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Abstract
Nontarget chemical analysis using high-resolution mass spectrometry has increasingly been used to discern spatial patterns 
and temporal trends in anthropogenic chemical abundance in natural and engineered systems. A critical experimental design 
consideration in such applications, especially those monitoring complex matrices over long time periods, is a choice between 
analyzing samples in multiple batches as they are collected, or in one batch after all samples have been processed. While 
datasets acquired in multiple analytical batches can include the effects of instrumental variability over time, datasets acquired 
in a single batch risk compound degradation during sample storage. To assess the influence of batch effects on the analysis 
and interpretation of nontarget data, this study examined a set of 56 samples collected from a municipal wastewater system 
over 7 months. Each month’s samples included 6 from sites within the collection system, one combined influent, and one 
treated effluent sample. Samples were analyzed using liquid chromatography high-resolution mass spectrometry in positive 
electrospray ionization mode in multiple batches as the samples were collected and in a single batch at the conclusion of the 
study. Data were aligned and normalized using internal standard scaling and ComBat, an empirical Bayes method developed 
for estimating and removing batch effects in microarrays. As judged by multiple lines of evidence, including comparing prin-
cipal variance component analysis between single and multi-batch datasets and through patterns in principal components and 
hierarchical clustering analyses, ComBat appeared to significantly reduce the influence of batch effects. For this reason, we 
recommend the use of more, small batches with an appropriate batch correction step rather than acquisition in one large batch.

Keywords  Wastewater treatment · Mass spectrometry · Mathematical methods · Monitoring · Ions

Introduction

High-resolution mass spectrometry (HRMS) has been 
applied to an increasingly diverse set of environmental 
problems extending far beyond its well-known ability to 
establish the presence of previously unmonitored com-
pounds via suspect screening against mass spectral data-
bases. Even without database matches or confident structural 
annotations, ions of particular mass-to-charge ratio (m/z) 
and chromatographic retention time (RT) observed across 
numerous samples can provide critical information about 
environmental processes, and such approaches fall within 
the domain of nontarget chemical analysis. A number of 
such applications rely on the comparison of ion abundances 

of unidentified compounds between samples collected at dif-
ferent times, monitoring locations or points in a treatment 
process [1–5]. Most of these studies have used patterns in 
feature abundance across samples to group and prioritize 
features for further identification efforts (e.g., features that 
decrease or increase across a treatment process or are present 
at higher abundance in particular types of sources). When 
the inverse question is posed—how samples may be grouped 
according to abundance profiles of multiple features (i.e., a 
chemical fingerprint)—the temporal or spatial differences in 
chemical composition under investigation may be masked 
by “obscuring variability” [6], or unintentional variability 
added during analysis.

This variability can come from a variety of sources that 
cannot always be controlled, such as operator effects, vari-
ations in the ion source, recent instrument maintenance, 
and sample-specific matrix effects [6, 7]. Effects of these 
variables can become the major driving factor in separa-
tion of sample groups in a method such as principal com-
ponent analysis (PCA), rendering it less informative about 
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chemical similarities and differences among samples [8]. 
Furthermore, in environmental monitoring applications 
that span periods of months to years, there will be batch 
effects regardless of whether samples are run in a single 
batch at the end of the study (due to differential degradation 
of compounds within extracts stored for varying periods) or 
in multiple batches as they are collected and processed (due 
mostly to instrumental variation). The ability to disentangle 
potential “batch effects” from the true chemical differences 
between samples is critical to drawing proper conclusions 
from the data.

