
UC Davis
UC Davis Previously Published Works

Title

Data Privacy for the Grid: Toward a Data Privacy Standard for Inverter-Based and Distributed 
Energy Resources

Permalink

https://escholarship.org/uc/item/2kc5c5fd

Journal

IEEE Power and Energy Magazine, 21(5)

ISSN

1540-7977

Authors

Currie, Robert
Peisert, Sean
Scaglione, Anna
et al.

Publication Date

2023

DOI

10.1109/mpe.2023.3288595

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2kc5c5fd
https://escholarship.org/uc/item/2kc5c5fd#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


IEEE Power & Energy Magazine

Example Template for Draft Articles

Data Privacy for the Grid
Toward a Data Privacy Standard for Inverter-Based and Distributed Energy 
Resources

Robert Currie, Sean Peisert, Anna Scaglione, Aram Shumavon, and Nikhil
Ravi

The traditional approach to planning the distribution grid has focused on reliability
in the context of gradual and reasonably predictable load growth.  Forecasts of load
growth, combined with asset management practices, were used by system planners
to identify upgrades to the system to maintain or improve reliability.  The decisions,
typically  based  within  load  flow  analysis  tools,  included  considerations  about
contingency  scenarios  and  corporate  forecasts  (i.e.,  top-down  predictions  at  a
summary  level  of  what  will  happen in  a  particular  area  that  could  impact  load
growth and behavior).  Today, this traditional approach no longer fits all purposes. 

At the top of the list of reasons to question conventional wisdom about planning are
the rapid growth in Distributed Energy Resources (DER) and the electrification of
transportation and residential heating, which have the potential to radically alter
the characteristics of the load on the system, both in terms of magnitude, duration,
and timing with corresponding impacts on the need for distribution grid capacity.  In
addition, all these edge resources have embedded intelligence as well as network
communication capabilities, which are becoming faster and more reliable. In turn, a
large  amount  of  data  is  becoming  available  on  customer  demand,  behavior,
technology  adoption  and  a  variety  of  DER  devices  connected  through  smart
inverters.   The  collection  of  data  from  the  edge  device  networks  is  aimed  at
improving both the planning and the operation of the grid; however, sharing them
creates several cyber security and data privacy issues since distribution-level data
include Personally Identifiable Information (PII). It is extremely important that this
data  be  shared  in  a  manner  appropriate  for  Critical  Energy  Infrastructure
Information. This article's goal  is to highlight the main technologies that can be
harnessed to define industry standards on solid scientific ground and the need to
tailor  them to  address  the  emerging  energy  sector  data  needs.  While  covering
different  approaches  to  address  data  security,  the  focus  is  on  a  statistical
framework called Differential Privacy, which has emerged as the most reliable way
to  open  the  data to  different  stakeholders  while  at  the  same  time  preventing
leakage of sensitive data attributes and PII. This method has not been codified as a
grid  standard  and was  not  considered in  the  North  American  Electric  Reliability
Corporation (NERC) Critical Infrastructure Protection development, a cyber security
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framework defined for the identification and protection of critical cyber assets to
support the reliable operation of Bulk Electric System. 

1. Why is Grid Data Needed?
To accommodate distributed energy resources (DER) both in front of and behind the
meter,  it  is  important  to  understand  customer  behavior  and  technology
performance.  This  knowledge will  also  help  to  leverage  demand response  (DR),
especially  with  electric  vehicles;  DR  will  complement  grid  storage  and  reduce
congestion. Improved data sharing and visibility on the power grid are necessary for
planning the interconnection of grid-scale renewables and storage, including where
capacity is available and where DER can add value. This dynamic impacts a range
of existing or emerging activities (including those shown in ) that are necessary to
support the decarbonization of the economy. 

Figure 1 Activities necessary to support the decarbonization of the economy. 

