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ORIGINAL RESEARCH

A Conceptual Framework for Improving Critical Care Patient
Flow and Bed Use
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1Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and 2Department of Emergency Medicine, Icahn
School of Medicine at Mount Sinai, New York, New York; and 3UCLA Anderson School of Management, Los Angeles, California

ORCID ID: 0000-0002-8810-2794 (K.S.M.).

Abstract

Rationale:High demand for intensive care unit (ICU) services and
limited bed availability have prompted hospitals to address capacity
planning challenges. Simulation modeling can examine ICU bed
assignment policies, accounting for patient acuity, to reduce ICU
admission delays.

Objectives: To provide a framework for data-driven modeling of
ICU patient flow, identify key measurable outcomes, and present
illustrative analysis demonstrating the impact of various bed
allocation scenarios on outcomes.

Methods: A description of key inputs for constructing a queuing
model was outlined, and an illustrative simulation model was
developed to reflect current triageprotocolwithin themedical ICUand
step-down unit (SDU) at a single tertiary-care hospital. Patient acuity,
arrival rate, and unit length of stay, consisting of a “service time”
and “time to transfer,”were estimated from12months of retrospective
data (n = 2,710 adult patients) for 36 ICU and 15 SDU staffed beds.
Patient prioritywas based on acuity andwhether the patient originated
in the emergency department. The model simulated the following
hypothetical scenarios: (1) varied ICU/SDU sizes, (2) reserved ICU

beds as a triage strategy, (3) lower targets for time to transfer out of the
ICU, and (4) ICU expansion by up to four beds. Outcomes included
ICU admission wait times and unit occupancy.

Measurements andMain Results:With current bed allocation,
simulated wait time averaged 1.13 (SD, 1.39) hours. Reallocating all
SDU beds as ICU decreased overall wait times by 7.2% to 1.06 (SD,
1.39) hours and increased bed occupancy from 80 to 84%. Reserving
the last available bed for acute patients reduced wait times for
acute patients from 0.84 (SD, 1.12) to 0.31 (SD, 0.30) hours, but
tripled subacute patients’ wait times from 1.39 (SD, 1.81) to 4.27
(SD, 5.44) hours. Setting transfer times to wards for all ICU/SDU
patients to 1 hour decreased wait times for incoming ICU patients,
comparable to building one to two additional ICU beds.

Conclusions: Hospital queuing and simulation modeling with
empiric data inputs can evaluate how changes in ICUbed assignment
could impact unit occupancy levels and patientwait times. Trade-offs
associated with dedicating resources for acute patients versus
expanding capacity for all patients can be examined.

Keywords: intensive care unit; resource allocation; queuing
theory; computer simulation
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Optimizing intensive care unit (ICU) use is
fundamental to quality improvement efforts
by critical care physicians. In certain
hospitals, particularly large academic

centers, demand for ICU beds may outstrip
supply, evidenced by a 32% increase in
emergency department (ED) length of stay
for critically ill patients between 2001 and

2009 (1), despite increases in the number of
ICU beds nationwide (2). Reduced ICU bed
availability can adversely affect hospital-
wide patient throughput, especially within
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the ED and postsurgical care areas, and
increase mortality of critically ill patients
due to prolonged wait times for ICU bed
assignment (3, 4). Strategies to address
capacity strain include unit expansion,
revision of triage policies, and targeted
efforts to reduce throughput delays
(5–7). A step-down unit (SDU), or
intermediate care-level unit, can relieve
ICU congestion by caring for lower-
acuity patients in alternative settings
(8–11).

Balancing the opposing goals of
minimizing admission wait time for
critically ill patients and maximizing bed use
should be tailored to individual hospitals’
priorities, patient population, and physical
and financial constraints. Projected ICU use
suggests that bed reconfiguration could
help alleviate bed shortages (12). However,
physically reconfiguring beds and observing
the resulting impact on outcomes is
time consuming, costly, and potentially
catastrophic to patients, and therefore
unwise to implement without clear
evidence of its perceived benefit.
Alternatively, a tailored computer
simulation model can easily examine how
different bed allocation or triage scenarios
impact patient-centered outcomes.
Simulation modeling and queuing theory
are well-established methodologies used to
improve hospital capacity planning (12–
16). Prior studies have developed models to
simulate varying hospital unit sizes, nurse
or physician staffing levels, and different
triage, discharge, and bed assignment
policies to examine the impact on bed use,
wait times, lengths of stay, readmissions,
and mortality (17–22). Although many
models capture patient flow through
multidisciplinary ICUs (23), often with
elective admissions (24), no studies
included both an ICU and SDU with
patients with different acuity levels within
a single model.

This study’s aim is to present
a framework for understanding and
improving patient flow through the medical
ICU and SDU, and to present illustrative
analysis for a single hospital. We describe
the model’s key assumptions, data analysis,
and proposed outcomes. Our study offers
insights for critical care physicians and
hospital leaders aiming to better allocate
limited ICU bed resources more effectively.
Some of the results of the study have been
previously reported in the form of abstracts
(25, 26).

Methods

Before examining alternative bed
allocation or triage strategies, a model of
existing patient flow through a hospital
unit, such as an ED or ICU, should be
created. In general, queuing models
must specify the arrival process, duration
of service, and number of servers (e.g.,
beds, available staff); additional model
components can be tailored for
each specific setting. The main data
requirements are patient-level throughput
data and census or occupancy data for
the specific hospital unit.

Within our ICU and SDU context,
a queuing model includes five essential
inputs: (1) number of beds for each unit,
(2) patient type and priority level, (3)
timing of patient arrival, (4) patient
prioritization for admission, and (5) unit
length of stay (Figure 1). To illustrate these
elements and demonstrate queuing
models’ analytic value, we present data
and simulation results from a single
institution’s medical ICU and SDU.
Definitions and assumptions are given in
Table 1. Full details on the methods used
in model development can be found in
the online supplement. Patient-level
characteristics and hospital operations data
(including locations and timestamps for
admission and transfers) were collected for
all patients admitted to the ICU and SDU
(both of which primarily treat Medicine
service patients, aged 18 years and older)
over a 12-month period (June 2010 to
June 2011). Data were collected via an
automated query from Sunrise Clinical
Manager and AllScripts (formerly Eclipsys)
Sunrise Patient Flow and Bed Management
database, with entry data for 20% of visits
verified against written logs and chart
documentation of Medical ICU/SDU
admissions and discharges.

