research Laboratory (ESRL) [Montzka et al., 1996; Montzka
et al., 2014] and from the Italian National Agency for New Technologies, Energy and Sustainable Economic
Development (ENEA) [Artuso et al., 2010] networks) and continuous measurements (from the Advanced
Global Atmospheric Gases Experiment (AGAGE) [Prinn et al., 2000; O’Doherty et al., 2004] and from the
National Institute for Environmental Studies (NIES) networks [Yokouchi et al., 2006]), respectively, named
“event” and “daily” data in the database. Continuous measurements by the AGAGE and NIES networks were
averaged over daytime, and these daily means were used as constraints together with the flask measure-
ments. The total number of observational constraints for the entire period is 17,803.

The different stations are sparsely distributed over the globe but mainly located in the Northern Hemisphere
(Figure 2). Before 1998, there were mainly flask measurements available, leading to a small number of
HFC-134a observational constraints (129 in 1997). After 1998, some continuous measurements were made
gradually available, so that 643 constraints were used in 2003 and 2246 in 2007. The evolution of the total num-
ber of observational constraints used in the inversion per year is shown in Figure 3 for the regions USA, Europe,
and China, where most of the stations are located. Note that measurements of HFC-134a over the continental
U.S. beginning in 2008 recently became available [Hu et al., 2015] but are not included in this analysis.

The estimate of all the errors involved in the observation errors in the inversion system, defined as in Fortems-
Cheiney et al. [2013], is approximately 3% (mean value of 1.3 × 10�6 ppm). It combines representation errors

Figure 1. (a) Grid point prior HFC-134a emissions in Gg/yr for year 1995. (b) Relative difference between posterior and prior emissions in %. (c) Prior uncertainty in
Gg/yr. (d) Uncertainty reduction at the grid point resolution, in %. (e–h) Same as Figures 1a–1d, but for year 2010.
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(e.g., the mismatch between the observation and model resolutions), errors of the observation operator
(including transport and chemical-scheme errors in LMDz-SACS), measurements errors (including instrumen-
tal precision for HFC-134a measurements and the errors involved in the calibration scales), and errors of the
Chemistry Transport Model (CTM). The measurements coming from AGAGE, NOAA, and NIES networks are,
respectively, calibrated using SIO-2005, NOAA/Climate Monitoring and Diagnostics Laboratory, and NIES-
2008 scales. It should be noted that differences between networks (calibrations uncertainties and intercali-
bration factors) are small [Stohl et al., 2010; Carpenter et al., 2014], compared to other causes of uncertainties

Figure 2. Locations of the stations measuring HFC-134a dry air mole fractions used in the inversion. The measurements of
the Niwot Ridge station (NWR, USA) displayed in yellow are only used for the evaluation.

Table 2. List of the Stations Performing HFC-134a Measurements Used in This Studya

Station Code
Latitude
(deg)

Longitude
(deg)