While these challenges have already been addressed 
extensively in the fields of DNA microarrays, metabolomics, 
lipidomics, and others, environmental samples pose a unique 
set of challenges, delineated by Boysen et al. [9]. For exam-
ple, complex and variable matrices can affect the ionization 
efficiency of compounds in inconsistent ways. In nontarget 
analysis of environmental samples, while there may be a 
group of constituents that are consistently detected, “con-
taminants of concern” may only appear sporadically or only 
at a specific site. This differs from a DNA microarray study, 
which employs a predetermined number of probes. The large 
proportion of sparse features in an environmental dataset can 
also make statistical analysis challenging. Environmental 
contaminants span a vast range of structural classes and are 
subject to significant fluctuation and alteration given chang-
ing consumption patterns and the advent of new compounds. 
Many environmental monitoring studies, mostly focusing on 
wastewater-impacted surface waters, have employed clus-
tering methods on nontarget features to separate features 
into groups defined by spatial, temporal, or usage trends [2, 
10–12]. Alternatively, studies aiming to identify new or site-
specific contaminants focus on features with high intensity 
and low detection frequency [4, 13]. Of these six particular 
studies, only two reported employing intensity normalization 
to isotopically labelled internal standards. Furthermore, an 
in-depth review of study reporting in eight nontarget papers 
found that despite the sensitivity of nontarget analysis to 
analytical sequence, this aspect of data acquisition was “not 
adequately emphasized” [14].

Methods of correcting for batch effects have been catego-
rized as quality-control (QC)-based, isotopically labelled, 
internal standard-based (ISTD), or sample data-driven [15]. 
QC-based methods rely on QC samples created from ali-
quots of all samples within a batch, which are injected mul-
tiple times throughout the course of a run. Then, models are 
used to find relationships between the QC peak intensities 
and injection order to separate batch effects from the biologi-
cal/chemical differences [16, 17]. ISTD-based approaches 
employ a robust suite of isotopically labelled internal stand-
ards added to each sample, and feature peak intensities are 
scaled according to the corresponding ISTD. The method 
developed by Boysen et al. (2018) is a combination of both 

QC-based and ISTD-based methods, using replicate injec-
tions of pooled QC samples to determine the ISTD to best 
minimize the coefficient of variation for each feature. Com-
pared to QC- or ISTD-based approaches, sample data–driven 
approaches have the benefit of avoiding the extra cost of 
internal standards and the need for additional instrument 
time [15]. One example of a sample data–driven method 
is ComBat, an empirical Bayes method that estimates the 
hyperparameters for the distribution of batch effects by 
pooling information across features within a batch, and 
then adjusts intensities accordingly [18]. Selection of the 
method of correction should be made based on the type of 
data collected and the nature of subsequent analyses to be 
performed. PCA, which performs a change of basis using 
variables explaining the greatest variation within the dataset, 
may become scrambled, whereas the results of a hierarchical 
cluster analysis, which considers the similarities between 
samples or features, may become clearer [19].

Because batch correction can introduce bias and variance, 
it is also necessary to identify measures of the “success” of 
batch correction approaches. These measures are borrowed 
from the ‘omics fields that have addressed this issue pre-
viously, although they require special considerations when 
applied to environmental samples. For example, a visualiza-
tion technique such as relative log abundance (RLA) plots, 
which centers features either by the within- or across-group 
median and uses boxplots to assess the “tightness” of fea-
tures around zero must presume that metabolites will be 
present in every sample [20]. This method would not neces-
sarily be applicable to sparse environmental datasets, espe-
cially ones geared towards the discovery of contaminants 
of concern unique to a site or sampling date. If we were to 
assume that (high-quality) features that are detected in more 
than 85–90% of samples are part of a consistent background 
metabolome, then those features may be visualized via RLA 
plots for comparison between correction methods. Both De 
Livera et al. [20] and Drotleff and Lammerhofer [21] rec-
ommend use of multiple methods to assess batch correction 
efficacy, combined with a holistic evaluation rather than 
quantitative thresholds. A method known as principal vari-
ability component analysis (PVCA) estimates the variability 
within the dataset that is associated with analytical batches 
by fitting a linear mixed model to the first few principal 
components [22, 23]. With this method, seeing a decrease 
in the variability associated with analytical batch from the 
uncorrected to the corrected data would suggest a success-
ful correction.

