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High-Broadband Seismoacoustic Signature of Vulcanian
Explosions at Popocatépetl Volcano, Mexico

Robin S. Matoza1 , Alejandra Arciniega-Ceballos2 , Richard W. Sanderson1 ,

Gerardo Mendo-Pérez3 , Alejandro Rosado-Fuentes3 , and Bernard A. Chouet4

1Department of Earth Science and Earth Research Institute, University of California, Santa Barbara, CA, USA,
2Departamento de Vulcanología, Instituto de Geofísica, Universidad Nacional Autónoma de México, México City, Mexico,
3Posgrado en Ciencias de la Tierra, Instituto de Geofísica, Universidad Nacional Autónoma de México, México City, Mexico,
4Arzier-Le Muids, Switzerland

Abstract We present high-broadband infrasound (∼0.01–100 Hz; 200-Hz sample rate) observations
of Vulcanian explosions at Popocatépetl volcano, Mexico. Popocatépetl is a highly active andesitic
stratovolcano with regular violent explosions, making it a promising target for seismoacoustic observations.
We deployed a four-element broadband infrasound array (aperture ∼50 m) colocated with a compact
broadband (120 s) seismometer at a site (ATLI) 15.8 km to the east-southeast of Popocatépetl’s summit.
We highlight waveform examples from five powerful explosions during October to December 2017 that
produced infrasound zero-to-peak pressure amplitudes ranging from ∼30 to 100 Pa at ATLI. The infrasound
waveforms are highly asymmetric and are associated with clear air-ground-coupled arrivals on
seismometers, with inverted vertical displacement waveforms tracking infrasonic pressure waveforms.
Popocatépetl is close to major population centers, and array processing reveals persistent background
infrasound from multiple directions, presumably of anthropogenic origin; our results have implications for
infrasound monitoring at populated volcanoes.

Plain Language Summary Seismology and acoustics are complementary methods for
quantifying volcanic eruption processes, corresponding to elastic wavefields propagating through the
solid Earth and acoustic wavefields propagating through the fluid atmosphere, respectively. Seismic data
currently form the backbone of most volcano-monitoring systems. Seismic signals at erupting volcanoes
capture subsurface magma transport and rapid depressurization associated with explosive eruptions.
Infrasound (acoustic waves with frequencies below 20 Hz, the lower-frequency limit of human hearing)
is a newer technology; infrasound data record subaerial degassing and allow physical quantification of
explosive eruption mechanisms. Popocatépetl is one of the two most active volcanoes in Mexico (together
with Volcán de Colima) and a prodigious source of explosive activity, making it an obvious target for
combined seismic and infrasound (seismoacoustic) observations. We recorded continuous infrasound and
seismic waveform data at a site 15.8 km to the east-southeast of Popocatépetl for several months, capturing
five powerful explosions. Our data were collected at a location where local people report hearing sounds
associated with visual observations of explosions from Popocatépetl. Part of the motivation of this work is
to investigate the capability of infrasound stations at distances greater than 5 km to monitor Popocatépetl
with significantly reduced risk exposure to field personnel and instrumentation.