2. Emerging Trends in Cyber Security and Data Privacy
It is against this backdrop that this article discusses where cyber security and data 
privacy concerns are impacting the planning and operation of inverter-based and 
distributed energy resources. We begin by considering the following trends that are 
emerging as the industry grapples with these challenges:

a. Increasing Governmental Oversight
Regulators or governments require utilities to share more data. Due to the 
emerging nature of this type of activity, there are inconsistencies in the treatment 
of security and data privacy concerns. Some recent developments include the 
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Integrated Energy Data Resource program in New York and the mandated use of the
Common Information Model for sharing grid data in the UK.

b. Aging Data Handling Workflows
The  distribution  section  of  the  grid  suffers  from  a  lack  of  investment  in  the
acquisition  and  management  of  data.   Planning  models,  geospatial  data,  and
operational data are often managed separately and suffer from a range of quality
and accuracy issues.  These are not simple issues to resolve and require investment
and new processes and procedures at the utility,  which takes time and funding.
Collating  and  analyzing  low-quality  data  can  be  challenging,  as  the  data  often
requires skilled pre-processing. These difficulties may not be immediately apparent
until the data is used for various purposes.  In light of the developments that were
discussed in Section 2.a, the industry will have to first confront the issues related to
aging data handling workflows. For example, although data shared about the grid is
intended  to  simplify  the  process  of  submitting  planning  applications  for  solar
developers, it may require a significant amount of specialized knowledge to cleanse,
process,  and  use  such  data  effectively.  As  a  result,  developers  may  need  to
maintain constant communication with the utility to address any issues that arise.
More generally, it may be possible to simultaneously address some of the problems
related to the aging infrastructure via an industry-wide standardization effort. A
positive  development  is  happening  in  the  communication  networking  industry,
which is defining new standards for the Industrial Internet of Things (IIoT). The aim
of these standards is to enable what is referred to as “Industry 4.0,” through a
flexible  set  of  communication  protocols  that  can  be  adapted  to  the  needs  of
different industrial control systems (ICS).  An example is the so-called Lightweight
Machine to Machine (LwM2M) communications protocol stack, which allows mapping
virtually  any  sensor  instrumentation  into  a  standardized  common  description
format. LwM2M includes the Constrained Application Protocol (CoAP), which is an
interoperable  simplified  version  of  Hypertext  Transfer  Protocol  (HTTP)  for  IoT
devices,  as  well  as  the standard  called  Object  Security  for  Constrained RESTful
Environments (OSCORE), that standardizes the application-layer protection of CoAP.
OSCORE  provides end-to-end  protection  in  communications  with  CoAP  or  CoAP-
mappable HTTP clients and HTTP servers, incorporating another important access
control  mechanism  that  works  together  with  the  existing  standard  Datagram
Transport Layer Security (DTLS) protocol.    

c. Need for Statistical Safeguards
Safeguards are critical for open data development. In the last decade, the push for
open data has inspired methods that use statistical safeguards to protect PII and
address the implications of  sharing the data on the privacy and security of  the
owners of the data. An example is the highly successful use of Differential Privacy
for the U.S. 2020 Census. For instance, there are many reasons why data related to
customer  consumption  and  the  power  grid  are  not  shared.   Sometimes  usage
patterns  uniquely  identify  individuals  and  their  activities  inside  buildings,
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sometimes data  can  reveal  weaknesses  in  the grid  that  could  help  an  attacker
manipulate grid operation,  and data may also be considered proprietary.  At the
same time, grid telemetry is extremely valuable for understanding grid operation,
both for system operation and research purposes, including stability, optimization,
planning,  security,  and more.   Other data,  like solar  photovoltaic  (PV)  adoption,
allow reidentification  through satellite  imaging  of  the  residence  where  they  are
installed. Information about electric vehicle charging, including details on EVs and
their participation in DR programs, as well as data on charging locations, can be
exploited to launch cyber-attacks on the communication between and the control of
electric  vehicle  charging  infrastructure.   Similar  issues  are  associated  with
disclosing distribution systems information. The way the industry approaches these
issues to facilitate coordinated decision-making requires statistical safeguards to be
appropriately applied. 