The institution’s Human Investigations
Committee approved this medical record
review study before initiation. All data were
gathered retrospectively.

Number of Beds
We first identify the number of beds for the
unit(s) under consideration. As many ICUs
use SDUs to augment capacity, both units
should be represented. Our illustrative analysis
was for a tertiary, academic, and community
hospital with a 51-bed ward composed of 36
medical ICU beds and 15 medical SDU beds.
These two units received admissions and

transfers from the hospital’s ED and inpatient
Medicine wards, with a small fraction
admitted from outside hospitals.

Patient Types
Admitted patients can be described in
different ways, based on service (e.g.,
medicine, surgery), acuity, location of
origin, diagnosis group, etc. In our setting,
medicine service patients were categorized
into one of four priority classes based on
the observed triage policies (1 = acute
non-ED, 2 = acute ED, 3 = subacute non-
ED, and 4 = subacute ED), where 1 is the
highest priority and 4 is lowest. This
is a retrospective classification, which was
not used clinically to triage patients at
this institution but rather to model
patient flow for this illustrative analysis.
Acuity class was determined through
detailed chart review (see Table E1 in
the online supplement). Patients were
assigned “subacute” status if they met
the following criteria: (1) direct SDU
admission, or (2) ICU admission for
less than 24 hours, without a critical care–
level diagnosis or receipt of a critical
care–level intervention (27, 28). All other
patients were designated as “acute” in
severity, including those who expired
within 24 hours of ICU admission.
Although simplistic, this grouping
allowed for straightforward comparisons
when alternative strategies were later
modeled.

Timing of Patient Arrivals
A patient “arrival” refers to the point when
a physician requests ICU/SDU admission,
before actual “service” (e.g., care within
the unit) commences. The overall arrival
rate can be estimated from patient-level
timestamp data and is calculated as the
reciprocal of the average time between
consecutive patient arrivals. For each
patient, ICU/SDU admission “wait time” is
defined as the duration of time a patient
spent in the ED or medical wards after
a physician’s request for ICU/SDU
admission, before physically entering the
unit (Figure 1).

For our illustrative model, all patient
admissions or transfers into the ICU or SDU
were considered separate patient visits;
readmissions to the hospital or ICU
(i.e., “bounce-backs”) were included in the
overall arrival rate. Patients treated in both
the ICU and SDU appear as two separate
observations in our dataset. ICU patients
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who “step down” to the SDU are modeled
as exiting the ICU and immediately
rearriving to the SDU.

ICU Triage Policy
The most complicated model component is
the accurate representation of the ICU triage
algorithm. Significant variation exists
between institutions regarding admission
criteria (29). Some hospitals consider
acuity, diagnosis, and/or likelihood to
benefit, whereas others use a “first-come,
first-served” strategy.

The modeled medical ICU used a triage
protocol incorporating the Society for
Critical Care Medicine Guidelines for
Admission, Discharge, and Triage
for determining the acceptance and prompt
transfer of critically ill patients (27). As part
of hospital-wide throughput improvement
efforts, minimizing ED length of stay was
prioritized (30), prompting admission of
intermediate-risk ED patients to the ICU
if no SDU beds were available. Medicine
ward patients with clinical deterioration
requiring SDU or ICU transfer were
prioritized over similar ED patients, as
respiratory and nursing support were limited
on the wards. Reflecting the institution’s
current protocol, the simulation model
permitted ICU beds to be used by acute or

subacute patients, and SDU beds were used
by subacute patients only.

Length of Stay
Although many studies measure ICU length
of stay as a single value, in many hospitals,
length of stay can consist of two discrete
periods (31) (see Figure 1). On physical
transfer to an ICU/SDU bed, “service time”
commences and continues until a request to
transfer out of the unit. The service time
distribution within our model was fit to
past data and differed based on priority
class. Due to wide heterogeneity in ICU
service times, we further classified patients
as “long-stay” or “short-stay” to better fit
empirical distributions. Acute patients were
(1) short-stay, if service was less than
2 weeks; or (2) long-stay, if longer than
2 weeks, clinically reflecting patients
requiring more extensive critical care
resources (e.g., prolonged mechanical
ventilation, chronic critical illness, etc.).
Subacute patients were (1) short-stay, if
service time was less than 24 hours; or
(2) long-stay, if greater than 24 hours.

Immediately after service time ends,
a second period denoted as “time to transfer”
(TTT) begins while the patient remains in
the ICU or SDU awaiting transfer to
a medical ward bed. During this period, care

by medical providers continues, although the
patient has been deemed clinically ready for
a lower level of care. Based on clinical
experience, we hypothesized that TTT might
be affected by census levels within the
ICU/SDU and on the wards. We used
multivariate regression analysis to examine
this relationship and modeled TTT as the
same for ICU-ward transfers and SDU-ward
transfers (Table E2). The simulation model
generated each patient’s TTT based on
concurrent census levels, to capture the
impact of ICU/SDU congestion on length of
stay by accelerating TTT, as opposed to
using fixed values from retrospective data.

Model Implementation
By sampling from the best-fitting empirical
distributions, the simulation model
randomly generated a set of variables for
each hypothetical patient, including their
priority class, arrival date and time, service
time, and TTT. The model then assigned
a particular bed based on availability and
priority class. If no bed was immediately
available, the patient queued until a bed
was vacant. In our model, this process
was performed for 2,000 patients, or
approximately 6 months of ICU/SDU
throughput, with calculation of several
aggregate performance metrics.

Non-ED
(e.g., wards)

ICU
(acute higher priority, then subacute)

SDU
(subacute only)

Transfer
out of

ICU/SDU

Acute
(Priority 1)

Subacute
(Priority 3)

ED

Acute
(Priority 2)

Subacute
(Priority 4)

Patient
arrival

Patient
transfer

WAIT TIME SERVICE TIME

ICU/SDU Total Length of Stay

TTT

Figure 1. This overview of the priority queuing model displays the two different bed types (intensive care unit [ICU], accepting all patient classes,
and step-down unit [SDU], accepting only subacute classes 3–4) and the flow of patients entering and exiting the units. Patients of differing acuity
classes (1–4) originate in either the emergency department [ED] or non-ED locations (e.g., medical wards). These patients are shown from arrival,
through their ICU/SDU length of stay—which is composed of service time (interval from entrance to unit until request for transfer out of unit) and time to
transfer (TTT; interval from request for transfer out of unit to physical exit from unit)—and then actual patient transfer.
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The model implemented a priority
queue, which assigned beds on a first-come,
first-served basis, allowing for higher-acuity
patients to “bump” those ahead in the
queue. Once patients began their unit stay,
a nonpreemptive policy was in effect
(i.e., later patients could not displace
existing patients in service). The bed
assignment algorithm is detailed in the
online supplement.