1. Introduction

Popocatépetl (19.023∘N, 98.622∘W; smoking mountain in Náhuatl language) is an active 5,452-m-high
andesitic stratovolcano located in the central region of the Trans-Mexican Volcanic Belt (Figure 1); it is the sec-
ond highest mountain and one of the two most active volcanoes in Mexico (together with Volcán de Colima).
Popocatépetl is close to major population centers such as Puebla City (45 km) and Mexico City (60 km); mil-
lions of people and infrastructure are exposed to risk from its eruptions (De la Cruz-Reyna & Siebe, 1997; Martin
Del Pozzo et al., 2017). During the past 5,000 years, major Plinian eruptions from Popocatépetl have occurred
at least 4 to 5 times, impacting the environment of the entire region, with the effects on human settlements
and agriculture imprinted in the archeologic and geologic records (Panfil et al., 1999; Siebe et al., 1995, 1996,
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Figure 1. (a) Map showing the location of the ATLI station (high-broadband infrasound array and seismometer) and
broadband seismic station PPIG in UTM zone 14∘N coordinates. Contour interval is 100 m in elevation from Advanced
Spaceborne Thermal Emission and Reflection Radiometer topography; select contours are labeled, with 3,000, 4,000,
and 5,000 m contours shown in yellow. The ATLI array is at 2,240-m elevation above sea level. The active vent of
Popocatépetl is indicated by a black triangle. The basemap is a 4 January 2011 National Aeronautics and Space Agency
Earth Observatory image. (b) Regional map showing potentially active Holocene (past 10,000 years) volcanoes (red
triangles; Global Volcanism Program, 2013), tectonic plate boundaries (black lines; Coffin et al., 1998), and national
boundaries (black lines). Popocatépetl is shown as a black triangle in the Trans-Mexican Volcanic Belt (TMVB). (c) The
ATLI array geometry on equal-scale Cartesian axes; vertical is north. See supporting information (Figure S1) for a regional
map showing ATLI and nearby population centers.

1999). Eruptive activity has been comparatively mild during the last few centuries (e.g., De la Cruz-Reyna et al.,
2007).

After nearly 70 years of quiescence, Popocatépetl underwent a significant reactivation in December 1994 and
since then its eruptive activity has been dominated by hydrothermal processes and magmatic degassing,
characterized by periodic emissions of gas and ash, occasional Vulcanian explosions, episodic passive effu-
sions of lava, and the extrusion and destruction of lava domes. All of these eruptive dynamics result
in abundant seismicity, including long-period and very-long-period events, tremor, and explosion signals
(Arciniega-Ceballos et al., 1999, 2000, 2003, 2008, 2012; Arámbula-Mendoza et al., 2016; Chouet et al., 2005;
De la Cruz-Reyna et al., 2008; Roman, 2017). This activity is associated with rumbling and roaring sounds that
can commonly be heard in different localities within about 20 km surrounding Popocatépetl (and occasion-
ally farther, e.g., Puebla, ∼45 km, presumably for larger explosions and as propagation conditions such as
wind direction allow). Since its 1994 reactivation, Popocatépetl has been continuously monitored with seis-
mic, Global Positioning System (GPS), gas, and visual techniques and has become a well-documented case
study in volcanology (Delgado-Granados et al., 2008).

Infrasound technology adds to a growing suite of geophysical tools available to characterize, understand,
and monitor volcanic processes. Shallow and subaerial volcanic processes radiate infrasound directly into
the atmosphere; sampling this infrasound complements seismic data and aids with physical quantification
of explosive eruption mechanisms (e.g., Fee & Matoza, 2013; Garcés et al., 2013; Johnson & Ripepe, 2011;
Matoza et al., 2019, and references therein). Popocatépetl is an obvious target for infrasonic study, but previ-
ous observations have been limited. On 24 February 1664, an explosion at Popocatépetl apparently caused
windows and doors in Puebla to burst open (Delgado-Granados et al., 2008, and references therein). Raga
et al. (2002) presented long-period and low-sample rate (1 Hz) microbarograph recordings (11.4-km distance)
of Popocatépetl explosions, performing numerical simulations of the atmospheric expansion waves using a
compressible gas dynamics formulation. Arámbula-Mendoza et al. (2013) describe short-period (flat response
1–5 Hz, limited dynamic range) infrasound recordings at distances of 4.8 and 8.4 km from Popocatépetl.
Here we present high broadband (∼0.01–100 Hz; 200 Hz sample rate) and high dynamic range infrasound
array observations of Popocatépetl explosions, capturing Popocatépetl explosion acoustics with unprece-
dented fidelity. Infrasound technology has clear potential to augment the existing monitoring systems at
Popocatépetl. However, Popocatépetl’s activity presents logistical challenges, and part of our motivation is to
investigate the capability of arrays at distances greater than 5 km to monitor the volcano with significantly
reduced risk exposure to field personnel and instrumentation.
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Figure 2. Progressive Multichannel Correlation (PMCC) array processing results for the ATLI array from 27 October to 31
December 2017 (days 300 to 365, 2017); all times in UT. (left panel) Coherent acoustic plane wave arrivals as a function
of time are displayed as filled circles at the backazimuth of arrival, with the color scale representing the mean signal
frequency and the symbol size proportional to root-mean-square signal amplitude. More than one PMCC detection
(filled circle) can be associated with each individual explosion event. The horizontal dashed line indicates the
backazimuth to Popocatépetl (283.7∘). The vertical dashed lines represent network-coincident STA/LTA detections
derived from a separate processing with the infrasound waveforms (see text for details), corresponding to five explosion
signal detections at ATLI at times 20:41:22.075 4 November (day 308) 2017; 22:54:28.760 6 November (day 310) 2017;
13:35:35.175 10 November (day 314) 2017; 23:55:47.205 24 November (day 328) 2017; and 04:53:21.470 25 November
(day 329) 2017. A sixth STA/LTA trigger on 13 December 2017 (day 347) results from a data glitch. (right panel) As in the
left panel but displayed in frequency-azimuth space. There is a spurious large-amplitude detection associated with the
day 310 event, which appears at a higher azimuth and lower frequency than the true event from Popocatépetl. We
interpret this as a processing artifact resulting from the large-amplitude explosion signal biasing the root-mean-square
amplitude calculation for an ambient infrasound signal. STA/LTA = short-term average/long-term average.

