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SUMMARY

Grid cells in the entorhinal cortex demonstrate spatially periodic firing, thought to provide 

a spatial map on behaviorally relevant length scales. Whether such periodicity exists for 

behaviorally relevant time scales in the human brain remains unclear. We investigate neuronal 

firing during a temporally continuous experience by presenting 14 neurosurgical patients with a 

video while recording neuronal activity from multiple brain regions. We report on neurons that 

modulate their activity in a periodic manner across different time scales—from seconds to many 

minutes, most prevalently in the entorhinal cortex. These neurons remap their dominant periodicity 

to shorter time scales during a subsequent recognition memory task. When the video is presented 

at two different speeds, a significant percentage of these temporally periodic cells (TPCs) maintain 

their time scales, suggesting a degree of invariance. The TPCs’ temporal periodicity might 

complement the spatial periodicity of grid cells and together provide scalable spatiotemporal 

metrics for human experience.
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In brief

Aghajan et al. report that neurons in the human brain exhibit minute-scale periodicity when 

participants watch a movie. Different units maintain or remap their time scale at different playback 

speeds or during memory test. Temporal periodicity of these units may complement spatial 

periodicity of grid cells to provide spatiotemporal representation.

INTRODUCTION

Integrating the content of human experience in space and time constitutes the basis 

for our remarkable ability for episodic memory and mental time travel.1–4 In rodents, 

several temporal coding schemes involving the hippocampal-entorhinal circuitry have been 

reported,5–14 including (a) “time cells” in the hippocampus and medial entorhinal cortex 

(MEC) firing at specific points in time during a short timed interval5–7; (b) “ramping cells” 

in the lateral entorhinal cortex (LEC) whose ramping firing activity enables extraction of 

time for distinct experiences during the task14; (c) “event-specific” cells in the hippocampus 

coding for temporal order of events12; and (d) degradation in the population of place 

cells’ activity over hours and days.8–11 Together, the firing properties of these cells—i.e., 

their sequential activation or their activity decay at different time scales—with respect to 

experimental temporal boundaries are thought to provide time-stamps of episodic memory.

Considering the temporal representation in the human hippocampal-entorhinal system, time 

can be regarded as an additional dimension to space. Grid cells in the entorhinal cortex 

provide a scalable map with spatial periodicity15,16 when animals forage freely for food 
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in an open environment. To reveal an analogous temporal periodicity would require more 

naturalistic scenarios where time is studied at multiple time scales over prolonged periods 

spanning seconds to many minutes. Many perception and episodic memory experiments are 

dominated by a controlled stimulus-response methodology, requiring intermittent sensory 

input and subject response, and, therefore, disrupting the natural temporal continuity of 

behavior. If such temporal periodicity existed, one would expect that spatial grid properties

—such as rate remapping with environmental changes and distinct grid modules with 

different spatial scales—would translate into the time domain. Indeed, this hypothesis is 

consistent with recent accounts on the role of rodent MEC in interval timing and the idea of 

“navigating through time.”17–19

Although temporal periodicity has been observed in many aspects of biological systems, 

for example cardio-respiratory signals in the seconds scale and neural oscillations in 

the subsecond range (e.g., theta, beta, and gamma oscillations), the presence of neural 

representations on longer time scales deserves investigation. Here, we sought to investigate 

the existence of temporal periodicity in time scales that are relevant for human experience 

and behavior. We created a realistic immersive flow of information along extended temporal 

scales—by using a paradigm with uninterrupted audiovisual sequence—while we recorded 

units’ activity in multiple brain regions in humans.

RESULTS

Behavioral task

Participants were 14 neurosurgical patients (age = 31 ± 9 years, mean ± STD; 9 female) with 

intractable epilepsy who were implanted with intracranial depth electrodes to identify the 

seizure focus for potential subsequent surgical cure. First, we recorded spiking activity from 

microwires while 9 of the 14 participants watched a 42-min movie (first episode, season 

six of “24” TV series) (Figure 1A)20 and performed a recognition memory test afterward. 

During the memory test, they were presented with brief movie shots and were asked whether 

they had seen the clip before. The target movie shots were randomly interleaved with an 

equal number of foil movie shots (chosen from the second episode of “24” that the patient 

had not seen) (Figures 1A and 1B) (for further detail see STAR Methods, Behavioral tasks).

Units showed periodic modulation of firing in time

We identified 382 units with a minimum firing rate of 0.05 Hz (median, [25th, 75th] = 

1.55, [0.46, 3.67] Hz) using previously described methods21–24 (STAR Methods, Data 

acquisition). To localize these units for each participant, a high-resolution post-operative 

computed tomography (CT) scan was co-registered to a pre-operative whole brain and 

high-resolution magnetic resonance imaging (MRI) and the location of the microwires were 

determined for each depth electrode (Figure 1C) (STAR Methods, Electrode localization). 

