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GPU Multisplit: an extended study of a parallel algorithm

SAMAN ASHKIANI, University of California, Davis
ANDREW DAVIDSON, University of California, Davis
ULRICH MEYER, Goethe-Universität Frankfurt am Main
JOHN D. OWENS, University of California, Davis

Multisplit is a broadly useful parallel primitive that permutes its input data into contiguous buckets or bins,
where the function that categorizes an element into a bucket is provided by the programmer. Due to the lack
of an e�cient multisplit on GPUs, programmers often choose to implement multisplit with a sort. One way is
to �rst generate an auxiliary array of bucket IDs and then sort input data based on it. In case smaller indexed
buckets possess smaller valued keys, another way for multisplit is to directly sort input data. Both methods
are ine�cient and require more work than necessary: the former requires more expensive data movements
while the latter spends unnecessary e�ort in sorting elements within each bucket. In this work, we provide
a parallel model and multiple implementations for the multisplit problem. Our principal focus is multisplit
for a small (up to 256) number of buckets. We use warp-synchronous programming models and emphasize
warp-wide communications to avoid branch divergence and reduce memory usage. We also hierarchically
reorder input elements to achieve better coalescing of global memory accesses. On a GeForce GTX 1080 GPU,
we can reach a peak throughput of 18.93 Gkeys/s (or 11.68 Gpairs/s) for a key-only (or key-value) multisplit.
Finally, we demonstrate how multisplit can be used as a building block for radix sort. In our multisplit-based
sort implementation, we achieve comparable performance to the fastest GPU sort routines, sorting 32-bit keys
(and key-value pairs) with a throughput of 3.0 G keys/s (and 2.1 Gpair/s).

CCS Concepts: •Computing methodologies→ Parallel algorithms; •Computer systems organization
→ Single instruction, multiple data; •Theory of computation→ Shared memory algorithms;

Additional Key Words and Phrases: Graphics Processing Unit (GPU), multisplit, bucketing, warp-synchronous
programming, radix sort, histogram, shu�e, ballot
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1 INTRODUCTION
This paper studies the multisplit primitive for GPUs. 1 Multisplit divides a set of items (keys or
key-value pairs) into contiguous buckets, where each bucket contains items whose keys satisfy a
programmer-speci�ed criterion (such as falling into a particular range). Multisplit is broadly useful
in a wide range of applications, some of which we will cite later in this introduction. But we begin

1This paper is an extended version of initial results published at PPoPP 2016 [3]. The source code is available at https:
//github.com/owensgroup/GpuMultisplit.
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our story by focusing on one particular example, the delta-stepping formulation of single-source
shortest path (SSSP).

The traditional (and work-e�cient) serial approach to SSSP is Dijkstra’s algorithm [13], which
considers one vertex per iteration—the vertex with the lowest weight. The traditional parallel
approach (Bellman-Ford-Moore [4]) considers all vertices on each iteration, but as a result incurs
more work than the serial approach. On the GPU, the recent SSSP work of Davidson et al. [8]
instead built upon the delta-stepping work of Meyer and Sanders [23], which on each iteration
classi�es candidate vertices into buckets or bins by their weights and then processes the bucket
that contains the vertices with the lowest weights. Items within a bucket are unordered and can be
processed in any order.

Delta-stepping is a good �t for GPUs. It avoids the inherent serialization of Dijkstra’s approach
and the extra work of the fully parallel Bellman-Ford-Moore approach. At a high level, delta-
stepping divides up a large amount of work into multiple buckets and then processes all items
within one bucket in parallel at the same time. How many buckets? Meyer and Sanders describe
how to choose a bucket size that is “large enough to allow for su�cient parallelism and small
enough to keep the algorithm work-e�cient” [23]. Davidson et al. found that 10 buckets was
an appropriate bucket count across their range of datasets. More broadly, for modern parallel
architectures, this design pattern is a powerful one: expose just enough parallelism to �ll the
machine with work, then choose the most e�cient algorithm to process that work. (For instance,
Hou et al. use this strategy in e�cient GPU-based tree traversal [18].)

Once we’ve decided the bucket count, how do we e�ciently classify vertices into buckets?
Davidson et al. called the necessary primitive multisplit. Beyond SSSP, multisplit has signi�cant
utility across a range of GPU applications. Bucketing is a key primitive in one implementation
of radix sort on GPUs [22], where elements are reordered iteratively based on a group of their
bits in their binary representation; as the �rst step in building a GPU hash table [1]; in hash-join
for relational databases to group low-bit keys [12]; in string sort for singleton compaction and
elimination [11]; in su�x array construction to organize the lexicographical rank of characters [10];
in a graphics voxelization pipeline for splitting tiles based on their descriptor (dominant axis) [28];
in the shallow stages of k-d tree construction [32]; in Ashari et al.’s sparse-matrix dense-vector
multiplication work, which bins rows by length [2]; and in probabilistic top-k selection, whose
core multisplit operation is three bins around two pivots [24]. And while multisplit is a crucial part
of each of these and many other GPU applications, it has received little attention to date in the
literature. The work we present here addresses this topic with a comprehensive look at e�ciently
implementing multisplit as a general-purpose parallel primitive.

The approach of Davidson et al. to implementing multisplit reveals the need for this focus. If
the number of buckets is 2, then a scan-based “split” primitive [16] is highly e�cient on GPUs.
Davidson et al. built both a 2-bucket (“Near-Far”) and 10-bucket implementation. Because they
lacked an e�cient multisplit, they were forced to recommend their theoretically-less-e�cient
2-bucket implementation:

The missing primitive on GPUs is a high-performance multisplit that separates
primitives based on key value (bucket id); in our implementation, we instead use
a sort; in the absence of a more e�cient multisplit, we recommend utilizing our
Near-Far work-saving strategy for most graphs. [8, Section 7]

Like Davidson et al., we could implement multisplit on GPUs with a sort. Recent GPU sorting
implementations [22] deliver high throughput, but are overkill for the multisplit problem: unlike
sort, multisplit has no need to order items within a bucket. In short, sort does more work than
necessary. For Davidson et al., reorganizing items into buckets after each iteration with a sort is

ACM Transactions on Parallel Computing, Vol. 4, No. 1, Article 2. Publication date: August 2017.



GPU Multisplit: an extended study of a parallel algorithm 2:3

too expensive: “the overhead of this reorganization is signi�cant: on average, with our bucketing
implementation, the reorganizational overhead takes 82% of the runtime.” [8, Section 7]

In this paper we design, implement, and analyze numerous approaches to multisplit, and make
the following contributions:

• On modern GPUs, “global” operations (that require global communication across the
whole GPU) are more expensive than “local” operations that can exploit faster, local GPU
communication mechanisms. Straightforward implementations of multisplit primarily use
global operations. Instead, we propose a parallel model under which the multisplit problem
can be factored into a sequence of local, global, and local operations better suited for the
GPU’s memory and computational hierarchies.

• We show that reducing the cost of global operations, even by signi�cantly increasing the
cost of local operations, is critical for achieving the best performance. We base our model
on a hierarchical divide and conquer, where at the highest level each subproblem is small
enough to be easily solved locally in parallel, and at the lowest level we have only a small
number of operations to be performed globally.

• We locally reorder input elements before global operations, trading more work (the re-
ordering) for better memory performance (greater coalescing) for an overall improvement
in performance.

• We promote the warp-level privatization of local resources as opposed to the more tradi-
tional thread-level privatization. This decision can contribute to an e�cient implementation
of our local computations by using warp-synchronous schemes to avoid branch divergence,
reduce shared memory usage, leverage warp-wide instructions, and minimize intra-warp
communication.

• We design a novel voting scheme using only binary ballots. We use this scheme to e�ciently
implement our warp-wide local computations (e.g., histogram computations).

• We use these contributions to implement a high-performance multisplit targeted to modern
GPUs. We then use our multisplit as an e�ective building block to achieve the following:
– We build an alternate radix sort competitive with CUB (the current fastest GPU sort

library). Our implementation is particularly e�ective with key-value sorts (Section 7.1).
– We demonstrate a signi�cant performance improvement in the delta-stepping formu-

lation of the SSSP algorithm (Section 7.2).
– We build an alternate device-wide histogram procedure competitive with CUB. Our

implementation is particularly suitable for a small number of bins (Section 7.3).

2 RELATED WORK AND BACKGROUND
2.1 The Graphics Processing Unit (GPU)
The GPU of today is a highly parallel, throughput-focused programmable processor. GPU programs
(“kernels”) launch over a grid of numerous blocks; the GPU hardware maps blocks to available
parallel cores. Each block typically consists of dozens to thousands of individual threads, which are
arranged into 32-wide warps. Warps run under SIMD control on the GPU hardware. While blocks
cannot directly communicate with each other within a kernel, threads within a block can, via a
user-programmable 48 kB shared-memory, and threads within a warp additionally have access to
numerous warp-wide instructions. The GPU’s global memory (DRAM), accessible to all blocks
during a computation, achieves its maximum bandwidth only when neighboring threads access
neighboring locations in the memory; such accesses are termed coalesced. In this work, when
we use the term “global”, we mean an operation of device-wide scope. Our term “local” refers to
an operation limited to smaller scope (e.g., within a thread, a warp, a block, etc.), which we will
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specify accordingly. The major di�erence between the two is the cost of communication: global
operations must communicate through global DRAM, whereas local operations can communicate
through lower-latency, higher-bandwidth mechanisms like shared memory or warp-wide intrinsics.
Lindholm et al. [20] and Nickolls et al. [25] provide more details on GPU hardware and the GPU
programming model, respectively.

We use NVIDIA’s CUDA as our programming language in this work [27]. CUDA provides
several warp-wide voting and shu�ing instructions for intra-warp communication of threads.
All threads within a warp can see the result of a user-speci�ed predicate in a bitmap variable
returned by __ballot(predicate) [27, Ch. B13]. Any set bit in this bitmap denotes the predicate
being non-zero for the corresponding thread. Each thread can also access registers from other
threads in the same warp with __shfl(register_name, source_thread) [27, Ch. B14]. Other
shu�ing functions such as __shfl_up() or __shfl_xor() use relative addresses to specify the
source thread. In CUDA, threads also have access to some e�cient integer intrinsics, e.g., __popc()
for counting the number of set bits in a register.

2.2 Parallel primitive background
In this paper we leverage numerous standard parallel primitives, which we brie�y describe here. A
reduction inputs a vector of elements and applies a binary associative operator (such as addition)
to reduce them to a single element; for instance, sum-reduction simply adds up its input vector.
The scan operator takes a vector of input elements and an associative binary operator, and returns
an output vector of the same size as the input vector. In exclusive (resp., inclusive) scan, output
location i contains the reduction of input elements 0 to i − 1 (resp., 0 to i). Scan operations with
binary addition as their operator are also known as pre�x-sum [16]. Any reference to a multi-
operator (multi-reduction, multi-scan) refers to running multiple instances of that operator in
parallel on separate inputs. Compaction is an operation that �lters a subset of its input elements
into a smaller output array while preserving the order.

2.3 Multisplit and Histograms
Many multisplit implementations, including ours, depend heavily on knowledge of the total number
of elements within each bucket (bin), i.e., histogram computation. Previous competitive GPU
histogram implementations share a common philosophy: divide the problem into several smaller
sized subproblems and assign each subproblem to a thread, where each thread sequentially processes
its subproblem and keeps track of its own privatized local histogram. Later, the local histograms
are aggregated to produce a globally correct histogram. There are two common approaches to
this aggregation: 1) using atomic operations to correctly add bin counts together (e.g., Shams and
Kennedy [30]), 2) storing per-thread sequential histogram computations and combining them via a
global reduction (e.g., Nugteren et al. [26]). The former is suitable when the number of buckets
is large; otherwise atomic contention is the bottleneck. The latter avoids such con�icts by using
more memory (assigning exclusive memory units per-bucket and per-thread), then performing
device-wide reductions to compute the global histogram.

The hierarchical memory structure of NVIDIA GPUs, as well as NVIDIA’s more recent addition
of faster but local shared memory atomics (among all threads within a thread block), provides more
design options to the programmer. With these features, the aggregation stage could be performed
in multiple rounds from thread-level to block-level and then to device-level (global) results. Brown
et al. [6] implemented both Shams’s and Nugteren’s aforementioned methods, as well as a variation
of their own, focusing only on 8-bit data, considering careful optimizations that make the best use
of the GPU, including loop unrolling, thread coarsening, and subword parallelism, as well as others.
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Recently, NVIDIA’s CUDA Unbound (CUB) [21] library has included an e�cient and consistent
histogram implementation that carefully uses a minimum number of shared-memory atomics to
combine per-thread privatized histograms per thread-block, followed by aggregation via global
atomics. CUB’s histogram supports any data type (including multi-channel 8-bit inputs) with any
number of bins.

Only a handful of papers have explored multisplit as a standalone primitive. He et al. [17]
implemented multisplit by reading multiple elements with each thread, sequentially computing
their histogram and local o�sets (their order among all elements within the same bucket and
processed by the same thread), then storing all results (histograms and local o�sets) into memory.
Next, they performed a device-wide scan operation over these histogram results and scattered each
item into its �nal position. Their main bottlenecks were the limited size of shared memory, an
expensive global scan operation, and random non-coalesced memory accesses.2

Patidar [29] proposed two methods with a particular focus on a large number of buckets (more
than 4k): one based on heavy usage of shared-memory atomic operations (to compute block level
histogram and intra-bucket orders), and the other by iterative usage of basic binary split for each
bucket (or groups of buckets). Patidar used a combination of these methods in a hierarchical way
to get his best results.3 Both of these multisplit papers focus only on key-only scenarios, while data
movements and privatization of local memory become more challenging with key-value pairs.

3 MULTSIPLIT AND COMMON APPROACHES
In this section, we �rst formally de�ne the multisplit as a primitive algorithm. Next, we describe
some common approaches for performing the multisplit algorithm, which form a baseline for the
comparison to our own methods, which we then describe in Section 4.

3.1 The multisplit primitive
We informally characterize multisplit as follows:

• Input: An unordered set of keys or key-value pairs. “Values” that are larger than the size of
a pointer use a pointer to the value in place of the actual value.

• Input: A function, speci�ed by the programmer, that inputs a key and outputs the bucket
corresponding to that key (bucket identi�er). For example, this function might classify a
key into a particular numerical range, or divide keys into prime or composite buckets.

• Output: Keys or key-value pairs separated intom buckets. Items within each output bucket
must be contiguous but are otherwise unordered. Some applications may prefer output
order within a bucket that preserves input order; we call these multisplit implementations
“stable”.

More formally, let u and v be vectors of n key and value elements, respectively. Altogether m
buckets B0,B1, . . . ,Bm−1 partition the entire key domain such that each key element uniquely
belongs to one and only one bucket. Let f (·) be an arbitrary bucket identi�er that assigns a bucket
ID to each input key (e.g., f (ui ) = j if and only if ui ∈ Bj ). Throughout this paper, m always refers
to the total number of buckets. For any input key vector, we de�ne multisplit as a permutation of
that input vector into an output vector. The output vector is densely packed and has two properties:
(1) All output elements within the same bucket are stored contiguously in the output vector, and
(2) All output elements are stored contiguously in a vector in ascending order by their bucket IDs.

2On an NVIDIA 8800 GTX GPU, for 64 buckets, He et al. reported 134 Mkeys/sec. As a very rough comparison, our GeForce
GTX 1080 GPU has 3.7x the memory bandwidth, and our best 64-bucket implementation runs 126 times faster.
3On an NVIDIA GTX280 GPU, for 32 buckets, Patidar reported 762 Mkeys/sec. As a very rough comparison, our GeForce
GTX 1080 GPU has 2.25x the memory bandwidth, and our best 32-bucket implementation runs 23.5 times faster.
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9 12 4 11 3 5 16 2 1 10 13 6 15 8 14 7Input keys

11 3 5 2 13 7 9 12 4 16 1 10 6 15 8 14(a) multisplit

4 3 5 2 1 9 12 11 10 13 6 8 7 16 15 14(b) multisplit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16(c) Sort

Bprime = {k : k is prime}

Bcomposite = {k : k < Bprime }

B0 = {k : k < 6}

B1 = {k : 6 ≤ k < 14}

B2 = {k : 14 ≤ k }

Fig. 1. Multisplit examples. (a) Stable multisplit over two buckets (Bprime and Bcomposite). (b) Stable mul-
tisplit over three range-based buckets (B0,B1,B2). (c) Sort can implement multisplit over ordered buckets
(e.g., for B0,B1,B3), but not for any general buckets (e.g., Bprime and Bcomposite); note that this multisplit
implementation is not stable (initial intra bucket orders are not preserved).

Optionally, the beginning index of each bucket in the output vector can also be stored in an array
of sizem. Our main focus in this paper is on 32-bit keys and values (of any data type).

This multisplit de�nition allows for a variety of implementations. It places no restrictions on the
order of elements within each bucket before and after the multisplit (intra-bucket orders); buckets
with larger indices do not necessarily have larger elements. In fact, key elements may not even
be comparable entities, e.g., keys can be strings of names with buckets assigned to male names,
female names, etc. We do require that buckets are assigned to consecutive IDs and will produce
buckets ordered in this way. Figure 1 illustrates some multisplit examples. Next, we consider some
common approaches for dealing with non-trivial multisplit problems.