2. An Infrasound Array Study of Popocatépetl

In September 2017, we deployed a four-element infrasound array (aperture ∼50 m) colocated with a broad-
band seismometer at a site (ATLI, Atlimeyaya, Puebla) 15.8 km to the east-southeast of Popocatépetl’s summit
(Figure 1). The array (ATLI) consisted of four broadband Hyperion IFS-3111 infrasound sensors with sensitivity
set to record pressures ±500 Pa on scale (1,000 Pa full-scale range) and two channels (vertical and radial) of a
120-s Trillium Compact Posthole seismometer (total number of channels limited by the six-channel digitizer).
The continuous waveform data were sampled at 200 Hz and recorded locally on a six-channel 24-bit REF TEK
130S digitizer; all sensors have a flat response from ∼0.01 to 100 Hz. The seismometer was directly buried
∼1 m deep. The infrasound array element locations were determined with a differential GPS. Each infrasound
sensor was equipped with a high-frequency wind shroud for wind-noise reduction and deployed directly out-
doors. The ATLI site was chosen considering its orientation with respect to the crater shape; Popocatépetl
currently has an asymmetric crater, with shallower crater walls and less topographic blocking to the east and
approximately toward the ATLI site (Figure 1). ATLI is in a location where local people report hearing sounds
associated with visual observations of emissions, indicating audible acoustic frequencies (>20 Hz) at this dis-
tance. We also utilize data from broadband seismic station PPIG 4.9 km from the summit (Figure 1), part of
the permanent network monitoring Popocatépetl, and consisting of a Streckeisen STS-2 seismometer with a
24-bit Quanterra Q330 digitizer sampling at 100 Hz deployed in a concrete vault.

We set the sample rate at ATLI to 200 Hz, capturing frequencies up to a Nyquist frequency of 100 Hz. Accord-
ing to the International Federation of Digital Seismograph Networks (FDSN) Standard for the Exchange of
Earthquake Data (SEED), the ATLI data are accordingly classified as high broadband (band code H), which cor-
responds to sample rates from ≥80 to <250 Hz combined with instrumentation with a corner period ≥10 s
(Ahern & Dost, 2012). We present example signals from Popocatépetl containing frequencies extending up to
the Nyquist frequency. Infrasound refers to acoustic waves below 20 Hz, the lower-frequency limit of human
hearing. The band from 20 Hz up to 100 Hz is loosely termed the sub-bass range. Our high-broadband ATLI
data thus capture Popocatépetl acoustic signals in the infrasound and sub-bass ranges.