Altitude (meters
above sea level) Network Type

Sampling
Frequency Data Period

Alert, Canada ALT 82.50 �62.30 210 NOAA flask weekly 12/1994–03/2011
Point Barrow, AK, USA BRW 71.30 �156.60 11 NOAA flask weekly 12/1994–03/2011
Cape Grim, Tasmania CGO �40.68 144.68 104 AGAGE continuous hourly 01/1998–03/2011
Cape Grim, Tasmania CGO �40.68 144.68 21 NOAA flask weekly 12/1994–03/2011
Cape Ochi-ishi, Japan COI 43.15 145.50 96 NIES continuous hourly 08/2006–12/2010
Gosan, South Korea GOS 33.17 126.90 46.5 AGAGE continuous hourly 11/2007–03/2011
Hateruma, Japan HAT 24.05 123.80 46.5 NIES continuous hourly 05/2004–12/2010
Harvard Forest, USA HFM 42.90 �72.30 340 NOAA flask weekly 11/1995–03/2011
Jungfraujoch, Switzerland JFJ 46.54 7.98 3580 AGAGE continuous hourly 01/2000–03/2011
Cape Kumakahi, HI, USA KUM 19.52 �154.82 3 NOAA flask weekly 11/1995–03/2011
Park Falls, WI, USA LEF 45.92 �90.27 868 NOAA flask weekly 10/1996–03/2011
Lampedusa, Italy LMP 35.52 12.63 45 ENEA flask weekly 12/2003–12/2008
Mace Head, Ireland MHD 53.33 �9.90 25 AGAGE continuous hourly 12/1994–03/2011
Mace Head, Ireland MHD 53.33 �9.90 8 NOAA flask weekly 10/1998–03/2011
Mauna Loa, USA MLO 19.54 �155.58 3397 NOAA flask weekly 12/1994–03/2011
Palmer Station, Antarctica PSA �64.92 �64.00 10 NOAA flask weekly 12/1997–03/2011
Ragged Point, Barbados RPB 13.17 �59.43 42 AGAGE continuous hourly 05/2005–03/2011
Cape Matatula, Samoa SMO �14.24 �170.57 77 AGAGE continuous hourly 05/2006–03/2011
Cape Matatula, Samoa SMO �14.24 �170.57 42 NOAA Flask weekly 12/1994–03/2011
South Pole, USA SPO �89.98 �24.80 2810 NOAA flask weekly 12/1994–03/2011
Summit, Greenland SUM 72.58 �38.48 3238 NOAA flask weekly 06/2004–03/2011
Tierra del Fuego, Argentina TDF �54.87 �68.48 20 NOAA flask weekly 05/2004–05/2010
Trinidad Head, CA, USA THD 41.05 �124.15 120 NOAA flask weekly 03/2002–03/2011
Trinidad Head, CA, USA THD 41.05 �124.15 140 AGAGE continuous hourly 03/2005–03/2011
Ny-Alesund, Norway ZEP 78.90 11.88 474 AGAGE continuous hourly 01/2001–03/2011

aSee Figure 2 for the station locations. The data period listed is specific to this study. The different networks are NOAA/ESRL, the National Oceanic and
Atmospheric Administration, Earth System Research Laboratory; AGAGE, the Advanced Global Atmospheric Gases Experiment; NIES, the National Institute for
Environmental Studies, and ENEA, the Italian National Agency for New Technologies, Energy and Sustainable Economic Development. The AGAGE data are
2-hourly for the newer Medusa-GCMS measurements and 4-hourly for the older ADS-MS measurements.
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such as representation or model errors. Error correlations between the measurements are neglected, so that
the covariance matrix R of the observation errors is diagonal (i.e., only variances are taken into account). It
should be noted that the degree of freedom of the inverse problem is about 255.

2.3. Calculation of the Analysis Error

The calculation of the analysis error is challenging in the framework of variational inverse system. Even
though the analysis error covariance matrix can be written in various analytical forms, it requires the inversion
of matrices that are too large to invert given the current computational resources in our variational approach.
As a result, one way to compute the analysis error is to perform a randomization approach (Monte Carlo) to
estimate the posterior errors on the fluxes. The result of this method is in agreement with the Bayesian
covariance matrix A. This approach has been described in Chevallier et al. [2007] and contains the following
steps: (1) running the LMDz-SACS chemistry-transport model with a climatology of surface emissions to gen-
erate a set of pseudo HFC-134a observations at the same location and time as the actual measurements, (2)
perturbing the pseudoobservations consistently with assumed observation error statistics (described later in
the section), (3) perturbing the state vector (that includes the surface flux climatology) consistently with
assumed error statistics, (4) performing a Bayesian inversion of the surface fluxes using the perturbed pseu-
doobservations as constraints and perturbed state vector as the prior field, and (5) comparing the estimate of
the inversion to the flux climatology to get the Bayesian errors of the estimate.