3.2 Iterative and Recursive scan-based splits
The �rst approach is based on binary split. Suppose we have two buckets. We identify buckets
in a binary �ag vector, and then compact keys (or key-value pairs) based on the �ags. We also
compact the complemented binary �ags from right to left, and store the results. Compaction
can be e�ciently implemented by a scan operation, and in practice we can concurrently do both
left-to-right and right-to-left compaction with a single scan operation.

With more buckets, we can take two approaches. One is to iteratively perform binary splits
and reduce our buckets one by one. For example, we can �rst split based on B0 and all remaining
buckets (∪m−1

j=1 Bj ). Then we can split the remaining elements based on B1 and ∪m−1
j=2 Bj . After m

rounds the result will be equivalent to a multisplit operation. Another approach is that we can
recursively perform binary splits; on each round we split key elements into two groups of buckets.
We continue this process for at most dlogme rounds and in each round we perform twice number
of multisplits and in the end we will have a stable multisplit. Both of these scan-based splits require
multiple global operations (e.g., scan) over all elements, and may also have load-balancing issues if
the distribution of keys is non-uniform. As we will later see in Section 6.1, on modern GPUs and
with just two buckets this approach is not e�cient enough.

3.3 Radix sort
It should be clear by now that sorting is not a general solution to a multisplit problem. However,
it is possible to achieve a non-stable multisplit by directly sorting our input elements under the
following condition: if buckets with larger IDs have larger elements (e.g., all elements in B0 are
less than all elements in B1, and so on). Even in this case, this is not a work-e�cient solution as it
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unnecessarily sorts all elements within each bucket as well. On average, as the number of buckets
(m) increases, this performance gap should decrease because there are fewer elements within each
bucket and hence less extra e�ort to sort them. As a result, at some point we expect the multisplit
problem to converge to a regular sort problem, when there are large enough number of buckets.

Among all sorting algorithms, there is a special connection between radix sort and multisplit.
Radix sort iteratively sorts key elements based on selected groups of bits in keys. The process either
starts from the least signi�cant bits (“LSB sort”) or from the most signi�cant bits (“MSB sort”). In
general MSB sort is more common because, compared to LSB sort, it requires less intermediate data
movement when keys vary signi�cantly in length (this is more of an issue for string sorting). MSB
sort ensures data movements become increasingly localized for later iterations, because keys will
not move between buckets (“bucket” here refers to the group of keys with the same set of considered
bits from previous iterations). However, for equal width key types (such as 32-bit variables, which
are our focus in this paper) and with a uniform distribution of keys in the key domain (i.e., an
equivalently uniform distribution of bits across keys), there will be less di�erence between the two
methods.

3.4 Reduced-bit sort
Because sorting is an e�cient primitive on GPUs, we modify it to be speci�c to multisplit: here
we introduce our reduced-bit sort method (RB-sort), which is based on sorting bucket IDs and
permuting the original key-value pairs afterward. For multisplit, this method is superior to a
full radix sort because we expect the number of signi�cant bits across all bucket IDs is less than
the number of signi�cant bits across all keys. Current e�cient GPU radix sorts (such as CUB)
provide an option of sorting only a subset of bits in keys. This results in a signi�cant performance
improvement for RB-sort, because we only sort bucket IDs (with logm bits instead of 32-bit keys as
in a full radix sort).

Key-only. In this scenario, we �rst make a label vector containing each key’s bucket ID. Then
we sort (label, key) pairs based on label values. Since labels are all less than m, we can limit the
number of bits in the radix sort to be dlogme.

Key-value. In this scenario, we similarly make a label vector from key elements. Next, we would
like to permute (key, value) pairs by sorting labels. One approach is to sort (label, (key, value))
pairs all together, based on label. To do so, we �rst pack our original key-value pairs into a single
64-bit variable and then do the sort.4 In the end we unpack these elements to form the �nal results.
Another way is to sort (label, index) pairs and then manually permute key-value pairs based on the
permuted indices. We tried both approaches and the former seems to be more e�cient. The latter
requires non-coalesced global memory accesses and gets worse asm increases, while the former
reorders for better coalescing internally and scales better withm.

The main problem with the reduced-bit sort method is its extra overhead (generating labels,
packing original key-value pairs, unpacking the results), which makes the whole process less
e�cient. Another ine�ciency with the reduced-bit sort method is that it requires more expensive
data movements than an ideal solution. For example, to multisplit on keys only, RB-sort performs a
radix sort on (label, key) pairs.

Today’s fastest sort primitives do not currently provide APIs for user-speci�ed computations
(e.g., bucket identi�cations) to be integrated as functors directly into sort’s kernels; while this is an

4For data types that are larger than 32 bits, we need further modi�cations for the RB-sort method to work, because it may no
longer be possible to pack each key-value pair into a single 64-bit variable and use the current already-e�cient 64-bit GPU
sorts for it. For such cases, we �rst sort the array of indexes, then manually permute the arbitrary sized key-value pairs.
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intriguing area of future work for the designers of sort primitives, we believe that our reduced-bit
sort appears to be the best solution today for multisplit using current sort primitives.

4 ALGORITHM OVERVIEW
In analyzing the performance of methods from the previous section, we make two observations:

(1) Global computations (such as a global scan) are expensive, and approaches to multisplit
that require many rounds, each with a global computation, are likely to be uncompetitive.
Any reduction in the cost of global computation is desirable.

(2) After we derive the permutation, the cost of permuting the elements with a global scatter
(consecutive input elements going into arbitrarily distant �nal destinations) is also expensive.
This is primarily because of the non-coalesced memory accesses associated with the scatter.
Any increase in memory locality associated with the scatter is also desirable.

The key design insight in this paper is that we can reduce the cost of both global computation
and global scatter at the cost of doing more local work, and that doing so is bene�cial for overall
performance. We begin by describing and analyzing a framework for the di�erent approaches we
study in this paper, then discuss the generic structure common to all our implementations.

4.1 Our parallel model
Multisplit cannot be solved by using only local operations; i.e., we cannot divide a multisplit
problem into two independent subparts and solve each part locally without any communication
between the two parts. We thus assume any viable implementation must include at least a single
global operation to gather necessary global information from all elements (or group of elements).
We generalize the approaches we study in this paper into a series of N rounds, where each round
has 3 stages: a set of local operations (which run in parallel on independent subparts of the global
problem); a global operation (across all subparts); and another set of local operations. In short:
{local, global, local}, repeated N times; in this paper we refer to these three stages as {prescan, scan,
postscan}.

The approaches from Section 3 all �t this model. Scan-based split starts by making a �ag vector
(where the local level is per-thread), performing a global scan operation on all �ags, and then
ordering the results into their �nal positions (thread-level local). The iterative (or recursive) scan-
based split withm buckets repeats the above approach form (or dlogme) rounds. Radix sort also
requires several rounds. Each round starts by identifying a bit (or a group of bits) from its keys
(local), running a global scan operation, and then locally moving data such that all keys are now
sorted based on the selected bit (or group of bits). In radix sort literature, these stages are mostly
known as up-sweep, scan and down-sweep. Reduced-bit sort is derived from radix sort; the main
di�erences are that in the �rst round, the label vector and the new packed values are generated
locally (thread-level), and in the �nal round, the packed key-value pairs are locally unpacked
(thread-level) to form the �nal results.

4.2 Multisplit requires a global computation
Let’s explore the global and local components of stable multisplit, which together compute a
unique permutation of key-value pairs into their �nal positions. Suppose we have m buckets
B0,B1, . . . ,Bm−1, each with h0,h1, . . . ,hm−1 elements respectively (

∑
i hi = n, where n is the total

number of elements). If ui ∈ Bj is the ith element in key vector u, then its �nal permuted position
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p (i ) should be (from ui ’s perspective):

p (i ) =

j−1∑
k=0

hk︸︷︷︸
global o�set

+
���{ur ∈ Bj : r < i}���︸                ︷︷                ︸
local o�set (ui ’s bucket)

, (1)

where | · | is the cardinality operator that denotes the number of elements within its set argument.
The left term is the total number of key elements that belong to the preceding buckets, and the right
term is the total number of preceding elements (with respect to ui ) in ui ’s bucket, Bj . Computing
both of these terms in this form and for all elements (for all i) requires global operations (e.g.,
computing a histogram of buckets).

4.3 Dividing multisplit into subproblems
Equation (1) clearly shows what we need in order to compute each permutation (i.e., �nal destina-
tions for a stable multisplit solution): a histogram of buckets among all elements (hk ) as well as
local o�sets for all elements within the same bucket (the second term). However, it lacks intuition
about how we should compute each term. Both terms in equation (1), at their core, answer the
following question: to which bucket does each key belong? If we answer this question for every
key and for all buckets (hypothetically, for each bucket we store a binary bitmap variable of length
n to show all elements that belong to that bucket), then each term can be computed intuitively as
follows: 1) histograms are equal to counting all elements in each bucket (reduction of a speci�c
bitmap); 2) local o�sets are equivalent to counting all elements from the beginning to that speci�c
index and within the same bucket (scan operation on a speci�c bitmap). This intuition is closely
related to our de�nition of the scan-based split method in Section 3.2. However, it is practically
not competitive because it requires storing huge bitmaps (total ofmn binary variables) and then
performing global operations on them.

Although the above solution seems impractical for a large number of keys, it seems more favorable
for input problems that are small enough. As an extreme example, suppose we wish to perform
multisplit on a single key. Each bitmap variable becomes just a single binary bit. Performing
reduction and scan operations become as trivial as whether a single bit is set or not. Thus, a
divide-and-conquer approach seems like an appealing solution to solve equation (1): we would like
to divide our main problem into small enough subproblems such that solving each subproblem is
“easy” for us. By an easy computation we mean that it is either small enough so that we can a�ord
to process it sequentially, or that instead we can use an e�cient parallel hardware alternative (such
as the GPU’s ballot instruction). When we solve a problem directly in this way, we call it a direct
solve. Next, we formalize our divide-and-conquer formulation.

Let us divide our input key vector u into L contiguous subproblems: u = [u0, u1, . . . , uL−1]. Sup-
pose each subvector u` has h0, `,h1, `, . . . ,hm−1, ` elements in buckets B0,B1, . . . Bm−1 respectively.
For example, for arbitrary values of i , s , and j such that key item ui ∈ us and ui is in bucket Bj ,
equation (1) can be rewritten as (from ui ’s perspective):

p (i ) =

previous buckets︷           ︸︸           ︷
j−1∑
k=0

*
,

L−1∑
`=0

hk, `+
-
+

ui ’s bucket︷  ︸︸  ︷
s−1∑
`=0

hj, `︸                          ︷︷                          ︸
global o�set

+
���{ur ∈ us : (ur ∈ Bj ) ∧ (r < i )}���︸                                   ︷︷                                   ︸

local o�set within ui ’s subproblem

. (2)

This formulation has two separate parts. The �rst and second terms require global computation
(�rst: the element count of all preceding buckets across all subproblems, and second: the element
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count of the same bucket in all preceding subproblems). The third term can be computed locally
within each subproblem. Note that equation (1) and (2)’s �rst terms are equivalent (total number of
previous buckets), but the second term in (1) is broken into the second and third terms in (2).

The �rst and second terms can both be computed with a global histogram computed over L
local histograms. A global histogram is generally implemented with global scan operations (here,
exclusive pre�x-sum). We can characterize this histogram as a scan over a 2-dimensional matrix
H = [hi, `]m×L , where the “height” of the matrix is the bucket countm and the “width” of the matrix
is the number of subproblems L. The second term can be computed by a scan operation of size L
on each row (total of m scans for all buckets). The �rst term will be a single scan operation of size
m over the reduction of all rows (�rst reduce each row horizontally to compute global histograms
and then scan the results vertically). Equivalently, both terms can be computed by a single scan
operation of size mL over a row-vectorized H. Either way, the cost of our global operation is
roughly proportional to bothm and L. We see no realistic way to reducem. Thus we concentrate
on reducing L.

4.4 Hierarchical approach toward multisplit localization
We prefer to have small enough subproblems (n̄) so that our local computations are “easy” for a
direct solve. For any given subproblem size, we will have L = n/n̄ subproblems to be processed
globally as described before. On the other hand, we want to minimize our global computations as
well, because they require synchronization among all subproblems and involve (expensive) global
memory accesses. So, with a �xed input size and a �xed number of buckets (n andm), we would
like to both decrease our subproblem size and number of subproblems, which is indeed paradoxical.

Our solution is a hierarchical approach. We do an arbitrary number of levels of divide-and-
conquer, until at the last level, subproblems are small enough to be solved easily and directly (our
preferred n̄). These results are then appropriately combined together to eventually reach the �rst
level of the hierarchy, where now we have a reasonable number of subproblems to be combined
together using global computations (our preferred L).

Another advantage of such an approach is that, in case our hardware provides a memory hierarchy
with smaller but faster local memory storage (as GPUs do with register level and shared memory
level hierarchies, as opposed to the global memory), we can potentially perform all computations
related to all levels except the �rst one in our local memory hierarchies without any global memory
interaction. Ideally, we would want to use all our available register and shared memory with our
subproblems to solve them locally, and then combine the results using global operations. In practice,
however, since our local memory storage options are very limited, such solution may still lead
to a large number of subproblems to be combined with global operations (large L). As a result,
by adding more levels of hierarchy (than the available memory hierarchies in our device) we can
systematically organize the way we �ll our local memories, process them locally, store intermediate
results, and then proceed to the next batch, which overall reduces our global operations. Next, we
will theoretically consider such a hierarchical approach (multi-level localization) and explore the
changes to equation (2).

λ-level localization. For any given set of arbitrary non-zero integers {L0,L1, . . . ,Lλ−1}, we can
perform λ levels of localizations as follows: Suppose we initially divide our problem into L0 smaller
parts. These divisions form our �rst level (i.e., the global level). Next, each subproblem at the �rst
level is divided into L1 smaller subproblems to form the second level. We continue this process
until the λth level (with Lλ−1 subproblems each). Figure 2 shows an example of our hierarchical
division of the multisplit problem. There are total of Ltotal = L0 × L1 × . . . Lλ−1 smaller problems
and their results should be hierarchically added together to compute the �nal permutation p (i ).
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L2 L2 L2

L1
L2 L2 L2

L1

L0

Fig. 2. An example for our localization terminology. Here we have 3 levels of localization with L0 = 2, L1 = 3
and L2 = 5. For example, the marked subproblem (in green) can be addressed by a tuple (1, 1, 3) where each
index respectively denotes its position in the hierarchical structure.

Let (`0, `1, . . . , `λ−1) denote a subproblem’s position in our hierarchical tree: `0th branch from the
�rst level, `1th branch from the second level, and so forth until the last level. Among all elements
within this subproblem, we count those that belong to bucket Bi as hi, (`0, ..., `λ−1 ) . Similar to our
previous permutation computation, for an arbitrary i , j , and (s0, . . . , sλ−1), suppose ui ∈ u(s0, ...,sλ−1 )

and ui ∈ Bj . We can write p (i ) as follows (from ui ’s perspective):

p (i ) =

j−1∑
k=0

*.
,

L0−1∑
`0=0

L1−1∑
`1=0
· · ·

Lλ−1−1∑
`λ−1=0

hk, (`0, `1, ..., `λ−1 )
+/
-

→ previous buckets in the whole problem

+

s0−1∑
`0=0

*.
,

L1−1∑
`1=0
· · ·

Lλ−1−1∑
`λ−1=0

hj, (`0, `1, ..., `λ−1 )
+/
-

→ ui ’s bucket, �rst level, previous subproblems

+

s1−1∑
`1=0

*.
,

L2−1∑
`2=0
· · ·

Lλ−1−1∑
`λ−1=0

hj, (s0, `1, `2, ..., `λ−1 )
+/
-
→ ui ’s bucket, second level, previous subproblems

... → ui ’s bucket, previous levels, previous subproblems

+

sλ−1−1∑
`λ−1=0

hj, (s0, ...,sλ−2, `λ−1 ) → ui ’s bucket, last level, previous subproblems

+
���
{
ur ∈ u(s0, ...,sλ−1 ) : (ur ∈ Bj ) ∧ (r < i )

}��� . → ui ’s bucket, ui ’s subproblem

(3)

There is an important resemblance between this equation and equation (2). The �rst and second
terms (from top to bottom) are similar, with the only di�erence that each hk, ` is now further broken
into L1 × · · · × Lλ−1 subproblems (previously it was just L = L0 subproblems). The other terms of
(3) can be seen as a hierarchical disintegration of the local o�set in (2).