The model was validated by comparing
model-simulated wait times for admission
to those obtained from the retrospective
cohort, by priority class, to ensure that the
model closely represented patient flow
through the ICU/SDU.

Simulated Bed Allocation Scenarios
In addition to simulating patient flow under
the existing bed assignment policy, the model
can be adjusted to explore different bed
allocation strategies, which we illustrate with
four broad policy or operational changes.
First, we considered alternative partitions of

the existing 51 staffed beds into separate ICU
and SDU, ranging from 31 ICU1 20 SDU
beds, up to 51 ICU1 0 SDU beds. Next, we
considered a triage scenario holding constant
the total bed number (36 ICU1 15 SDU)
but with a cut-off policy that reserved the last
unoccupied ICU bed for acute patients only.
This was repeated for a scenario of two
reserved beds. Third, unit expansion
scenarios were simulated, where the 51-bed
unit was enlarged by up to 4 additional
ICU beds, with the SDU capacity remaining
fixed at 15 beds. Finally, we simulated
a hypothetical scenario (with 36 ICU1 15
SDU beds) where TTT was no longer census
dependent but instead varied from a constant
value of 6 hours down to 1 hour, to illustrate
how improvements in transfer times could
improve patient throughput.

Outcomes
Hospitals may wish to target various
performance metrics as the outcome of
interest.We identify two potential outcomes of

consideration. Wait time for ICU/SDU
admission by priority class is clinically
relevant, as critically ill patients may
deteriorate if care is delayed (32, 33). Second,
average ICU/SDU bed occupancy levels—the
proportion of time that beds are occupied—
directly impacts profitability (34, 35). For each
bed allocation scenario, we calculated each
outcome across 10,000 simulation iterations.

Results

Patient Characteristics
Between June 2010 and June 2011, 3,165
patients were admitted to the ICU and 873
to the SDU. Among the ICU population,
14.4% were identified as subacute and
alternatively could have been cared for in the
SDU. Full patient characteristics and
admission wait times were obtained for
2,710 patients. Service time, TTT, and
corresponding census data were obtained
for 1,694 patients (Table 2).

Table 1. Key definitions and model assumptions for a medical intensive care unit/step-down unit

Term Definition Assumptions

Bed types
ICU bed ICU bed that can treat all acuity classes Beds are identical and always staffed
SDU bed SDU bed that can treat lower acuity patients Beds are identical and always staffed

Patient characteristics
Acute Those with a critical care–level diagnosis (27) or

who require a critical care–level intervention (28)
Patients originating from non-ED locations are
higher priority

Subacute Those admitted directly to SDU or admitted to the
ICU who do not either have a critical care–level
diagnosis or receive a critical car–-level
intervention

Patients originating from non-ED locations are
higher priority

Short-stay Those who stay less than 2 wk (acute patients) or
24 h (subacute patients)

Classification used to estimate service time
distribution from past data

Long-stay Those who stay longer than 2 wk (acute patients) or
24 h (subacute patients)

Classification used to estimate service time
distribution from past data

Model inputs
Arrival rate Number of patients per hour who require an ICU or

SDU bed
Estimated from past data on patient throughput;
calculated as the reciprocal of the average time
between consecutive patient arrivals

Service time Duration of time spent receiving care in the ICU or
SDU

Estimated by fitting probability distributions to past
data; can vary by acuity level and short or long
stay

Time to transfer Duration of time between request for transfer out of
ICU or SDU and physical transfer to wards

Estimated using multivariate regression; can
depend on concurrent patient census levels in
the ICU/SDU and medical wards

Model outcomes
Wait time Duration of time between ICU or SDU bed request

and physical transfer out of unit
Shorter wait times are preferred; can be validated
against past data

Bed occupancy Number of bed-hours that are occupied divided by
total available bed-hours

Higher occupancy is more profitable but results in
lower bed availability

Definition of abbreviations: ICU = intensive care unit; SDU = step-down unit.
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The mean time between consecutive
patient arrivals across all priority classes
was 1.96 hours, resulting in an average
arrival rate of 0.51 patients per hour, or
approximately 12 patients per day (Figure
E1). Approximately 58% of arrivals occurred
between 7 A.M. and 7 P.M. Among acute
patients, 98% stayed less than 2 weeks, with
a mean service time of 52.3 hours (Table 3).
A lognormal distribution best fit service
time data for these patients. We similarly
empirically fit distributions for other
patient classes (Figure E2).

Simulation Results: Existing
Bed Allocation
Simulating the current structure of 36
ICU1 15 SDU beds resulted in a mean
wait time for all patients of 1.13 hours
(acute, 0.84 h; subacute, 1.39 h). Service
time averaged 79.45 hours, and TTT
averaged 3.73 hours. The simulated
admission wait times by priority class were
broadly similar to median values obtained
from the retrospective cohort (Figure 2).
Simulated service time and TTT values
closely matched historical data (Figure E3).

Simulation Results: Alternative
Policies
Reallocating SDU beds for ICU use—holding
constant the total number of beds at 51—
showed modest improvement in overall

patient wait time as ICU size increased.
With 31 ICU1 20 SDU beds, wait time
averaged 1.23 hours; with 51 ICU beds, wait
time decreased by 14% to 1.06 hours.
However, the effect on individual priority
classes differed substantially (Figure 3).
Acute patients (priority 1–2) experienced
a 52% reduction in wait time over this range
in ICU bed allocation, whereas subacute
patients (priority 3–4) suffered a 23%
increase in wait time as fewer dedicated SDU
beds were available. Detailed model results
for each scenario are shown in Table 4.

As more SDU beds were reallocated as
ICU beds, average occupancy rates in both
units increased. For example, ICU bed use

increased from 80% (31 ICU1 20 SDU
beds) to 84% (51 ICU beds), suggesting that
ICU patients spent more time in a bed and
less time waiting for admission.