d. Cloud Infrastructure
Cloud Infrastructure is poised to play an increasing role in the collection and sharing
of  energy  data. Outside  the  electric  utility,  sector  clouds  are  becoming  nearly
ubiquitous,  and  they  are  considered  the  prevalent  solution  for  data-intensive
applications; inevitably, this trend is impacting discussion about privacy standards,
as well as their enforcement in the utility sector.  However, within the electric utility
sector, and within the NERC CIP standardization efforts, it is not currently clear how
to securely  use  cloud  infrastructures  and virtualization,  and how utilities  should
work  in  a  shared  security  model  with  the  cloud  providers.  This  lack  of  clarity
impacts  the  ability  of  utilities  to  make progress  on leveraging  cloud computing
capacity  across all  parts of their organization. One positive development for the
industry to monitor, particularly at the distribution level, is the emergence of IIoT
protocols  that  aim  to  establish  end-to-end  security  measures.  This  could  prove
beneficial for cloud-based services used in ICS applications. 

Figure 2: The prevalent vision of the grid is that of a Trusted Curator (a Utility or a contractor) that
collects accurate data and controls access from third parties (left). Another possible scenario includes
many data generators that want to protect their data (customers, different operators, etc.), and limit
the information access by third parties’ data aggregators (right). In both cases Differential Privacy (DP)
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Mechanisms allow the publishing of information about data queries, blurring the actual query answers
through the addition of random noise in a controlled manner to conceal the data in individual records
that are queried.

e. Data Protection and Data Sharing Trade-Off
When  considering  data  sharing  with  statistical  protection  there  are  two  main
configurations. In Figure 2 on the right, we describe the situation where customer
data are protected before being aggregated by a server, which would provide the
most protection to the consumer. However, the prevalent vision of the grid is that of
a trusted  curator  as  seen  in  Figure  2  (left),  the  electric  utility  itself,  or  a
contractor. Utilities inherently silo data, making sharing very difficult, out of concern
that sharing certain data can implicitly violate the privacy of customers. In addition,
the default operational  security paradigm for the past two decades has been to
protect  utility  grids for  national  security  reasons.  While  regulators  are  requiring
utilities to share more data, fear of sharing data still exists for extremely relevant
reasons, like privacy.  As a result, there is a push and a pull for and against sharing
that leaves utilities stuck in the middle.

This  tension puts  utilities  in  a quandary — there is  great  value in making data
available  to  partners,  peers,  vendors,  federal  and state  governments,  and even
researchers,  but also risks in doing so.  What are those risks?  What degree of
information sharing is acceptable?  What controls on sharing are considered most
acceptable  to  the various  stakeholders,  including legal,  technical,  and statistical
controls?  What controls are acceptable to the users of the data given that technical
controls and anonymization approaches can make data essentially useless, as well?
Next,  we  aim  to  capture  our  findings  about  requirements,  best  practices,  and
forward-looking  recommendations  to  serve  as  useful  source  material  for
stakeholders and future standards development.

3. Why is confidentiality a concern?
As discussed in the previous sections, there are major concerns in sharing data.
Many of those concerns are enforced by regulators or state bodies. In general, these
findings stem from fears about how grid data could be misused as it changes hands.
An  example  is  the  physical  attacks  on  grid  equipment  such  as  the  Metcalf
substation incident or cyber-attacks.  As a result, regulations generally indicate that
such data should not be made public.  More broadly, individual privacy sentiments
across  many sectors  have increased in  recent  years,  as  have specific  laws and
regulations  regarding  individual  privacy.   Notable  examples  include the  General
Data Protection Regulations (GDPR) in Europe and the California Consumer Privacy
Act (CCPA) in the United States, among others.  

However, a lot of electric grid data is public.  Anyone can determine the topology of
a distribution grid by driving around and following electrical  lines or  by viewing
satellite (e.g., Google Earth) or ground (e.g., Google Street View) imagery.  One
might  argue  that  forcing  an  attacker  to  drive  around  neighborhoods  to  follow
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transmission lines or sift through online imagery might raise the bar sufficiently to
protect the grid.  Some argue that electrical lines should be removed from Google
Earth  and Street  View, but  this  overlooks the fact  that  information may still  be
accessible through alternative sources like Bing. Additionally, as demonstrated by
sites like WikiLeaks, once data is made public, it is difficult to control its spread and
it may remain accessible even if it is removed from specific platforms. Attempting
to make public information private may well be akin to the Streisand effect and only
amplify the degree to which that information spreads.