These units were thus localized to 11 unique regions (Table S1), with almost one-half of the 

units recorded from medial temporal lobe regions (Table S2). To display the firing rate of 

each unit, we binned the spikes into 100-ms segments and applied a Gaussian smoothing 

kernel with 500-ms width, followed by division by the duration of the time bin (Figure 

2A) (STAR Methods, Electrophysiological analyses). Visual examination of the firing rates 

Aghajan et al. Page 3

Cell Rep. Author manuscript; available in PMC 2024 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



revealed that some units exhibited striking periodicity in their firing over the course of the 

movie, and the time scale of this periodicity varied from unit to unit, ranging from tens 

of seconds to several minutes (Figure 2A). This periodicity was further demonstrated by 

the peaks observed in the autocorrelogram of each unit’s firing rate in time (Figure 2B) 

(STAR Methods, Electrophysiological analyses). Additionally, we used generalized linear 

models (GLMs) to capture the time-varying firing rate as a Poisson process using basis 

functions that were periodic in time and inspected the model fit, as well as the basis 

functions that were significant in explaining the rate (Figures 2A and S2) (STAR Methods, 

Electrophysiological analyses). The firing rate of these cells oscillated with a periodicity 

centered around one or more characteristic frequencies. We refer to these cells as temporally 

periodic cells (TPCs), given that their firing rate seems to be periodic in time.

To quantitatively assess the extent to which neurons fired in a periodic fashion, we computed 

the autocorrelation of the firing rate for each unit and compared it against the null hypothesis 

constructed using shuffled data (specifically, the autocorrelations computed over the shuffled 

firing rates of the same unit; for details see STAR Methods, Electrophysiological analyses). 

A unit with an autocorrelation value outside the [2.5%, 97.5%] of the shuffled data was 

identified as a putative TPC. Furthermore, we used a cluster-based permutation test to 

correct for multiple comparisons in identifying these units and found a total of 80 TPCs 

(Figure S3A; more examples of TPCs are shown in Figures S3 and S4). We then quantified 

the percentage of TPCs within each region and found that multiple regions contained a 

significant fraction of these units, with the entorhinal cortex holding the largest population 

of TPCs (30 out of 80 total entorhinal units; 37.50%, [26.92%–49.04%], 95% confidence 

intervals [CI] from binomial test), followed by the anterior cingulate region (13 out of 51 

total units; 25.49%, [14.33%–39.63%], 95% CI from binomial test) (Figure 2C; Table S2).

TPCs’ periodicities span multiple time scales

We next asked how the periodicity of TPCs varied across units. We calculated the dominant 

period for each unit as follows: (1) the firing rate autocorrelation was Z-scored with respect 

to the shuffled data for each unit; (2) an fast Fourier transform was performed on the 

Z-scored autocorrelation values; and (3) the period at which the largest power was contained 

was determined to be the dominant period for that unit (Figure S3) (STAR Methods, 

Electrophysiological analyses). This approach allowed us to examine the periodicity scale of 

all TPCs. The population activity of these units spanned temporal scales ranging from tens 

of seconds to several minutes (Figure 2D). It is worth noting that such large temporal scales 

are beyond the temporal response patterns of traditional time cells, previously observed in 

the hippocampus and MEC of rodents, which involved temporal scales on the order of a 

few seconds.6,7 The time scales of TPCs are more similar to those of the ramping time cells 

discovered in the rodent LEC.14

The population of TPCs exhibited multiple time scales even within each participant (Figure 

3A; Table S3), as well as within different regions (Figure 3B). At the population level, the 

distribution of the TPCs’ dominant periods revealed a non-uniform distribution (p < 10−5; 

single sample Kolmogorov-Smirnov test against uniform distribution) and some time scales 

appeared to be more pronounced (e.g., dominant periodicities at 62.5s, 112.5s, 180s, 290s, 
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and 400s) (Figure 3C). Although thus far the results focused on the dominant periodicity 

(the oscillation with the highest power), some units had periodic firing at additional temporal 

scales. To determine other prominent oscillations, we calculated the relative power of the 

Z-scored firing rate autocorrelation with respect to the power at the dominant period and 

found the peaks with at least 75% of the maximum power (Figure 3D). Indeed, 35% of 

the units showed periodic firing at one or more frequencies in addition to their dominant 

periodicity (Figure 3E). These additional frequencies were not simply multiples of each 

other. Few units had more than two additional frequencies.

Time could be decoded from the population activity of TPCs

Given that TPCs exhibit periodicities at different time scales, it should be possible to decode 

time from TPCs’ population activity, akin to a Fourier decomposition using periodic basis 

functions. To test this, we first partitioned the duration of the movie into equally sized 

epochs (bin durations for the epochs ranged from 1 to 90 s). We used linear discriminant 

analysis with a holdout approach to predict the time epoch within the movie using the 

firing rate of the TPCs as input features (STAR Methods, Electrophysiological analyses). 