Figure 3. Total number of HFC-134a constraints used in the inversion system per year for (a) the U.S., (b) Europe, and (c) China. See Figure 2 for the locations of
the stations.
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The method is applied 10 times with different perturbations each time, in order to compute the posterior
error statistics. We estimate the posterior 1 sigma uncertainty from these Monte Carlo inversion ensembles
(10 members) for three different years: 1995, 2005, and 2010. Following the usual practice, we define the
uncertainty reduction as (1� σa/σb) × 100, with σb the prior error standard deviation and σa the theoretical
posterior error standard deviation.

3. Results
3.1. Theoretical Performance of the Inversion

The uncertainty on the posterior emissions, calculated with the Monte Carlo approach, is presented in Table 1
for the years 1995, 2005, and 2010. The uncertainty reductions reached by the inversion for the years 1995,
2005, and 2010 are synthesized in Table 3 for regional and global aggregations. The uncertainty reduction
at the grid-scale resolution is also shown in Figures 1d and 1h, respectively, for years 1995 and 2010. In
1995, the global uncertainty reduction reaches 56%. At the regional scale, the uncertainty associated with
the emissions is reduced by 54% for the U.S. and 11% for Japan. However, the uncertainty reduction remains
small for Europe and China, owing to the lack of sampling locations near these regions (Table 2).

The expansion of the surface network increases the number observational constraints in the inversion over
time. Combined with the increased emissions in the atmosphere, this leads to larger uncertainty reductions,
as shown in Figure 1 and in Table 3, both at the global (71% and 84% in 2005 and in 2010) and at regional
scales. Indeed, in 2005, the uncertainty reduction is 56% for the U.S. and 45% for Europe. For Japan and
China, the uncertainty reduction is 40% and 23%; this increase of uncertainty reduction coincides with the
setup of the first Asian site, Hateruma, in May 2004. Thanks to the benefits of the sites Gosan in South
Korea (since November 2007) and Cape Ochi-ishi in Japan (since August 2008), the uncertainty reduction
reaches 81% and 46%, respectively, in 2010.

3.2. Global HFC-134a Emissions

Table 1 presents the annual global prior and posterior HFC-134a emissions. Figures 1b and 1f show the
relative difference between posterior and prior HFC-134a emissions at the grid point resolution, respectively,
in 1995 and in 2010. Figures 4 and 6 show the global posterior HFC-134a emissions. Posterior emissions range
from 18± 2Gg/yr in 1995 to f167 ± 5Gg/yr in 2010 (see Table 1 and Figure 4). These estimates are in excellent
agreement with the posterior emissions of Xiang et al. [2014], ranging from 20Gg in 1995 to 153Gg in 2010
who used the same NOAA and AGAGE networks and additional observational data (i.e., the aircraft
campaigns Hiaper-Pole-to-Pole of Carbon Cycle and Greenhouse Gases Study HIPPO over the Pacific
Ocean) to derive global emissions for these years. As seen in Table 1, this is also consistent with the posterior
emissions ofMontzka et al. [2014] and Rigby et al. [2014], ranging, respectively, from 22Gg in 1995 to 168 and
167Gg in 2010.

It is interesting to see that the yearly increase we derive is more pronounced from 2009 to 2010 (growth rate
of +14%) than from 2005 to 2009 (mean growth rate of 3.5%). The absolute global emission magnitudes and
increase in emissions are also consistent with the +17% inferred by Lunt et al. [2015] between their average
estimate of 141.6 Gg/yr for the 2007–2009 period and of 166.5 Gg/yr for the 2010–2012 period (derived with
10 measurement stations from AGAGE and NIES networks).

One should note that discrepancies between different global-based inverted results can be due to the obser-
vational measurements used to constrain the emissions but also to the diversity of the inversion systems
(such as the CTM used, whether or not the OH fields are prescribed in themodel). Nevertheless, all these inde-
pendent studies show a continuous rise of HFC-134a emissions between 1995 and 2010.

