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§ Abstract

In this paper, several algorithms for the integration of the Jaumann stress rate are
analyzed. Emphasis is placed upon accuracy and stability of standard algorithms available
in commercial and government finite element codes in addition to several other proposals
available in the literature. The analysis is primarily concerned with spinning bodies and
reveals that a commonally used algorithm is unconditionally unstable and only first order
objective in the presence of rotations. Other proposals are shown to have better accuracy
and stability properties. Lastly, it is shown by example that even consistent and uncon-
ditionally stable integration of hypoelastic constitution does not necessarily yield globally
stable finite element simulations.
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§1. Introduction

Large-deformation problems in solid mechanics are typically solved via numerical tech-
niques such as the finite element method. Many finite element codes (see e.g. [1,4]) rely
upon the objective Jaumann rate form of the constitutive relation (a form of hypoelastic-
ity). This is especially true for programs that utilize explicit integration of the equations of
motion. While this form of the constitutive relation is known to exhibit unusual behavior
in problems involving very large shear deformations [2,3], it is nonetheless a popular choice
because of the simplicity of the kinematic quantities involved in its definition.

In this paper, the interest is in the utilization of this framework for the dynamic
simulation of the motion of spinning bodies and other motions involving large rigid-body
rotational components. Common examples would include rotating machinery or tumbling
bodies. In the classical implementation of the Jaumann rate form of the constitution, the
rate of change of the stress is approximated via a finite difference scheme. The classical
method will be shown to be (1) only first order objective (though the Jaumann stress
rate itself is known to be objective) and (2) unconditionally unstable in the presence
of rotations. The inaccuracy generated by the first order objective algorithm and its
unconditional instability leads to a premature generation of global instability in the time
stepping simulation of the problems of interest when the time duration is sufficiently long.
In this paper, an alternative integration scheme for the Jaumann constitutive relation is
presented that is second order objective and more stable than the common first order
objective algorithm. This combination of improvements appreciably delays the global
instability mentioned above.

For comparison purposes, several fully objective unconditionally stable integration
schemes are also analyzed. These include the Hughes-Winget method [5,7], the exponen-
tial map algorithm [5], and a hyperelastic formulation. It is noted, however, that these
algorithms involve more expensive kinematic computations. Nonetheless all the algorithms,
except for the hyperelastic formulation, involve the use of kinematic quantities that are
used in the standard finite element framework of explicit codes with Jaumann rate equa-
tions. The added cost of the second order algorithm is the least expensive in comparison
to the other options. It is also noted that the algorithms presented are applicable to both
2 and 3 dimensional problems.

The remainder of the paper is organized as follows: In section 2, the conventional
global and constitution level algorithms for explicit finite element calculations are briefly
reviewed. In section 3, the standard constitution algorithm for the Jaumann stress rate
form will be given an interpretation that allows for a natural extension to higher order
accuracy with minimal cost. Section 4 analyzes the five algorithms for accuracy and
stability during rigid-body motion. Lastly, Section 5 presents some illustrative examples,
followed by a few concluding remarks in Section 6.
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§2. Conventional Algorithmic Framework

Global framework

The basic finite element equations after spatial discretization are of the following form
Ma=P-F, (2.1)

where M is a mass matrix}, a is a vector of nodal accelerations, P is a vector of external
nodal loads, and F is the internal force vector. The internal force vector is further given
by the expression

F:/VBTU, (2.2)

where V is the current placement of the body of interest, B is the matrix of shape function
derivatives with respect to the current configuration of the body, the superscript 7" indicates
the transpose operation, and o is the Cauchy stress. The constitutive response of the body
is, for our purposes, given by the Jaumann stress rate form

& =C:d, (2.3)

where C is a constant rank-4 constitutive tensor, d is the symmetric part of the spatial
velocity gradient (rate of deformation tensor), the (:) indicates double contraction, and

g=6-00+ 0. (2.4)

Here, §2 is the transpose of the skew part of the spatial velocity gradient and a superposed
dot (') indicates (material) time differentiation.