We found that for bin durations longer than 6s, we were able to successfully decode time 

from the movie onset and the accuracy of the model, applied on an independent test set, was 

significantly above chance level (decoding time from shuffled TPCs’ firing rates) (Figure 

4). The ability to extract precise, localized, temporal information from the population of 

TPCs, but not the shuffled data, shows that the periodic activity of the TPCs constitutes 

a viable mechanism to encode time. How the hippocampus may integrate such temporal 

information and incorporate it into encoding and retrieval of episodic memories deserves 

further investigation.25–27

TPCs’ periodicities showed invariance with respect to narrative content

Can the presence of periodicity in the firing activity of the neurons be explained by the 

particular events and structure of this movie? First, we asked whether the cuts in the movie

—defined as consecutive frames between sharp transitions20—were responsible for eliciting 

the TPCs’ periodic firing. However, the cut durations were markedly shorter (median, [25th, 

75th] = 2.31, [1.37, 3.10] s) than the TPCs’ dominant periodicities. Second, it seems unlikely 

that the TPCs’ time scales follow the content of the episode (e.g., the presence of specific 

characters in the movie was sparsely distributed; see Figure S6 in Tang et al.20). Further, 

the participants had not previously watched the episode and, therefore, could not predict the 

upcoming content that could, in return, dictate increase or decrease of firing activity. Last, 

if the TPCs’ periodicity was modulated by the content, one would expect that the activity 

of TPCs with similar dominant periodicities would be similar and, thus, highly correlated 

in time. This was not the case in our data, and the distribution of correlation coefficients 

between adjacent TPCs’ firing (defined as TPCs with dominant periodicities within a certain 

time interval, e.g., 5, 10, of 20 s) was not significantly different from zero (p > 0.05 for 

all intervals, signed rank test). However, one cannot fully rule out the possibility that the 

neuronal firing was partly modulated by nested event boundaries of the narrative content.28

To further assess the extent to which the TPCs’ periodic firing was modulated by external 

stimuli, we recorded data from five additional participants who watched the same episode, 
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but each half of the episode was presented to them at different speeds. For three of the 

participants, the first and second halves of the episode were played at regular and 1.5× 

speed, respectively. In the other two participants, the order of the two speeds was reversed. 

Of the 285 recorded units (Table S1), we identified 80 units that exhibited TPC-like 

behavior during both conditions (regular and faster speeds) using the methods described 

earlier (STAR Methods, Electrophysiological analyses). Of the 53 units recorded from the 

entorhinal cortex, 19 (35.85%) were TPCs—a percentage similar to that observed in the nine 

participants described previously (34.43%).

If the periodicities of TPCs were merely determined by the content of the narrative, one 

would expect the periodicities to change in concert with the different rates of information 

in the two conditions. In contrast, several TPCs maintained the dominant periodicity of 

their firing rate during regular- and faster-speed movie viewing (Figure 5A). These units 

exhibited stable periodic behavior across the two conditions (Figure 5B), suggesting that 

their periodicity was independent of the narrative content. Overall, a significant fraction of 

the recorded TPCs (20 of 80 total; 25.00%, [15.99%–35.94%], 95% CI from binomial test) 

maintained their time scales between the two conditions (Figure 5C). Despite this significant 

fraction of invariant TPCs, the majority of the cells remapped (Figure S5), suggesting that 

invariant periodicity may not be the dominant feature.

TPCs’ dominant periodicities remapped during memory test

Last, we asked whether the periodic activity related to the formation of episodic memories. 

We evaluated the periodic properties of TPCs during the memory test after viewing the 

movie (Figure 1B). We used the methodology described earlier to assess the significance 

of periodicity, as well as the dominant periods of the TPCs when participants were shown 

short clips and were tested for recognition memory (STAR Methods, Behavioral tasks). 

The majority (96.25%) of the TPCs maintained significant periodicity during the memory 

test, albeit at shorter time scales (Figures 6A and S6). Although some units maintained 

their dominant periods during the memory test (Figure 6B, bottom), most units (74.03%) 

remapped their periodicity to shorter time scales (Figures 6B [top] and 6C). The TPCs’ 

shorter periodicities during the memory test was not merely a response to the clip onsets as 

the time between clips (median, [25th, 75th] = 4.40, [3.38, 5.44] s) (Figure 6C, right) was 

much shorter than the dominant periods observed in the TPCs (Figure 6C, left). Overall, the 

TPCs’ dominant periodicities were significantly shorter during the memory test compared 

with movie viewing, both on a population level (Figure 6C) (p = 4.86 × 10−7, Wilcoxon 

rank-sum test), as well as on the same cell basis (Figure 6D) (p = 2.41 × 10−5, signed rank 

test). It is worth noting that, although most units reduced their dominant periods during the 

memory test, few TPCs within the entorhinal cortex maintained or increased their dominant 

periods (24.14%, [10.30%−43.54%], 95% CI from binomial test) (Figure 6E). Whether the 

compression of the TPCs’ time scales during the memory test is relevant for individual 

behavioral performance and memory remains to be explored in future investigations and 

will likely require technologies enabling sampling of a much greater number of neurons in 

humans.
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DISCUSSION

Recent studies in rodents have identified several cell types with time-dependent firing 

rates,5–14, notably hippocampal “time cells”6,7 and lateral entorhinal “ramping cells.”14 