We would argue that once the proverbial cat is out of the bag, it is not going to be
put back inside. Furthermore, pretending that grid data is not public is not simply
“security through obscurity” but self-defeating. A motivated adversary would never
be deterred by alternative means of finding such information with such a low barrier
to  the  acquisition,  and  in  the  meantime,  vital  resources  are  being  wasted  on
protecting data that does not need to be protected, and important activities for
which the data is necessary cannot be accomplished.  Having access to the relevant
data is especially useful when it comes to the coordinated planning and preparation
required  to  massively  increase  the  scale  of  inverter-based  distributed  energy
resources connected to the grid.

4. Current Practices
As a result of their efforts to hide data, many utilities are left with two paths.  One is
that  utilities  are  periodically  forced  to  hand  over  large  datasets,  for  example,
because  of  regulatory  audits  or  a  state-level  initiative.   In  such  circumstances,
ironically, this attempt to protect and not share data ends up exposing even more
of the raw data itself.  While sharing the data with regulators may be considered
“safe” from a national  security  perspective,  it  may only  exacerbate the privacy
problem (e.g., it might contain PII) and may also leave utilities more exposed to
regulatory penalties and scrutiny.  Further,  sharing this data implies trust in the
recipient.  However, trust of  intent is one thing, and trust of  competence — or at
least greater competence than all possible adversaries — is another.  The failure of
organizations,  including  the  U.S.  Office  of  Personnel  Management,  the  Central
Intelligence  Agency,  and  the  National  Security  Agency,  to  protect  classified
information demonstrates that trust in competence is inadequate.  Even with the
vast security protections taken by these organizations, sharing data still  requires
implicitly  trusting  any  stakeholders  with  access,  particularly  the  system
administrators  and  anyone  with  physical  access  to  the  system  containing  the
sensitive data.  Even with all the legal contracts one could wish for, such implicit
trust requirements increase the risk to and liability of an institution for accepting
responsibility  for  hosting  data,  or  conversely  the  risk  to  the  owners  and
stakeholders who are interested in seeing that data remain confidential. 
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The other approach that is emerging as a best practice for sharing grid data, is the
so-called “15/15 Rule.”  This rule states that any aggregation of customer data is
considered  anonymous if  it  contains  at  least  fifteen  customers  and if  no  single
customer’s  data  comprises  15% or  more  of  the  total  values  in  the  aggregated
answer.  However, the 15/15 rule has been shown to offer  no analytical privacy
guarantee.  For  instance,  an  adversary  could  strategically  execute  common
aggregate queries (like calculating the average power load in a feeder) multiple
times and apply simple algebraic manipulations to deduce the existence or absence
of individual data records and the specific information they contain.

Most traditional  anonymization or  sanitization approaches generally work very
much like the “15/15 Rule” in that they mask certain fields in a set of records and/or
aggregate data in a way that seeks to find privacy in the safety of numbers (15 in
the case  of  the  15/15 Rule).   Techniques that  do  this  include  k-anonymity  and
several  related  variations.  However,  all  such  techniques  have  repeatedly  been
shown to fail to preserve privacy by suffering from “linkage attacks” in which even
supposedly anonymized records in the database are linked with external sources of
information that can expose sensitive details.  Notorious examples of this include
identifying Massachusetts Governor William Weld in the Personal Genome Project
data, and the de-anonymization of portions of the Netflix Prize dataset by linking
the private data with publicly available Internet Movie Database data.  

There is a common misconception that sharing synthetic data, which mimics the
trends  and  patterns  of  actual  data,  would  protect  individual  privacy.  If  such
synthetic data reproduce the ensemble averages of the data they are emulating,
then clearly it is equivalent to sharing such averages which, as we said, is not how
one can truly safeguard privacy.  