We operated the ATLI array continuously from 15 September 2017 to 9 June 2018, but encountered logistical
challenges and some equipment damage resulting in part from impacts of the nearby Mw 7.1 Puebla (Central
Mexico) earthquake, 19 September 2017. Here we focus on a time period from 27 October to 31 December
2017 (days 300 to 365 of 2017, Figure 2), in which all channels of the ATLI array (infrasonic and seismic) were
functioning normally.
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3. Infrasound Data Processing
3.1. Background Infrasound Sources at Popocatépetl
Infrasound arrays permit the identification of coherent infrasound signals of interest within background inco-
herent wind noise (Walker & Hedlin, 2010) and unwanted ambient infrasound signals (Garcés et al., 2003;
Matoza et al., 2007, 2013). Infrasound array processing also enables discrimination between acoustic and
seismic arrivals (e.g., ground-air wave conversion or mechanical shaking of sensors) based on the apparent
velocity across the array.

We process the ATLI infrasound array data using the Progressive Multichannel Correlation (PMCC) method
(Cansi, 1995; Cansi & Klinger, 1997; Le Pichon et al., 2010). PMCC estimates wavefront parameters (e.g., back-
azimuth, apparent velocity, root-mean-square amplitude) of coherent plane waves using correlation time-
delays between successive array element triplets or subnetworks. PMCC performs a grid search for coherent
signals in advancing time windows over a set of frequency bands defined with band-pass filters, forming a
pixelated time-frequency representation of coherent infrasound. We use 30 log-spaced frequency bands from
0.01 to 40 Hz with window lengths varying from 200 to 30 s and time steps of 10% of the window length
(parameters adapted from Matoza et al., 2013, to extend to the higher frequencies considered here).

The ATLI array records a variety of ambient acoustic signals (Figure 2). The relatively small array aperture
(aperture ∼50 m, Figure 1c) results in relatively few array detections of microbaroms (signals from ∼0.1 to
1 Hz) (Landès et al., 2012). These occasional Pacific microbarom detections arrive at a similar backazimuth to
those from Popocatépetl (backazimuth from ATLI to Popocatépetl is 283.7∘) but can be discriminated from
the volcanic signals based on frequency content (Figure 2). Mexico City (distance ∼60 km) also falls at a
similar backazimuth to Popocatépetl as viewed from ATLI (∼290–335∘; see supporting information, Figure
S1), and presumably contributes to the low-amplitude ambient signals in the 1- to 10-Hz range arriving at
backazimuths between 280∘ and 320∘.

The high sample rate also results in recording numerous high-frequency (>10 Hz) ambient infrasound and
sub-bass signals, which appear as repetitive signals from relatively stable backazimuths, consistent with local
anthropogenic sources. We do not attempt to identify the various local infrasound sources, but major clus-
ters in derived backazimuths between ∼160 and 260∘ of signals >5 Hz are consistent with nearby towns
including Atlimeyaya and Atlixco, possibly representing signals from traffic, industrial activity, power plants,
airplanes, fireworks, etc. Diurnal variation of these detections is complicated, indicating combined effects of
diurnal variations in source activity, atmospheric propagation conditions, variations in site noise conditions,
and competition and interference between different sources in the same frequency band (Matoza et al., 2019).
Identification of local infrasound sources could be achieved in future by deploying more infrasound arrays
and using backazimuth cross-bearings to localize the sources (e.g., Matoza et al., 2017). Popocatépetl is sur-
rounded by numerous villages and towns, highlighting the need for multiple infrasound arrays at different
azimuths around the volcano for robust source discrimination in a future monitoring context.