Key to the utilization of this framework is a time integration method. Explicit codes
typically make use of the Central Difference algorithm, or equivalently the Newmark al-
gorithm with 8 = 0 and v = %, where 3 and 7 are the Newmark parameters; see e.g. 6]
for an elementary presentation. The essential feature of this framework is a prescription
for the advancement of a solution (un,vn,,a,) at time ¢, to time t,41 = t, + At, where
At > 0 is a time step increment, u, is a vector of nodal displacements at time t,, v, I8
a vector of nodal velocities at time ¢,, and a,, is a vector of nodal accelerations at time
t,*. Assuming the solution at time ¢, is known, the solution is advanced to ¢,y via the
following relations:

At?
Unt1 = Un + Atv, + —2———an , (2.5)
ani1 = M (Pug1 — Fuga), (2.6)
and A
Vpgl = Un + —(an + @nt1). (2.7)

2

1 In typical explicit algorithms the mass matrix is lumped in some fashion (diagonalized).
* Here and throughout the manuscript, subscript n’s and n + 1’s denote quantities at
time t, and ¢,+1, respectively.
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Stress integration

In order to use the above advancement procedure one needs an algorithm for the com-
putation of o4 1. This is conventionally computed via the integration algorithm (denoted
henceforth as ALGO1):

Ontl = On + Oni1/208, (2.8)
where o
Opnt1/2 = Ong1/2 + Onf2ni1/2 — $211/20n (2.9)
and .
Ont12 = Cidpyayo. (2.10)

The use of (2.9) and (2.10) requires knowledge of the half-step velocities and geometry.
These are computed as

At
Upt1/2 = Un t o an (2.11)
and
At
Tpi1/2 = X + Up + 5 Unt1/2 (2.12)

where X is the vector of initial nodal positions and @,11/2 is the vector of half-step nodal
positions. In this setting,

d 1 8Un+1/2 n 8’Un+1/2 T (2 13)
n+1/2 — 3 8$n+1/2 8mn+1/2 '
and T
OvVp11/2 8U‘n+1/2
e, =1 ti/2 . 2.14
n4+1/2 2 {833”4.1/2 <8:Bn+1/2 ( )

Note that while ALGOT1 is similar in form to a mid-point integration rule, it is in fact a
mixture of a mid-point and a forward Euler integration rule, as will be seen more clearly
in §4.

Remark 2.1.
Often the additional calculation of the half-step geometry is not performed and velocity
gradients at time t,.41/o are computed by differentiating the half-step velocities with
respect to the full-step geometry (X 4 @ny1). This, however, introduces additional
error into the stress integration algorithm and its use is avoided here. [
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3. Interpretation and Alternative Algorithms

Rigid motion interpretation

Consider a motion that involves only a rigid-body rotation between time ¢, and £, 41
and is described by the constant rotation tensor Q. If one assumes a perfect kinematical
calculation, then d = 0 and the principle of frame invariance (objectivity) dictates that
Oni1 = Qo,QT. The rotation tensor may be expanded in a series in terms of a skew-

symmetric tensor w as
Q = expl-w] =1~ w+ O(llw|l), (3.1)
where |lw|| = y/32wiw for w € s0(3) and O(z) for z € R denotes conventional order

notation (i.e. lim,_o O(z)/z = constant). Thus, one has that
Oni1 = On + Opw — woy, + O(|lw|)?) . (3.2)

If one examines ALGO1 and notes that d,,;1/o = 0 for the motion currently under
consideration, then one has the result that

Ontl1 = Op -+ O'n(nn+1/2At) - (Qn+1/2At)0'n . (33)
A comparison of (3.2) and (3.3) results in the following interpretation of the stress inte-

gration algorithm after identifying w with 2,1/, At
The last two terms on the right-hand-side of (2.9) account for rigid-body motion
and produce an algorithm that is first order objective; i.e. the objectivity error is
O([|92n11/28t).
Natural extension to higher order

The method of interpreting the stress integration algorithm provides for a natural
extension of the algorithm to higher order. This is achieved by expanding the expression
for the incremental rotation tensor over a time step in higher powers of §2,..,/2At. By
keeping terms to second order,

Q = exp[— 2,412~ 1 — 2y At+ 3022 o AL (3.4)