Table 3. Regional and Global Uncertainty Reductions in %, for the Years 1995, 2005, and 2010

USA Europe Japan China Globe

1995 54 - 11 - 56
2005 56 45 40 23 71
2010 61 45 80 46 84
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Until the year 2000, posterior estimates are smaller than the prior ones with relative differences of about
�4%. The differences between the prior and the posterior estimates increase after 2000 (i.e., �13% in
2005), demonstrating an overestimation of the EDGAR-v4.2 HFC-134a emissions on global scale.

3.3. Regional HFC-134a Emissions and Growth Rates

Almost all the posterior regional estimates are smaller than the prior ones: �7% for the U.S., especially over
the east coast (modification in a range of �10% to �20%); �8% for Europe; and �23% for Japan in 2010.
On the contrary, the Chinese posterior estimate is about the same as the prior one. In the following, regional
HFC-134a emissions are discussed in details for the U.S., Europe, China, and Japan.
3.3.1. The United States of America Emissions
The posterior inventory highlights the U.S. as the main HFC-134a source, contributing at least 45% of the
global emissions since 1995.

Our posterior U.S. emissions are higher than most of the previous studies for the years 2005–2007 (see
Table 4). In 2005, we infer emissions 62% higher (57 ± 9Gg/yr, starting from a prior of 68 ± 24Gg/yr) than
the 35Gg/yr of Stohl et al. [2009] (starting from a prior of 57 Gg/yr). Our posterior U.S. estimates are also more
than 2 times larger than the HFC-134a emissions estimated from aircraft measurement campaigns in 2004
and 2006 by Millet et al. [2009] and higher than the estimates of 43Gg/yr (22–60) of Manning and Weiss
[2007] for year 2006 and of 43 ± 6Gg/yr of Barletta et al. [2011] for 2008. The more comprehensive suite of
data used here compared to these studies (e.g., measurements only from the THD stations for Manning
and Weiss [2007]) may explain such differences. On the contrary, our 2008–2010 average of 63 ± 9 Gg is in
good agreement with the 52–61Gg average estimated by Hu et al. [2015] for 2008–2010, derived frommulti-
ple inversion scenarios and using data from more sites (with daily flasks air samples and aircraft campaigns)
over the U.S. than in our study.

As shown in Figures 4 and 7, our estimate for the U.S. shows a progressive increase between 1995 and 2010,
ranging from 10± 2Gg/yr (starting from a prior of 10 ± 4Gg/yr) to 71 ± 11Gg/yr (starting from a prior of 81
± 29Gg/yr). The U.S. emission growth rate nevertheless slows down, from +33%/yr between 1995 and
2000 to +7.5%/yr between 2000 and 2005 and to +5%/yr between 2005 and 2010. Until year 2006, our esti-
mates are in excellent agreement with the Environmental Protection Agency (EPA) estimates (i.e., 54 Gg/yr
against 57Gg/yr, respectively, for the year 2004) [EPA, 2008]. However, our estimated HFC-134a emission
increase from 2006 to 2010 contrasts with the decrease suggested by the EPA estimates for these years
[EPA, 2014].

It also should be noted that the posterior emissions show a slight decrease in 2009, also seen by Hu
et al. [2015], which is consistent with the decrease of number of vehicles per thousand people (828)

Figure 4. Grid point global posterior HFC-134a emissions in Gg/yr for (a) year 1995 and (b) year 2010.
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[U.S. Department of Transportation, 2012] and with the decrease of fossil fuel CO2 emissions from transpor-
tation [U.S. Energy Information Administration, 2014], probably due to the economic recession. However,
this interannual variability for the years 2008–2010 with decrease in 2009 and upwelling in 2010 is not
reproduced by the EPA estimates [EPA, 2014].
3.3.2. Europe
The European prior budget is smaller than the U.S.’s (68Gg/yr against 30Gg/yr in 2005, see Table 2), even
though the European number of vehicles is higher (for example, 253millions against 275millions in 2005
in Europe, estimated with the World Bank http://www.worldbank.org/, and Davis et al. [2012] data). This
can be explained by a higher HFC-134a demand for the mobile air-conditioning sector in the U.S. compared
to Europe: when the equipment rate of air-conditioned systems in newer vehicles was 95% for the USA in
1995, it was only 35% for Europe (and then almost 90% in 2005) [Saba et al., 2009; Barbusse and
Gagnepain, 2003]. The U.S./Europe difference can be also explained by the use in Europe of another gas
for the domestic refrigeration, HC600a (isobutane, (CH3)3CH), which is not used in the U.S. due to flammability
issue [Saba et al., 2009].