3.2. Automated Explosion Signal Detection
Vulcanian explosions during the study period at Popocatépetl produced high-amplitude and rapid-onset
infrasound at ATLI (Figure 3), signal features which can be exploited for automated detection. PMCC-derived
amplitudes are higher than for any other signals recorded by ATLI during this time (Figure 2 symbol size),
providing a simple criterion for automated detection (high-amplitude, coherent signal, originating from direc-
tion of Popocatépetl). We also separately apply a network-coincident STA/LTA (short-term average/long-term
average) detector to the four ATLI infrasound channels (Beyreuther et al., 2010; Withers et al., 1998). We use
a recursive STA/LTA method with an STA length of 0.5 s, an LTA length of 40 s, and triggering with an STA/LTA
threshold ratio of 30 on at least three channels, a high value appropriate for high-amplitude explosion signals
(Matoza et al., 2014). This produces six STA/LTA triggers, five of which coincide with the high-amplitude PMCC
arrivals originating from the direction of Popocatépetl (Figure 2) and that we manually verify as explosion sig-
nals (Figure 3 and supporting information Figures S2–S6); the sixth results from a nonphysical data glitch. We
subsequently focus on these five high-amplitude explosion events. A summary of information in the Centro
Nacional de Prevención de Desastres (CENAPRED) observatory reports for the five Popocatépetl explosions
considered in this study is provided in the supporting information, Table S1.

Lower STA/LTA thresholds of 20 and 10 increase the numbers of triggers to 20 and 196, respectively. Man-
ual inspection reveals that the 14 additional triggers resulting from lowering the STA/LTA threshold from
30 to 20 are not signals from Popocatépetl and may be signals from local anthropogenic sources (e.g., con-
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Figure 3. (a) Waveforms for a Popocatépetl explosion signal arriving at ATLI at 13:35:35.175 10 November (day 314) 2017; all times in UT. Zero time for all
displayed waveforms corresponds to the network-coincident STA/LTA trigger time at ATLI (13:35:35.175 10 November 2017). We show waveforms for stations ATLI
and PPIG. Channel labels HDF1–HDF4 correspond to the four channels of the ATLI infrasound array and BEAM to the traces aligned for the backazimuth of
Popocatépetl (283.7∘) and a trace velocity of 350 m/s derived from PMCC. Channel label HHZ refers to the vertical seismic component. Axis labels indicate
physical units of pressure, velocity, or displacement in each case. The vertical blue bars on PPIG waveforms indicate the estimated arrival time of the airwave at
PPIG given the difference in source-receiver distance (airwave arrives 33.2 s earlier at PPIG than ATLI) assuming a propagation velocity of 330 m/s. All waveforms
shown are unfiltered, except for a high-pass filter above 0.01 Hz applied in deriving the displacement waveforms. (b) Same as Figure 3a, but for a Popocatépetl
explosion signal arriving at ATLI at 04:53:21.470 25 November (day 329) 2017; all times in UT. Compared to the event shown in Figure 3a, this event has a lower
acoustic amplitude and a more complex seismic wave train. The infrasound records help with identifying the air-ground-coupled arrival at PPIG and recognizing
its contribution to the recorded seismic waveform. STA/LTA = short-term average/long-term average.

struction), lightning strikes, or nonphysical data glitches, confirming that the STA/LTA threshold of 30 is
appropriate. It is possible that the data contain additional lower-amplitude or nonimpulsive signals (e.g.,
tremor) from Popocatépetl, which we do not attempt to identify here. The high level of ambient anthro-
pogenic noise presents additional challenges to infrasound signal identification and discrimination, beyond
the scope considered here.

4. Seismoacoustic Signature of Vulcanian Explosions

We focus on the five high-amplitude explosion events identified in Section 3. Two of these events are shown
here in Figure 3, while similar plots for the remaining three events are included as supporting information
(Figures S2–S6). All waveforms shown in Figure 3 are unfiltered, with the exception that a high-pass filter
above 0.01 Hz was applied in deriving the displacement waveforms prior to integrating the velocity records.
All instrument responses have been removed.