Given the challenge posed by batch effects for nontar-
get studies that monitor complex environmental matrices 
over extended periods of time, this study aims to assess 
the applicability of batch correction techniques and the 
measures of their success. While there is not a one-size-
fits-all approach for different datasets, this can still serve 
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as a relevant example of the process. To this end, we used 
multiple datasets: (1) wastewater treatment plant (WWTP) 
influent and effluent samples plus sites within the catchment 
system collected over a 9-month period and analyzed in four 
different analytical batches as the samples were processed 
(multi-batch; MB), and (2) the same wastewater samples run 
in a single analytical batch (single batch; SB), after all the 
samples had been collected and processed (Table 1). Com-
Bat correction, an empirical Bayes technique, was applied 
to the MB dataset and the results were compared to the 
uncorrected MB and SB datasets using principal variation 
component analysis (PVCA), principal component analysis 
(PCA), and hierarchical clustering analysis (HCA). Addi-
tionally, a conventional approach of using sample median 
internal standard (ISTD) peak heights to scale raw peak 
heights of features was employed on the same MB dataset 
to obtain MB-IS.

Materials and methods

Detailed descriptions of the sample collection, preparation, 
data acquisition methods, and quality assurance/quality con-
trol measures applied to this sample set are reported else-
where by Budd et al. (in review) [24] and are summarized in 
the associated supporting information file. The NTA Study 
Reporting Tool (SRT) was used in the preparation of this 
manuscript [14].

Nontarget alignment

First, raw data files were converted from instrument ven-
dor format (Agilent.d files) to the analysis base file format 
(Reifycs Analysis Base File Converter v. 4.0.0). These files 
were then deconvoluted and aligned in MS-DIAL (v. 3.90) 

using internal standards for retention time correction. The 
data files included in the MB alignment were as follows: 7 
method blanks (one per month), 10 wastewater matrix spikes 
(one each month plus three extra), 4 100 ppb calibration 
standards (one per batch), 7 influent samples, 7 effluent sam-
ples, and 75 sub-sewershed samples. The data files included 
in the SB alignment were as follows: 8 method blanks, 12 
wastewater matrix spikes, 7 100 ppb calibration standards, 7 
influent samples, 7 effluent samples, and 74 sub-sewershed 
samples. For SB, conventional LC–MS parameters were 
used, whereas for MB-unC/C, an All-Ions experiment file 
was included. Alignment parameters are detailed in the sup-
porting information, Tables S1, S2, and S3.

Data pre‑processing

To remove low abundance background features, filtering 
rules were applied. A standard signal-to-noise cut-off of ten 
was used. A blank filter required that the maximum signal 
in wastewater samples be greater than ten times the average 
signal in the method blanks. Features with retention times 
below 4.5 min were excluded due to the poor chromato-
graphic quality of early-eluting peaks that results in unreli-
able alignment of these features.

To further reduce the number of features, Mass Spec-
tral Feature List Optimizer (MS-FLO), which was designed 
as post-processing step to be used with MS-DIAL align-
ments [25], was implemented to join ammonium and sodium 
adducts to their matching molecular ion. Parameters used are 
included in Table S4. Next, features that were not detected at 
a height of at least 3000 counts in at least one of the 56 WW 
samples were eliminated, as some features were only present 
in blank, standard, or spiked wastewater samples that were 
included in the alignment set for quality control purposes. 
The phenomenon of split features, which can occur during 

Table 1   Description of datasets and processing applied to each

Sample description Dataset name Analytical 
batches

Analytical run date Samples per ana-
lytical batch

Processes applied

- Sub-sewershed (n = 42)
- WWTP influent (n = 7)
- WWTP effluent (n = 7)

SB 1 7/17/17 56 - Feature filtering
- Log2 transform
- Quantile normalization

MB-unC 4 5/22/16 8 “”
6/17/16 8
9/26/16 24
3/3/17 16

MB-IS “” “” “” - Feature filtering
- Scaled by median ISTD peak height

MB-C “” “” “” - Feature filtering
- Log2 transform
- Quantile normalization
- ComBat correction

1323Batch correction methods for nontarget chemical analysis data: application to a municipal…
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alignment despite the use of retention time correction from 
labelled internal standards, was handled by joining features 
that met the following three criteria: (1) retention times 
within ± 15 s, (2) m/z within 10 ppm, and (3) MS1 isotopic 
abundance ratios with coefficient of variation of 20% or less. 
Finally, features that occurred in 60% or more of samples 
from at least 1 month or site were retained, as the study goal 
was to find patterns of chemical profiles in space and time. 
After all feature filtering steps, the sample set was reduced 
to only include 56 wastewater samples: 7 influent, 7 efflu-
ent, and 42 trunkline samples, to enable better comparison 
between SB, MB, and the work done by Budd et al. [24].