Reserving the last available ICU bed for
acute patients (assuming 36 ICU1 15 SDU
beds) reduced wait times for these patients
to 0.20 hours (priority 1) and 0.42 hours
(priority 2), a 63% improvement. In contrast,
wait times for subacute patients worsened
to 4.27 hours (priority 3 and 4). With two
reserved beds, wait times improved by
a further 11% to 0.14 hours (priority 1) and
0.29 hours (priority 2), whereas wait times
for subacute patients worsened by 40%
(5.98 h for priorities 3 and 4).

Table 2. General patient characteristics, grouped by acuity class

Total Acute (ICU only)
(N = 2,099)

Subacute (SDU1 ICU
Subacute)
(N = 611)

ED origin, n (%) 1166 (55.6) 186 (30.4)
Age, mean6 SD, yr 61.366 17.93 61.866 18.13
Men, n (%) 1,078 (51.4) 303 (49.6)
Insurance, n (%)
Medicare 1,176 (56.0) 340 (55.6)
Medicaid 464 (22.1) 143 (23.4)
Private 428 (20.4) 118 (19.3)
Self-pay/other 31 (1.5) 10 (1.6)

Admission wait times, median (IQR), h
1.05 (0.63–1.78) 1.20 (0.75–2.14)

ED 1.23 (0.85–1.85) 1.23 (0.78–1.85)
Non-ED 0.79 (0.47–1.63) 1.18 (0.71–2.29)

ICU/SDU length of stay, median (IQR), h*
Total 51.73 (29.64–100.11) 24.93 (17.38–47.67)
Service time 39.73 (22.32–84.42) 15.92 (11.22–15.92)
Time to transfer 5.87 (2.98–14.01) 5.69 (3.23–11.62)

Hospital length of stay, median (IQR), d 8.01 (4.42–16.92) 6.20 (3.24–13.71)
In-hospital mortality, n (%) 329 (15.7) 56 (9.2)
Hospital readmission within 30 d, n (%) 471 (22.4) 137 (22.4)

Definition of abbreviations: ED = emergency department; ICU = intensive care unit; IQR = interquartile range; SDU = step-down unit.
*ICU/SDU length of stay was captured for 1,694 patients (62.5%), 1,479 (87.3%) of whom were classified as acute and 215 (12.7%) as subacute.

Table 3. Service time distribution based on empiric data

Acute Patients Subacute
Patients

Short-stay duration <2 wk <24 h
Proportion, % 98 27
Mean (SD), h 50.9 (53.3) 12.3 (6.5)
Median (IQR), h 33.7 (19.6–63.5) 13.3 (9.3–18.0)
Fit distribution Lognormal Uniform

Long-stay duration .2 wk .24 h
Proportion, % 2 73
Mean (SD), h 645.4 (387.3) 131.6 (112.7)
Median (IQR), h 499.3 (398.0–760.0) 90.2 (60.0–180.6)
Fit distribution Exponential Exponential

Definition of abbreviation: IQR = interquartile range.
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The third simulation scenario
considered a reduction in TTT for all
patients and demonstrated linear
improvements in bed occupancy rates and
wait times. Reducing TTT from current
levels to a target time of 1 hour for every

patient led to a 46% improvement in wait
times for bed assignment. This increased
process throughput also freed up beds more
quickly, reflected by the decrease in mean
ICU bed occupancy from 80 to 66% with
a 1-hour TTT target.

Finally, ICU bed expansion scenarios
from one up to four extra beds substantially
improved average wait times from 1.13 hours
(status quo) to 0.76 hours (one additional
bed) or 0.21 hours (four additional beds) for
all patients. With this expansion, ICU bed
occupancy modestly decreased from 79 to
76%, but SDU bed occupancy minimally
changed (0.3% improvement).

Discussion

By presenting a conceptual framework and
illustrative analysis for simulating patient
flow through the ICU and SDU, this study
demonstrated how queuing theory with
data-driven inputs offers insights into
improving ICU bed availability and
admission wait time. Our empirically
derived queuing model simulated ICU and
SDU patient admissions and transfers,
reliably replicated empiric wait times, and
examined the effect of distinct bed allocation
strategies and flexible triage policies on wait
time and occupancy, tailored for a specific
hospital.

The usefulness of queuing theory,
a well-described analytical tool in operations
management, has been documented
in healthcare settings with practical
applications for physicians and hospital
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leadership to better understand patient
throughput and improve bed availability
(36–38). Our model was informed by the
current admission process at one institution
but could be readily adapted to other
locations with adjustments of empiric
inputs and bed assignment algorithm.
Similar to past ICU models maximizing
potential health benefits or reserving unit
beds for elective surgeries (14, 39, 40), we
examined bed allocation strategies and
flexible triage policies that can alleviate
shortages during periods of high ICU
demand. This model adds to the literature
by incorporating both ICU and SDU bed
types, using a priority bed assignment
algorithm that paralleled actual clinical
decision making and providing an excellent
testing ground for system and practice
changes.

The simulation results demonstrate
some fundamental insights from queuing
theory—which could apply across
institutions—as well as some specific
conclusions for our institution. Pooling
beds, or eliminating different bed types, is
a well-established queuing paradigm to
reduce waiting, although of course effect
size depends on the specific parameters of

the hospital setting. In our setting, pooling
the ICU and SDU into one unit may be
preferred, when expansion of both units is
not feasible due to physical or economic
constraints. Reallocating SDU beds into one
ICU unit (all 51 beds) improves bed use
while reducing wait times, because it
maximizes flexibility in permitting all beds
to serve all patient types. In the original
allocation (36 ICU1 15 SDU), it is possible
for an acute patient to wait for ICU
admission during high census, while an
SDU bed is simultaneously unoccupied.
When we eliminate SDU beds, pooling
facilitates faster admission of acute patients.

There are potential shortcomings to
pooling ICU/SDU beds, however. For
instance, with a single pooled unit, staffing
levels would likely change as the nursing-to-
patient ratio is higher in an ICU than in an
SDU, potentially increasing hospital costs.
On the other hand, under the current
system, subacute patients in the ICU use
more nursing and specialist resources than
clinically necessary, which is also costly
(41–43). Before implementing such bed
reconfigurations, a hospital could conduct
a careful cost–benefit analysis to better
measure these trade-offs. Flexible staffing

models that better match patient type with
needed resources (e.g., nursing and
respiratory support) may generate further
cost savings (44).