Using this expression and 0,41 = Qo,Q7T, one can generate a replacement for the last
two terms on the right-hand-side of (2.9). This leads to the following replacement for (2.9):

. v
Ont1/2 = Ony1j2 + On8ni1/a — 25417200

(3.5)
+ 18t (0082215 — 220 11/200 Dy + 2211/200) -

Eq. (3.5) together with (2.8) and (2.10) will be referred to as ALGO2.
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Remark 3.1.
In going from (3.4) to (3.5) terms of O(||£2,,41/2At||?) have been dropped. This new
algorithm is termed second order objective since the objectivity error in the integration
of the stress during a rigid-body motion is O(||£2,41,24¢8%). O

Remark 3.2.
Note that the new algorithm does not involve the use of any kinematic quantities that
were not present in the original first order objective algorithm. In terms of costs,
ALGOT1 requires 15 multiplies and 18 additions to perform the rotational update of
the stress. ALGO?2 requires an additional 45 multiplies and 36 additions. While this
cost may seem high, it is less than other proposals available in the literature [5,7,10].

O

Alternative algorithms

Two alternative algorithms that can be used in the same capacity as shown above
are the Hughes-Winget algorithm [7] and the exponential map. For the exponential map,
Rodrigues’ formula [8, p.165] gives an expression for the rotation Q entirely in terms of
the spin as:

sin([|£2,41/24t]))

exp = —-§2, Atl=1— 02, At
Qexp = expl= s/ [ I )
. 2 .
y [ sin([|2n11/288]/2) 2
= L] At)”.
(i) (s
The final algorithm being:
Cpn4l = AtC : dn+1/2 + QeXpo'anxp . (37)

During an incrementally rigid-body motion this algorithm produces the exact answer.

Remark 3.3.
While the expression for the exponential map is given entirely in terms of §2 as desired,
it involves the costly evaluation of trigonometric functions. A re-parameterization
known as the pseudo-vector form and intimately related to the Cayley transform can
reduce the number of trigonometric function evaluations required from a sine and
cosine evaluation to a single tangent evaluation [9]. Nonetheless, the cost remains
high in comparison to ALGO1 and ALGO2. O

The Hughes-Winget algorithm may be written in the following form:

2
2+ %Hgn+1/2AtH2

Quw =1+ [~ 201208 + 2(2,41248)7] (3.8)
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with
Ont1 = AtC:dpy1/0+ QuwonQiw - (3.9)

In Eq. (3.8), the following identities have been utilized in re-writing the original formula
of Hughes and Winget:

1-w) = 3 w”
( ) kZ:O (3.10)
w3 = _wllw”2a

where w € s0(3). The series in Eq. (3.10); is valid for ||w|| < 1.

Remark 3.4.
Both Qexp and Quw are elements of SO(3) but differ from each other. ALGO1 and
ALGO?2 do not produce members of SO(3). O

Remark 3.5.
One major detraction of the Hughes-Winget and exponential map algorithms when
used in the explicit framework is their cost. While the rotation expressions are similar
in form to Eq. (3.4), they are quite a bit more expensive in their application (Qo,, Q7).
This follows, since terms of order greater than O(||42,,11/2At||?) are retained and not
truncated as is done in Eq. (3.5). As will be seen in §5 this added expense yields
several desirable properties but may be of limited use in practical calculations. []

As a last alternative, the Saint Venant-Kirchhoff hyperelastic model is considered.
This model is introduced to allow a comparison of the hypoelastic model and its algorithmic
approximations to a more theoretically sound constitution. The model can be written so
that the Cauchy stress at any time is given as

1

o= JFSFT, (3.11)

where F is the deformation gradient, J = det[F] is the Jacobian, § = C: E is the 27
Piola-Kirchhoff stress tensor, and E = %(FTF — 1) is the Green-Lagrange strain tensor.
This model can also be utilized in an incremental form whereby