To obtain the dataset MB-IS, every peak height was 
divided by the median ISTD peak height of the sample, 
using the labelled ISTDs that were also used for retention 
time correction in the MS-DIAL alignment (Table S3). This 
was used rather than a retention-time specific ISTD correc-
tion, because of the uneven distribution of ISTDs throughout 
the duration of the chromatographic run.

Additionally, raw height values were transformed by 
applying y�

= log
2
(y + 1) , since ion abundances for over 90% 

of features in this dataset range over more than six orders 
of magnitude. Then, for all datasets, quantile normalization 
was applied to adjust the distributions of feature heights 
[26]. Quantile normalization was implemented in R using 
normalize.quantiles from the package preprocessCore (v. 
1.54.0) [27].

Batch correction

Briefly, ComBat assumes that the additive and multiplica-
tive batch effects on each feature are part of a distribution of 
batch effects. The estimated batch effects did not appear to 
fit within the assumed distributions used by the parametric 
ComBat method; therefore, the nonparametric method was 
used. The method can pool information across features to 
estimate the additive and multiplicative effects, and adjust 
intensities accordingly.

The nonparametric ComBat batch correction method [18] 
was applied to MB-unC to create MB-C. Covariates indicat-
ing experimental factors for site and sampling date were not 
applied. ComBat was applied in R using ComBat, part of the 
sva (v. 3.40.0) package [28].

Data analysis (PCA, HCA, PVCA, and differential 
abundance)

The script for conducting PVCA was adapted from Boe-
digheimer [23]. Experimental factors included in the 
model were sampling location, sampling date, and ana-
lytical batch number (all variables as factors). The script 
first calculates the correlation matrix for the dataset, then 
uses lme (from package lme4 v. 1.1.27.1) [29] to fit a linear 

mixed effects model using the experimental factors for 
each principal component, up to 60% of overall variance, 
where pcn is the number of principal components required 
to account for 60% of overall variance. For the three multi-
batch datasets, the model formula used was as follows:

where the mean of each sampling month, sampling location, 
and analytical batch was assumed to be randomly distrib-
uted with a center of zero and an unknown variance. For 
the single-batch dataset, the analytical batch term in Eq. 1 
was omitted. The mixed effects model pools information 
within each factor to compute an unbiased estimation of the 
variance. The weighted average of variance for each experi-
mental factor is then computed using eigenvalue of each pci 
as the weight. Matrices of the final 56 samples containing 
features that had been filtered, joined, quantile normalized, 
and (for MB-C only) ComBat corrected, were visualized 
using PCA. For hierarchical clustering, the same pcn com-
ponents used to account for 60% of the dataset variance used 
in PVCA were included, using Euclidean distance and the 
Ward’s agglomeration algorithm [2, 11]. Number of clusters 
was selected after consideration of silhouette [30] and gap-
statistic [31] plots, commonly used to determine optimal 
number of clusters.

Differential abundance of features compared across sam-
pling months and sites was analyzed with the limma (v. 
3.48.3) package [32] in R, using a similar approach to dif-
ferential expression analysis for DNA microarrays [32, 33]. 
This method uses the function lmFit to compute a model 
for each feature according to experimental design groups. 
Modelling interactions between month and site was not 
possible since a single sample was taken for each month-
site combination. Contrasts were defined to determine fold 
change and significance between experimental groupings 
of month, site, and cluster (as defined by HCA). For exam-
ple, the contrast “Influent – Effluent” compares the abun-
dances of features between influent and effluent samples. 
To compute statistical significance, the eBayes function 
was used, which employs an empirical Bayes approach to 
shrink standard errors of features toward a pooled estimate 
[34]. The Benjamini–Hochberg correction was used to con-
trol the false discovery rate [35], such that features with an 
adjusted p-value less than 0.05 were retained for analysis.