There have been similar quests in primate electrophysiology to discover neurons with time-

coding properties. The activity of temporal context cells in the monkey entorhinal cortex29 

aligns primarily with the rodent lateral entorhinal ramping cells. Recent human studies using 

learning of sequences of word or picture stimuli described cells resembling the time and 

ramping cell types.30,31 It seems that time cells and ramping cells might contribute to two 

distinct types of temporal information: the sequential activity of time cells can map the 

delays with respect to a salient event along the time axis, whereas the gradual change of 

activity of ramp cells in response to a salient event, which occurs at different time constants, 

may serve as a Laplace transformation of the elapsed time.32

The time-dependent cellular machinery that we describe here is different altogether from 

those two cell types. It consists of a unique population of neurons with periodic modulation 

of activity across multiple time scales from tens of seconds to minutes. The reason that these 

cells so strikingly declared themselves is likely because of the continuous uninterrupted flow 

of information characterizing the current study. The key property of these cells was their 

periodicity over nearly one hour of relatively stable context, yet with enormous variability 

in sensory input. This stability of temporal periodicity was further demonstrated by the 

fact that a subset of TPCs maintained their dominant periodicity, despite the change in 

the video playback speed. This invariance to sensory input is required from an elementary 

neuronal clock where temporal information can be extracted from a population of neurons 

that together span a rich range of temporal scales from seconds to many minutes. In fact, 

previous models had proposed mechanisms that involved the extraction of time from a 

subset of neurons with periodic properties.25,26

Although the periodicity of the TPCs is observed in time and it is possible to decode time 

from the population activity of these cells, they may be responding to other time-varying 

signals rendering time representation a byproduct of this process. This argument may 

indeed hold true even for other types of time-coding cells and raises philosophical issues 

on whether time exists beyond “change” and the occurrence of events. Furthermore, the 

passage of time may be decoded from many other bio-signals—whether the brain in fact 

uses TPCs temporal information cannot be explored in the current study. Thus, perhaps the 

main significance of these findings is the presence of such temporal periodicity at the single 

neuron level at multiple time scales reaching many minutes and their primary presence in the 

human entorhinal cortex.

The remapping of TPCs’ periodicities seen in the memory task after movie viewing 

may be related to multiple factors including memory, change in the temporal structure 

of the task, and change in context. It might also explain why such large-scale temporal 

periodicity has not been reported, given that the recognition portion of the task more closely 

resembles the traditional stimulus-response task structure often employed in the field of 

human electrophysiology. If the shortening of periodicity is related to memory performance, 
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these cells may play a role in temporal compression of experience required for memory 

retrieval.32,33

Of note, most of the entorhinal TPCs were in the anterior part of the entorhinal cortex. 

In humans, a recent functional MRI (fMRI) study demonstrated that the activity of the 

anterolateral part of the entorhinal cortex is implicated in a temporal judgment memory 

task.34 Comparative anatomical studies of the human and rodent entorhinal cortex suggest 

that, in fact, the rodent LEC corresponds with the anterolateral portion of the entorhinal 

cortex and is, by nature, more multisensory compared with the MEC.35 Hence, it is possible 

that the TPCs might provide an additional temporal dimension to the incoming multisensory 

inputs to the entorhinal cortex.

The temporal periodicity of the TPCs begs comparison with the spatial periodicity of grid 

cells. If a regular grid is a tessellation of n-dimensional Euclidean space, TPCs may be 

viewed then as one-dimensional temporal grid-like cells. Just like grid cells provide a 

multiscale map of a two-dimensional spatial environment, TPCs in humans may provide a 

multiscale map of the one-dimensional temporal environment. Akin to remapping of grid 

cells with change in size of the spatial environment,15,36 TPCs exhibited remapping when 

the temporal structure of the task changed. If TPCs were indeed temporal counterparts of 

grid cells, one would expect that TPCs from different “modules” or anatomical locations 

may act differently under temporal changes (i.e., may show different degrees of invariance 

versus remapping); in our data, remapping seemed to be the dominant feature, although 

there was a significant percentage of temporally invariant TPCs. Furthermore, these 

cells were by far most prevalent in the entorhinal cortex, but they were also found in 

approximately 25% of anterior cingulate cells. Curiously, both entorhinal cortex and anterior 

cingulate were the brain regions where we had previously identified neurons with grid-like 

properties during human spatial navigation.37 Further, the entorhinal and anterior cingulate 

cortices were both implicated in retrospective duration estimations during encoding of 

long narratives.38 However, we acknowledge that there are additional factors that may 

differentiate TPCs and grid cells. The latter show stationary oscillating spatial patterns and 

are anchored to external borders of the environment, and thus can be used to measure 

distance in space. In TPCs, it is not clear how stationary the oscillations are and if there 

is any anchoring to external temporal boundaries. Whether the periodicity of TPCs is 

stationary warrants further investigation.