1
Jn-}-l

Onyl = Foi1(S,+C:AE)FL,, (3.12)

and AFE = En+1/2At = Fgﬂ/zdnH/QFnH/gAt. For the purposes of the comparisons
in §5, this incremental form has been utilized to (1) force a direct dependence of the
algorithm on the half-step velocity gradients and (2) introduce an incremental evaluation
of the Cauchy stress. These features are introduced here since they both appear in the
hypoelastic algorithms. This provides a more even basis for comparison. Note that this is
certainly not the most efficient form.
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Remark 3.6.
Because the Saint Venant-Kirchhoff model is hyperelastic the work is zero in closed
processes [11, §28] — as one intuitively expects. This can not be said in general for
hypoelastic bodies. The primary detraction of the Saint Venant-Kirchhoff model is
that it is not polyconvex and can attain a state of zero volume at finite energy. For
the purposes at hand, this is not an issue of concern. [J

§4. Accuracy and Stability

In this section several measures of accuracy will be examined for the algorithms given
in the §3 as will analyses of their stability.

Stress invariant accuracy

An analytic determination of the benefit of the second order objective algorithm can
be easily made in 2-D. Consider a motion that is purely rotational over a single time step
with rotation Q = exp[—£2At]. In 2-D, one may write in a given basis that

0 1
Q—a[~1 O} (4.1)
where « is a given real number. Application of ALGO2 produces the result (in the same
basis) that

o1 012 _ | 911 012
012 022,41 012 022,

20 099 — O To9 — 011 —2019
N 12 201 2p42 | 022 1
o2 — 011 —2012 |, —2012  —0O2+tou ],

(4.2)
In (4.2) the first two terms represent the result obtained from the application of ALGO1
and the last term on the right-hand-side is the added correction from ALGO2.

As a measure of the performance of the two algorithms, consider that during an
incrementally rigid-body motion the invariants of the stress tensor should remain constant
— viz., the trace and determinant. For the trace, both algorithms produce exact results.
For the determinant, however, the first order objective algorithm gives

det[an+1] = det[an] + CYQAtQ (40’1,2211 + (0'22n - Ulln)z) (43)
and the second order objective algorithm gives

det[ont1] = det[o,] — a*At? (dofy, + (022, — 011,)%) (4.4)
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Remark 4.1.
In terms of invariant accuracy in 2-D during rigid-body motion, ALGO2 produces
a third order accurate integrator and the ALGO1 produces a first order accurate
integrator. The determinant errors are identically zero only in the case when the
stress state is purely spherical. [J

Remark 4.2.

All three alternative algorithms produce identically zero error in the trace and deter-
minant. For the Hughes-Winget and exponential map algorithms, this follows directly
from the fact that Q € SO(3) in both cases. Note that the result from the exponen-
tial map is the exact solution to this problem — as is the result obtained from the
Saint Venant-Kirchhoff model. It is also noted that to obtain this zero error state
the Qo,Q7 operation must be performed using an invariant preserving method as
opposed to direct matrix multiplication which introduces errors from finite precision
arithmetic. For instance in 2-D, one could first compute the normal stress o1, ,, using
matrix multiplication, compute the other normal stress via ooz, ,, = trlon] — 011,
and finally compute the shear stress via o12,,, = /—det[on] + 011,,,022,,,. The
sign of the shear stress must be chosen carefully. Similar but slightly more complex
techniques are also possible in 3-D. [J

Remark 4.3.
Even though the Hughes-Winget algorithm does not generate invariant error, it does
possess an orientational error; i.e. the principal axes of 0,4, are misaligned with
respect to the exact solution from the exponential map for rigid-body rotations. As
a measure of this accuracy, one may consider the error tensor which is the difference
between the Hughes-Winget rotation and the exponential map rotation:

e = Qunw — Quxp = ~ 2112/ + O(12]1). (45)

(The above relation is easily determined by use of Taylor series expansions.) Thus,
with respect to the orientation of the principal axes of the stress, the Hughes-Winget
algorithm is second order accurate. []

Stability analysis

In this section, the hypoelastic algorithms are analyzed for stability with respect to a
motion with constant spin. Without loss of generality the analysis is performed for a 2-D
problem. An identical result holds in 3-D but involves a higher dimensional eigenproblem
which does not provide additional understanding.