Results and discussion

Feature filtering and joining

After applying filtering rules, the number of features decreased 
from 63,259 to 3108 in SB and 136,938 to 25,822 in MB 
(Table S6).

(1)pci ∼ ( 1|Sampling month) + ( 1|Sampling location) + ( 1|Analytical batch)

1324 Hattaway M. E. et al.
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One possible reason for this discrepancy may be the deg-
radation of some features during sample storage before the 
acquisition of the single-batch data. The extent of this degrada-
tion may depend on the types of compounds present in sam-
ples, as it has been found that illicit drugs, pharmaceuticals, 
and their metabolites are stable when stored on SPE cartridges 
at − 20 °C [36, 37], whereas some antibiotics degrade in 
extracts at − 20 °C after 4 weeks [38]. Another possible expla-
nation is that the SB dataset contains only MS1 information, 
whereas the MB dataset was acquired in All-Ions mode. This 
could lead to MS-DIAL misidentifying fragments as molecu-
lar ions. Finally, the use of multiple analytical batches could 
simply lead to more misalignment of features due to greater 
mass error and contamination from samples run between 
batches.

In addition to adducts making it through the alignment 
algorithm, split features are also often observed. These can 
take one of two forms: duplicate features and alternating fea-
tures. Duplicate features have identical abundance values for 
most of the samples, but the algorithm missed the abundances 
for one of the features in a handful of samples so these are 
reported as two features (Table 2a). MS-FLO incorporates a 
duplicate feature joining tool, but duplicate features are not 
always consolidated by this application. The second form of 
split features, alternating features, results in abundances of the 
same magnitude being reported for every other feature across 
samples (Table 2b). These split features are hypothesized to be 
artifacts from the retention time correction step in alignment, 
which should affect single-batch date less than multiple-batch 
data. The reduction in feature number after the process of join-
ing split features was 6.7% (2126 features) for SB and 5.5% 
(3847 features) for MB.

Ultimately, joined split features made up 5.1% (about 1316 
features) of MB and 24% (about 746 features) of SB. The 
existence of split features or similar alignment artifacts is a 
challenge that is not unique to our lab group or users of MS-
DIAL. For example, Schollée et al. [1] employed a similar 
algorithm of joining features when they faced the issue of peak 
tailing being identified as unique features when using enviPick 
for alignment.

Comparison of principal variance component 
analysis

PVCA allows for visualization of the contributions of 
experimental factors (sampling location, sampling date, 
and analytical batch) as well as the proportion of residual, 
or unexplained variance, to overall variance within the 
dataset (Fig. 1). For SB, we included a simulated analytical 
batch, which assigned SB samples to the analytical batch 
number in which it was analyzed in the MB datasets. The 
weighted average proportion variance of 0.15 computed for 
batch is slightly higher than for sampling date, but lower Ta
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than for sampling location or residual. With this sample 
set, it is difficult to separate the factors of sampling date 
and analytical batch, because samples from the same month 
are always in the same batch, and this collinearity is likely 
the reason for the variability attributed to simulated ana-
lytical batch here. For MB-unC, analytical batch is associ-
ated with the greatest proportion of the variance, which 
then decreases after ISTD scaling is applied (MB-IS) and 
goes away completely with the application of ComBat cor-
rection (MB-C). Instead, for MB-C, much of the variability 
in the dataset is “residual”, meaning it cannot be attributed 
to sample date or location alone.

Comparison of principal component analysis 
and hierarchical clustering analysis

The change seen in the PVCA plots is consistent with the 
way that samples rearrange after PCA and HCA. For set 
SB, the plot of the first two principal components (Fig. S3a) 
shows effective separation of effluent samples from influ-
ent and trunkline samples in PC1. Further inspection via 
HCA (pcn = 16) reveals separation of six effluent samples 
plus July influent from the rest of the sample set (Fig. S3b) 
in clusters 1 and 2, while the July effluent sample is found 
in cluster 4. Mixing of months is observed in all clusters. 
There is some grouping by sampling site, for example in 
cluster 3, there are five samples from site E and four from 
site G grouped together. Examination of principal com-
ponent pair plots of PCs 1 through 5 (Fig. S5a) shows a 
consistent mix of samples from different sampling dates 
and analytical batches (where a simulated analytical batch 
variable is included for the sake of comparison).