It is possible that the periodic activity of TPCs may be related to the infra-slow (<0.1 

Hz) fluctuations (ISF), previously described in the fMRI blood-oxygen-level-dependent 

(BOLD) signals, LFPs, as well as single unit activity.39–43 These infra-slow oscillations 

are remarkable in multiple ways: (1) BOLD ISFs are correlated between different brain 

regions (thus affecting functional connectivity); (2) BOLD and electrophysiological ISFs 

are correlated, in particular in their amplitudes; and (3) ISFs may be related to behavioral 

performance. The reported ISFs were predominantly observed in sensory and association 

cortices, whereas the majority of the TPCs were recorded from the entorhinal cortex. It 

is possible that entorhinal cortex that receives convergent inputs from these areas35 may 

integrate such infra-slow inputs into a more robust periodic time signal, one that is relevant 

for behavior.
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Limitations of the study

It should be borne in mind that there might be other interpretations for our findings. First, 

these TPCs were observed in patients with epilepsy and, thus, it cannot be ruled out that 

periodicity is affected by epileptogenicity. However, the majority (95%) of the TPCs in 

the current study were recorded from regions outside the focus of seizure onset. Second, 

the periodic activity of the TPCs may subserve a range of behaviors, unrelated to time 

processing (e.g., chunking of experience at multiple time scales or efficient dynamics 

for neural communication). Third, our analysis to determine whether the movie content 

was periodic was extensive, but not exhaustive. As such, we cannot fully rule out the 

possibility that individual cells could be segmenting putative regular events in the movie 

narrative that are not within our extensive annotations. Fourth, in the current study we did 

not explore any potential relationships between the periodicity of TPCs and recognition 

memory, which may limit further interpretations of the results. Last, it is likely that TPCs 

have conjunctive representations along dimensions other than time—a property that, if 

true, bears a resemblance to the conjunctive representation of navigational variables in the 

entorhinal grid cells.44

In light of the current findings, future studies are needed to examine whether temporal 

periodicity exists under different conditions and in other species, and determine the extent—

as well as strength—of invariance to external stimuli. Importantly, establishing relationships 

between the periodicity of TPCs and behavior, in particular memory, can shed light on 

whether and how TPCs are used in cognition. The potential synergy of grid cells and TPCs 

in providing spatiotemporal metrics of experience, and how their input may be incorporated 

in the hippocampus warrant further investigations, novel paradigms, and technological 

developments enabling concurrent recordings from large populations of cells in the human 

brain.

STAR☆METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, Itzhak Fried (IFried@mednet.ucla.edu)

Materials availability—This study did not generate any new reagents.

Data and code availability

• Data: Data collection for this specific study was often over 10 years ago, when 

the patients’ consent form did not include a statement about data sharing. As 

such, researchers interested in the data are encouraged to write a short proposal 

on what they intend to do with the data and then request the data from the 

corresponding author. This request, after review by the authors, will be submitted 

for an IRB approval (commonly done as an amendment). We do not anticipate 

this to be a lengthy procedure as amendments often involve a much shorter IRB 

process. Lastly, the data will be available for academic use, and not available for 

commercial research.
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• Code: A standalone notebook that generates synthetic data and contains code for 

the main analyses and figures of the paper can be found in the following GitHub 

repository: https://github.com/Zahra-M-Aghajan/temporally_periodic_cells

• Any additional information required to reanalyze the data reported in this work 

paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants—Participants were 14 patients with epilepsy (age = 31 ± 9 years, mean 

± STD; 9 female), implanted with intracranial depth electrodes for seizure monitoring. 

Informed consent as obtained prior to the surgery and experiments were done in accordance 

with the Institutional Review Board at UCLA.

METHOD DETAILS

Behavioral Tasks—The behavioral task (programmed in PsychToolbox, MATLAB) 

consisted of participants watching an episode of the TV series 24 (season 6, episode 1, 

duration ~42 min) on a laptop. Afterward, they were presented with short clips (duration = 

1.91 ± 0.72 s) and were asked to make a choice on whether they had seen the clip or not 

(response time duration = 2.39 ± 1.66 s), using the keyboard. The clips were divided into 

targets (clips chosen from episode 1 that they had just watched) and foils (clips chosen from 

episode 2 that they had never seen). The episodes of this series happen in consecutive hours 

of the day and, therefore, the characters’ appearances are very similar in the target and foil 

clips. Performance accuracy for each participant was computed as follows: (TP + TN)/(TP + 

TN + FP + FN), where TP, TN, FP, and FN are the true positive, true negative, false positive, 

and false negative respectively. We also computed an alternative behavioral performance 

measure, specifically d’ (d-prime) using the hit rate and false alarm rate values. These two 

measures of behavior (accuracy and d’) were highly correlated (r = 0.974, p = 4.20×10−5, 

Pearson correlation). The number of presented clips, and hence the duration of the memory 

test, varied from participant to participant.