Our European posterior emissions are in a good agreement with Stohl et al. [2009] and with Reimann et al.
[2004] (see Table 4). However, our European budget is twice higher than the estimates of O’Doherty et al.
[2004], with 20 Tg compared to 10 Tg for the years 2000–2002, respectively. However, it should be noted that
their study had only benefited from the Mace Head station (compared to the use of the additional JFJ
station here).
3.3.3. China
Our posterior Chinese emissions of 8 ± 3Gg/yr (starting from a prior of 8 ± 2Gg/yr) are higher than the esti-
mates of Yokouchi et al. [2006] for the years 2004–2005 and also significantly higher than the estimates of
Yao et al. [2012] for the year 2010 (see Table 4). However, our posterior Chinese estimates of 9 ± 3Gg/yr (start-
ing from a prior of 9 ± 2Gg/yr) is similar to the 8.7 Gg/yr (6.5–12) of Kim et al. [2010] and to the 9.8 Gg/yr of
Stohl et al. [2009] for year 2005. With a growth rate of 22%/yr (in agreement with the +20%/yr obtained by
Stohl et al. [2010] between 2005 and 2006), the Chinese emissions reach 11Gg/yr in 2006.

With a 2005–2010 mean growth rate of +20%/yr, the Chinese emissions reach 18Gg/yr in 2008, 40% higher
than the 12.9 ± 1.7 Gg estimates of Stohl et al. [2010]. Our Chinese emissions of 20 ± 4Gg in 2010 are also

Table 4. Comparison With Previous Published Annual Total Budgets for the Period 1995–2010 Studied Here

Globe Literature This Work

1996 20 [Xiang et al., 2014] 17
2007–2009 141.6 [Lunt et al., 2015] 144
2010 153 [Xiang et al., 2014] 167

U.S.
2004 27 [Millet et al., 2009] 54
2005 35 [Stohl et al., 2009] 57
2006 43 [Manning and Weiss, 2007] 55
2008 43 ± 6 [Barletta et al., 2011] 60
2008 53–70 [Hu et al., 2015] 60
2009 47–60 [Hu et al., 2015] 59
2010 54–68 [Hu et al., 2015] 71

Europe
2000–2002 23.6 [Reimann et al., 2004] 20
2000–2002 10 [O’Doherty et al., 2004] 20
2005 24 [Stohl et al., 2009] 29
2006 27 [Stohl et al., 2009] 30

China
2004–2005 3.9 ± 2.4 [Yokouchi et al., 2006] 8
2005 8.7 [Kim et al., 2010] 9