For the MB-unC PCA plot, apart from a cluster of effluent 
samples, there is clear evidence of separation of samples by 
batch (Fig. 2a): samples from batches 1 and 3 group in the 
top-left corner, batch 2 in the bottom-left, batch 4 in the top-
right, and effluent samples in the lower middle. Although 
they do form a relatively distinct cluster, the effluent samples 
are not clearly distinguished from influent/trunkline samples 
along either the first or second principal component axes, 
which account for the greatest percentage of overall vari-
ance. This indicates that before batch correction, analytical 
batch differentiates samples more than whether they were 
treated or untreated wastewater. November and January, 
the fourth analytical batch, group together, making up the 
entirety of cluster 1 in the HCA (Fig. 2b). June, the second 
analytical batch, is also on its own, comprising the entirety 
of cluster 5 in Fig. 2b. Interestingly, the third batch, consist-
ing of months July, August, and September, groups close 
with the first batch (May), forming clusters 2, 3, and 4. 
While cluster 2 is comprised entirely of May samples, two 
May lateral sites, E and G, mix with E and G samples from 
August, July, and September in cluster 4. Higher-order prin-
cipal components show the separation of May samples from 
other months, in Fig. S3b. The only variation from the batch-
wise segregation of samples can be seen in the clustering of 
September D, November G/E, and January D/G trunkline 
samples with June effluent (Fig. 2b, cluster 6), and a group 
of May, July, August, and September samples of only sites 
E and G (Fig. 2b, cluster 4).

In the MB-IS dataset, feature peak-heights were scaled 
by the median internal standard peak height in each sam-
ple. The resulting plot of the first two principal compo-
nents (Fig. S4a) shows that the influent and trunkline 

Fig. 1   PVCA plots show contri-
butions to the overall variance 
for three experimental factors 
plus unexplained (residual) 
variance for single-batch (SB), 
uncorrected multi-batch (MB-
unC), ISTD-scaled multi-batch 
(MB-IS), and ComBat corrected 
multi-batch (MB-C). The 
asterisk symbol indicates the 
analytical batch factor was omit-
ted for SB

*
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samples are grouped again by batch, with batch 3 on the 
left, batch 1 in the middle, batch 4 in the upper right cor-
ner, and batch 1 in the lower right corner. On the first 
principal component axis, the treated effluent samples are 
in line with the untreated samples from batches 1 and 4. 
This is also seen in Fig. S4b, where only 2 clusters, 6 and 
7, contain samples from different batches. For this data-
set, the conventional remedy for batch effects, scaling by 
internal standards, is not enough.

After applying the ComBat batch effect correction 
method to MB-unC, the grouping of samples through PCA 
and HCA changed (Fig. 3a, b). In the graph of the first three 
principal components, now most samples group together, 

although the group of effluent samples is clearly separated 
primarily by PC1. Additionally, the clustering of analytical 
batches that was observed previously in HCA is less appar-
ent: May (batch 1) and June (batch 2) samples are now con-
tained within cluster 2 along with July (batch 3) samples. 
November and January (batch 4) samples, which previously 
had their own cluster, are now grouped into cluster 3, along 
with September and August (batch 3) samples. The same 
September D, November G/E, and January D/G trunkline 
samples that made up cluster 6 in Fig. 2b are still grouped 
close to the effluent samples (clusters 6 and 7, Fig. 3b). 
Cluster 1 now only contains the E trunkline samples that 
were previously with G trunkline samples in cluster 4 for 