Five additional participants performed an alternative version of the task. They watched the 

same episode of the TV series 24 but each half of the episode was presented at different 

playback speeds. In participants 1,3, and 5, the first half was presented at regular speed and 

the second half was presented at 1.5x speed. In participants 2 and 4, this order was reversed.

Data Acquisition—Electrophysiological data were recorded from implanted electrodes 

that terminated in a set of nine 40 micro-m Platinum-Iridium microwires.45,46 The number 

of electrode bundles, as well as their locations, were different for each participant and 

determined solely by clinical criteria. Wide-band local field potentials were recorded from 

eight microwires (the 9th microwire was used for referencing) using a 128-channel (or 

256-channel) Neuroport recording system (Blackrock Microsystems, Utah, USA) sampled at 

30 kHz.

Electrode Localization—A high-resolution post-operative CT image was obtained and 

co-registered to a pre-operative whole brain and high-resolution MRI for each participant 

using previous methods (Figure 1C; Table S1). The locations of the microelectrodes were 

Aghajan et al. Page 10

Cell Rep. Author manuscript; available in PMC 2024 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Zahra-M-Aghajan/temporally_periodic_cells


determined by examining the location of the electrode artifact on the co-registered images. 

For further details, see ref. 21.

QUANTIFICATION AND STATISTICAL ANALYSIS

Electrophysiological Analyses—Data were analyzed offline using custom code as well 

as functions and toolboxes in MATLAB and Python. The type of statistical tests used 

together with the number of samples (N) are specified within the text and figure legends 

when necessary.

Spike detection and sorting: Spike detection and sorting was done using previous 

methods21–24. Briefly, we applied a bandpass filter to the broadband data in the 300–3000Hz 

to detect spikes that were subsequently sorted using the Wave_clus toolbox. Furthermore, 

the automatically-detected clusters were manually inspected for: 1) spike waveforms; 2) 

presence of refractory spikes; as well as 3) the ISI distribution for each cluster and the 

quality of the clusters were assessed based on spike shape, variance, and the presence of 

a refractory period for units.24,47 Clusters with firing rates below 0.05 Hz were discarded 

from further analysis. The movie viewing and recognition memory test phases were recorded 

within a single session and, thus, spike detection and sorting was performed over the entire 

session. The activity of each unit was then separated for each phase (viewing/memory) of 

the experiment.

Firing rates and their autocorrelations: A time vector with a bin size of 100ms was 

constructed and, for each unit, the number of spikes within each time bin was computed. 

This raw spike train was used for the GLM analyses (next section). The smoothed spike 

trains were computed using a 0.5s Gaussian smoothing kernel on the raw spike histograms, 

which were then converted to firing rates after division by the duration of the time bin 

(Figures 2A, 5A, 6B, and S3–S6). To inspect the presence of putative oscillations in the 

spiking activity, normalized autocorrelations were computed over the smoothed firing rate.

Determining significant temporally periodic cells (TPCs): To determine whether the 

periodicity in the spiking activity, as demonstrated by the autocorrelation of the firing rates, 

was statistically significant, we used a shuffling procedure. For each unit: 1) we chunked 

the firing rate into 1-second-long segments and randomly shuffled the segments in time 

(x 250); 2) the previous step was repeated for 2-second-long segments. This procedure 

yielded 500 shuffled firing rates for which an autocorrelogram was calculated. Next, we 

compared the autocorrelation of the true firing rate against the autocorrelation of the shuffled 

firing rates. Units with true autocorrelations that had values beyond the 2.5% and 97.5% 

of the shuffled data were identified. Further, we used a cluster-based permutation test48 to 

correct for multiple comparisons (given the large number of lags that were being tested). 

Specifically, we used the function permutation_cluster_test from MNE Python package49 

and units with significant clusters were deemed to be TPCs. The different steps of this 

procedure are demonstrated in Figure S3.
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Generalized Linear Models (GLMs): The time-varying firing rate of each unit was 

modeled as an inhomogeneous Poisson process50 using basis functions that are periodic 

in time:

λ t = eβtimeHtime ⋅ eβ0

Tbin

Htime =
i

cos 2πt
T i

T i ∈ 2:20, 30:10:300, 320:20:500

Here, Tbin is the bin size in time (0.1 s), H refers to the design matrix associated with the 

temporal covariates, in this case cosine functions with different periods (Ti), and betas are 

the parameters associated with the design matrix in time and a constant term. Note that the 

exponentiation is done element wise in this case. This allowed us to determine the periods 

(Ti) that significantly contributed to the firing activity of the units (p < 0.001). Oftentimes, 

units had more than one significant term. The distribution of these periods is shown in 

Figure S2.