5. Potential Solutions

a. Share the Right Data
The solution that “more data sharing is better” is not advisable because it often is 
not. It is unnecessary to share a lot of data as it does not materially benefit 
potential use cases, and the privacy and confidentiality risks outweigh the benefits 
of sharing.  Moreover, any shared data must also be well-curated, and this again 
speaks to sharing the right data, not just more data. There is a set of queries that 
provides the necessary information for stakeholders to optimize their regulation or 
business objectives. Sharing the right data is important to optimize the mechanisms
for opening data while using statistical safeguards. 

b. Transparency of Data Collection and Use
One of the core tenets of regulations like GDPR and CCPA mentioned earlier is not
just that sharing private information about individuals should be limited but that
when it is shared, there should be transparency about what is shared, with whom it
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is shared, and how it will be used, stored, and eventually deleted once shared.  Data
do  have  to  be  shared  more  broadly  to  support  grid  planning  and  to  meet
decarbonization targets.  However, perhaps more could be done to promote more
awareness  for the end consumer  on what  data is  linked to them and what  the
purpose is for sharing that data or performing analyses on it. Transparency would
also allow the research community to vet methods and practices.  In California, the
California  Public  Utilities  Commission  (CPUC)  and  the  California  investor-owned
utilities (IOUs) both acknowledge that these practices should be conveyed in an
“understandable language.”  However, the current criteria are very open-ended.  In
contrast,  companies  like  Google  and Apple  are  now including  “privacy  nutrition
labels” in their app stores.  These labels used by Google and Apple, based on earlier
work  by  Lorrie  Cranor  at  Carnegie  Mellon  University,  provide  an  easy-to-read,
standard information template on what data is being collected and the purpose of
collecting that data.  The electric utility industry could consider a similar approach
that is tailored to the type of information and analysis of energy systems.

c. Multiparty Computation

Secure  multiparty  computation  and  homomorphic  encryption  are  techniques  for
computing over encrypted data.  Unlike approaches like network encryption and full
disk  encryption  that  protect  data  in  transit  and  at  rest,  respectively,  these
techniques protect while in use, and as a result, data never need to be decrypted at
all.  Both techniques have made significant strides over the past ten years and have
also  been  applied  to  securing  and  ensuring  the  privacy  of  underlying  data  in
analysis  processes  including  those used in  the financial  sector  and government
policy.   However,  such  techniques  generally  remain  substantially  - sometimes
orders of magnitude - slower than cleartext computation.  They can also require
custom code modification and re-compilation of data analysis code.  Therefore, both
performance  and usability  challenges  can  be significant.   Thus,  at  least  for  the
foreseeable future, such approaches don't appear to represent a primary solution
for large-scale data analysis and machine learning.  As a result,  while software-
based encryption techniques can be useful,  they seem unlikely to represent the
path  forward  for  securing  data  analysis  soon.   However,  secure  multiparty
computation can be accomplished using hardware trusted execution environments
(TEEs), which can be performant solutions for modern data-driven computing such
as machine learning and graph analysis.

TEEs are portions of certain modern microprocessors that enforce strong separation
from  other  processes  on  the  CPU,  and  some  can  even  encrypt  memory  and
computation.  Common commercial TEEs today include ARM’s Confidential Compute
Architecture, Intel’s Secure Guard Extensions (SGX), and AMD’s Secure Encrypted
Virtualization (SEV). TEEs can be used to improve security over traditional enclaves
at minimal cost to performance in comparison to computing over plaintext. TEEs
can isolate computation, preventing even system administrators of the machine in
which the computation is running from observing the computation or data being
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used or generated in the computation.   The broad interest in leveraging TEEs to
protect data is emphasized by the creation of the Linux Foundation’s Confidential
Computing Consortium, and the fact that all three major commercial cloud providers
— Amazon Web Services, Google Cloud Platform, and Microsoft Azure — all have
some sort of TEE functionality.

Another important point is that these methods are still based on controlling access
and  therefore  rely  on  trusting  the  recipient  of  the  information.  As  we  said,
establishing such trust is not an easy task.