Similar to Section 4.3, we can form a matrix H = [hj, `0 ]m×L0 for global computations where

hj, `0 =

L1−1∑
`1=0
· · ·

Lλ−1−1∑
`λ−1=0

hj, (`0, `1, ..., `λ−1 ) . (4)

Figure 3 depicts an schematic example of multiple levels of localization. At the highest level, for
any arbitrary subproblem (`0, `1 . . . , `λ−1), local o�sets per key are computed as well as all bucket
counts. Bucket counts are then summed and sent to a lower level to form the bucket count for
more subproblems (Lλ−1 consecutive subproblems). This process is continued until reaching the
�rst level (the global level) where we have bucket counts for each L1 × · · · × Lλ−1 consecutive
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0th row of H . . . jth row of H . . . (m − 1)th row of H
B0 Bj Bm−1

hj, (0,∗, ...,∗) . . . hj, (`0,∗, ...,∗)
. . . hj, (L0−1,∗, ...,∗)∑

Hj,0 Hj, `0 Hj,L0−1

hj, (`0,0,∗, ...,∗) . . . hj, (`0, `1,∗, ...,∗)
. . . hj, (`0,L1−1,∗, ...,∗)∑

hj, (`0, `1,0,∗, ...,∗) . . . hj, (`0, `1, `2,∗, ...,∗)
. . . hj, (`0, `1,L2−1,∗, ...,∗)

. . .

hj, (`0, `1, ...,0) . . . hj, (`0, `1, ..., `λ−1 )
. . . hj, (`0, `1, ...,Lλ−1 )

6

buckets
local o�set

∗

∗

Bj

0

∗

∗

∗

∗

Bj

1

Bj

2

∗

∗

∗

∗

Bj

3

∗

∗

∗

∗

Bj

4

∗

∗

∗

∗

Bj

5

∗

∗

Fig. 3. Each row of H belongs to a di�erent bucket. Results from di�erent subproblems in di�erent levels are
added together to form a lower level bucket count. This process is continued until reaching the first level
where H is completed.

subproblems. This is where H is completed, and we can proceed with our global computation. Next,
we discuss the way we compute local o�sets.

4.5 Direct solve: Local o�set computation
At the very last level of our localization, each element must compute its own local o�set, which
represents the number of elements in its subproblem (with our preferred size n̄) that both precede
it and share its bucket. To compute local o�sets of a subproblem of size n̄, we make a new binary
matrix H̄m×n̄ , where each row represents a bucket and each column represents a key element. Each
entry of this new matrix is one if the corresponding key element belongs to that bucket, and zero
otherwise. Then by performing an exclusive scan on each row, we can compute local o�sets for all
elements belonging to that row (bucket). So each subproblem requires the following computations:

(1) Mark all elements in each bucket (making local H̄)
(2) m local reductions over the rows of H̄ to compute local histograms (a column in H)
(3) m local exclusive scans on rows of H̄ (local o�sets)

For clarity, we separate steps 2 and 3 above, but we can achieve both with a single local scan
operation. Step 2 provides all histogram results that we need in equations (2) or (3) (i.e., all
hk, (`0, ..., `λ−1 ) values) and step 3 provides the last term in either equation (Fig. 3).

It is interesting to note that as an extreme case of localization, we can have L = n subproblems,
where we divide our problem so much that in the end each subproblem is a single element. In such
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case, H̄ is itself a binary value. Thus, step 2’s result is either 0 or 1. The local o�set (step 3) for such
a singleton matrix is always a zero (there is no other element within that subproblem).

4.6 Our multisplit algorithm
Now that we’ve outlined the di�erent computations required for the multisplit, we can present a
high-level view of the algorithmic skeleton we use in this paper. We require three steps:

(1) Local. For each subproblem at the highest level of our localization, for each bucket, count
the number of items in the subproblem that fall into that bucket (direct solve for bucket
counts). Results are then combined hierarchically and locally (based on equation (3)) until
we have bucket counts per subproblem for the �rst level (global level).

(2) Global. Scan the bucket counts for each bucket across all subproblems in the �rst level
(global level), then scan the bucket totals. Each subproblem now knows both a) for each
bucket, the total count for all its previous buckets across the whole input vector (term 1 in
equation (3)) and b) for each bucket, the total count from the previous subproblems (term 2
in equation (3)).

(3) Local. For each subproblem at the highest level of our localization, for each item, recompute
bucket counts and compute the local o�set for that item’s bucket (direct solve). Local results
for each level are then appropriately combined together with the global results from the
previous levels (based on equation (3)) to compute �nal destinations. We can now write
each item in parallel into its location in the output vector.

4.7 Reordering elements for be�er locality
After computing equation (3) for each key element, we can move key-value pairs to their �nal
positions in global memory. However, in general, any two consecutive key elements in the original
input do not belong to the same bucket, and thus their �nal destination might be far away from
each other (i.e., a global scatter). Thus, when we write them back to memory, our memory writes
are poorly coalesced, and our achieved memory bandwidth during this global scatter is similarly
poor. This results in a huge performance bottleneck. How can we increase our coalescing and thus
the memory bandwidth of our �nal global scatter? Our solution is to reorder our elements within a
subproblem at the lowest level (or any other higher level) before they are scattered back to memory.
Within a subproblem, we attempt to place elements from the same bucket next to each other, while
still preserving order within a bucket (and thus the stable property of our multisplit implementation).
We do this reordering at the same time we compute local o�sets in equation (2). How do we group
elements from the same bucket together? A local multisplit within the subproblem!

We have already computed histogram and local o�sets for each element in each subproblem.
We only need to perform another local exclusive scan on local histogram results to compute new
positions for each element in its subproblem (computing equation (1) for each subproblem). We
emphasize that performing this additional stable multisplit on each subproblem does not change its
histogram and local o�sets, and hence does not a�ect any of our computations described previously
from a global perspective; the �nal multisplit result is identical. But, it has a signi�cant positive
impact on the locality of our �nal data writes to global memory.

It is theoretically better for us to perform reordering in our largest subproblems (�rst level)
so that there are potentially more candidate elements that might have consecutive/nearby �nal
destinations. However, in practice, we may prefer to reorder elements in higher levels, not because
they provide better locality but for purely practical limitations (such as limited available local
memory to contain all elements within that subproblem).
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5 IMPLEMENTATION DETAILS
So far we have discussed our high level ideas for implementing an e�cient multisplit algorithm for
GPUs. In this section we thoroughly describe our design choices and implementation details. We
�rst discuss existing memory and computational hierarchies in GPUs, and conventional localization
options available on such devices. Then we discuss traditional design choices for similar problems
such as multisplit, histogram, and radix sort. We follow this by our own design choices and how
they di�er from previous work. Finally, we propose three implementation variations of multisplit,
each with its own localization method and computational details.

5.1 GPU memory and computational hierarchies
As brie�y discussed in Section 2, GPUs o�er three main memory storage options: 1) registers
dedicated to each thread, 2) shared memory dedicated to all threads within a thread-block, 3) global
memory accessible by all threads in the device.5 From a computational point of view there are two
main computational units: 1) threads have direct access to arithmetic units and perform register-
based computations, 2) all threads within a warp can perform a limited but useful set of hardware
based warp-wide intrinsics (e.g., ballots, shu�es, etc.). Although the latter is not physically a new
computational unit, its inter-register communication among threads opens up new computational
capabilities (such as parallel voting).

Based on memory and computational hierarchies discussed above, there are four primary ways
of solving a problem on the GPU: 1) thread-level, 2) warp-level, 3) block-level, and 4) device-
level (global). Traditionally, most e�cient GPU programs for multisplit, histogram and radix
sort [5, 17, 21] start from thread-level computations, where each thread processes a group of input
elements and performs local computations (e.g., local histograms). These thread-level results are
then usually combined to form a block-level solution, usually to bene�t from the block’s shared
memory. Finally, block-level results are combined together to form a global solution. If implemented
e�ciently, these methods are capable of achieving high-quality performance from available GPU
resources (e.g., CUB’s high e�ciency in histogram and radix sort).

In contrast, we advocate another way of solving these problems, based on a warp granularity.
We start from a warp-level solution and then proceed up the hierarchy to form a device-wide
(global) solution (we may bypass the block-level solution as well). Consequently, we target two
major implementation alternatives to solve our multisplit problem: 1) warp-level→ device-level,
2) warp-level→ block-level→ device-level (in Section 5.8, we discuss the costs and bene�ts of our
approaches compared to a thread-level approach). Another algorithmic option that we outlined
in Section 4.7 was to reorder elements to get better (coalesced) memory accesses. As a result of
combining these two sets of alternatives, there will be four possible variations that we can explore.
However, if we neglect reordering, our block-level solution will be identical to our warp-level
solution, which leaves us with three main �nal options that all start with warp-level subproblem
solutions and end up with a device-level global solution: 1) no reordering, 2) with reordering and
bypassing a block-level solution, 3) with reordering and including a block-level solution. Next, we
describe these three implementations and show how they �t into the multi-level localization model
we described in Section 4.4.

5.2 Our proposed multisplit algorithms
So far we have seen that we can reduce the size and cost of our global operation (size of H) by doing
more local work (based on our multi-level localization and hierarchical approach). This is a complex
5There are other types of memory units in GPUs as well, such as local, constant, and texture memory. However, these are in
general special-purpose memories and hence we have not targeted them in our design.
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tradeo�, since we prefer a small number of subproblems in our �rst level (global operations), as
well as small enough subproblem sizes in our last levels so that they can easily be solved within
a warp. What remains is to choose the number and size of our localization levels and where to
perform reordering. All these design choices should be made based on a set of complicated factors
such as available shared memory and registers, achieved occupancy, required computational load,
etc.

In this section we describe three novel and e�cient multisplit implementations that explore
di�erent points in the design space, using the terminology that we introduced in Section 4.4 and
Section 5.1.

Direct Multisplit Rather than split the problem into subproblems across threads, as in tradi-
tional approaches [17], Direct Multisplit (DMS) splits the problem into subproblems across
warps (warp-level approach), leveraging e�cient warp-wide intrinsics to perform the local
computation.

Warp-level Multisplit Warp-level Multisplit (WMS) also uses a warp-level approach, but addi-
tionally reorders elements within each subproblem for better locality.

Block-level Multisplit Block-level Multisplit (BMS) modi�es WMS to process larger-sized sub-
problems with a block-level approach that includes reordering, o�ering a further reduction
in the cost of the global step at the cost of considerably more complex local computations.

We now discuss the most interesting aspects of our implementations of these three approaches,
separately describing how we divide the problem into smaller pieces (our localization strategies),
compute histograms and local o�sets for larger subproblem sizes, and reorder �nal results before
writing them to global memory to increase coalescing.

5.3 Localization and structure of our multisplit
In Section 4 we described our parallel model in solving the multisplit problem. Theoretically, we
would like to both minimize our global computations as well as maximize our hardware utilization.
However, in practice designing an e�cient GPU algorithm is more complicated. There are various
factors that need to be considered, and sometimes even be smartly sacri�ced in order to satisfy a
more important goal: e�ciency of the whole algorithm. For example, we may decide to recompute
the same value multiple times in di�erent kernel launches, just so that we do not need to store
them in global memory for further reuse.

In our previous work [3], we implemented our multisplit algorithms with a straightforward lo-
calization strategy: Direct and Warp-level Multisplit divided problems into warp-sized subproblems
(two levels of localization), and Block-level Multisplit used block-sized subproblems (three levels
of localization) to extract more locality by performing more complicated computations needed
for reordering. In order to have better utilization of available resources, we assigned multiple
similar tasks to each launched warp/block (so each warp/block processed multiple independent
subproblems). Though this approach was e�ective, we still faced relatively expensive global com-
putations, and did not extract enough locality from our expensive reordering step. Both of these
issues could be remedied by using larger subproblems within the same localization hierarchy.
However, larger subproblems require more complicated computations and put more pressure on
the limited available GPU resources (registers, shared memory, memory bandwidth, etc.). Instead,
we redesigned our implementations to increase the number of levels of localization. This lets us
have larger subproblems, while systematically coordinating our computational units (warps/blocks)
and available resources to achieve better results.
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Algorithm subproblem size (n̄)

DMS N(window/warp)Nthread
WMS N(tile/warp)N(window/tile)Nthread
BMS N(tile/block)N(warp/tile)N(window/warp)Nthread

Table 1. Size of subproblems for each multisplit algorithm. Total size of our global computations will then be
the size of H equal tomn/n̄.

Subproblem per warp

(a) DMS localization

tile 0 tile 1 tile 2

Subproblem per warp

(b) WMS localization

warp 0 warp 1 warp 2
tile 0

warp 0 warp 1 warp 2
tile 1

Subproblem per block

(c) BMS localization

Fig. 4. Di�erent localizations for DMS, WMS and BMS are shown schematically. Assigned indices are just for
illustration. Each small rectangle denotes a window of 32 consecutive elements. Reordering takes place per
tile, but global o�sets are computed per subproblem.

Direct Multisplit. Our DMS implementation has three levels of localizations: Each warp is assigned
to a chunk of consecutive elements (�rst level). This chunk is then divided into a set of consecutive
windows of warp-width (Nthread = 32) size (second level). For each window, we multisplit without
any reordering (third level).

Warp-level Multisplit. WMS is similar to DMS, but it also performs reordering to get better
locality. In order to get better resource utilization, we add another level of localization compared to
DMS (total of four). Each warp performs reordering over only a number of processed windows
(a tile), and then continues to process the next tile. In general, each warp is in charge of a chunk
of consecutive elements (�rst level). Each chunk is divided into several consecutive tiles (second
level). Each tile is processed by a single warp and reordered by dividing it into several consecutive
windows (third level). Each window is then directly processed by warp-wide methods (fourth level).
The reason that we add another level of localization for each tile is simply because we do not have
su�cient shared memory per warp to store the entire subproblem.

Block-level Multisplit. BMS has �ve levels of localization. Each thread-block is in charge of a
chunk of consecutive elements (�rst level). Each chunk is divided into a consecutive number of
tiles (second level). Each tile is processed by all warps within a block (third level) and reordering
happens in this level. Each warp processes multiple consecutive windows of input data within the
tile (fourth level). In the end each window is processed directly by using warp-wide methods (�fth
level). Here, for a similar reason as in WMS (limited shared memory), we added another level of
localization per tile.

Figure 4 shows a schematic example of our three methods next to each other. Note that we have
�exibility to tune subproblem sizes in each implementation by changing the sizing parameters in
Table 1.
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Next we brie�y highlight the general structure of our computations (based on our model in
Section 4.1). We use DMS to illustrate:

Pre-scan (local). Each warp reads a window of key elements (of size Nthread = 32), generates a
local matrix H̄, and computes its histogram (reducing each row). Next, histogram results are stored
locally in registers. Then, each warp continues to the next window and repeats the process, adding
histogram results to the results from previous windows. In the end, each warp has computed a
single column of H and stores its results into global memory.

Scan (global). We perform an exclusive scan operation over the row-vectorized H and store the
result back into global memory (e.g., matrix G = [дi, `]m×L0 ).

Post-scan (local). Each warp reads a window of key-value pairs, generates its local matrix H̄
again,6 and computes local o�sets (with a local exclusive scan on each row). Similar to the pre-scan
stage, we store histogram results into registers. We then compute �nal positions by using the
global base addresses from G, warp-wide base addresses (warp-wide histogram results up until
that window), and local o�sets. Then we write key-value pairs directly to their storage locations
in the output vector. For example, if key u ∈ Bi is read by warp ` and its local o�set is equal to
k , its �nal position will be дi, ` + hi + k , where hi is the warp-wide histogram result up until that
window (referring to equation (3) is helpful to visualize how we compute �nal addresses with a
multi-level localization).

Algorithm 1 shows a simpli�ed pseudo-code of the DMS method (with less than 32 buckets).
Here, we can identify each key’s bucket by using a bucket_identifier() function. We compute
warp histogram and local o�sets with warp_histogram() and warp_offsets() procedures, which
we describe in detail later in this section (Alg. 2 and 3).

5.4 Ballot-based voting
In this section, we momentarily change our direction into exploring a theoretical problem about
voting. We then use this concept to design and implement our warp-wide histograms (Section 5.5).
We have previously emphasized our design decision of a warp-wide granularity. This decision is
enabled by the e�cient warp-wide intrinsics of NVIDIA GPUs. In particular, NVIDIA GPUs support
a warp-wide intrinsic __ballot(predicate), which performs binary voting across all threads in
a warp. More speci�cally, each thread evaluates a local Boolean predicate, and depending on the
result of that predicate (true or false), it toggles a speci�c bit corresponding to its position in the
warp (i.e., lane ID from 0 to 31). With a 32-element warp, this ballot �ts in a 32-bit register, so that
the ith thread in a warp toggles the ith bit. After the ballot is computed, every participant thread
can access the ballot result (as a bitmap) and see the voting result from all other threads in the
same warp.

Now, the question we want to answer within our multisplit implementation is a generalization to
the voting problem: Suppose there arem arbitrary agents (indexed from 0 to n − 1), each evaluating
a personalized non-binary predicate (a vote for a candidate) that can be any value from 0 to m − 1.
How is it possible to perform the voting so that any agent can know all the results (who voted for
whom)?