For the purposes of the stability analysis it is convenient to write the stress tensor in

vector form where
011
g = J19 . (46)
V2019



10 S. Govindjee

If one now considers a motion with constant 2 of norm «, then the equation for the
material time rate of change of the stress can be expressed as

c+Aoc=7F, (4.7)

where f = C:d in vector form and

0 0 V2a
0 0 —v2a] . (4.8)
—\/—Z_a \/§a 0

The eigenvalues of the matrix A are {0, £2ai} where 7 is the imaginary unit. This indicates

that the homogeneous solutions to (4.7) are oscillatory or unchanging. The zero eigenvalue

corresponds to the pressure of the stress tensor which is unaffected by rigid-body rotation.
The application of ALGO1 to (4.7) results in the following expression

A=

Oni1 = 0n — AtA, 1720, + Atfni1/2, (4.9)

Remark 4.4.
It is easily seen that ALGO1 is midpoint on the kinematics of (4.7) but only forward
Euler on the stress part of the expression, as was alluded to in §2. [

For convenience in the remainder d will be assumed zero. Under the given assump-

tions,

1 0 ~AtV2a

0 1 Atv2a | oy, (4.10)
AtV2a  —AtV2a 1

where the matrix in (4.10) is recognized to be the amplification matrix for the algorithm.
Stability requires that the spectral radius of the amplification matrix p < 1, where p is the
maximum magnitude of the eigenvalues of the amplification matrix. For the case at hand,
the eigenvalues are {1,1 £ 2aAti} and

p=+1+4a2A82 > 1. (4.11)

Thus, one concludes that ALGO1 1s UNCONDITIONALLY UNSTABLE in the presence
of rotations.
Application of ALGO2 to (4.7) results in

Ont1 =

1 — a?At? a?At? — AtV 2a
Ol = a’At? 1-a?At2 AtV2a | on. (4.12)
Atv2a  —AtV2a 11— o?At?
The eigenvalues of this amplification matrix are {1, (1 — 2a2At?) + 2v/2aAti} and the

spectral radius
p=+vV1+4atAtt > 1. (4.13)
Thus, ALGO2 is UNCONDITIONALLY UNSTABLE in the presence of rotations.
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Remark 4.5.

The degree of instability in these two algorithms is in a practical sense small since aA¢
is usually much less than 1. Nonetheless, it is still finite and in the presence of large
rotations ALGO1 possesses a much stronger instability than ALGO2. Thus ALGO1
will diverge before ALGO2. Quantitative evidence to this effect is given in §5. [0

Application of the Hughes-Winget or exponential map algorithm to (4.7) results in

cos? @ sin® 6 —v/2cosfsinf
Onyl = sin® 6 cos® 8 V2cosfsinf | o, (4.14)
V2cosfsind —+/2cosfsinf cos®f —sin?@

where the angle 8 = aAt for the exponential map algorithm and 8 = aAt + 4, where
§ ~ O(aBAt?), for the Hughes-Winget algorithm. The eigenvalues for this amplification

matrix are {1, (cos?§ — sin® ) £ i\/l — (cos? @ — sin® 0)2}. The spectral radius

p=1. (4.15)

Thus, these two algorithms are unconditionally stable.

Remark 4.6.
All the stability results carry over to 3-D where one must solve a six-dimensional
eigenvalue problem. Note that in this case 1 becomes a repeated eigenvalue for all
algorithms but with linearly independent eigenvectors. [J

§5. Illustrations

To illustrate the behavior of the algorithms analyzed above in applications, two simple
problems are considered. The first involves the calculation of the stress at a single point in
a body under going rigid-body rotation with a given initial stress. The second involves the
simulation of a square slab that is impulsively loaded in order to induce a large rigid-body
component to the motion.

Single stress point example

Consider a point in a body undergoing a rigid-body rotation (d = 0) of roughly 600
rad/s corresponding to a spin tensor

0 346 —346
2=|-346 0 346 | . (5.1)
346 —346 0

Assume at a given instant in time that the Cauchy stress at the point is given by

(5.2)

Q
I

O o

SIS

LW Ut O
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The invariants of this stress state are tro = 6, 2[(tro)? —tro®] = —66 , and det[o] = 101.