Dominant periodicity: To determine the strongest oscillation periodicity in the firing rate 

of the TPCs, we z-scored the autocorrelation of the smoothed firing rates (described in b) 

with respect to the shuffled data (described in c), referred to as z-scored autocorrelation for 

simplicity (Figure 2D). Next, we performed FFT analysis on the z-scored autocorrelation 

values for each unit and the period with the maximum power was chosen as the dominant 

period of the unit (Figure S3). To assess the strength of other potential periodicities, the 

power was normalized with respect to the strongest peak (corresponding to the dominant 

periodicity) and peaks with 75% of the maximum power were considered as secondary, 

tertiary, etc. periodicities (Figure 3).

Decoding time from TPCs’ population activity: Decoding analysis was done using Linear 

Discriminant Analysis as a classification method. We divided the data into equally sized 

time epochs and we performed this analysis for different bin sizes of [1:10, 15, 30, 45, 

60, 90] seconds. The epoch number was used as the output of the classification model and 

the activity of the TPCs within each epoch was used as the input to the model. Further, 

we used a hold-out method, i.e., the model was trained on randomized 75% of the data 

and an independent 25% of the data were left aside for testing and the model performance 

was evaluated on the test dataset (Figure 4). Additionally, the performance of the model 

was compared against shuffled data: the same classification method was applied on the 

temporally shuffled activity of the TPCs. For each unit, we chunked the firing rate into 

1-second-long segments and randomly shuffled them in time. We then concatenated the 

shuffled firing rates of all TPCs and obtained a surrogate input. We applied the same 
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classification method on the shuffle data and computed model accuracy. We repeated this 

shuffling procedure 250 times.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• When watching a movie, the activity of human neurons exhibits minute-scale 

periodicity in time

• Different neurons maintain or remap their periodicity when playback speed is 

altered

• During recognition memory, most neurons remap their periodicity to shorter 

time scales
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Figure 1. Task structure and electrophysiological recordings
(A) Participants watched an episode of the “24” TV series (approximately 42 min in 

duration) and afterward they were tested for recognition memory where they were shown 

short clips and asked whether they had previously seen them.

(B) The memory test included target clips (taken from the same episode they had watched, 

left column) and foil clips (taken from the next episode they had never seen before, right 

column). Images are adapted and modified from a previous publication.20

(C) Depth electrodes were localized by co-registering high-resolution post-operative 

computed tomography scans with high-resolution preoperative magnetic resonance imaging. 

Red cross-hair indicates the location of a microwire in the left entorhinal cortex (coronal 

view). For additional localization images, see Figure S1.
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Figure 2. TPCs exhibited significant periodic firing during movie viewing
(A) Seven example TPCs firing activity. These units were recorded from ventromedial 

prefrontal cortex (vm-PFC), entorhinal cortex (EC), EC, anterior cingulate, EC, EC, and 

parahippocampal gyrus respectively. The gray line indicates the firing rate (smoothed spike 

train divided by the 100-ms time bin). The red line indicates the GLM-fitted firing rate (see 

STAR Methods).

(B) Each row is the normalized autocorrelation of the smoothed firing rate of the unit shown 

in (A). Note the local peaks in the autocorrelograms (showing a periodicity in the unit 

firing), as well as the different time scales for each unit (x axis limits are adjusted according 

to the unit’s time scale). The autocorrelations are smoothed only for visualization purposes.

(C) Within each recording region, the percentages of TPCs during movie viewing are shown 

in green bars and the error bars indicate the CIs of a binomial test (for a full list of the 

number of recorded units and significant TPCs per region, see Table S2). The EC region 
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had the largest percentage of TPCs and the regions marked in light green did not have a 

significant percentage of TPCs (the CIs of the binomial test included the 5% chance level). 

The percentage of TPCs in regions other than EC are not within the CIs of the EC region.

(D) Z-scored autocorrelations of all the TPCs’ firing rates (colormap; n = 80) were sorted 

by the dominant periodicity (light green line) (see STAR Methods) for each unit (each row). 

Note the visible diverging lines parallel to the dominant period, corresponding to periodicity 

in the signal. The dominant periodicity of the units shown in (A) are as follows: 546.14, 

409.60, 273.10, 273.10, 182.04, 56.50, and 34.86 s.
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Figure 3. Distributions of the TPCs’ time scales
(A) Distributions within subjects. Z-scored autocorrelation of the TPCs’ firing rates 

(colormap) for two example participants sorted by the dominant periodicity (light green 

line) for each unit (each row).

(B) Dominant periods of TPCs are shown within each region and for each participant 

(different colored/sized circles). Note that none of the four units in participant 5 were TPCs 

(Table S2).

(C) The distribution of the dominant periodicity of all TPCs was not uniform (n = 80, p 

< 10−5; single sample Kolmogorov-Smirnov test against uniform distribution). Because of 

the non-uniform bins, the percentage of units in each bin is normalized by the duration of 

the time bin. Note the pronounced peaks at 62.5, 112.5, 180, 290, and 400 s (marked with 

dashed lines).