Our analyses highlighted another
opportunity for improvement: reduction of
TTT, an ineffective use of resources where
patients occupy ICU beds while waiting for
transfer to medical wards (31). We observed
substantial improvements in admission
wait times and overall bed availability with
faster transfer times out of the ICU and
SDU, regardless of unit sizing. For example,
reducing TTT from current levels to
1 hour—which would involve centralized
quality improvement effects affecting all
patient flow from ED presentation to
hospital discharge (30, 45)—generated
improved wait times equivalent to building
one to two additional ICU beds, a costly
solution that would only temporarily relieve
congestion without added patient benefit
(46, 47). Moreover, reduced TTT was the
only simulated scenario that achieved ICU
bed occupancy levels below 70%, which is
an increasingly important metric as the
demand for ICU beds continues to grow.
Nevertheless, reducing TTT would
likely require operational changes,

Table 4. Results of simulated bed allocation scenarios

Bed Scenario Wait Time (h) Bed Occupancy (%)

Overall Acute Subacute Overall ICU SDU

Unit composition
51 ICU1 0 SDU 1.06 (1.04–1.09) 0.56 (0.54–0.58) 1.55 (1.52–1.59) 84.3 (84.3–84.4) 84.3 (84.3–84.4) —
46 ICU1 5 SDU 1.05 (1.03–1.08) 0.60 (0.58–0.62) 1.48 (1.45–1.52) 84.3 (83.3–84.4) 83.1 (83.0–83.1) 95.7 (95.7–95.8)
41 ICU1 10 SDU 1.07 (1.05–1.10) 0.68 (0.67–0.70) 1.44 (1.40–1.47) 84.3 (84.2–84.3) 81.7 (81.7–81.8) 94.7 (94.7–94.7)
36 ICU1 15 SDU* 1.13 (1.11–1.16) 0.84 (0.82–0.86) 1.39 (1.35–1.42) 84.2 (84.1–84.2) 80.4 (80.4–80.5) 93.2 (93.2–93.2)
31 ICU1 20 SDU 1.23 (1.20–1.26) 1.14 (1.12–1.17) 1.26 (1.22–1.29) 84.0 (83.9–84.0) 79.6 (79.5–79.7) 90.7 (90.7–90.8)

Reserved acute beds
1 Reserved bed 2.23 (2.17–2.28) 0.31 (0.31–0.32) 4.27 (4.16–4.38) 84.7 (84.7–84.8) 80.8 (80.8–80.9) 94.0 (94.0–94.1)
2 Reserved beds 3.00 (2.93–3.07) 0.22 (0.21–0.22) 5.99 (5.85–6.12) 84.8 (84.7–84.8) 80.8 (80.7–80.8) 94.4 (94.4–94.4)

ICU bed expansion
37 ICU1 15 SDU 0.76 (0.74–0.78) 0.58 (0.56–0.59) 0.92 (0.89–0.94) 83.0 (82.9–83.0) 78.9 (78.8–79.0) 93.0 (93.0–93.0)
38 ICU1 15 SDU 0.50 (0.48–0.51) 0.39 (0.37–0.40) 0.59 (0.57–0.61) 82.0 (81.9–82.0) 77.7 (77.6–77.7) 92.9 (92.9–92.9)
39 ICU1 15 SDU 0.33 (0.32–0.34) 0.26 (0.25–0.27) 0.38 (0.37–0.40) 81.1 (81.1–81.2) 76.6 (76.6–76.7) 92.8 (92.8–92.8)
40 ICU1 15 SDU 0.21 (0.20–0.22) 0.17 (0.16–0.18) 0.24 (0.23–0.25) 80.5 (80.4–80.5) 75.9 (75.8–76.0) 92.7 (92.7–92.7)

Target TTT
1 h 0.69 (0.67–0.70) 0.51 (0.50–0.53) 0.83 (0.81–0.85) 73.5 (73.3–73.6) 65.5 (65.3–65.7) 92.7 (92.6–92.7)
2 h 0.85 (0.83–0.87) 0.64 (0.62–0.66) 1.03 (1.00–1.06) 74.7 (74.5–74.8) 67.1 (66.9–67.3) 92.9 (92.8–92.9)
3 h 1.06 (1.04–1.09) 0.79 (0.77–0.81) 1.30 (1.26–1.33) 75.5 (75.4–75.7) 68.2 (68.0–68.4) 93.1 (93.1–93.1)
4 h 1.28 (1.25–1.30) 0.94 (0.92–0.97) 1.56 (1.52–1.60) 76.6 (76.4–76.7) 69.6 (69.4–69.8) 93.3 (93.2–93.3)
5 h 1.57 (1.54–1.60) 1.16 (1.13–1.18) 1.93 (1.88–1.97) 77.6 (77.4–77.7) 70.9 (70.7–71.1) 93.5 (93.5–93.5)
6 h 1.96 (1.91–2.00) 1.44 (1.40–1.48) 2.40 (2.35–2.46) 78.6 (78.4–78.8) 72.3 (72.1–72.5) 93.7 (93.7–93.7)

Definition of abbreviations: ICU = intensive care unit; SDU = step-down unit; TTT = time to transfer.
Data presented as mean (95% confidence interval). Mean values are reported based on a simulation with 10,000 iterations; 95% confidence intervals are
calculated assuming a “sample size” of 10,000. Wait time is time from ICU bed request to physical transfer. Bed occupancy is proportion of available bed-
hours that are occupied by patients.
*Existing number of ICU and SDU beds at this institution.
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including additional transfer staff, greater
coordination between the ICU and wards,
and improved timeliness of hospital
discharges, without increasing the risk of
delays for ED patients awaiting admission
to wards or early discharges for non-ICU
patients (17, 18, 30).

Given the established link between
delays in ICU admission and increased risk
of mortality (3, 4), admission wait time is
a clinically supported performance metric
for our model (48). Although many
hospitals focus on decreasing wait times
for admission from the ED, critical care
physicians and hospital administrators can
evaluate additional performance metrics,
such as ICU/SDU occupancy rates, before
concluding that ICU expansion is needed
(49, 50).

Strengths of our modeling approach
are its use of empirical data over a 12-
month period for two types of units
(ICU and SDU) and an adaptive bed
assignment algorithm that considers
priority bed assignment to accommodate
more critically ill patients earlier. The
model also accounts for the “speed up” of
TTT occurring during periods of higher
ICU census, reflecting real-world
observations of expedited patient

transfer times when available ICU beds
are limited.