Fig. 2   For MB-unC, (a) plotting 
of first two principal compo-
nents revealed clustering was 
driven by analytical batch, with 
effluent samples delineated 
by black oval, and (b) HCA 
(pcn = 4), divided into seven 
clusters, numbered one through 
seven for ease of discussion. 
The colored bar to the right 
of the dendrogram is colored 
according to analytical batch of 
each sample: blue for batch 1, 
green for 2, orange for 3, and 
red for 4. Cluster 1 is entirely 
batch 4 samples, two 100% 
batch 1, three is 100% batch 3, 
four a mix of 1 and 3, five 100% 
batch 2, six is combination of 
batches, and seven is all efflu-
ents except June (batch 2) a

Batch

one

two

three

four

five

six

seven

b
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MB-unC. Additional principal components bear out this 
increased mixing of samples between months, in Fig. S4d.

As a final point of comparison, the same sample set 
was clustered according to concentrations of target pesti-
cides as reported by Budd et al. (in review) [24]. While the 
dataset of quantified target pesticides considers a signifi-
cantly smaller subset of compounds (nineteen pesticides) 
than the nontarget features, this data has been matrix cor-
rected, which is difficult to achieve with nontarget data. 
Only two of the target compounds can be measured via 
LC–MS (fipronil and imidacloprid), while the rest were 
measured via GC–MS. However, we hypothesized that the 

adjuvants used in commercial formulations could create an 
LC-detectable source signature of the pesticide.

From this analysis, August G, November A and E, and 
January B and D all were differentiated from the bulk of the 
samples (Fig. S6d). Clearly, the August G sample is unique, 
because it is the only sample with a quantifiable amount of 
chlorothalonil. November A is the only sample in the set 
with quantifiable esfenvalerate, while November E is unique 
for the significantly higher concentrations of the pyrethroids, 
cypermethrin, deltamethrin, and permethrin, which were fre-
quently detected across sites and months. January D con-
tained a higher concentration of cyfluthrin, also frequently 

Fig. 3   For MB-C (ComBat 
corrected MB-unC), (a) plot-
ting the first three PCs shows 
absence of batch-wise separa-
tion observed in Fig. 2a (again 
with effluent samples circled) 
and (b) HCA (pcn = 13) shows 
more mixing of samples of 
different batches in the same 
cluster: cluster 2 contains 
samples from batches 1, 2, and 
3. Analytical batch is indicated 
by colored bar to the right of the 
dendrogram as in Fig. 2b

Batch

a

b

seven
six

five

four

three

two

one
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detected across sites and months, and January B and D both 
had much higher concentrations of fipronil amide.

Similarly, in the nontarget MB-unC/C analyses, November 
E and January D were distinguished in HCA, which would 
suggest that the nontarget approach is also able to pick out 
unique samples despite the higher background noise of non-
target features. Recall that for both MB-unC/C, November G, 
and January G samples were included in a distinct cluster with 
November E and January D, perhaps indicating an additional 
chemical similarity between these samples. For SB, there was 
some correspondence with the target data with some separa-
tion of “distinctive” samples, with the distinctive groups made 
up of five E (including November) and four G samples (includ-
ing August, November, and January). A different grouping of 
four E samples was observed in both the MB-unC (cluster 4) 
and MB-C (cluster 2) datasets. The site E catchment area has 
a much higher percentage of high-density residential zoning 
than other sites, which Budd et al. (in review) [24] connected 
with this site’s significantly higher loadings of pyrethroids. 
Presumably, the higher density of people could lead to a dis-
tinct nontarget signature from associated with higher loadings 
of pharmaceutical and personal care products as well.

However, other samples that were unique in their target 
pesticide concentrations were not found to be as unique when 
considering nontarget features. January B was grouped near 
January influent, A, and C in HCA for SB, MB-unC, and 
MB-C, perhaps indicating that the bulk of the nontarget fea-
tures for this sample outweighed whatever differences result 
from the high concentrations of target pesticides. This may 
be true for November A and August G as well, which were 
distinguished from the target data as the single quantifiable 
detections of esfenvalerate and chlorothalonil, respectively, 
do not show consistent separation in the nontarget datasets.