A naive way to solve this problem is to perform m separate binary votes. For each round
0 ≤ i < m, we just ask if anyone wants to vote for i . Each vote has a binary result (either voting for
i or not). Afterm votes, any agent can look at them × n ballots and know which agent voted for
which of them candidates.
6Note that we compute H̄ a second time rather than storing and reloading the results from the computation in the �rst step.
This is deliberate. We �nd that the recomputation is cheaper than the cost of global store and load.
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ALGORITHM 1: The Direct Multisplit (DMS) algorithm
Input: key_in[], value_in[], bucket_identi�er(): keys, values and a bucket identi�er function.
Output: key_out[], value_out[]: keys and values after multisplit.
// key_in[], value_in[], key_out[], value_out[], H, and G are all stored in global memory. // L: number of

subproblems
// ====== Pre-scan stage:
for each warp i=0:L-1 parallel device do

histo[0:m-1] = 0;
for each window j=0:N_window-1 do

bucket_id[0:31] = bucket_identi�er(key_in[32*i*N_window + 32*j + (0:31)]);
histo[0:m-1] += warp_histogram(bucket_id[0:31]);

end
H[0:m-1][i] = histo[0:m-1];

end
// ====== Scan stage:
H_row = [H[0][0:L-1],H[1][0:L-1], . . . , H[m-1][0:L-1]];
G_row = exclusive_scan(H_row);
// [G[0][0:L-1],G[1][0:L-1], . . . , G[m-1][0:L-1]] = G_row;
for i = 0:m-1 and j = 0:L-1 do

G[i][j] = G_row[i ∗ m + j];
end
// ====== Post-scan stage:
for each warp i=0:L-1 parallel device do

histo[0:m-1] = 0;
for each window j=0:N_window-1 do

read_key = key_in[32*i*N_window + 32*j + (0:31)];
read_value = value_in[32*i*N_window + 32*j + (0:31)];
bucket_id[0:31] = bucket_identi�er(read_key);
o�sets[0:31] = warp_o�sets(bucket_id[0:31]);
for each thread k=0:31 parallel warp do

�nal_position[k] = G[bucket_id[k]][i] + histo[bucket_id[k]] + o�sets[k];
key_out[�nal_position[k]] = read_key;
value_out[�nal_position[k]] = read_value;

end
histo[0:m-1] += warp_histogram(bucket_id[0:31]); // updating histograms

end
end

We note that each agent’s vote (0 ≤ vi < n) can be represented by logm binary digits. So a more
e�cient way to solve this problem requires just logm binary ballots per agent. Instead of directly
asking for a vote per candidate (m votes/bitmaps), we can ask for consecutive bits of each agent’s
vote (a bit at a time) and store them as a bitmap (for a total of logm bitmaps, each bitmap of size
n). For the jth bitmap (0 ≤ j < dlogme), every ith bit is one if only the ith agent have voted to a
candidate whose jth bit in its binary representation was also one (e.g., the 0th bitmap includes all
agents who voted for an odd-numbered candidate).

As a result, these dlogme bitmaps together contain all information to reconstruct every agent’s
vote. All we need to do is to imagine each bitmap as a row of am×n matrix. Each column represent
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the binary representation of the vote of that speci�c agent. Next, we use this scheme to perform
some of our warp-wide computations, only using NVIDIA GPU’s binary ballots.

5.5 Computing Histograms and Local O�sets
The previous subsections described why and how we create a hierarchy of localizations. Now we
turn to the problem of computing a direct solve of histograms and local o�sets on a warp-sized
(DMS or WMS) or a block-sized (BMS) problem. In our implementation, we leverage the balloting
primitives we described in Section 5.4. We assume throughout this section that the number of
buckets does not exceed the warp width (m ≤ Nthread). Later we extend our discussion to any
number of buckets in Section 5.7.

5.5.1 Warp-level Histogram. Previously, we described our histogram computations in each
subproblem as forming a binary matrix H̄ and doing certain computations on each row (reduction
and scan). Instead of explicitly forming the binary matrix H̄, each thread generates its own version
of the rows of this matrix and stores it in its local registers as a binary bitmap. Then per-row
reduction is equivalent to a population count operation (__popc), and exclusive scan equates to
�rst masking corresponding bits and then reducing the result. We now describe both in more detail.

To compute warp-level histograms, we assign each bucket (each row of H̄) to a thread. That
thread is responsible for counting the elements of the warp (of the current read window of input
keys) that fall into that bucket. We described in Section 5.4 how each agent (here, each thread) can
know about all the votes (here, the bucket to which each key belongs). Since we assigned each
thread to count the results of a particular bucket (here, the same as its lane ID ranging from 0 to
31), each thread must only count the number of other threads that voted for a bucket equal to its
lane ID (the bucket to which it is assigned). For cases where there are more buckets than the warp
width, we assign dm/32e buckets to each thread. First, we focus onm ≤ 32; Algorithm 2 shows the
detailed code.

ALGORITHM 2: Warp-level histogram computation
Function warp_histogram(bucket_id[0:31])

Input: bucket_id[0:31] // a warp-wide array of bucket IDs
Output: histo[0:m-1] // number of elements within eachm buckets
for each thread i = 0:31 parallel warp do

histo_bmp[i] = 0xFFFFFFFF for (int k = 0; k < ceil(log2(m)); k++) do
temp_bu�er = __ballot((bucket_id[i] » k) & 0x01);
if ((i » k) & 0x01) then histo_bmp[i] &= temp_bu�er;
else histo_bmp[i] &= ∼ temp_bu�er;

end
histo[i] = __popc(histo_bmp[i]); // counting number of set bits

end
return histo[0:m-1];

Each thread i is in charge of the bucket with an index equal to its lane ID (0–31). Thread i reads
a key, computes that key’s bucket ID (0–31), and initializes a warp-sized bitvector (32 bits) to all
ones. This bitvector corresponds to threads (keys) in the warp that might have a bucket ID equal
to this thread’s assigned bucket. Then each thread broadcasts the least signi�cant bit (LSB) of
its observed bucket ID, using the warp-wide ballot instruction. Thread i then zeroes out the bits
in its local bitmap that correspond to threads that are broadcasting a LSB that is incompatible
with i’s assigned bucket. This process continues with all other bits of the observed bucket IDs
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(form buckets, that’s logm rounds). When all rounds are complete, each thread has a bitmap that
indicates which threads in the warp have a bucket ID corresponding to its assigned bucket. The
histogram result is then a reduction over these set bits, which is computed with a single population
count (__popc) instruction.

Form > 32, there will still be dlog(m)e rounds of ballots. However, each thread will need dm/32e
32-bit registers to keep binary bitvectors (for multiple histo_bmp registers per thread). Each of
those registers is dedicated to the same lane IDs within that warp, but one for buckets 0–31, the
second for buckets 32–63, and so forth.

5.5.2 Warp-level Local O�sets. Local o�set computations follow a similar structure to histograms
(Algorithm 3). In local o�set computations, however, each thread is only interested in keeping
track of ballot results that match its item’s observed bucket ID, rather than the bucket ID to which
it has been assigned. Thus we compute a bitmap that corresponds to threads whose items share our
same bucket, mask away all threads with higher lane IDs, and use the population count instruction
to compute the local o�set.

For m > 32, we can use the same algorithm (Algorithm 3). The reason for this, and the main
di�erence with our histogram computation, is that regardless of the number of buckets, there are
always a �xed number of threads within a warp. So, we still need to perform dlogme ballots but
our computations are the same as before, to look for those that share the same bucket ID as ours
(only 32 other potential threads). This is unlike our histogram computations (Algorithm 2), that we
needed to keep track of dm/32e di�erent buckets because there were more buckets than existing
threads within a warp.

Histogram and local o�set computations are shown in two separate procedures (Alg. 2 and 3),
but since they share many common operations they can be merged into a single procedure if
necessary (by sharing the same ballot results). For example, in our implementations, we only
require histogram computation in the pre-scan stage, but we need both a histogram and local o�sets
in the post-scan stage.

ALGORITHM 3: Warp-level local o�set computation
Function warp_o�set(bucket_id[0:31])

Input: bucket_id[0:31] // a warp-wide array of bucket IDs
Output: local_o�set[0:31] // for each element, number of preceding elements within the same bucket
for each thread i = 0:31 parallel warp do

o�set_bmp[i] = 0xFFFFFFFF for (int k = 0; k < ceil(log2(m)); k++) do
temp_bu�er = __ballot((bucket_id[i] » k) & 0x01);
if ((i » k) & 0x01) then o�set_bmp[i] &= temp_bu�er;
else o�set_bmp[i] &= ∼ temp_bu�er;

end
local_o�set[i] = __popc(o�set_bmp[i]&(0xFFFFFFFF»(31-i))) - 1; // counting number of preceding set
bits

end
return local_o�set[0:31];

5.5.3 Block-level Histogram. For our Block-level MS, we perform the identical computation
as Direct MS and Warp-level MS, but over a block rather than a warp. If we chose explicit local
computations (described in Section 4) to compute histograms and local o�sets, the binary matrix H̄
would be large, and we would have to reduce it over rows (for histograms) and scan it over rows (for
local o�sets). Because of this complexity, and because our warp-level histogram computation is quite

ACM Transactions on Parallel Computing, Vol. 4, No. 1, Article 2. Publication date: August 2017.



GPU Multisplit: an extended study of a parallel algorithm 2:21

e�cient, we pursue the second option: the hierarchical approach. Each warp reads consecutive
windows of keys and computes and aggregates their histograms. Results are then stored into
consecutive parts of shared memory such that all results for the �rst bucket (B0) are next to each
other: results from the �rst warp followed by results from the second warp, up to the last warp.
Then, the same happens for the second bucket (B1) and so forth until the last bucket Bm−1. Now our
required computation is a segmented (per-bucket) reduction over m segments of Nwarp histogram
results.

In our implementation, we choose to always use a power-of-two number of warps per block. As
a result, after writing these intermediate warp-wide histograms into shared memory and syncing
all threads, we can make each warp read a consecutive segment of 32 elements that will include
32/Nwarp segments (buckets). Then, segmented reduction can be performed with exactly logNwarp
rounds of __shfl_xor().7 This method is used in our BMS’s pre-scan stage, where each segment’s
result (which is now a tile’s histogram) is written into global memory (a column of H). The process
is then continued for the next tile in the same thread-block.

5.5.4 Block-level Local O�sets. Our block-wide local o�set computation is similar to our warp-
level local o�sets with some additional o�set computations. First, for each warp within a thread-
block, we use both Alg. 2 and Alg. 3 to compute histogram and local o�sets per window of input
keys. By using the same principle showed in our hierarchical computations in equation 3, we use
these intermediate results to compute block-wide local o�sets (the tile’s local o�set in BMS). To
compute the local o�set of each element within its own bucket, we require three components:

(1) local o�sets for each window (same tile, same bucket, same window)
(2) total number of elements processed by the same warp, same bucket, but from previous

windows
(3) total number of elements in the same tile, same bucket, but from previous warps (each with

multiple windows)

To illustrate, suppose, hj, (x,y ) shows the histogram results of bucket Bj for warp x and window
y. Then for a key ui which is read by warp X in its window Y , we have:

local o�set(ui ) = ���
{
ur ∈ (warp X ,window Y ) : (ur ∈ Bj ) ∧ (r < i )

}���

+

Y−1∑
y=0

hj, (X ,y ) +

X−1∑
x=0

Nwindow−1∑
y=0

hj, (x,y ) . (5)

The �rst term (item) is exactly the outcome of Alg. 3, computed per window of input keys. By
having all histogram results per window, each warp can locally compute the second term. However,
each thread only has access to the counts corresponding to its in-charge bucket (equal to its lane ID).
By using a single shu�e instruction, each thread can ask for this value from a thread that has the
result already computed (within the same warp). For computing the third term, we replicate what
we did in Section 5.5.3. Histogram results (aggregated results for all windows per warp) are stored
into consecutive segments of shared memory (total of 32/Nwarp segments). Then, we perform a
segmented scan by using log(Nwarp) rounds of __shfl_up() (instead of __shfl_xor). All results
are then stored back into shared memory, so that all threads can access appropriate values that
they need (to compute equation 5) based on their warp ID. As a result, we have computed the local
o�set of each key within each thread-block.

7This is a simple modi�cation of a warp-wide reduction example given in the CUDA Programming guide [27, Chapter B14].

ACM Transactions on Parallel Computing, Vol. 4, No. 1, Article 2. Publication date: August 2017.



2:22 Saman Ashkiani, Andrew Davidson, Ulrich Meyer, and John D. Owens

Initial key distribution

Warp level reordering

Block level reordering

Multisplit result
0 32 64 96 128 160 192 224 256

Buckets
0
1

D
ir

ec
t

M
S

W
a
rp

le
ve

l
M

S

B
lo

ck
le

v
el

M
S

(a) Key distribution with 2 buckets

Initial key distribution

Warp level reordering

Block level reordering

Multisplit result
0 32 64 96 128 160 192 224 256

Buckets
0
1
2
3
4
5
6
7D

ir
ec

t
M

S

W
a
rp

le
ve

l
M

S

B
lo

ck
le

v
el

M
S

(b) Key distribution with 8 buckets

Fig. 5. Key distributions for di�erent multisplit methods and di�erent number of buckets. Key elements are
initially uniformly distributed among di�erent buckets. This window shows an input key vector of length
256; each warp is 32 threads wide and each block has 128 threads.

5.6 Reordering for be�er locality
As described in Section 4, one of the main bottlenecks in a permutation like multisplit is the random
scatter in its �nal data movement. Figure 5 shows an example of such a case. As we suggested
previously, we can improve scatter performance by reordering elements locally in each subproblem
such that in the �nal scatter, we get better coalescing behavior (i.e., consecutive elements are
written to consecutive locations in global memory).

However, while a higher achieved write memory bandwidth will improve our runtime, it comes
at the cost of more local work to reorder elements. Warp-level reordering requires the fewest extra
computations, but it may not be able to give us enough locality as the number of buckets increases
(Fig. 5). We can achieve better locality, again at the cost of more computation, by reordering across
warps within a block.

5.6.1 Warp-level Reordering. WMS extends DMS by reordering each tile (a group of consecutive
windows in WMS) before the �nal write for better memory coalescing behavior. Our �rst question
was whether we prefer to perform the reordering in our pre-scan stage or our post-scan stage. We
know that in order to compute the new index for each element in a tile, we need to know about its
histogram and we need to perform a local (warp-level) exclusive scan over the results. We have
already computed the warp level histogram in the pre-scan stage, but we do not have it in the
post-scan stage and thus would either have to reload it or recompute it.

However, if we reorder key-value pairs in the pre-scan stage, we must perform two coalesced
global reads (reading key-value pairs) and two coalesced global writes (storing the reordered key-
value pairs before our global operation) per thread and for each key-value pair. Recall that in DMS,
we only required one global read (just the key) per thread and per key in its pre-scan stage.

In the end, the potential cost of the additional global reads was signi�cantly more expensive
than the much smaller cost of recomputing our e�cient warp-level histograms. As a result, we
reorder in the post-scan stage and require fewer global memory accesses overall.

The main di�erence between DMS and WMS is in post-scan, where we compute both warp-level
histogram and local o�sets (Algorithm 2 and 3). As we described before, in WMS each subproblem
is divided into several tiles. Each tile is assigned to a warp and is processed in a consecutive number
of windows of length 32 each. Each warp, however, only performs reordering for all elements
within a tile (not among all tiles). This decision is mostly because of limited available shared
memory per block.
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Algorithms 2 and 3 provide histogram and local o�sets per window of read data. So, in order to
perform warp-level reordering (performing a local multisplit within a tile), we need the following
items to be computed for each key-value pair to be able to compute their new positions in shared
memory:

(1) local o�sets for each window (same tile, same bucket, same window)
(2) total number of elements processed by the same warp (same tile), from the same bucket,

but from previous windows
(3) total number of elements in the same tile, but from previous buckets

The �rst item is exactly the warp-level local o�set computed in Section 5.5.2. The second item can
be computed as follows: each thread within a warp directly computes all histogram results for all
its windows. So, it can locally compute an exclusive scan of these results. However, each thread
only has access to the counts per window of the bucket for which it is in charge (i.e., the bucket
equal to its lane ID). As a result, it is enough for each thread to ask for the appropriate value of (2)
by asking the thread who owns it (via a single shu�e instruction).

For the third item, we do the following: each thread within a warp has already computed the total
number of elements per window (for speci�c buckets). So, it can easily add them together to form
the histogram for all the windows (tile histogram). All that remains is to perform another exclusive
scan among these values such that each thread has the total number of items from previous buckets
within the same tile. This result too can be provided to threads by using a single shu�e instruction.
We can now perform reordering for key-value pairs into shared memory.

After performing the warp-level reordering, we need to write back results into global memory
and into their �nal positions. To do so, all threads within a warp once again read key-value pairs
from shared memory (it will be in Nwindow coalesced reads). Since items are reordered, previous
threads are not necessarily reading the same items as before and hence they should identify their
buckets once again. Since elements are already reordered (consecutive elements belong to the same
bucket), the new local o�set among all other keys within the same bucket and same tile can be
recomputed in a much easier way: each item’s index (within shared memory) minus the o�set
computed in step (3) of reordering (which can be accessed by a single shu�e instruction). Finally
we can add the computed local tile-o�sets to the global o�set o�sets computed by the scan-stage,
and perform �nal data movements in a (more likely) coalesced way.