Limitations of our model include the
absence of a more granular severity of illness
estimation in retrospective data. Although
the acute/subacute and long/short-stay
categorizations were based on chart
documentation and published guidelines,
there may be additional factors affecting
acuity classification and admission priority.
Although we aggregated subacute patients,
these lower-risk patients admitted to the
ICUmay reflect a different clinical class than
those admitted to the SDU (10, 51). We also
had limited sample sizes for some patient
subgroups, causing our distribution fitting
for short-stay subacute patients to appear
less precise than for other subgroups. Due
to limited data on patient timestamps
resulting from completely missing weeks of
hospital operations reports, as well as only
9 months of ICU and medicine ward census
data, our original sample size reflecting all
admissions to the ICU/SDU over 1 year
is reduced. However, we do not observe
any systematic bias in the missing data.
Historical census data were available for
only four time points per day, which
prevents us from examining how time-
series trends in floor crowdedness affect

ICU TTT. Future models could incorporate
alternative staffing models, more granular
measures of patient severity, and other
triage policies similar to the bed reservation
strategy in times of surge.

Using real-world patient-level data for
a major academic U.S. hospital, we provided
an illustrative framework to use queuing
theory and simulation modeling to
understand and improve ICU and SDU
patient flow.We examined hypothetical unit
resizing scenarios and measured the impact
on admission wait times and bed occupancy
rates. Before implementing large-scale bed
reallocation plans or triage policies, such as
switching SDU beds to ICU permanently or
temporarily in times of ICU surge, such
policies can be examined within simulation
models such as ours, with adjustments
made for local institutional policies and
characteristics, to measure the resulting
benefits and tradeoffs to patients and the
health system as a whole. Small changes
in bed assignment policies can have
a significant effect on operational metrics,
with potentially profound effects on patient
health outcomes. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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We developed a novel priority queuing simulation model to mimic the flow of patient through a 
Medical Intensive Care Unit (ICU) and Step-Down Unit (SDU), and applied it to a single tertiary-
care hospital with an existing 51-bed unit, consisting of 36 ICU beds and 15 SDU beds. Patients 
arrive to the ICU/SDU from the Emergency Department (ED) or non-ED locations. 
 
This document outlines our key assumptions and methodology, which consists of six 
components: patient variables, bed assignment algorithm, empirical analysis of patient-flow 
data, model implementation, validation, and simulated bed allocation scenarios. 

A. Patient variables 
 
The model is a discrete-event simulation model, which simulates the flow of a hypothetical 
cohort of 2,000 patients through an ICU and SDU. The “events” for each patient include arrival 
to the ICU/SDU, initiation of service, transfer request to the Medical wards, and physical unit 
discharge. By fitting probability distributions to past data, we are able to randomly generate a 
set of variables for each patient. The simulation then randomly draws from these probability 
distributions, so each simulated patient obtains a unique set of timestamps that are consistent 
with historical data. 
 
The following variables are simulated for each patient i: 
 

Variable Possible values Description Reference 

Interarrival time Χi ~ Exponential 

Each patient incurs a randomly generated 
interarrival time (the reciprocal of the arrival 
rate), which is used to compute the exact arrival 
date and time of consecutive patients. 

Figure E1 

Priority class Pi ϵ {1, 2, 3, 4} 

Each patient is randomly assigned one of four 
priority classes based on historical proportions. 
The class refers to whether the patient is 
acute/subacute and originating in the ED/non-
ED. 

Table E1 

Duration of stay Di ϵ {short, long} 
Each patient is randomly assigned to be short- or 
long-stay based on historical proportions in each 
acuity level. 

Table 3 

Service time 
Yi ~ Lognormal,      
       Exponential,  
       or Uniform 

Refers to the duration of active service in the 
ICU/SDU, and depends on acute/subacute status 
and short/long stay. 

Figure E2 

Time-to-transfer Zi ϵ R+ 

At the time of service completion for each 
patient, the Medicine floor census is randomly 
drawn from nine months of historical data. This 
refers to the number of floor beds that are 
occupied, and is used to compute time-to-
transfer for each patient. 

Table E2 

Note: R+ refers to the set of positive real numbers. 
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B. Bed assignment algorithm 
 

Priority queue and bed assignment  
Upon arrival to the ICU (i.e., when the physician requests a bed), patients are assigned a bed on 
a first-come, first-served basis within priority class. A higher priority patient (e.g., priority 1) will 
be assigned a bed before a lower priority patient (e.g., priority 4), even if the lower priority 
patient arrived first. If a bed is available when a patient arrives – and no higher priority patients 
are waiting – then the patient is immediately assigned a bed. If both ICU and SDU beds are 
available at the time of arrival, subacute patients (priority 3-4) will preferentially be assigned an 
SDU bed to maintain ICU bed availability, whereas acute patients (priority 1-2) must always be 
assigned an ICU bed because of their more intensive resource needs.  If no beds are available, 
then the patient must wait in the queue and be assigned according to their priority class. 
 
Later patients arriving to the ICU could “bump” earlier patients in queue (before service 
commences) if (a) the later patient was strictly higher priority, (b) the next available bed was 
adequate, and (c) the earlier patient had been bumped fewer than k=10 times. For example, a 
class 4 (subacute) patient could be bumped by classes 1-3 if an ICU bed became available, and 
only by class 3 if a SDU bed became available. The model’s constraints of priority classes and 
algorithm for “bumping” algorithm were designed to mimic current clinical ICU admitting 
practices at the hospital, with the k limit established so that subacute patients could not be 
indefinitely waiting if no beds became available. We chose the k patient limit rather than a 
specified time limit because the priority model considers each new patient arrival an “event”, 
and we could thus count the number of later arriving patients who are eligible to bump an 
earlier patient in the queue. A limit of k=10 corresponds to approximately two nursing shifts 
after the initial patient arrival, and our clinical experience suggests that few patients, if any, 
queue for an ICU bed for longer than this.  
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The following section details the algorithm used to assign a bed for each patient i.  
 