Using the Hughes-Winget or the exponential map algorithm to update the stress
exactly preserves the three invariants when using an invariant preserving matrix multipli-
cation routine. The Saint Venant-Kirchhoff model also exactly preserves the invariants.
These statements hold regardless of the time step size. For ALGO1 and ALGO2 the values
of the invariants are plotted in Fig. 5.1 as a function of time step, where At = 5 X 106
s. As can be seen from the figure, ALGO1 produces large errors in the second and third
invariants while ALGO2 appears exact. The error in ALGO2 is undetectable on the scale
shown; it occurs in the 14th significant digit for the first invariant, in the 7th significant
digit for the second invariant, and in the 6th significant digit for the third invariant when
double precision variables are used. The drift in both algorithms is a combination of
accuracy error and instability.

150 T T T T T L T T T
00 Prmrmse i 2 = L i
50 b . 7
oF |
Q -50 F \'\_ ~
k-l N,
I T I
S e e
g 100 S .
= 150 F ALGOT I — .
ALGO2I1 =+ N
ALGO112 - b
200 } ALGO2 12~ 4
ALGO1 I3 ==~
ALGO213 -- - N
250 1 N
\.
A%
-300 + A
_350 H 1 L 1 1 X 1 L i
0 10000 20000 30000 40000 50000 60000 70000  80OG0 90000 100000

Time Step

FIGURE 5.1. Comparison of ALGO1 and ALGO2 for the
preservation of the stress invariants. In the figure legend I1
denotes the first invariant, I2 the second, and 13 the third. Note,
that for I1 the two curves lie on top of each other.

Remark 5.1.
It is clear that even though ALGO2 is also unconditionally unstable, its performance
is superior to ALGO1. []

Spinning Square

In this example, the motion of a slab spinning about its center is considered. The
geometry under consideration is shown in Fig. 5.2. The edge lengths of the body are
v2 m and the thickness is 0.5 m. The loads are applied in the plane of the slab and
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are linearly ramped from a value of zero to 3 x 10° N in 20 us and then back down to
zero in 20 ps. This causes the slab to vibrate and spin about the 3-axis with an angular
velocity of roughly 785 rad/s. The density of the slab is taken as 7850 kg/ m? and the
rank-4 constitutive tensor is assumed to be of the form C = 2ul + A1 ® 1. The constant
@ = 100x 10° MPa and A = 0. The body itself is discretized into 16 fully integrated 8-node
bricks as shown in Fig. 5.2. In the simulation of the motion, no numerical damping is
employed and a time step of At = 5 us is employed. This is well below the Courant time

SN
e

FIGURE 5.2. Geometry and loading of spinning slab. (left)
isometric view, (right) top view.

Shown in Fig. 5.3 is the l-displacement of point A [see Fig 5.2(right)] for all 4
hypoelastic formulations and the hyperelastic formulation. The hypoelastic formulations
all produce virtually identical time history traces. The primary difference between the
algorithms is the duration of the simulation before the global finite element calculation
becomes unstable. Indicated in Fig 5.3 by the arrows are the times at which the various
algorithms cause the global calculation to terminate.

Remark 5.2.
Use of ALGO?2 increases the possible duration of simulation by 59% over ALGOL.
The Hughes-Winget algorithm increases the possible duration of simulation by 16%
over ALGO2. And the use of the exponential map algorithm increases the possible
duration of simulation by 9% over the Hughes-Winget algorithm. [

Remark 5.3.
Another recent proposal similar in form to the ones presented here is the algorithm
of Rashid [10]. This algorithm utilizes higher order kinematics than those presented
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= .
g
g
=
Z
& 4
lALGOZ lHW J{Exp.
1
0 0.005 0.01 0.015 0.02 0.025
Time (s)
25 T T ¥ T
Saint Venant-Kirchhoff ——
2 F .
|
1.5F
H
£
E 1
&
A
0.5 4
0 F ~
0.5 L L L I
0 0.02 0.04 0.06 0.08 0.1

Time (5)

FIGURE 5.3. Displacement time history traces. (top) Hy-
poelastic algorithms, (bottom) Hyperelastic algorithm.

to reduce the coupling error during simultaneous rotation and stretching; see [10] for
details. Nonetheless, it shows similar behavior for the problem at hand. Overall the
use of this algorithm increases the possible duration by 11% over ALGO2 (without
the use of “pre-conditioning”). [