Comparison of differential abundance

Evaluation of features found to be significantly different 
between sampling dates or sampling sites was carried out 
for MB-unC and MB-C. There were a total of 21 contrasts 
for comparing abundance by month, and 28 by site. Addition-
ally, 21 contrasts were created by dividing samples according 
to clusters determined using HCA (Figs. 2b and 3b). Using 
the within-cluster sum of squares and gap-statistic methods, 
the optimal number of clusters was between 7 and 10, so the 
number of 7 clusters was selected (Figs. S9–S12). It is impor-
tant to note that the “one-two” contrast for MB-unC does not 
consist of the same samples as the “one-two” contrast for 
MB-C (and so on) because of different HCA results.

In set MB-unC, features with an adjusted p-value < 0.05 
were found for all 21 contrasts comparing months. Only 5 
comparisons of months had significantly different features for 
MB-C: August–July, September–July, January–November, Sep-
tember–August, and January–July. Table S7 summarizes the 

number of significantly different features found for each dataset 
and contrast. As illustrated in Figs. S13 and S16, p-value dis-
tribution shapes differed considerably between MB-unC and 
MB-C. The sharp drop-off from the left to right in many of 
the contrasts in the MB-unC set indicates a higher number of 
significantly different features. A small subset of features was 
found to be significant before and after ComBat correction: 8 
features for January–November, 4 for September–August, 126 
for August–July, 3 for January–July, and 80 for September–July.

While 23 out of the 28 site-wise contrasts returned signifi-
cantly different features for MB-unC, no significantly differ-
ent features were found using site-wise contrasts for MB-C. 
While some studies have found that a drawback of applying 
ComBat is the generation of false positive data [39, 40], we 
found that applying ComBat in this study may have actually 
lessened differences between samples. Indeed, others have 
found that applying ComBat with an unbalanced experimen-
tal design can deflate significance [41], but in an environmen-
tal monitoring application, the relationship between sampling 
date and run date is intractable. Furthermore, the assumption 
of the algorithm itself that “phenomena resulting in batch 
effects often affect many genes in similar ways (i.e., increased 
expression, higher variability, etc.),” [18] may be appropriate 
for DNA microarrays, but not for the behavior of compounds 
with unknown physicochemical properties analyzed by the 
LC-QTOF-MS. It is also possible that many of the features 
that collectively constitute the “wastewater metabolome” 
simply do not vary much between months and sampling sites.

Comparison of the HCA clusters for the ComBat corrected 
dataset was slightly more successful than comparison by month 
or site. Indeed, in the analysis of target pesticides, it is evi-
denced that there can be considerable variation within sampling 
dates and sampling locations. For example, there were many 
significantly different features within the effluent samples, con-
tained in clusters 4, 5, and 7. Creating an m/z vs RT plot of 
features significant to each cluster (Figs. S21 and S22) revealed 
a large swath of features that could be composed of homolo-
gous series that were significant to cluster 7 (June effluent and 
September D). No features were found to be significant to the 
largest cluster, 3, perhaps because there was still too much vari-
ability between the samples (19 out of the 56 samples). As was 
the case with comparison by site and by month, many more 
features were found to be significant for MB-unC clusters. The 
swath of (possible) homologous series in the effluent samples 
was present in this dataset as well (Figs. S19 and S20).

Recommendations

We have shown with these datasets that batch effects from 
multiple analytical runs can be examined through PVCA, PCA, 
and HCA, and the novel application of ComBat can reduce the 
obscuring effect on the overall spatial and temporal differences 
in the data. Given the choice between analyzing samples in 
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multiple analytical batches or a single analytical batch over 
the course of a long-term environmental monitoring study, we 
would recommend the use of multiple batches with the appli-
cation of a method such as the one demonstrated here. Further 
recommendations would include additional QA/QC measures 
that we did not have at the time of data acquisition for this 
study, such as replicate injections of pooled matrix spikes for 
each class of matrix (for example, the trunkline/influent would 
be a separate matrix spike from the effluent). Furthermore, a 
more robust standard mix of labelled internal standards with 
improved coverage of the range of retention times and physico-
chemical properties could enable ISTD-based batch correction 
approaches, which may be more appropriate for MS data.
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