[1] Compute the arrival time (αi) as the sum of the previous patient’s arrival time (αi-1) and 
the interarrival time (Χi): 

           
 

[2] Determine the set of adequate beds (Bi) appropriate for the newly arriving patient: 
 

   {
   

       
    

         
         

 

 
Identify the sub-set of beds that are unoccupied upon patient arrival: 
 

a) If exactly one adequate bed is available at time αi, assign that bed to patient i.  
Continue to Step 6.  
 

b) If more than one bed type is available at time αi, assign the lower tier bed: 

                {
   
   

    
         
         

 

Continue to Step 6.  
 

c) If no beds are available at time αi, tentatively assign patient i  the first-available 
bed, b1, with a projected time of availability: 

                 

 
[3] Compute the arrival time (αi+1) and set of capable beds (Bi+1) for the next arriving patient 

i+1.  
If all of the following conditions hold, assign bed b1 to patient i+1 instead of patient i: 
 

a) Patient i+1 arrives before patient i is tentatively scheduled to begin service in 
bed b1 

        
 

b) Bed b1 is also suitable for patient i+1 acuity level 
        

 
c) Patient i+1 is strictly higher priority than patient i 

        
 
 

[4] If Step 3 conditions (a-c) do not hold for patient i+1, repeat for patient i+2, i+3, …i+10. 
 

[5] If Step 3 conditions (a-c) do hold for some patient h, tentatively assign the second-
available bed, b2, for original patient i where: 
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Repeat Steps 3-4 using the second-available bed, third-available bed, etc., up to a limit 
of k bed bumps (k=10) for patient i.  

 
 Return to Step 1 for the next patient i+1. 
 

Calculation of ICU/SDU length of stay 
Once patients begin their unit stay, a non-preemptive policy is in effect, meaning that 
subsequent patients cannot displace an existing patient in a bed. This is the current policy at 
the hospital under consideration.  
 
The following section details the algorithm used to determine ICU/SDU length of stay, which 
consists of a service time and time-to-transfer (TTT), for each patient. Based on our clinical 
observations, overall lengths of stay tend to be shorter during times of high ICU/SDU census; 
this is incorporated into the simulation through the census-dependent TTTs (described in 
Section C below).  

 
[1] The bed (b) assigned to patient i, becomes available at time τb, which becomes the 

patient’s service begin (βi) time: 
 

      
 

The patient’s service time (Yi) is randomly generated, and service end time (ξi) occurs 
when transfer to the Medicine ward is requested: 
 

         
 
The wait time (ωi) for bed assignment for patient i is only positive if the service begin 
time occurs after the arrival time: 

  
                 

 
 If the patient is immediately assigned a bed, then there is no wait time: 
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[2] Compute a time-to-transfer (Zi) based on the ICU census level within the simulation 
model at time of transfer request (ξi) and the randomly sampled Medicine floor census, 
as well as other patient-level effects (Section C).  
 

[3] After completion of TTT, patient i is transferred to the wards, and bed b becomes 
available to future patients.    

C. Empirical analysis of patient-flow data 
 

Priority class 
In the simulation model, each patient’s priority class is determined based on proportions 
observed over a 12-month period (June 2010 – June 2011). Acute patients are deemed more 
critically ill and are thus higher priority than subacute patients. Patients originating from non-
ED areas are higher priority than ED patients because of the enhanced critical care resources 
available in the ED at our institution. 
 
Table E1: Descriptions of patient classes and priorities 

Priority Acuity Origin Proportion 

1 
Acute*

 
Non-ED 23.7% 

2 ED 28.2% 
3 

SubacuteƗ Non-ED 21.0% 
4 ED 27.1% 

* ACUTE: Patients with ICU-level admission diagnosis(1) OR requiring ICU-level intervention(2) 
Ɨ SUBACUTE: Patients meeting neither of the above criteria admitted to the ICU and/or patients 
admitted directly to the SDU  
 

Interarrival time 
The histogram below shows the interarrival times (intervals between consecutive ICU/SDU bed 
requests) of the historical cohort, with an overlying best-fitting exponential curve. As with most 
real-world queuing systems, the exponential distribution is the best fitting distribution in our 
setting. This implies that patient arrivals to the ICU/SDU follow a Poisson process. The mean 
interarrival time from this data is 1.96 hours (median = 1.36 hours). The arrival rate (0.51 
patients/hour) is the reciprocal of the mean interarrival time (1.96 hours). This arrival rate 
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amounts to approximately 12 patients admitted to the ICU/SDU daily. This overall arrival rate is 
then subdivided into the four priority classes based on the proportions given in Table E1. 
 
Figure E1: Interarrival times for patients arriving to the ICU/SDU with best-fitting exponential 
curve 

 
Service time 
For each class of patients (acute short-stay, acute long-stay, subacute short-stay, subacute long-
stay) we fit probability distributions to historical data on ICU/SDU service time (the period of 
active care before transfer to the Medicine wards is requested). The distinction of short-stay 
versus long-stay is based on clinical differences in these populations. We do not observe 
differences in service time for patients originating in the ED or non-ED. 
 
We have the most complete patient flow data for acute short-stay patients (those who stayed 
less than two weeks), and we find that a Lognormal distribution best fits, based on the Akaike 
Information Criterion, a measure of statistical goodness-of-fit. The other distributions are 
similarly fit to past data, although we note that these are potentially less accurate given the 
paucity of data for these sub-populations.  
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Figure E2: Service times in the ICU/SDU with best-fitting probability distributions 
 

  

  
(a) Acute short-stay patients (<14 days), all admitted to the ICU, with a lognormal best-fitting 
curve.  
(b) Acute long-stay patients (>14 days), all admitted to the ICU, with exponential best-fitting 
curve.  
(c) Subacute short-stay patients (<24 hours), admitted to SDU or ICU, with a uniform best-fitting 
curve.  
(d) Subacute long-stay patients (>24 hours), admitted to SDU or ICU, with an exponential best-
fitting curve.   
 

Time-to-transfer 
Prior studies have demonstrated that critical care may be accelerated during periods of strain, 
in order to free up beds for incoming patients.(3, 4) To examine whether service time or time-
to-transfer (TTT) is potentially impacted by the unit’s crowdedness, we utilized multivariate 
regression analysis using patient-level throughput data, along with census counts within the 
ICU/SDU and on the Medicine floors near the time a patient completed service. Our institution 
recorded census levels four times per day (midnight, 5am, 1pm, 9pm), both within the ICU/SDU 
and the Medicine wards. 
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We find that census levels have no significant effect on service time, although they do impact 
TTT, suggesting that patients’ bed transfer times depend on the surrounding units’ 
crowdedness. However, we find no effect of patients’ location of origin (ED or non-ED) on 
duration of TTT. We present some of the key regression results in Table E2. To allow for 
nonlinear effects of ICU census (i.e., moving from 30 to 31 occupied ICU beds may have a 
different effect than from 50 to 51 beds, when the unit is completely full), we divided historical 
census levels into ten deciles. Within each decile, we examined whether service time (Model 1) 
or TTT (Model 2) differed, controlling for other patient factors, such as age, ED origin, or 
primary DRG code.  
 