9.8 [Stohl et al., 2009]
2010 6 ± 5.6 [Yao et al., 2012] 21

Japan
2002 4.4 [Yokouchi et al., 2006] 11
2005 5.3 [Stohl et al., 2009] 13
2006 4 [Stohl et al., 2009] 12
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higher 63% higher than the estimates of Lunt et al. [2015] for this year, derived from a different set of obser-
vational constraints (from eight AGAGE and two NIES measurement stations). Nevertheless, our 2010 Chinese
value of 20 ± 4Gg is consistent with the estimates of Su et al. [2015] that suggest about 17Gg of HFC-134a
from mobile air conditioning only, using an improved bottom-up method.
3.3.4. Japan
Our Japanese posterior emissions are lower than the prior ones after year 2003, indicating an overestimation
of EDGAR-v4.2 inventory during the period 2004–2010. These posterior emissions are significantly higher
than the previous estimates published in the literature. For instance, for the year 2002, we derive posterior
Japanese emissions of 11Gg/yr in 2002 substantially higher than the 4.4 Gg/yr found by Yokouchi et al.
[2005]. For 2005 and 2006, we find posterior emissions of 13 ± 4Gg/yr and 12Gg/yr for 2005 and 2006 also
higher than the 5.3 and 4.0 Gg/yr of Stohl et al. [2009] for the same years. It is worth noting that substantial
differences exist between inventory-based quantifications of the Japanese HFC-134a emissions: the
EDGARv4.2 inventory estimates the Japanese emissions at 15 ± 8Gg/yr in 2005, while the UNFCCC (United
Nations Framework Convention on Climate Change) suggests 3.5 Gg/yr. For their study, Stohl et al. [2009]
used the UNFCCC inventory as prior, while we use EDGARv4.2. The differences in the choice of prior may
be critical, especially if the uncertainty associated to the prior is not well defined and prevents the system
from a potentially necessary but important departure from the prior.

3.4. Evaluation Against Independent Measurements

To evaluate our posterior HFC-134a U.S. emissions, we compared model simulations with the independent
(i.e., not used as constraints in the inversion) HFC-134a measurements from two campaigns: ARCTAS
(Arctic Research of the Composition of the Troposphere from Aircraft and Satellites, NASA project, [Barletta
et al., 2011]) and CalNex (California Research at the Nexus of Air Quality and Climate Change, [Barletta
et al., 2013]). The ARCTAS air samples were obtained on board research flights (DC-8) that flew over
California during June 2008. The CalNex 2010 study was performed during May to June 2010. Air samples
were collected on board a National Oceanic and Atmospheric Administration (NOAA) WP-3D aircraft.
Particular emphasis was placed on three large source regions—the South Coast Air Basin, the Sacramento
Valley, and the San Joaquin Valley—with almost 80% of the samples collected at altitudes below 2 km over
the South Coast Air Basin of California and the Central Valley [Barletta et al., 2013].

We have computed bias and root-mean-square error between the modeled and observed HFC-134a concen-
trations for each of the 164 and 1125 data, respectively, for ARCTAS and CalNex, before and after inversion. In
Figure 5, we present ratios between prior and posterior mean bias and root-mean-square error at the grid cell
scale. For bias, ratio has been calculated as

Ratio ¼ independent measurement�model before inversionð Þ
independent measurements�model after inversionð Þ

Grid cells in green, corresponding to a ratio lower than 1, indicate an improvement of the corresponding sta-
tistical indicator after optimization.

To further evaluate the interannual variability of our posterior HFC-134a emissions over the long period
1995–2010, we also used cross-validation technique by removing the Niwot Ridge station (from the NOAA
network) from the inversion, and we performed an independent evaluation with this site. Figure 8 shows that
the inversion leads to a significant improvement relative to the prior simulation. The mean annual reduction
of the bias indeed ranges from �13% in 1995 to �80% in 2010, allowing us to confirm that American
HFC-134a emissions are overestimated in the EDGAR-v4.2 inventory used here as prior, as seen by Hu et al.
[2015]. This overestimation is particularly pronounced after year 2002.

3.5. Seasonality

The 8day resolution of our inversion reveals seasonal variations in the posterior emissions (which are not pre-
sent in the prior estimates; see Figures 6 and 7). A seasonal cycle is inferred by the inversion, comparable to the
seasonality found by Xiang et al. [2014] and by Hu et al. [2015]. It is interesting to note that this seasonality is
similar to the one found by Fortems-Cheiney et al. [2013] and by Xiang et al. [2014] in HCFC-22 emissions. The
seasonal variations of HFC-134a emissions, with higher emissions in summer than in winter, are driven by
the U.S. and to a lesser extent by Europe and China. HFC-134a emissions may be exacerbated by higher needs
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of air conditioning during the warm per-
iod and also by extra leaks that occur dur-
ing the maintenance of cooling systems
[Schwarz and Harnisch, 2003].