5.6.2 Block-level Reordering. The bene�t from warp-level reordering is rather modest, particu-
larly as the number of buckets grows, because we only see a small number of elements per warp (a
WMS’s tile) that belong to the same bucket. For potentially larger gains in coalescing, our BMS
reorders entire blocks (larger tiles by a factor of Nwarp). That being said, an important advantage
of our WMS is that almost everything can be computed within a warp, and since warps perform
in lockstep, there will not be any need for further synchronizations among di�erent warps. In
contrast, any coordination among warps within a thread-block requires proper synchronization.

As we mentioned before, each subproblem in BMS is assigned to a thread-block and is divided
into several tiles. Each tile is assigned to multiple warps within a block. Each warp divides its
share into multiple consecutive windows of 32 elements each. Final positions can be computed in a
hierarchical approach with 5 levels of localization, as described in equation 3.

In BMS, although each block can process multiple consecutive tiles, we only perform reordering
per tile (mostly because of limited available shared memory per block). Reordering is equivalent to
performing local multisplit over each tile. We can summarize the required computations for this
reordering with the following two items:

(1) block-level local o�sets
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(2) total number of keys in the same tile, from previous buckets

The �rst item can be computed as described in Section 5.5.4. During the above computation, at
some point we stored results from a segmented exclusive scan into shared memory. Since our
shu�e-based segmented scan is initially an inclusive scan, each thread has to subtract its initial
bucket count from it to make it an exclusive scan. So, during that computation, with minimal extra
e�ort, we could also store results for the sum of all elements within each segment (i.e., the total
number of elements within each bucket in that tile) into another location in shared memory as well
(for a total ofm elements). We refer to this result as our tile histogram. Now, here each warp can
reload the tile histogram from shared memory and perform a warp-wide exclusive scan operation
on it. In order to avoid extra synchronizations, every warp performs this step independently (as
opposed to the option that a single warp computes it and puts it into shared memory, thus making
it available for all other warps). Thus, each thread can easily ask the required value for item (2) by
using a single shu�e instruction to fetch the value from the thread that owns that bucket’s result.

After all threads within a block �nish storing reordered key-value pairs into shared memory
(for a single tile), we perform the �nal data movements. Threads read the reordered tile (di�erent
key-value pairs than before), identify their buckets, and compute the �nal positions based on the
following items:

(i) The new block-level local o�set
(ii) total number of elements from previous subproblems (the whole device) and from previous

buckets

Since elements are now already reordered, consecutive elements belong to the same bucket. As a
result, the �rst item is equivalent to the index of that element (within shared memory) minus the
starting index for that speci�c bucket (which is exactly item (2) in reordering). The second item is
also already computed and available from our scan stage. So, threads can proceed to perform the
�nal data movement.

5.7 More buckets than the warp width
Warp-level histogram and local o�set computation. Throughout the previous discussion, our

primary way of computing a histogram in each warp (which processes a group of windows one by
one) is to make each thread responsible to count the total number of elements with the bucket ID
equal to its lane ID. Since the current generation of GPUs has Nthread = 32 threads per warp, if the
number of buckets is larger than the warp width, we must put each thread in charge of multiple
buckets (each thread is in charge of dm/32e buckets as described in Section 5.5.1). The total number
of ballots required for our warp-level histogram procedure scales logarithmically (dlogme). Local
o�set computations are also as before (with dlogme ballots).

Block-level histogram and local o�sets computations. If m > 32, besides the changes described
above, to perform our segmented scan and reductions (Section 5.5.3), each thread should participate
in the computations required by dm/32e segments. Previously, form > 32 buckets we used CUB’s
block-wide scan operation [3]. However, although CUB is a very e�cient and high-performance
algorithm in performing scan, it uses a lot of registers to achieve its goal. As a result, we prefer a
more register-friendly approach to these block-level operations, and hence implemented our own
segmented scan and reductions by simply iterating over multiple segments, processing each as
described in Section 5.5.3 and Section 5.5.4.
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5.8 Privatization
Traditionally, multisplit [17] (as well as histogram and radix sort [5, 21] with some similarities) were
implemented with a thread-level approach with thread-level memory privatization: each thread
was responsible for a (possibly contiguous) portion of input data. Intermediate results (such as local
histograms, local o�sets, etc.) were computed and stored in parts of a memory (either in register or
shared memory) exclusively dedicated to that thread. Privatization eliminates contention among
parallel threads at the expense of register/shared memory usage (valuable resources). Memory
accesses are also more complicated since the end goal is to have a sequence of memory units per
thread (commonly known as vectorized access), as opposed to natural coalesced accesses where
consecutive memory units are accessed by consecutive threads. That being said, this situation can
be remedied by careful pipelining and usage of shared memory (initially coalescing reads from
global memory, writing the results into shared memory, followed by vectorized reads from shared
memory).

In contrast, in this work, we advocate a warp-level strategy that assigns di�erent warps to
consecutive segments of the input elements and stores intermediate results in portions of memory
(distributed across all registers of a warp, or in shared memory) that are exclusively assigned
to that particular warp [3]. An immediate advantage of a warp-level strategy is a reduction in
shared memory requirements per thread-block (by a factor of warp-width). Another advantage is
that there is no more need for vectorized memory accesses, relieving further pressure on shared
memory usage. The chief disadvantage is the need for warp-wide intrinsics for our computations.
These intrinsics may be less capable or deliver less performance. On recent NVIDIA GPUs, in
general, using warp-wide intrinsics are faster than regular shared memory accesses but slower than
register-level accesses. A more detailed comparison is not possible since it would heavily depend
on the speci�c task at hand. However, e�cient warp-wide intrinsics open up new possibilities for
warp-wide computations as fundamental building blocks, allowing algorithm designers to consider
using both thread and warp granularities when constructing and tuning their algorithms.

6 PERFORMANCE EVALUATION
In this section we evaluate our multisplit methods and analyze their performance. First, we discuss
a few characteristics in our simulations:

Simulation Framework. All experiments are run on a NVIDIA K40c with the Kepler architecture,
and a NVIDIA GeForce GTX 1080 with the Pascal architecture (Table 2). All programs are compiled
with NVIDIA’s nvcc compiler (version 8.0.44). The authors have implemented all codes except for
device-wide scan operations and radix sort, which are from CUB (version 1.6.4). All experiments
are run over 50 independent trials. Since the main focus of this paper is on multisplit as a GPU
primitive within the context of a larger GPU application, we assume that all required data is already
in the GPU’s memory and hence no transfer time is included.

Some server NVIDIA GPUs (such as Tesla K40c) provide an error correcting code (ECC) feature
to decrease occurrence of unpredictable memory errors (mostly due to physical noise perturbations
within the device in long-running applications). ECCs are by default enabled in these devices,
which means that hardware dedicates a portion of its bandwidth to extra parity bits to make sure all
memory transfers are handled correctly (with more probability). Some developers prefer to disable
ECC to get more bandwidth from these devices. In this work, in order to provide a more general
discussion, we opt to consider three main hardware choices: 1) Tesla K40c with ECC enabled
(default), 2) Tesla K40c with ECC disabled, and 3) GeForce GTX 1080 (no ECC option).
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NVIDIA GPU Tesla K40c GeForce GTX 1080

Architecture Kepler Pascal
Compute capability 3.5 6.1
Number of SMs 15 20
Global Memory size 12 GB 8 GB
Global memory bandwidth 288 GB/s 320 GB/s
Shared memory per SM 48 KB 96 KB

Table 2. Hardware characteristics of the NVIDIA GPUs that we used in this paper.

Bucket identi�cation. The choice of bucket identi�cation directly impacts performance results of
any multisplit method, including ours. We support user-de�ned bucket identi�ers. These can be as
simple as unary functions, or complicated functors with arbitrary local arguments. For example,
one could utilize a functor which determines whether a key is prime or not. Our implementation is
simple enough to let users easily change the bucket identi�ers as they please.

In this section, we assume a simple user-de�ned bucket identi�er as follows: buckets are assumed
to be of equal width ∆ and to partition the whole key domain (delta-buckets). For example, for an
arbitrary key u, bucket IDs can be computed by a single integer division (i.e., f (u) = bu/∆c). Later,
in Section 7.1 we will consider a simpler bucket identi�er (identity buckets): where keys are equal
to their bucket IDs (i.e., f (u) = u). This is particularly useful when we want to use our multisplit
algorithm to implement a radix sort. In Section 7.3 we use more complicated identi�ers as follows:
given a set of arbitrary splitters s0 < s1 < · · · < sm−1, for each key s0 < u < sm−1, �nding those
splitters (i.e., bucket Bj ) such that sj ≤ u < sj+1. This type of identi�cation requires performing a
binary search over all splitters per input key.

Key distribution. Throughout this paper we assume uniform distribution of keys among buckets
(except in Section 6.4 where we consider other distributions), meaning that keys are randomly
generated such that there are, on average, equal number of elements within each bucket. For
delta-buckets and identity buckets (or any other linear bucket identi�er), this criteria results in
uniform distribution of keys in the key domain as well. For more complicated nonlinear bucket
identi�ers this does not generally hold true.

Parameters. In all our methods and for every GPU architecture we have used either: 1) four
warps per block (128 threads per block), where each warp processes 7 consecutive windows, or
2) eight warps per block where each warp processes 4 consecutive windows. Our key-only BMS
for up to m ≤ 32 uses the former, while every other case uses the latter (including WMS and BMS
for both key-only and key-value pairs). These options were chosen because they gave us the best
performance experimentally.

This is a trade o� between easier inter-warp computations (fewer warps) versus easier intra-
warp communications (fewer windows). By having fewer warps per block, all our inter-warp
computations in BMS (segmented scans and reductions in Section 5.5.3 and 5.5.4) are directly im-
proved, because each segment will be smaller-sized and hence fewer rounds of shu�es are required
(logNwarp rounds). On the other hand, we use subword optimizations to pack the intermediate
results of 4 processed windows into a single 32-bit integer (a byte per bucket per window). This
lets us communicate among threads within a warp by just using a single shu�e per 4 windows.
Thus, by having fewer warps per block, if we want to load enough input keys to properly hide
memory access latency, we would need more than 4 windows to be read by each warp (here we
used 7), which doubles the total number of shu�es that we use.
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It is a common practice for GPU libraries, such as in CUB’s radix sort, to choose their internal
parameters at runtime based on the GPU’s compute capability and architecture. These parameters
may include the number of threads per block and the number of consecutive elements to be
processed by a single thread. The optimal parameters may substantially di�er on one architecture
compared to the other. In our �nal API, we hid these internal parameters from the user; however,
our experiments on the two GPUs we used (Tesla K40c with sm_35 and GeForce GTX 1080 with
sm_61) exhibited little di�erence between the optimal set of parameters for the best performance
on each architecture.

In our algorithms, we always use as many threads per warp as allowed on NVIDIA hardware
(Nthread = 32). Based on our reliance on warp-wide ballots and shu�es to perform our local
computations (as discussed in Section 5.5), using smaller-sized logical warps would mean having
smaller sized subproblems (reducing potential local work and increasing global computations),
which is unfavorable. On the other hand, providing a larger-sized warp in future hardware with
e�cient ballots and shu�es (e.g., performing ballot over 64 threads and storing results as a 64-bit
bitvector) would directly improve all our algorithms.

6.1 Common approaches and performance references
Radix sort. As we described in Section 3, not every multisplit problem can be solved by directly

sorting input keys (or key-values). However, in certain scenarios where keys that belong to a
lower indexed bucket are themselves smaller than keys belonging to larger indexed buckets (e.g.,
in delta-buckets), direct sorting results in a non-stable multisplit solution. In this work, as a point
of reference, we compare our performance to a full sort (over 32-bit keys or key-values). Currently,
the fastest GPU sort is provided by CUB’s radix sort (Table 3). With a uniform distribution of keys,
radix sort’s performance is independent of the number of buckets; instead, it only depends on the
number of signi�cant bits.

Reduced-bit sort. Reduced-bit sort (RB-sort) was introduced in Section 3 as the most competitive
conventional-GPU-sort-based multisplit method. In this section, we will compare all our methods
against RB-sort. We have implemented our own kernels to perform labeling (generating an auxiliary
array of bucket IDs) and possible packing/unpacking (for key-value multisplit). For its sorting
stage, we have used CUB’s radix sort.

Scan-based splits. Iterative scan-based split can be used on any number of buckets. For this
method, we ideally have a completely balanced distribution of keys, which means in each round
we run twice the number of splits as the previous round over half-sized subproblems. So, we can
assume that in the best-case scenario, recursive (or iterative) scan-based split’s average running
time is lower-bounded by log(m) (orm) times the runtime of a single scan-based split method. This
ideal lower bound is not competitive for any of our scenarios, and thus we have not implemented
this method for more than two buckets.

6.2 Performance versus number of buckets: m ≤ 256
In this section we analyze our performance as a function of the number of buckets (m ≤ 256).
Our methods di�er in three principal ways: 1) how expensive are our local computations, 2) how
expensive are our memory accesses, and 3) how much locality can be extracted by reordering.

In general, our WMS method is faster for a small number of buckets and BMS is faster for a
large number of buckets. Both are generally faster than RB-sort. There is a crossover between
WMS and BMS (a number of buckets such that BMS becomes superior for all larger numbers of
buckets) that may di�er based on 1) whether multisplit is key-only or key-value, and 2) the GPU
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Tesla K40c (ECC on) Tesla K40c (ECC o�) GeForce GTX 1080

Method time rate time rate time rate

Radix sort (key-only) 25.99 ms 1.29 Gkeys/s 19.41 ms 1.73 Gkeys/s 9.84 ms 3.40 Gkeys/s
Radix sort (key-value) 43.70 ms 0.77 Gpairs/s 28.60 ms 1.17 Gpairs/s 17.59 ms 1.90 Gpairs/s

Scan-based split (key-only) 5.55 ms 6.05 Gkeys/s 4.91 ms 6.84 Gkeys/s 3.98 ms 8.44 Gkeys/s
Scan-based split (key-value) 6.96 ms 4.82 Gpairs/s 5.97 ms 5.62 Gpairs/s 5.13 ms 6.55 Gpairs/s

Table 3. On the top: CUB’s radix sort. Average running time (ms) and processing rate (billion elements
per second), over 225 randomly generated 32-bit inputs (keys or key-value pairs). On the bo�om: our scan-
based split. Average running time (ms) and processing rate (billion elements per second), over 225 randomly
generated 32-bit inputs uniformly distributed into two buckets.

architecture and its available hardware resources. Key-value scenarios require more expensive data
movements and hence bene�t more from reordering (for better coalesced accesses). That being said,
BMS requires more computational e�ort for its reordering (because of multiple synchronizations
for communications among warps), but it is more e�ective after reordering (because it reorders
larger sized subproblems compared to WMS). As a result, on each device, we expect to see this
crossover with a smaller number of buckets for key-value multisplit vs. key-only.

6.2.1 Average running time. Table 4 shows the average running time of di�erent stages in each
of our three approaches, and the reduced bit sort (RB-sort) method. All of our proposed methods
have the same basic computational core, warp-wide local histogram, and local o�set computations.
Our methods di�er in performance as the number of buckets increases for three major reasons
(Table 4):
Reordering process Reordering keys (key-values) requires extra computation and shared memory

accesses. Reordering is always more expensive for BMS as it also requires inter-warp
communications. These negative costs mostly depend on the number of buckets m, the
number of warps per block Nwarp, and the number of threads per warp Nthread.

Increased locality from reordering Since block level subproblems have more elements than
warp level subproblems, BMS is always superior to WMS in terms of locality. On average
and for both methods, our achieved gain from locality decreases by 1

m asm increases.
Global operations As described before, by increasing m, the height of the matrix H increases.

However, since BMS’s subproblem sizes are relatively larger (by a factor of Nwarp), BMS
requires fewer global operations compared to DMS and WMS (because the smaller width
of its H). As a result, scan operations for both the DMS and WMS get signi�cantly more
expensive, compared to other stages, asm increases (asm doubles, the cost of scan for all
methods also doubles).

Figure 6 shows the average running time of our multisplit algorithms versus the number of
buckets (m). For smallm, BMS has the best locality (at the cost of substantial local work), but WMS
achieves fairly good locality coupled with simple local computation; it is the fastest choice for small
m (≤ 32 [key-only, Tesla K40c], ≤ 16 [key-value, Tesla K40c], and ≤ 2 [key-only, GeForce GTX
1080]). For largerm, the superior memory locality of BMS coupled with a minimized global scan
cost makes it the best method overall.