Because we are taking the natural logarithm of the dependent variables (service time or TTT), 
the coefficients represent percent-changes. The results suggest that ICU staff are speeding up 
the transfer of patients when the ICU is very full, to make room to accommodate newly arriving 
patients. Conversely, Medicine floor staff might be slowing the transfer of incoming ICU 
patients during periods of floor bed strain. 
 
In order to generate a TTT for each hypothetical patient in the model, we compute ICU census 
levels within the model near the time of bed transfer request out of the ICU/SDU. For Medicine 
floor census levels, we randomly sample Medicine floor census levels from historical values. We 
population both census values into the regression equation, to generate a predicted time-to-
transfer for the simulation model. Thus, the simulation model captures the impact of ICU and 
Medicine floor congestion on length of stay by accelerating the time-to-transfer.  
 
For additional information on the regression results, please contact the authors directly. 
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Table E2: Regression model for ICU duration of stay (coefficients and standard errors) 
  Model 1 

Log(Service time) 
Model 2 

Log(Time-to-transfer) 

ICUcensus 2ndDecile –0.001 (0.117) 0.058 (0.122) 
 3rdDecile –0.055 (0.113) 0.092 (0.118) 
 4thDecile –0.148 (0.123) 0.185 (0.128) 

 5thDecile –0.151 (0.110) –0.141 (0.115) 
 6thDecile   0.085 (0.135) 0.242 (0.141) 
 7thDecile –0.080 (0.117)      –0.487 (0.122)*** 

 8thDecile 0.035 (0.117)   –0.390 (0.121)** 
 9thDecile –0.048 (0.124)     –0.562 (0.129)*** 
 10thDecile –0.234 (0.139)     –0.990 (0.145)*** 

FLOORcensus 2ndDecile –0.167 (0.121) 0.193 (0.126) 
 3rdDecile –0.088 (0.123) 0.221 (0.128) 
 4thDecile –0.040 (0.124)        0.459 (0.129)*** 
 5thDecile –0.130 (0.127)        0.467 (0.132)*** 
 6thDecile –0.086 (0.128)        0.667 (0.134)*** 
 7thDecile –0.154 (0.130)        0.757 (0.136)*** 
 8thDecile –0.065 (0.128)        0.931 (0.134)*** 
 9thDecile –0.070 (0.134)        1.161 (0.139)*** 
 10thDecile –0.127 (0.136)        0.949 (0.142)*** 

Medicaid  –0.152 (0.080)       –0.081 (0.084) 
Medicare  –0.122 (0.075) –0.086 (0.078) 
Age    0.004 (0.002)   0.002 (0.002) 
ED        –0.398 (0.057)*** –0.044 (0.060) 
Weekday  –0.041 (0.063) –0.003 (0.065) 
Dayshift          0.285 (0.086)***         0.349 (0.090)*** 
Month  Included Included 
DRG  Included Included 
Observations  1,434 1,434 
Adjusted R2  0.16 0.19 

Significance levels: 0.05 (*), 0.01 (**), 0.001 (***) 
ICUcensus = Intensive Care Unit census; FLOORcensus = Medicine floor census; ED=Emergency 
Department; Weekday = Monday to Friday; Dayshift = 7am to 7pm; DRG = Diagnosis related 
group code 
Included refers to independent categorical variables that were included in the regression, but 
the coefficients are not displayed due to space constraints. 
 

D. Model implementation 
 
The simulation model was implemented in Microsoft Excel, where each hypothetical patient 
was on a separate line in a spreadsheet. The relevant variables (interarrival time, service time, 
time-to-transfer) were generated for each patient, and the bed assignment algorithm was 
implemented by assigning the appropriate bed to each patient.  
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Probability distribution fitting was performed using @Risk software (Palisade Decision Tools). 
Multivariate regression analysis was performed in Stata. 

E. Validation 
 
The model simulated patient flow through the ICU/SDU for 2,000 patients, representing about 
six months of throughput. We then repeated this process for 10,000 iterations, and we 
averaged outcome values over all iterations to obtain mean values. In Figure E4, we show a 
histogram of all service times and times to transfer based on historical data (blue bars), as well 
as one run of the simulation model (black bars). Note, each time the simulation is run, the 
histogram will change slightly due to random variation. We excluded extreme outliers (e.g., 
patients with transfer times exceeding 24 hours) because these are not clinically valid, and 
likely represent an error in timestamp coding. 
 
 
 
 
Figure E3: Histograms of (a) service time and (b) time-to-transfer from 12-months of data and 
1 run of queuing simulation model 
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(b) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
In general, we find that the simulation model closely matches historical data, even with all of 
our assumptions regarding ICU and floor census levels, and priority bed assignment. Models 
tailored to other hospital settings should ensure that the model closely approximates the actual 
triage and bed assignment process at that specific institution. 

F. Simulated bed allocation scenarios 
 
After building and validating the simulation model, we first considered the status quo bed 
allocation at our institution (36 ICU + 15 SDU beds). We then considered “bed reallocation” of 
the existing 51 beds as follows:  

 51 ICU + 0 SDU beds 

 46 ICU + 5 SDU beds 

 41 ICU + 10 SDU beds 

 31 ICU + 20 SDU beds 
We also simulated every scenario in between but we presented results for only these scenarios 
to highlight the relative impact on admission wait times and ICU/SDU bed occupancy. 
 
Second, we simulated a “cut-off bed” policy, which maintained the current bed allocation (36 
ICU + 15 SDU beds), but once 35 ICU beds were occupied and only 1 ICU bed remained open, 
we reserved it for only acute patients rather than either acute or subacute patients. This helped 
ensure that higher priority acute patients likely encountered an open bed upon arrival. This was 
also repeated using 2 reserved beds. 
 
Third, we evaluated a “bed expansion” scenario, where we maintained the existing 15 SDU 
beds, but added between 1 and 4 additional ICU beds, which represents the current physical 
bed capacity at our institution. 
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Finally, we considered a “targeted time-to-transfer” scenario as a thought exercise. Here, we 
omitted the effects of ICU or Medicine ward census levels on TTT, but instead assigned a fixed 
value for all patients’ TTT, ranging from 1 to 6 hours. This was to explore whether such a goal 
could sufficiently reduce admission wait times, and we compared this to the far costlier policy 
of building additional ICU beds. 
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