(D) To determine prominent oscillations at periods other than the dominant periodicity, we 

examined relative power of the Z-scored auto-correlogram (with respect to the maximum 
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power at the dominant periodicity) for each unit (row) sorted by the dominant period. Light 

green circles indicate periods at which power was at least 75% of the maximum power 

(corresponding with the dominant period).

(E) Using the method in (D), we found the number of prominent periods (including the 

dominant period) for each unit. Shown is the distribution of the number of periods per 

unit and 35% of the units had prominent periodic activity in addition to their dominant 

periodicity.
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Figure 4. Decoding time from the population activity of the TPCs
(A) Example confusion matrix (of the test set) from the time decoding analysis. Here, 

the time within the movie, and thus the activity of the TPCs (n = 80), was divided into 

1-min-long epochs and used as the input feature, while the output vector corresponded to the 

time bin numbers. Shown are the correctly classified time bins in green (the diagonal) and 

incorrectly classified time bins in pink (off diagonal).

(B) Decoding accuracy of the model on the test set was Z-scored with respect to the shuffled 

data (decoding accuracy on shuffled TPCs’ firing rates) for different decoding bin sizes. For 

epochs larger than 6 s in duration, decoding accuracy was significantly above chance level 

(Z = 5; red dashed line).
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Figure 5. Maintained periodicity of TPCs during movie viewing at altered playback speeds
(A) (Left) Example unit’s firing rate (gray) during the first one-half of the episode played 

at regular speed overlaid with the GLM-fitted firing rate (blue). (Middle) Firing rate of 

the same unit during the second half of the episode played at 1.5× speed overlaid with 

GLM-fitted rate (red). Right). Zoomed in views of the unit’s firing rate during the time 

intervals marked with black rectangles (Left and Middle). Note the same periodicity during 

movie viewing at regular speed (top) and accelerated speed (bottom).

(B) Z-scored firing rate autocorrelations of the units that exhibited the same periodicity 

during regular speed movie viewing (top) and faster speed movie viewing (bottom). Note 

that the neuron number is shared between the two panels and the colored lines represent the 

dominant periodicity of each unit.

(C) (Left) For each unit, the ratio of the dominant periodicity between regular-speed movie 

viewing and faster-speed movie viewing was computed. Shown is the distribution of this 

ratio across all identified TPCs (n = 80). Of these TPCs, a significant percentage (25.00%, 

[15.99%–35.94%], 95% CI from binomial test) maintained their periodicity between the 

different speed conditions (defined as a <10% change in their dominant periodicity 

across conditions). Dashed and dotted vertical lines indicate 1 and 1.5× playback speeds, 

respectively. (Right) Dominant periods of the units in the two playback speeds. Darker lines 

indicate units that did not change their dominant periodicity (<10% change) between the 

two conditions. Note that the majority of TPCs showed faster periodicity during the faster 

playback speed.
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Figure 6. Periodic properties of TPCs during the memory test
(A) (Left) Z-scored autocorrelation of the TPCs’ firing rate (colormap) during movie 

viewing sorted by the dominant periodicity (light green line) for each unit (each row) (same 

as Figure 2D reproduced here for comparison purposes). (Right) Same as left but for the 

memory test. Of the 80 TPCs recorded during movie viewing, 77 (96.25%) remained as 

TPCs.

(B) Two example TPCs’ firing rate during movie viewing (left) and the memory test (right) 

recorded from the entorhinal and cingulate cortex, respectively. The gray line indicates the 

smoothed firing rate and the red line indicates the GLM-fitted firing rate. The value tau is 

the dominant period of the unit in each condition.

(C) (Left) The dominant periods of the units were significantly shorter (p = 4.86 × 10−7, 

Wilcoxon rank-sum test) during memory test (n = 77, purple distribution) compared with 

movie viewing (n = 80; green histogram). Because of the non-uniform time bins, the number 

of units per bin is normalized by the duration of the time bin. (Right) The distribution of the 

inter-clip intervals during the memory test. Note that even the shortest dominant periods are 

longer than the inter-clip intervals shown here.

(D) For the same unit, the dominant period was shorter during the memory test compared 

with movie viewing (n = 77; p = 2.41 × 10−5, signed rank test). The reddashed line indicates 

the diagonal.

(E) For the TPCs recorded from the entorhinal cortex, shown are the dominant periods 

of the same cell during movie viewing (green circles) and memory test (purple circles). 

Gray (black) lines correspond with the units that decreased (increased or maintained) 
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their dominant periods. A significant percentage of the TPCs within the entorhinal cortex 

maintained or increased their dominant periods during the memory test compared to movie 

viewing as indicated by asterisk (24.14%, [10.30%−43.54%], 95% CI from binomial test).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB R2017A The MathWorks https://www.mathworks.com/products/matlab.html

Python Google Colaboratory https://colab.research.google.com/

TPC analysis This paper https://doi.org/10.5281/zenodo.8350692
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