Our multisplit methods are also almost always superior to the RB-sort method (except for the
m ≥ 128 key-only case on Tesla K40c with ECC o�). This is partly because of the extra overheads
that we introduced for bucket identi�cation and creating the label vector, and packing/unpacking
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Tesla K40c (ECC on) GeForce GTX 1080

Key-only Key-value Key-only Key-value

Number of buckets (m) Number of buckets (m)

Algorithm Stage 2 8 32 2 8 32 2 8 32 2 8 32

DMS

Pre-scan 1.40 1.53 3.98 1.40 1.53 3.98 0.61 0.72 1.80 0.61 0.72 1.80
Scan 0.13 0.39 1.47 0.13 0.39 1.47 0.10 0.31 1.16 0.09 0.31 1.16
Post-scan 2.29 2.94 4.85 3.34 4.05 11.84 1.19 2.02 3.10 2.29 3.71 6.60
Total 3.82 4.86 10.29 4.87 5.97 17.28 1.90 3.05 6.06 3.00 4.74 9.56

WMS

Pre-scan 0.79 0.93 1.38 0.89 0.97 1.39 0.58 0.60 0.93 0.59 0.62 0.93
Scan 0.05 0.08 0.40 0.06 0.13 0.39 0.04 0.06 0.31 0.04 0.10 0.31
Post-scan 1.85 2.38 2.66 3.09 4.06 5.53 1.15 1.20 1.51 2.32 2.38 2.94
Total 2.69 3.39 4.43 4.04 5.16 7.31 1.77 1.87 2.75 2.95 3.11 4.17

BMS

Pre-scan 0.88 0.84 1.11 0.83 0.93 1.35 0.57 0.58 0.62 0.57 0.58 0.62
Scan 0.04 0.05 0.08 0.04 0.05 0.08 0.03 0.04 0.06 0.03 0.04 0.06
Post-scan 3.04 3.28 3.97 3.78 4.37 5.08 1.22 1.27 1.33 2.27 2.29 2.36
Total 3.96 4.17 5.15 4.65 5.35 6.52 1.82 1.89 2.02 2.88 2.90 3.04

RB-sort

Labeling 1.69 1.67 1.67 1.69 1.67 1.67 1.16 1.15 1.14 1.13 1.15 1.13
Sorting 4.39 4.87 6.98 5.81 7.17 10.58 2.97 3.00 3.11 4.11 4.16 4.38
(un)Packing – – – 5.66 5.67 5.67 – – – 4.51 4.50 4.52
Total 6.08 6.53 8.65 13.13 14.51 17.92 4.13 4.15 4.24 9.75 9.81 10.04

Table 4. Average running time (ms) for di�erent stages of our multisplit approaches and reduced-bit sort,
with n = 225 and a varying number of buckets.

stages for key-value multisplit. Even if we ignore these overheads, since RB-sort performs its
operations and permutations over the label vector as well as original key (key-value) elements,
its data movements are more expensive compared to all our multisplit methods that instead only
process and permute original key (key-value) elements.8

For our user-de�ned delta-buckets and with a uniform distribution of keys among all 32-bit
integers, by comparing Table 3 and Table 4 it becomes clear that our multisplit method outperforms
radix sort by a signi�cant margin. Figure 7 shows our achieved speedup against the regular 32-bit
radix sort performance (Table 3). We can achieve up to 9.7x (and 10.8x) for key-only (and key-value)
multisplits against radix sort.

6.2.2 Processing rate, and multisplit speed of light. It is instructive to compare any implementa-
tion to its “speed of light”: a processing rate that could not be exceeded. For multisplit’s speed of
light, we consider that computations take no time and all memory accesses are fully coalesced. Our
parallel model requires one single global read of all elements before our global scan operation to
compute histograms. We assume the global scan operation is free. Then after the scan operation, we
must read all keys (or key-value pairs) and then store them into their �nal positions. For multisplit
on keys, we thus require 3 global memory accesses per key; 5 for key-value pairs. Our Tesla K40c
has a peak memory bandwidth of 288 GB/s, so the speed of light for keys, given the many favorable
assumptions we have made for it, is 24 Gkeys/s, and for key-value pairs is 14.4 G pairs/s. Similarly,
our GTX 1080 has 320 GB/s memory bandwidth and similar computations give us a speed of light
of 26.6 G keys/s for key-only case and 16 Gpairs/s for key-value pairs.

Table 5 shows our processing rates for 32M keys and key-value pairs using delta-buckets and
with keys uniformly distributed among all buckets. WMS has the highest peak throughput (on
8In our comparisons against our own multisplit methods, RB-sort will be the best sort-based multisplit method as long as
our bucket identi�er cannot be interpreted as a selection of some consecutive bits in its key’s binary representation (i.e.,
f (u ) = (u � k )&(2r − 1) for some k and r ). Otherwise, these cases can be handled directly by a radix sort over a selection
of bits (from the k -th bit until the (k + r )-th bit) and do not require the extra overhead that we incur in RB-sort (i.e., sorting
certain bits from input keys is equivalent to a stable multisplit solution). We will discuss this more thoroughly in Section 7.1.
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Fig. 6. Average running time (ms) versus number of buckets for all multisplit methods: (a,b,c) key-only, 32 M
elements (d,e,f) key-value, 32 M elements.

2 buckets): 12.48 Gkeys/s on Tesla K40c (ECC on), 14.15 Gkeys/s on Tesla K40c (ECC o�), and
18.93 Gkeys/s on GeForce GTX 1080. We achieve more than half the speed of light performance
(60% on Tesla K40c and 71% on GeForce GTX 1080) with 2 buckets. As the number of buckets
increases, it is increasingly more costly to sweep all input keys to compute �nal permutations for
each element. We neglected this important part in our speed of light estimation. With 32 buckets,
we reach 7.57 G keys/s on Tesla K40c and 16.64 G keys/s on GeForce GTX 1080. While this is less
than the 2-bucket case, it is still a signi�cant fraction of our speed of light estimation (32% and 63%
respectively).

The main obstacles in achieving the speed of light performance are 1) non-coalesced memory
writes and 2) the non-negligible cost that we have to pay to sweep through all elements and compute
permutations. The more registers and shared memory that we have (fast local storage as opposed
to the global memory), the easier it is to break the whole problem into larger subproblems and
localize required computations as much as possible. This is particularly clear from our results
on the GeForce GTX 1080 compared to the Tesla K40c, where our performance improvement is
proportionally more than just the GTX 1080’s global memory bandwidth improvement (presumably
because of more available shared memory per SM).
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Fig. 7. Achieved speedup against regular radix sort versus number of buckets for all multisplit methods: (a,b,c)
key-only, (d,e,f) key-value. Both scenarios are over 32 M elements random elements uniformly distributed
among buckets, and delta-bucket identifiers.

6.2.3 Performance on di�erent GPU microarchitectures. In our design we have not used any
(micro)architecture-dependent optimizations and hence we do not expect radically di�erent be-
havior on di�erent GPUs, other than possible speedup di�erences based on the device’s capability.
Here, we brie�y discuss some of the issues related to hardware di�erences that we observed in our
experiments.

Tesla K40c. It is not yet fully disclosed whether disabling ECC (which is a hardware feature and
requires reboot after modi�cations) has any direct impact besides available memory bandwidth
(such as available registers, etc.). For a very small number of buckets, our local computations are
relatively cheap and hence having more available bandwidth (ECC o� compared to ECC on) results
in better overall performance (Table 5). The performance gap, however, decreases as the number of
buckets increases. This is mainly because of computational bounds due to the increase in ballot,
shu�e, and numerical integer operations asm grows.

CUB’s radix sort greatly improves on Tesla K40c when ECC is disabled (Table 3), and because of
it, RB-sort improves accordingly. CUB has particular architecture-based �ne-grained optimizations,
and we suspect it is originally optimized for when ECC is disabled to use all hardware resources to
exploit all available bandwidth as much as possible. We will discuss CUB further in Section 7.1.
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Throughput (speedup against radix-sort)

Number of buckets (m)

Method 2 4 8 16 32 64 128 256

K4
0c

(E
CC

on
)

ke
y-

on
ly DMS 8.79 (6.8 x) 8.36 (6.5 x) 6.91 (5.4 x) 6.90 (5.4 x) 3.26 (2.5 x) – – –

WMS 12.48 (9.7 x) 9.79 (7.6 x) 9.90 (7.7 x) 8.71 (6.8 x) 7.57 (5.9 x) – – –
BMS 8.47 (6.6 x) 8.39 (6.5 x) 8.05 (6.2 x) 7.72 (6.0 x) 6.51 (5.0 x) 5.14 (4.0 x) 3.61 (2.8 x) 2.50 (1.9 x)
RB-sort 5.52 (4.3 x) 5.49 (4.3 x) 5.14 (4.0 x) 4.44 (3.4 x) 3.88 (3.0 x) 2.80 (2.2 x) 2.70 (2.1 x) 2.50 (1.9 x)

ke
y-

va
lu

e DMS 6.90 (9.0 x) 6.31 (8.2 x) 5.62 (7.3 x) 5.62 (7.3 x) 1.94 (2.5 x) – – –
WMS 8.31 (10.8 x) 8.01 (10.4 x) 6.51 (8.5 x) 5.90 (7.7 x) 4.59 (6.0 x) – – –
BMS 7.22 (9.4 x) 6.98 (9.1 x) 6.27 (8.1 x) 5.68 (7.4 x) 5.15 (6.7 x) 4.62 (6.0 x) 3.09 (4.0 x) 1.82 (2.4 x)
RB-sort 2.56 (3.3 x) 2.47 (3.2 x) 2.31 (3.0 x) 2.01 (2.6 x) 1.87 (2.4 x) 1.47 (1.9 x) 1.41 (1.8 x) 1.29 (1.7 x)

K4
0c

(E
CC

o�
)

ke
y-

on
ly DMS 8.99 (5.2 x) 8.52 (4.9 x) 6.98 (4.0 x) 4.94 (2.9 x) 3.26 (1.9 x) – – –

WMS 14.15 (8.2 x) 11.74 (6.8 x) 11.65 (6.7 x) 8.68 (5.0 x) 7.57 (4.4 x) – – –
BMS 8.74 (5.1 x) 8.59 (5.0 x) 8.07 (4.7 x) 7.69 (4.4 x) 6.47 (3.7 x) 5.10 (2.9 x) 3.59 (2.1 x) 2.48 (1.4 x)
RB-sort 6.42 (3.7 x) 6.40 (3.7 x) 6.37 (3.7 x) 6.30 (3.6 x) 5.70 (3.3 x) 3.72 (2.2 x) 3.72 (2.1 x) 3.69 (2.1 x)

ke
y-

va
lu

e DMS 8.99 (7.7 x) 7.05 (6.0 x) 5.71 (4.9 x) 3.98 (3.4 x) 1.96 (1.7 x) – – –
WMS 9.58 (8.2 x) 8.90 (7.6 x) 7.55 (6.5 x) 6.78 (5.8 x) 4.57 (3.9 x) – – –
BMS 7.23 (6.2 x) 6.99 (6.0 x) 6.28 (5.4 x) 5.66 (4.8 x) 5.13 (4.4 x) 4.59 (3.9 x) 3.06 (2.6 x) 1.81 (1.5 x)
RB-sort 2.98 (2.6 x) 2.98 (2.5 x) 2.78 (2.4 x) 2.63 (2.2 x) 2.67 (2.3 x) 1.92 (1.6 x) 1.84 (1.6 x) 1.76 (1.5 x)

G
TX

10
80 ke
y-

on
ly DMS 17.67 (5.2 x) 14.38 (4.2 x) 11.00 (3.2 x) 7.73 (2.3 x) 5.54 (1.6 x) – – –

WMS 18.93 (5.6 x) 17.54 (5.2 x) 17.98 (5.3 x) 16.18 (4.8 x) 12.20 (3.6 x) – – –
BMS 18.42 (5.4 x) 17.84 (5.2 x) 17.79 (5.2 x) 18.01 (5.3 x) 16.64 (4.9 x) 14.14 (4.2 x) 11.43 (3.4 x) 7.05 (2.1 x)
RB-sort 8.13 (2.4 x) 8.13 (2.4 x) 8.09 (2.4 x) 8.06 (2.4 x) 7.91 (2.3 x) 7.51 (2.2 x) 6.43 (1.9 x) 4.51 (1.3 x)

ke
y-

va
lu

e DMS 11.17 (5.9 x) 9.75 (5.1 x) 7.07 (3.7 x) 4.95 (2.6 x) 3.51 (1.8 x) – – –
WMS 11.38 (6.0 x) 11.21 (5.9 x) 10.81 (5.7 x) 10.37 (5.5 x) 8.04 (4.2 x) – – –
BMS 11.67 (6.1 x) 11.62 (6.1 x) 11.57 (6.1 x) 11.40 (6.0 x) 11.04 (5.8 x) 10.64 (5.6 x) 9.78 (5.1 x) 5.85 (3.1 x)
RB-sort 3.44 (1.8 x) 3.44 (1.8 x) 3.42 (1.8 x) 3.40 (1.8 x) 3.34 (1.8 x) 3.19 (1.7 x) 2.83 (1.5 x) 2.31 (1.2 x)

Table 5. Multisplit with delta-buckets and 225 random keys uniformly distributed amongm buckets. Achieved
processing rates (throughput) are shown in Gkeys/s (or Gpairs/s for key-value pairs). In parenthesis speedup
against regular CUB’s radix-sort over input elements are shown.

RB-sort’s speedups in Fig. 7 are relatively less for when ECC is disabled compared to when it is
enabled. The reason is not because RB-sort performs worse (Table 5 shows otherwise), but rather
because CUB’s regular radix sort (that we both use in RB-sort and compare against for speedup
computations) improves when ECC is disabled (Table 3).

GeForce GTX 1080. This GPU is based on NVIDIA’s latest “Pascal” architecture. It both increases
global memory bandwidth (320 GB/s) and appears to be better at hiding memory latency caused by
non-coalesced memory accesses. The GTX 1080 also has more available shared memory per SM,
which results in more resident thread-blocks within each SM. As a result, it is much easier to fully
occupy the device, and our results (Table 5) show this.

6.3 Performance for more than 256 buckets
So far, we have only characterized problems withm ≤ 256 buckets. As we noted in Section 3.3, we
expect that as the number of buckets increases, multisplit converges to a sorting problem and we
should see the performance of our multisplits and sorting-based multisplits converge as well.

The main obstacle for e�cient implementation of our multisplits for large bucket counts is the
limited amount of shared memory available on GPUs for each thread-block. Our methods rely on
having privatized portions of shared memory withm integers per warp (total of 32m bits/warp).
As a result, asm increases, we require more shared storage, which limits the number of resident
thread-blocks per SM, which limits our ability to hide memory latency and hurts our performance.
Even if occupancy was not the main issue, with the current GPU shared memory sizes (48 KB per
SM for Tesla K40c, and 96 KB per SM to be shared by two blocks on GeForce GTX 1080), it would
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only be physically possible for us to scale our multisplit up to aboutm = 12k/Nwarp (at most 12k
buckets if we use only one warp per thread-block).

In contrast, RB-sort does not face this problem. Its labeling stage (and the packing/unpacking
stage required for key-value pairs) are independent of the number of buckets. However, the radix
sort used for RB-sort’s sorting stage is itself internally scaled by a factor of logm, which results in
an overall logarithmic dependency for RB-sort vs. the number of buckets.

Solutions for larger multisplits (m > 256). Our solution for handling more buckets is similar to
how radix sort handles the same scalability problem: iterative usage of multisplit overm′ ≤ 256
buckets. However, this is not a general solution and it may not be possible for any general bucket
identi�er. For example, for delta-buckets with 257 buckets, we can treat the �rst 2 buckets together
as one single super-bucket which makes the whole problem into 256 buckets. Then, by two rounds
of multisplit 1) on our new 256 buckets, 2) on the initial �rst 2 buckets (the super-bucket), we can
have a stable multisplit result. This approach can potentially be extended to any number of buckets,
but only if our bucket identi�er is suitable for such modi�cations. There are some hypothetical
cases for which this approach is not possible (for instance, if our bucket identi�er is a random hash
function, nearby keys do not necessarily end up in nearby buckets).

Nevertheless, if iterative usage is not possible, it is best to use RB-sort instead, as it appears to
be quite competitive for a very large number of buckets. As a comparison with regular radix sort
performance, on Tesla K40c (ECC on), RB-sort outperforms radix sort up to almost 32k keys and
16k key-value pairs. However, we reiterate that unlike RB-sort, which is always a correct solution
for multisplit problems, direct usage of radix sort is not always a possible solution.

6.4 Initial key distribution over buckets
So far we have only considered scenarios in which initial key elements were uniformly distributed
over buckets (i.e., a uniform histogram). In our implementations we have considered small sub-
problems (warp-sized for WMS and block-sized for BMS) compared to the total size of our initial
key vector. Since these subproblems are relatively small, having a non-uniform distribution of
keys means that we are more likely to see empty buckets in some of our subproblems; in prac-
tice, our methods would behave as if there were fewer buckets for those subproblems. All of our
computations (e.g., warp-level histograms) are data-independent and, given a �xed bucket count,
would have the same performance for any distribution. However, our data movement, especially
after reordering, would bene�t from having more elements within fewer buckets and none for
some others (resulting in better locality for coalesced global writes). Consequently, the uniform
distribution is the worst-case scenario for our methods.

As an example of a non-uniform distribution, consider the binomial distribution. In general
B (m − 1,p) denotes a binomial distribution over m buckets with a probability of success p. For
example, the probability that a key element belongs to bucket 0 ≤ k < m is

(
m−1
k

)
pk (1 − p)m−k−1.