d.      Differential Privacy
Differential privacy is a statistical technique for protecting the privacy of algorithms,
such as statistical database queries that allow opening the database to third-party
queries.  The basic idea is  to release a  randomized answer to database queries,
using a mechanism to generate the random answer that is designed to guarantee
that sensitive attributes of the data used in computing the query are hard to guess
from the answer.  Its  most  common mechanism works by adding pseudorandom
“noise” to the results of query outputs to hide the presence of any individual record
in the database being queried, no matter how targeted the query might be to reveal
such information.  While the attribute to be hidden is primarily the presence of a
specific data record in the subset, the idea can be generalized to hide a particular
class attribute.  Given its statistical rigor, differential privacy was used by the 2020
U.S. Census and is also used by Apple, Google, Microsoft, and others for gathering
sensitive  information  while  protecting  the  privacy  of  the  individuals  or  other
elements  contained  in  the  database  records.  More  specifically,  as  illustrated  in
Figure 3, consider two datasets identical  in every sense except for one record –
changed or missing – and an aggregate query such as average, standard deviation,
histogram, maximum, etc. As shown in Figure 3, DP mechanisms guarantee that the
corresponding  randomized  answers  are  nearly  statistically  indistinguishable  with
respect to individual  records. Examples of DP mechanisms include the Laplacian
and Gaussian mechanisms which involve treating the true query answer with an
appropriately tuned noise drawn from the Laplacian and the Gaussian distributions,
respectively.

Since the analysis of the data often requires a session that includes many queries it
is important to ensure that privacy guarantees are offered for the ensemble of the
queries in the session. Because the noise added in each query is independent, the
joint privacy leakage is the sum of the privacy leakages in each query. Thus, to
have a certain level  of  DP  guaranteed throughout the session,  the analyst  shall
allocate to each query a fraction of the total available budget.  
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Figure 3 Differential Privacy schematic.

Hence,  the  statistical  guarantee  is  based  on  a  specific  budget  the  analyst  is
endowed with, which expires well before all the queries combined would allow the
analyst  to accurately  infer what should be hidden.  It  is  a  fundamental  result  of
statistics  that,  eventually,  with  enough  measurements,  the  additive  noise
embedded in them can be overcome and inferences become increasingly reliable.
Containing  the  queries  within  a  budget  prevents  the  analyst  from eventually
guessing the information that needs to be kept private. 

Differential  privacy  is  thus  a  statistically  sound,  technical  solution  to  mitigate
privacy leakage while still  enabling useful information sharing.  Our results have
demonstrated  the  effectiveness  of  leveraging  differential  privacy  with  advanced
metering infrastructure (AMI) load time series data to generate differentially private
synthetic  load  data  that  is  consistent  with  the  original  (labeled)  data  while
preserving privacy.  At the same time, it was unclear what it would take to adopt a
new technical approach to ensure the privacy of grid data.  Would such a solution
require  regulatory  approval?   Or  could  a  lengthy  approval  process  be  avoided
because  the  differentially  private  output  is  already  considered  sufficiently  “de-
identified”?  If the regulation needs to change, it is also unclear what demonstration
would  be  sufficient  to  change  that  regulation.  Note  also  that  these  statistical
techniques  distort the  data,  and  one  needs  to  be  mindful  in  a  safety  critical
infrastructure about the implication of such errors on the decision-making process
that  the  information  is  supposed  to  aid.  Striking  the  best  trade-off  between
accuracy  and  privacy  is  something  that  cannot  be  left  as  an  afterthought  and
should be codified in standards. 
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Figure 4 Scatter plot of the AMI Dataset with 1409 houses. Each house’s daily load shape (of size 24 -
one measurement per hour) is embedded in a 2D space using Multidimensional Scaling for illustration
purposes.  The true and the DP cluster  centroids  are shown using black  diamond and yellow star
markers, respectively. Of the 1409 data points, only a subset (L, shown with yellow borders) is chosen
to potentially receive noisy labels. Among those, only points shown using square markers received
noisy labels.

Evidence  exists  that,  if  applied  strategically,  DP is  a  very  promising  approach.
Specifically, we observed that it is possible to communicate clustering results on
load  data  and  release  the  data  centroids  and  labels  in  a  differentially  private
manner, releasing the results with privacy guarantees and with minimum error. In
Figure 4, we show the results of differentially private clustering (into 6 clusters) of
daily load shapes belonging to 1409 consumers from 12 distribution circuits across
California, USA. In this technique, we add optimal noise to all six centroids (true and
the DP centroids are indicated using black diamonds and yellow stars, respectively)
and the labels of a subset of houses (indicated with square markers). Clustering can
be a first step to devising a differentially private methodology to generate synthetic
traces. As it turns out, traces in each cluster fit well a multi-dimensional log-normal
distribution, see Figure 5. 
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Figure 5: Histograms of the load profiles at each time interval, grouped by cluster. The red curves
show the best-fit log normal.