U.S. emissions exhibit little seasonality
prior to 2002 but show an apparent sea-
sonal trend in subsequent years (+4%
between January and July 2002, +10%
between January and July 2006). This
could be explained by (i) the increasingly
strong signal associated to more than
95% of vehicles equipped with HFC-
134a as refrigerant in 2005 [Saba et al.,
2009] and/or (ii) by the introduction of
continuous in situ measurements (i.e., in
2005 at stations Trinidad Head and
Ragged Point) and then by the increase

Figure 6. Global monthly HFC-134a prior and posterior emissions (in
yellow and blue), from 1995 to 2010, in Gg/month.

Figure 5. Ratio of the posterior to the prior values of the bias (in absolute value) between simulated and observed concentrations for (a) ARCTAS (flying in June 2008)
and (b) CalNex (flying in May–June 2010) campaigns. Ratio of the posterior to the prior values of the root-mean-square error between simulated and observed
concentrations for (c) ARCTAS and (d) CalNex. The inversion improves the simulation when the ratios are less than 1 (in green).
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of observational constraints that could
allow the capture of such a signal.

After 2007 the seasonality of the U.S.
emissions becomes strong. For example
in 2008, the U.S. August emissions are
26% greater than the January ones (6.44
against 5.12Gg/month, respectively).
This results in a slight overestimation
of the summer HFC-134a concentrations
at NWR station (used for the indepen-
dent evaluation, see section 3.4 and
Figure 8). Nevertheless, such seasonality
is also found by Hu et al. [2015], using
different more constrained (with daily
flask air samples and aircraft campaigns)
inversion scenarios. They suggested
that U.S. summer emissions are 20–50%
greater than during winter for the
2008–2012 period.

Figure 8. Simulated prior (grey) and posterior (yellow) compared to the
measured (blue) HFC-134a concentrations at station Niwot Ridge
(Colorado, USA). See Figure 2 for the station location. The mean annual
reduction of the bias indeed ranges from�13% in 1995 to�80% in 2010.

Figure 7. HFC-134a posterior emissions from 1995 to 2010, for the U.S., Europe, and China, in Gg/month.
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4. Conclusions

We have estimated the spatial and temporal variability of HFC-134a emissions over 16 years, between 1995
and 2010, at a 3.75° × 2.5° and at 8 day resolution, improving our knowledge of the HFC-134a emissions by
optimizing both their amplitude and their seasonality.

One of the major findings of this study is the appearance of a seasonal cycle in the HFC-134a emissions in
2002, which becomes enhanced over time. Our results also suggest that the gridded EDGAR-v4.2 inventory
overestimates the U.S. and the Japanese budget and confirm the large underestimation of Chinese emissions
by this same inventory.

U.S. emissions, and to a lesser extent European emissions, appear to have drastically increased since 1995
(from 10 to 71Gg/yr in 2010 and from 4 to 37Gg/yr in 2010, respectively). Driven by these enhancements,
the global HFC-134a emissions have reached the unprecedented level of 167 ± 5Gg/yr in 2010.

However, the regional growth rates have slowed down since 1995 over developed countries, with a rate of
+5%/yr for the U.S., +4%/yr for Europe, and near zero for Japan over 2005–2010. On the contrary, the
Chinese emissions, although currently lower than U.S. and European emissions, appear to grow at a rate of
+20%/yr since 2005. Due to the growing demand for vehicles in Asia (269 vehicles per thousand people in
2030 [Davis et al., 2012;WARD, 2010]), the HFC-134a emissions could potentially continue to rise significantly
in the near future [Velders et al., 2009; Su et al., 2015], unless this species is phased out by international agree-
ments (e.g., Directive 2006/40/EC of the European Union or North American HFC phase-down amendment
proposal [EPA, 2014]).
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