This distribution forces an unbalanced histogram as opposed to the uniform distribution. Note
that by choosing p = 0.5, the expected number of keys within the kth bucket will be n

(
m−1
k

)
21−m .

For example, with n = 225 elements and m = 256 total buckets, there will be on average almost
184 empty buckets (72%). Such an extreme distribution helps us evaluate the sensitivity of our
multisplit algorithms to changes in input distribution.

Figure 8 shows the average running time versus the number of buckets for BMS and RB-sort
with binomial and uniform distributions, on our Tesla K40c (ECC o�). There are two immediate
observations here. First, as the number of buckets increases, both algorithms become more sensitive
to the input distribution of keys. This is mainly because, on average, there will be more empty
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Fig. 8. Average running time (ms) vs. number of buckets (m) for two di�erent initial key distributions: (a) a
uniform distribution and (b) the binomial distribution B (m − 1, 0.5).

buckets and our data movement will resemble situations where there are essentially much fewer
number of buckets than the actualm. Second, the sensitivity of our algorithms increases in key-
value scenarios when compared to key-only scenarios, mainly because data movement is more
expensive in the latter. As a result, any improvement in our data movement patterns (here caused
by the input distribution of keys) in a key-only multisplit will be almost doubled in a key-value
multisplit.

To get some statistical sense over how much improvement we are getting, we ran multiple
experiments with di�erent input distributions, with delta-buckets as our bucket identi�ers, and
on di�erent GPUs. Table 6 summarizes our results with m = 256 buckets. In this table, we also
consider a milder distribution where αn of total keys are uniformly distributed among buckets and
the rest are within one random bucket (α-uniform). BMS achieves up to 1.24x faster performance
on GeForce GTX 1080 when input keys are distributed over buckets in the binomial distribution.
Similarly, RB-sort achieve up to 1.15x faster on Tesla K40c (ECC o�) with the binomial distribution.
In general, compared to our methods, RB-sort seems to be less sensitive to changes to the input
distribution.

7 MULTISPLIT, A USEFUL BUILDING BLOCK
7.1 Building a radix sort
In Section 6, we concentrated on the performance evaluation of our multisplit methods with user-
de�ned bucket identi�ers, and in particular the delta-bucket example. In this section, we focus on
identity buckets and how we can modify them to implement our own version of radix sort.

Multisplit with identity buckets. Suppose we have identity buckets, meaning that each key is
identical to its bucket ID (i.e., f (ui ) = ui = j, for 0 ≤ j < m). In this case, sorting keys (at least the
�rst dlogme bits of keys) turns out to be equivalent to the stable multisplit problem. In this case,
there is no need for the extra overheads inherent in RB-sort; instead, a direct radix sort can be a
competitive alternate solution.
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Type Method Distribution Tesla K40c (ECC on) Tesla K40c (ECC o�) GeForce GTX 1080
Ke

y-
on

ly BMS
Uniform 2.50 2.48 7.05
0.25-uniform 2.64 1.06x 2.61 1.05x 7.36 1.05x
Binomial 2.89 1.15x 2.87 1.16x 7.89 1.11x

RB-sort
Uniform 2.50 3.69 4.51
0.25-uniform 2.69 1.08x 3.71 1.00x 4.56 1.01x
Binomial 2.80 1.12x 3.72 1.01x 4.95 1.10x

Ke
y-

va
lu

e BMS
Uniform 1.82 1.81 5.85
0.25-uniform 1.99 1.10x 2.00 1.11x 6.71 1.15x
Binomial 2.18 1.20x 2.16 1.20x 7.28 1.24x

RB-sort
Uniform 1.29 1.77 2.31
0.25-uniform 1.45 1.13x 1.81 1.02x 2.33 1.01x
Binomial 1.48 1.15x 1.93 1.9x 2.52 1.09x

Table 6. Processing rate (billion elements per second) as well as speedup against the uniform distribution for
delta-bucket multisplit with di�erent input distributions. All cases are withm = 256 buckets.

Radix sort. In Section 3.3 we brie�y discussed the way radix sort operates. Each round of radix
sort sorts a group of bits in the input keys until all bits have been consumed. For CUB, for example,
in the Kepler architecture (e.g., Tesla K40c) each group consists of 5 consecutive bits, while for the
more recent Pascal architecture (e.g., GeForce GTX 1080), each group is 7 bits.9

Multisplit-sort. Each round of radix sort is essentially bucketing its output based on the set of
bits it considers in that round. If we de�ne our buckets appropriately, multisplit can do the same.
Suppose we have f k (u) = (u � kr )&(2r − 1), where� denotes bitwise shift to the right and & is
a bitwise AND operator. r denotes our radix size (i.e., the size of the group of bits to be considered
in each iteration). Then, with 0 ≤ k < d32/re iterations of multisplit with f k as each iteration’s
bucket identi�er, we have built our own radix sort.

High level similarities and di�erences with CUB radix sort. At a high level, multisplit-sort is similar
to CUB’s radix sort. In CUB, contiguous chunks of bits from input keys are sorted iteratively. Each
iteration includes an up-sweep where bin counts are computed, a scan operation to compute o�sets,
and a down-sweep to actually perform the stable sorting on a selected chunk of bits (similar roles
to our pre-scan, scan and post-scan stages in our multisplit). The most important di�erences are
1) shared memory privatization (CUB’s thread-level versus our warp-level), which decreases our
shared memory usage compared to CUB, and 2) our extensive usage of warp-wide intrinsics versus
CUB’s more traditional register-level computations.

7.1.1 Performance Evaluation. Our multisplit-based radix sort has competitive performance to
CUB’s radix sort. Our experiments show that, for example on the GeForce GTX 1080, our key-only
sort can be as good as 0.9x of CUB’s performance, while our key-value sort can be as good as 1.1x
faster than CUB’s.

Multisplit with identity buckets. We �rst compare our multisplit methods (WMS and BMS) with
identity buckets to CUB’s radix sort over dlogme bits. Multisplit and CUB’s performance are
roughly similar. Our multisplit methods are usually better for a small number of buckets, while
CUB’s performance is optimized around the number of bits that it uses for its internal iterations (5
bits for Kepler, 7 bits for Pascal). Table 7 shows our achieved throughput (billion elements sorted
per second) as a function of the number of bits per key.

There are several important remarks to make:
9These stats are for CUB 1.6.4.
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Throughput (speedup against CUB’s)

Number of bits in each key

Method 1 2 3 4 5 6 7 8

K4
0c

(E
CC

on
)

key-only
WMS 14.08 (1.12 x) 13.88 (1.12 x) 12.17 (0.99 x) 10.12 (0.94 x) 7.67 (1.05 x) – – –
BMS 13.84 (1.10 x) 12.94 (1.04 x) 12.10 (0.99 x) 10.88 (1.01 x) 9.45 (1.29 x) 6.89 (1.18 x) 4.55 (0.79 x) 2.69 (0.50 x)
CUB 12.56 (1x) 12.45 (1x) 12.28 (1x) 10.75 (1x) 7.33 (1x) 5.83 (1x) 5.74 (1x) 5.42 (1x)

key-value
WMS 8.62 (1.13 x) 7.94 (1.04 x) 6.58 (0.96 x) 5.37 (0.94 x) 4.56 (0.95 x) – – –
BMS 7.79 (1.02 x) 7.85 (1.03 x) 7.55 (1.10 x) 7.16 (1.25 x) 6.76 (1.41 x) 5.23 (1.60 x) 3.41 (1.09 x) 1.92 (0.67 x)
CUB 7.61 (1x) 7.60 (1x) 6.87 (1x) 5.72 (1x) 4.79 (1x) 3.27 (1x) 3.12 (1x) 2.86 (1x)

K4
0c

(E
CC

o�
)

key-only
WMS 17.57 (1.35 x) 16.47 (1.26 x) 13.36 (1.04 x) 10.18 (0.80 x) 7.80 (0.68 x) – – –
BMS 15.26 (1.17 x) 13.89 (1.06 x) 12.76 (0.99 x) 10.91 (0.85 x) 9.49 (0.82 x) 6.85 (1.06 x) 4.53 (0.70 x) 2.68 (0.42 x)
CUB 13.05 (1x) 13.06 (1x) 12.86 (1x) 12.76 (1x) 11.54 (1x) 6.50 (1x) 6.46 (1x) 6.44 (1x)

key-value
WMS 10.31 (1.13 x) 9.67 (1.07 x) 7.73 (0.86 x) 6.21 (0.70 x) 4.53 (0.59 x) – – –
BMS 9.01 (0.99 x) 9.00 (1.00 x) 8.50 (0.94 x) 7.69 (0.86 x) 6.78 (0.88 x) 5.20 (1.16 x) 3.31 (0.74 x) 1.92 (0.43 x)
CUB 9.14 (1x) 9.00 (1x) 9.00 (1x) 8.92 (1x) 7.69 (1x) 4.50 (1x) 4.46 (1x) 4.47 (1x)

G
TX

10
80 key-only

WMS 18.87 (1.15 x) 17.70 (1.07 x) 16.76 (1.03 x) 16.33 (0.96 x) 12.56 (0.71 x) – – –
BMS 19.37 (1.18 x) 19.15 (1.15 x) 18.99 (1.17 x) 18.61 (1.09 x) 17.89 (1.02 x) 16.83 (0.93 x) 13.41 (0.92 x) 8.17 (0.94 x)
CUB 16.35 (1x) 16.59 (1x) 16.24 (1x) 17.05 (1x) 17.62 (1x) 18.05 (1x) 14.50 (1x) 8.65 (1x)

key-value
WMS 11.39 (1.01 x) 11.04 (1.00 x) 10.73 (0.96 x) 10.05 (0.90 x) 8.29 (0.76 x) – – –
BMS 11.68 (1.03 x) 11.61 (1.05 x) 11.58 (1.04 x) 11.41 (1.02 x) 11.18 (1.03 x) 10.89 (1.07 x) 10.20 (1.23 x) 6.42 (1.20 x)
CUB 11.30 (1x) 11.06 (1x) 11.18 (1x) 11.14 (1x) 10.88 (1x) 10.20 (1x) 8.30 (1x) 5.34 (1x)

Table 7. Multisplit with identity buckets. 225 random keys are uniformly distributed among buckets. Achieved
throughput (Gkeys/s or Gpairs/s) are shown as well as the achieved speedup against CUB’s radix sort (over
limited number of bits).

• Our multisplit methods outperform CUB for up to 4 bits on the Tesla K40c and up to 6 bits
on the GeForce GTX 1080. We note CUB is highly optimized for speci�c bit counts: 5-bit
radixes on Kepler (Tesla K40c) and 7-bit radixes on Pascal (GeForce GTX 1080).

• By comparing our achieved throughputs with those of delta-buckets in Table 5, it becomes
clear that the choice of bucket identi�er can have an important role in the e�ciency of
our multisplit methods. In our delta-bucket computation, we used integer divisions, which
are expensive computations. For example, in our BMS, the integer division costs 0.72x,
0.70x, and 0.90x geometric mean decrease in our key-only throughput for Tesla K40c (ECC
on), Tesla K40c (ECC o�) and GeForce GTX 1080 respectively. The throughput decrease
for key-value scenarios is 0.87x, 0.82x and 0.98x respectively. The GeForce GTX 1080
is less sensitive to such computational load variations. Key-value scenarios also require
more expensive data movement so that the cost of the bucket identi�er is relatively less
important.

• On the GeForce GTX 1080, our BMS method is always superior to WMS. This GPU appears
to be better at hiding the latency of BMS’s extra synchronizations, allowing the marginally
better locality from larger subproblems to become the primary factor in di�erentiating
performance.

Multisplit-sort. Now we turn to characterizing the performance of sort using multisplit with
identity buckets. It is not immediately clear what the best radix size (r ) is for achieving the best
sorting performance. As a result, we ran all choices of 4 ≤ r ≤ 8. Because our bucket identi�ers
are also relatively simple (requiring one shift and one AND), our multisplit performance should be
close to that of identity buckets.

Since BMS is almost always superior to WMS for r ≥ 4 (Table 7), we have only used BMS in our
implementations. For sorting 32-bit elements, we have used b32/rc iterations of r-bit BMS followed
by one last BMS for the remaining bits. For example, for r = 7, we run 4 iterations of 7-bit BMS
then one iteration of 4-bit BMS. Table 8 summarizes our sort results.
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K40c (ECC on) K40c (ECC o�) GeFroce GTX 1080

Method r time throughput speedup time throughput speedup time throughput speedup

Our sort (key-only)

4 25.84 1.299 1.01x 26.00 1.290 0.75x 14.11 2.368 0.70x
5 24.82 1.35 1.05x 24.81 1.352 0.78x 12.65 2.654 0.78x
6 26.18 1.282 0.99x 26.41 1.271 0.74x 11.44 2.933 0.86x
7 34.59 0.970 0.75x 34.93 0.961 0.56x 11.21 2.994 0.88x
8 50.17 0.669 0.52x 50.58 0.663 0.38x 14.59 2.300 0.68x

CUB (key-only) 25.99 1.291 – 19.42 1.728 – 9.88 3.397 –

Our sort (key-value)

4 36.86 0.910 1.18x 35.17 0.954 0.81x 14.11 1.441 0.75x
5 34.90 0.962 1.25x 34.32 0.978 0.83x 12.65 1.619 0.85x
6 34.79 0.97 1.26x 34.70 0.967 0.82x 18.01 1.852 0.97x
7 43.90 0.764 1.00x 44.59 0.753 0.64x 15.97 2.101 1.10x
8 67.47 0.497 0.65x 67.94 0.494 0.42x 18.01 1.863 0.97x

CUB (key-value) 43.73 0.767 – 28.58 1.174 – 17.56 1.911 –

Table 8. Our Multisplit-based radix sort is compared to CUB. We have used various number of bits (r ) per
iteration of mutlisplit for our various sort implementations. Average running time (ms) for sorting 225 random
32-bit elements, achieved throughput (Gkeys/s for key-only, and Gpairs/s for key-value), and speedup against
CUB’s radix sort.

By looking at our achieved throughputs (sorting rates), we see that our performance increases up
to a certain radix size, then decreases for any larger r . This optimal radix size is di�erent for each
di�erent GPU and depends on numerous factors, for example available bandwidth, the e�ciency of
warp-wide ballots and shu�es, the occupancy of the device, etc. For the Tesla K40c, this crossover
point is earlier than the GeForce GTX 1080 (5 bits compared to 7 bits). Ideally, we would like to
process more bits (larger radix sizes) to have fewer total iterations. But, larger radix sizes mean a
larger number of buckets (m) in each iteration, requiring more resources (shared memory storage,
more register usage, and more shu�e usage), yielding an overall worse performance per iteration.

Comparison with CUB. CUB is a carefully engineered and highly optimized library. For its radix
sort, it uses a persistent thread style of programming [14], where a �xed number of thread-blocks
(around 750) are launched, each with only 64 threads (thus allowing many registers per thread). Fine-
tuned optimizations over di�erent GPU architectures enables CUB’s implementation to e�ciently
occupy all available resources in the hardware, tuned for various GPU architectures.

The major di�erence between our approach with CUB has been our choice of privatization. CUB
uses thread-level privatization, where each thread keeps track of its local processed information
(e.g., computed histograms) in an exclusively assigned portion of shared memory. Each CUB thread
processes its portion of data free of contention, and later, combines its results with those from
other threads. However, as CUB considers larger radix sizes, it sees increasing pressure on each
block’s shared memory usage. The pressure on shared memory becomes worse when dealing with
key-value sorts as it now has to store more elements into shared memory than before.

In contrast to CUB’s thread privatization, our multisplit-based implementations instead target
warp-wide privatization. An immediate advantage of this approach is that we require smaller
privatized exclusive portions of shared memory because we only require a privatized portion per
warp rather than per thread. The price we pay is the additional cost of warp-wide communications
(shu�es and ballots) between threads, compared to CUB’s register-level communication within a
thread.

The reduced shared memory usage of our warp privatization becomes particularly valuable when
sorting key-value pairs. Our key-value sort on GeForce GTX 1080 shows this advantage: when
both approaches use 7-bit radixes, our multisplit-sort achieves up to a 1.10x higher throughput
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than CUB. On the other hand, CUB demonstrates its largest performance advantage over our
implementation (ours has 0.78x the throughput of CUB’s) for key-only sorts on Tesla K40c (ECC
o�). In this comparison, our achieved shared memory bene�ts do not balance out our more costly
shu�es.

Our multisplit-based radix sort proves to be competitive to CUB’s radix sort, especially in key-
value sorting. For key-only sort, our best achieved throughputs are 1.05x, 0.78x, and 0.88x times the
throughput that CUB provides for Tesla K40c (ECC on), Tesla K40c (ECC o�), and GeForce GTX
1080, respectively. For key-value sorting and with the same order of GPU devices, our multisplit-
based sort provides 1.26x, 0.83x, and 1.10x times more throughput than CUB, respectively. Our
highest achieved throughput is 3.0 Gkeys/s (and 2.1 Gpairs/s) on a GeFroce GTX 1080, compared to
CUB’s 3.4 Gkeys/s (and 1.9 Gpairs/s) on the same device.