Since in a logarithmic scale, such data are Gaussian, one can generate the synthetic
random time series by randomizing the mean and covariance parameters of the
distribution to enforce the desired DP guarantees on these statistical  quantities,
which  in  turn  guarantees  that  the  synthetic  data  are  themselves  differentially
private. The results of this process are showcased in Figure 6, where we show (in
gray) 15 synthetically generated load shape time series for each cluster.  In the
figure, the areas shaded in brown and green represent the patterns of real and
artificially  generated  data,  respectively.  These  shaded  regions  show a  range of
confidence in the data. When we compare the two shaded regions, we notice that
they overlap to a large extent, meaning that the real and artificially generated data
patterns are very similar to each other.
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Figure 6: Differentially Private Synthetic Data Generation: Each cluster’s 90% confidence interval is 
shown in the shaded brown region. The true and the DP centroids are shown in blue and orange 
curves, respectively. Using the DP centroids, we generate synthetic load shapes (shown in gray lines) 
for consumers in each cluster. The shaded green region shows the 90% confidence interval of the 
synthetically generated load shapes.

13



IEEE Power & Energy Magazine

Example Template for Draft Articles
               

Figure 7: Histogram of the voltage magnitude and phase under true and synthetic load profiles for the
IEEE 123-bus case.

One may wonder if  such synthetic data  is  still  useful  for  further analysis of the
system. These synthetically generated load shapes were tested on two standard
(the MATPOWER 141 and a modified balanced IEEE-123)  distribution system test
cases. Load shapes from households across all six clusters and their synthetically
generated load shapes were used as load inputs of an Optimal Power Flow problem
to obtain voltage magnitude and phase at  each bus.  The histograms of  voltage
magnitude  and  phase  obtained  under  both  cases  with  true  and  synthetic  load
profiles in Figure 7 and Figure 8 showcase that the results obtained for the synthetic
loads provide a good match for those obtained for the true loads.
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Figure 8: Histogram of the voltage magnitude and phase under true and synthetic load profiles for the
MATPOWER 141-bus case.

While these results are promising, the pathway to obtaining accuracy appears to be
inextricable from tailoring the mechanisms to the queries. To achieve greater utility
of the shared noisy query answers, standards may have to go deeper in defining
what  and how one  can  share  data  or  queries  about  them with  DP guarantees.
Unfortunately, the naïve approach of releasing data directly after adding noise is
untenable because the noise that needs to be added to preserve privacy, without
any form of query aggregation, is such that future analyses would be extremely
inaccurate and, therefore, mostly misleading. This point relates to the one made
previously  on  “sharing  the  right  data”  or,  more  precisely,  sharing  the  right
information  about  the  data  and designing  statistical  methods  that  are  not  only
guaranteed to preserve privacy but also are designed to give the best accuracy
possible, given the privacy constraints. 

e. Putting Privacy-Preserving Techniques Together
Differential privacy can enable data sharing without exposing raw data, thus 
potentially enabling any untrusted user access to that data without risk.  TEEs 
protect against untrusted computing providers and can be made to perform secure 
multiparty computation.  Each approach has its benefits and can be deployed 
separately based on the risk model and can also be put together to provide more 
comprehensive guarantees about securing data from both platform providers and 
end users of the data in question.  Although both are in production use in 
commercial industry, government, or both, neither differential privacy nor TEEs 
have stopped evolving and both will continue to become even more usable and 
performant. For energy data, it is important to incorporate domain expertise to 
clarify the type of analytical results that are most beneficial to different 
stakeholders and then determine the mechanisms that strike the best compromise 
between privacy and accuracy of the data queries.
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In conclusion, the next steps include working with standards organizations that have
the scope to address a critical mass of solar / inverter / distributed energy industry 
stakeholders; regulators; end-users of grid data, including grid planning and 
research; and technical experts in privacy-preserving methods such as the ones 
that we have discussed here.
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