Remark 5.4.
Also shown in Fig. 5.3 is the displacement of point A when the Saint Venant-Kirchhoff
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le+10 T T T T
ALGOl —
ALGO2 -----
HW -
Exp. Map -
3e+09 | .
b
o
g
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i or .
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FIGURE 5.4. Energy time history traces for the slab using
the hypoelastic algorithms. (top) potential energy , (bottom)
kinetic energy.

model is used (with the same properties). The time history trace is shown up to
0.01 s. It is noted that the simulation shows no signs of instability and in fact has

been continued past 5.0s. [

The source of the global instability of the hypoelastic simulations can be seen from
the time histories of the slab’s total potential and kinetic energies; see Fig. 5.4. Note that
for the calculation of the total potential energy the expression fV o:d is incrementally
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FIGURE 5.5. Energy time history traces for the slab using
the Saint Venant-Kirchhoff model. (right) potential energy ,
(left) kinetic energy.

integrated in time using a mid-point rule for the hypoelastic models since no closed-form
expression exists for the material’s strain energy density. The figure shows that the poten-
tial energy of the body decreases as time elapses. At the same time, since the global time
stepping algorithm attempts to conserves energy, the kinetic energy increases; eventually
the calculation becomes unstable.
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Remark 5.5.

Note that the points of instability of the 4 hypoelastic algorithms can be drawn closer
to each other by decreasing the time step size until the difference in the algorithms
is reduced to machine precision. However, the instability most likely cannot be com-
pletely eliminated as hypoelasticity in general fails to have zero work in closed cycles;
see [12, §99-101] and references therein. Note that the instability does not manifest
itself in the hyperelastic calculation. The time histories of the energies for the Saint
Venant-Kirchhoff model are shown in Fig 5.5; to aide in comparison to Fig 5.4 the
same scales are utilized for the abscissae. [J

§6. Conclusions

This paper has presented an accuracy and stability analysis of several common al-

gorithms and one new one for the integration of hypoelastic constitutive relations based
upon the Jaumann rate. The primary conclusions are as follows:

1

The simplest algorithm (ALGO1) is first order objective and unconditionally unstable
in the presence of rotations.

The next most complex algorithm (ALGO2) is second order objective and uncondi-
tionally unstable in the presence of rotations. The degree of instability is 2 powers
less than that of ALGO1; see Eq. (4.13) versus Eq. (4.11).

The Hughes-Winget algorithm is incrementally objective, second order accurate with
respect to incrementally rigid-body motions, and unconditionally stable.

The exponential map algorithm is incrementally objective, exact with respect to in-
crementally rigid-body motions, and unconditionally stable.

The inaccuracies and instabilities of the hypoelastic algorithms can cause premature
global instabilities in finite element calculations. By “premature”, it is noted that a
consistent and stable approximations to hypoelasticity can lead to a global instability
of a boundary value problem as was illustrated in §5. The likely cause of this is
that with a constant expression for C, the hypoelasticity formulation considered is
incompatible with hyperelasticity except in restrictive circumstances [13]. Further,
for hypoelastic materials that are not hyperelastic the contrapositive of Bernstein’s
Theorem IV [14, 12 §101] tells us that the work performed on such a body is NOT
non-negative for all closed cycles. A conclusive proof that this state of affairs is the
cause of the observed global instability of the boundary value problem in §5 is not
available but it is certainly felt to be a contributing factor given that the hyperelastic
calculation shows no signs of instability.

In terms of the cost of the rotational update of the stress, viz. the construction of
Q and the update QoQ”, ALGO1 requires 15 multiplies and 18 additions, ALGO2
requires 60 multiplies and 54 additions, the Hughes-Winget can be computed in 105
multiplies, 1 divide, and 45 additions, and the exponential map can be performed in
107 multiplies, 2 divides, 44 additions, 1 square-root, and 2 trigonometric evaluations.
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The numbers for the Hughes-Winget and exponential map algorithms are not neces-
sarily optimal and do not take into account invariant preserving matrix multiplication.
A similar (non-optimal) count for the Rashid algorithm indicates 147 multiplies, 70
additions, 5 divides, and 2 square-roots.
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