Future of warp privatized methods. We believe the exploration of the di�erence between thread-
level and warp-level approaches has implications beyond just multisplit and its extension to sorting.
In general, any future hardware improvement in warp-wide intrinsics will reduce the cost we
pay for warp privatization, making the reduction in shared memory size the dominant factor. We
advocate further hardware support for warp-wide voting with a generalized ballot that returns
multiple 32-bit registers, one for each bit of the predicate. Another useful addition that would have
helped our implementation is the possibility of shu�ing a dynamically addressed register from the
source thread. This would enable the user to share lookup tables among all threads within a warp,
only requesting the exact data needed at runtime rather than delivering every possible entry so
that the receiver can choose.

7.2 The Single Source Shortest Path problem
In Section 1 we argued that an e�cient multisplit primitive would have helped Davidson et al. [8]
in their delta-stepping formulation of the Single Source Shortest Path (SSSP) problem on the GPU.
In this section, we show that by using our multisplit implementation, we can achieve signi�cant
speedups in SSSP computation, especially on highly connected graphs with low diameters.

7.2.1 The Single Source Shortest Path (SSSP) problem. Given an arbitrary graph G = (V ,E), with
non-negative weights assigned to each edge and a source vertex s ∈ V , the SSSP problem �nds the
minimum cost path from the source to every other vertex in the graph. As described in Section 1,
Dijkstra’s [13] and Bellman-Ford-Moore’s [4] algorithms are two classical approaches to solve the
SSSP problem. In the former, vertices are organized in a single priority queue and are processed
sequentially from the lowest to the highest weight. In the latter, for each vertex we process all its
neighbors (i.e., processing all edges). This can be done in parallel and is repeated over multiple
iterations until convergence. Dijkstra is highly work-e�cient but essentially sequential and thus
unsuitable for parallelization. Bellman-Ford-Moore is trivially parallel but does much more work
than necessary (especially for highly connected graphs).

As an alternative algorithm between these two extremes (sequential processing of all vertices
vs. processing all edges in parallel), delta-stepping allows the selective processing of a subset
of vertices in parallel [23]. In this formulation, nodes are put into di�erent buckets (based on
their assigned weights) and buckets with smaller weights are processed �rst. Davidson et al. [8]
proposed multiple GPU implementations based on the delta-stepping formulation. Their two most
prominent implementations were based on a Near-Far strategy and a Bucketing strategy. Both divide
vertices into multiple buckets, which can be processed in parallel. Both use e�cient load-balancing
strategies to traverse all vertices within a bucket. Both iterate over multiple rounds of processing
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until convergence is reached. The main di�erence between the two is in the way they organize the
vertices to be processed next (work frontiers):
Near-Far strategy In this strategy the work queue is prioritized based on a variable splitting

distance. In every iteration, only those vertices less than this threshold (the near set) are
processed. Those falling beyond the threshold are appended to a far pile. Elements in the
far pile are ignored until work in the near set is completely exhausted. When all work
in the near set is exhausted (this could be after multiple relaxation phases), this strategy
increases the splitting distance (by adding an incremental weight ∆ to it) and removes
invalid elements from the far pile (those which have been updated with similar distances),
�nally splitting this resulting set into a new near set and far pile. This process continues
until both the near set and far pile are empty (the convergence criterion).

Bucketing strategy In this strategy, vertices are partitioned into various buckets based on their
weights (Davidson et al. reported the best performance resulted from 10 buckets). This
strategy does a more �ne-grained classi�cation of vertices compared to Near-Far, resulting
in a greater potential reduction in work queue size and hence less work necessary to
converge. The downside, however, is the more complicated bucketing process, which due
to lack of an e�cient multisplit primitive was replaced by a regular radix sort in the original
work. As a result of this expensive radix sort overhead, Near-Far was more e�cient in
practice [8].

7.2.2 Multisplit-SSSP. Now that we have implemented an e�cient multisplit GPU primitive
in this paper, we can use it in the Bucketing strategy explained above to replace the costly radix
sort operation. We call this new Bucketing implementation Multisplit-SSSP . Our Multisplit-SSSP
should particularly perform well on highly connected graphs with relatively large out degrees and
smaller diameters (such as in social graphs), causing fewer iterations and featuring large enough
work fronts to make multisplit particularly useful. However, graphs with low average degrees and
large diameters (such as in road networks) require more iterations over smaller work frontiers,
resulting in high kernel launch overheads (because of repetitive multisplit usage) without large
enough work frontiers to bene�t from the e�ciency of our multisplit. We note that this behavior
for di�erent graph types is not limited to our SSSP implementation; GPU graph analytics in general
demonstrate their best performance on highly connected graphs with low diameters [31].

7.2.3 Performance Evaluation. In this part, we quantitatively evaluate the performance of our
new Multisplit-SSSP compared to Davidson et al.’s Bucketing and Near-Far approaches. Here,
we choose a set of graph datasets listed in Table 9.10 For those graphs that are not weighted, we
randomly assign a non-negative integer weight between 0 and 1000 to each edge.

Table 10 shows the convergence time for Near-Far, Bucketing, and Multisplit-SSSP (in million
traversed edges per second, MTEPS), with Multisplit-SSSP’s speedup against Near-Far. Multisplit-
SSSP is always better than Bucketing, on both devices and on every graph we tested (up to 9.8x
faster on Tesla K40c and 9.1x faster on the GeForce GTX 1080). This behavior was expected because
of the performance superiority of our multisplit compared to a regular radix-sort (Fig. 7).

Against Near-Far, our performance gain depends on the type of graph. As we expected, on
highly connected graphs with low diameters (such as rmat), we achieve up to 1.58x and 2.17x
speedup against Near-Far, on the Tesla K40c and GeForce GTX 1080 respectively. However, for
high diameter graphs such as road networks (e.g., belgium_osm), we are closer to Near-Far’s
performance: Multisplit-SSSP is slower than Near-Far on Tesla K40c (0.93x) and marginally faster
10All matrices except for rmat are downloaded from University of Florida Sparse Matrix Collection [9]. Rmat was generated
with parameters (a, b, c, d ) = (0.5, 0.1, 0.1, 30).
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Graph Name Vertices Edges Avg. Degree

cit-Patents [15] 3.77 M 16.52 M 8.8
�ickr [9] 0.82 M 9.84 M 24.0
belgium_osm [19] 1.44 M 1.55 M 2.2
rmat [7] 0.8 M 4.8 M 12.0

Table 9. Datasets used for evaluating our SSSP algorithms.

Tesla K40c (ECC on) GeForce GTX 1080

Graph Name Near-Far Bucketing Multisplit-SSSP Near-Far Bucketing Multisplit-SSSP

– time (ms) time (ms) time (ms) MTEPS speedup time (ms) time (ms) time (ms) MTEPS speedup

cit-Patents 458.4 3375.9 343.1 96.3 1.34x 444.2 3143.0 346.8 95.2 1.28x
�ickr 96.0 163.0 64.5 305.2 1.49x 66.7 111.1 36.5 539.0 1.83x
belgium_osm 561.4 3588.0 604.5 5.12 0.93x 443.8 3014.2 427.0 7.3 1.04x
rmat 20.9 28.7 13.2 727.3 1.58x 12.17 14.9 5.8 1655.2 2.17x

Table 10. Near-Far, Bucketing, and our new Multisplit-SSSP methods over various datasets. Speedups are
against the Near-Far strategy (which appears to be always be�er than the Bucketing strategy).

on GeForce GTX 1080 (1.04x). Road graphs have signi�cantly higher diameter and hence more
iterations. As a result, the extra overhead in each phase of Multisplit-SSSP on large diameters can
become more important than the saved operations due to fewer edge re-relaxations.

7.3 GPU Histogram
All three of our multisplit methods from Section 5 (DMS, WMS and BMS) have a pre-scan stage,
where we compute bucket histograms for each subproblem using our warp-wide ballot-based voting
scheme (Algorithm 2). In this section, we explore the possibility of using our very same warp-wide
histogram to compute a device-wide (global) histogram. We de�ne our histogram problem as
follows: The inputs are n unordered input elements (of any data type) and a bucket identi�er f
that assigns each input element to one ofm distinct buckets (bins). The output is an array of length
m representing the total number of elements within each bucket.

Our Histogram. In the pre-scan stage of our multisplit algorithms, we store histogram results
for each subproblem so that we can perform a global scan operation on them, then we use this
result in our post-scan stage to �nalize the multisplit. In the GPU Histogram problem, however,
we no longer need to report per-subproblem histogram details. Instead, we only must sum all
subproblems’ histograms together to form the output global histogram. Clearly, we would prefer
the largest subproblems possible to minimize the cost of the �nal global summation. So, we base
our implementation on our BMS method (because it always addresses larger subproblems than the
other two). We have two main options for implementation. 1) Store our subproblem results into
global memory and then perform a segmented reduction, where each bucket represents a segment.
2) Modify our pre-scan stage to atomically add histogram results of each subproblem into the �nal
array. Based on our experiments, the second option appears to be more e�cient on both of our
devices (Tesla K40c and GeForce GTX 1080).

Experimental setup. In order to evaluate a histogram method, it is common to perform an
extensive set of experiments with various distributions of inputs to demonstrate the performance
and consistency of that method. A complete and thorough benchmarking of all possible distributions
of inputs is beyond the scope of this short section. Nevertheless, just to illustrate the potentials in
our histogram implementation, we continue this section with a few simple experimental scenarios.
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Number of buckets (bins)

Example GPU Method 2 4 8 16 32 64 128 256

Ev
en

H
is

to
gr

am

Tesla K40c (ECC on)
Our Histogram 45.3 42.5 45.4 37.8 32.1 26.5 24.2 18.8
CUB 13.7 14.9 16.9 19.1 21.4 21.8 20.8 19.5
Speedup vs. CUB 3.30x 2.86x 2.69x 1.98x 1.50x 1.21x 1.16x 0.96x

Tesla K40c (ECC o�)
Our Histogram 53.0 47.2 48.1 38.3 32.3 26.5 24.0 18.7
CUB 13.6 14.7 16.7 18.9 21.3 21.8 20.7 19.5
Speedup vs. CUB 3.90x 3.20x 2.88x 2.03x 1.52x 1.21x 1.16x 0.96x

GeForce GTX 1080
Our Histogram 61.0 61.1 60.9 60.7 60.2 45.2 59.6 52.7
CUB 60.5 60.7 60.5 60.7 61.1 60.6 60.3 60.9
Speedup vs. CUB 1.01x 1.01x 1.01x 1.00x 0.98x 0.75x 0.99x 0.87x

Ra
ng

e
H

is
to

gr
am

Tesla K40c (ECC on)
Our Histogram 28.0 22.1 18.4 14.6 11.9 9.0 7.7 7.3
CUB 8.7 6.8 6.2 5.8 5.7 5.5 5.2 4.8
Speedup vs. CUB 3.21x 3.26x 2.96x 2.51x 2.09x 1.63x 1.50x 1.51x

Tesla K40c (ECC o�)
Our Histogram 27.6 22.2 17.8 14.5 11.7 8.7 7.6 7.1
CUB 8.4 6.8 6.2 5.8 5.6 5.4 5.1 4.8
Speedup vs. CUB 3.29x 3.28x 2.89x 2.50x 2.10x 1.61x 1.50x 1.50x

GeForce GTX 1080
Our Histogram 56.7 51.4 45.4 39.8 33.9 28.4 24.8 20.0
CUB 42.4 35.2 30.9 27.1 24.4 22.3 19.3 14.8
Speedup vs. CUB 1.34x 1.46x 1.47x 1.47x 1.39x 1.28x 1.29x 1.35x

Table 11. Histogram computation over two examples of even bins (Even Histogram) and customized bins
(Range Histogram). Procesing rates (in billion elements per second) are shown for our Histogram and CUB as
well as our achieved speedup. Experiments are repeated on three di�erent hardware se�ings.

Our goal is to explore whether our warp-wide histogram method can potentially be competitive to
others (such as CUB’s histogram), under what conditions, and most importantly why. To achieve
this goal, we consider the following two scenarios:

(1) Even Histogram: Consider a set of evenly spaced splitters {s0, s1, . . . , sm } such that each
two consecutive splitters bound a bucket (m buckets, each with a width of |si − si−1 | = ∆).
For each real number input s0 < x < sm , we can easily identify its bucket as b(x − s0)/∆c.

(2) Range Histogram: Consider a set of arbitrarily ranged splitters {s0, s1, . . . , sm } such that
each two consecutive splitters bound a bucket. For each real number input s0 < x < sm ,
we must perform a binary search (i.e., an upper bound operation) on splitters to �nd the
appropriate bucket (requires at most dlogme searches).

We generate n = 225 random �oating point numbers uniformly distributed between 0 and 1024.
For the Even histogram experiment, splitters are �xed based on the number of buckets m. For
Range histogram experiment, we randomly generate a set of m − 1 random splitters (s0 and sm
are already �xed). We use our histogram method to compute the global histogram for m ≤ 256
buckets. We compare against CUB Histogram, which supports equivalents (HistogramEven and
HistogramRange) to our Even and Range test scenarios. We have repeated our experiments over
100 independent random trials.

7.3.1 Performance Evaluation. Table 11 shows our achieved average processing rate (in billion
elements per second) as well as our speedup against CUB, and for di�erent hardware choices. For
the Even Histogram, we observe that we are better than CUB for m ≤ 128 buckets on Tesla K40c,
but only marginally better form ≤ 8 on GeForce GTX 1080. For Range Histogram, we are always
better than CUB form ≤ 256 on both devices.
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Even Histogram. CUB’s even histogram is designed to operate with any number of buckets
(even m � 256). This generality has consequences in its design choices. For example, if an
implementation generalizes to any number of buckets (especially largem > 256), it is not possible
to privatize histogram storage for each thread (which requires size proportional to m) and then
combine results to compute a block-level histogram solution. (This is a di�erent scenario than
radix sort, because radix sort can choose the number of bits to process on each iterations. CUB’s
radix sort only supports histograms of size up to 128 buckets [at most 7 bits] on Pascal GPUs). As a
result, CUB uses shared memory atomics to directly compute histograms in shared memory. Then
these intermediate results are atomically added again into global memory to form the output global
histogram. (Since CUB is mostly bounded by atomic operations, ECC does not have much e�ect on
its performance on Tesla K40c.)

On the other hand, our focus here is on a limited number of buckets. As a result, by using
warp-level privatization of histograms, we avoid shared memory atomics within blocks, resulting
in better performance for the histogram bucket counts that we target. As the number of buckets
increases, we gradually increase pressure on our shared memory storage until CUB’s histogram
becomes the better choice.

Atomic operation performance has improved signi�cantly on the Pascal architecture (GeForce
GTX 1080), which helps CUB’s histogram performance. On this architecture, Table 11 shows that
that we are barely better than CUB for a very small number of buckets (m ≤ 8), and then we witness
a decrease in our performance because of the shared-memory pressure that we explained above.

Range Histogram. We see better performance for range histograms for two main reasons. First,
bucket identi�cation in this case requires a binary search, which is much more expensive than the
simpler �oating point multiplications required for the even histogram. Our histogram implementa-
tion is relatively insensitive to expensive bucket-computation operations because they help us hide
any extra overheads caused by our extensive shu�e and ballot usage. A thread-level approach like
CUB’s would also have to do the same set of expensive operations (in this case, expensive memory
lookups), but then they would lose the comparative bene�t they would otherwise gain from faster
local register-level computations.

Another reason for our better performance is again because of CUB’s generality. Since CUB
must operate with an arbitrary number of splitters, it does not store those splitters into shared
memory, which means every binary search is directly performed in global memory. On the other
hand, form ≤ 256, we can easily store our splitters into shared memory in order to avoid repetitive
global memory accesses.

Summary. Specializing a histogram computation to support only a limited number of buckets
allows potential performance increases over more general histogram implementations. For some
applications, this may be desirable. For other applications—and this is likely CUB’s design goal—
consistent performance across an arbitrary number of buckets may be more important. Nonetheless,
multisplit was the key building block that made these performance increases possible.

8 CONCLUSION
The careful design and analysis of our GPU multisplit implementations allow us to provide sig-
ni�cant performance speedups for multisplit operations over traditional sort-based methods. The
generality of our multisplit algorithm let us extend it further into other interesting applications,
such as building a competitive GPU radix sort, getting signi�cant improvements in Single Source
Shortest Path problem, and providing a promising GPU histogram mostly suitable for small number
of buckets. Beyond simply demonstrating the design and implementation of a family of fast and
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e�cient multisplit primitives, we o�er three main lessons that are broadly useful for parallel algo-
rithm design and implementation: Considering a warp-synchronous programming by leveraging
warp-wide hardware intrinsics and promoting warp-level privatization of memory, where applica-
ble, can potentially brings interesting and e�cient implementations; Minimize global (device-wide)
operations, even at the cost of increased local computation; the bene�t of more coalesced memory
accesses outweighs the cost of local reordering.
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