The highest amplitude event of the five is shown in Figure 3a (peak pressure of 99.7 Pa at ATLI), while Figure 3b
shows a lower-amplitude event (peak pressure of 33.2 Pa at ATLI) with a more complex seismic wave train.
Although the observed infrasound amplitudes vary from ∼30 to 100 Pa, the infrasound waveform signatures
for all five events are consistent and highly correlated. Utilizing a waveform sample from−5 to 50 s around the
trigger time, the beamed infrasound data for the different explosions are all correlated with one another with
maximum correlation coefficients above 0.91. That is except for the 24 November (day 328) event, which has
maximum correlation coefficients of ∼0.6–0.74 with the other events, likely resulting from additional noise
contaminating this recording (see supporting information, Figures S7–S11). The high correlation between
different events indicates that the explosion mechanism itself is repetitive; we interpret this as infrasound
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Figure 4. Comparison of infrasonic pressure waveforms (black) with
inverted vertical displacement waveforms (blue) for the five large explosion
events as recorded at ATLI. The infrasonic waveforms are beamformed traces
with unit gain. The displacement waveforms are inverted by multiplying the
original displacement trace by −1. The small relative time shift has been
removed based on beamforming equations for the azimuth of Popocatépetl
and acoustic trace velocity observed with PMCC (350 m/s). For each event
we label xcf: the maximum correlation coefficient between infrasound
beam and inverted displacement waveform; pkp: the peak pressure [Pa] of
the infrasound waveform; and scl: the amplitude scale factor [Pa/μm]
needed to scale the inverted displacement waveform with the pressure
trace, based on matching peak pressure and peak inverted displacement.

waveforms dominated by a rapid pressure release, with minor waveform
differences arising from additional source complexity and variety in frag-
mentation.

The seismic waveforms for each explosion share common features, with
sustained seismic phases arriving prior to a ground-coupled airwave
(air-ground converted wave) (e.g., De Angelis et al., 2012; Fee et al., 2016;
Garces et al., 2000; Petersen & McNutt, 2007), which is delayed consis-
tent with differences in seismic and infrasonic propagation velocities. The
air-ground-coupled arrival is clearly visible in the vertical velocity wave-
forms, and the methods of Ichihara et al. (2012) and Matoza and Fee
(2014) produce characteristic cross-correlation and coherence signatures
between infrasound pressure and seismic vertical velocity waveforms (see
supporting information, Figures S12–S16).

Additionally, here we find that inverted vertical displacement waveforms
track the infrasonic pressure waveforms well and consistently for all five
explosions (Figure 4). In Figure 4, we have artificially polarity-reversed the
displacement waveform by multiplying the original displacement trace by
−1, corresponding to a 180∘ phase shift. We also scale the inverted dis-
placement waveforms to the pressure waveforms based on the waveform
maxima (values of scl ranging from 6.73 to 8.94 Pa/μm, Figure 4). In addi-
tion, we have removed the delay time resulting from acoustic wave prop-
agation between the seismic and infrasound sensors using beamforming
equations (e.g., DeFatta et al., 1988) to simulate a colocated seismoacoustic
sensor pair.

Inverted vertical seismic displacement and acoustic pressure waveforms
are highly correlated, with normalized correlation coefficients of 0.85–0.96
(Figure 4) obtained using the full waveform duration from−5 to 20 s shown
in Figure 4 (i.e., pressure and vertical displacement are anticorrelated). The
derived amplitude-scale factors of ∼7–9 Pa/μm are based simply on the
waveform maxima but are relatively consistent for all five explosions. We
do not attempt quantitative modeling of the pressure and displacement
waveforms (Ichihara et al., 2012; Sabatier et al., 1986; Tanimoto & Wang,
2018), but presumably the amplitude-scale factor is related to the elastic
properties of the near-surface material in which the seismometer is buried,
in particular, the impedance. To first order, a positive pressure change at

the ground surface pushes down on the ground, resulting in a downward vertical displacement, while a
pressure decrease (negative pressure change) at the surface results in an upward vertical displacement. Sim-
ilar vertical displacement signatures are observed at PPIG at the predicted airwave arrival time (Figure 3).
A similar observation was noted by Yamada et al. (2016) for Vulcanian explosions at Lokon-Empung vol-
cano, Indonesia, with a downward displacement phase excited by an infrasonic explosion wave arrival. In
addition, de Groot-Hedlin et al. (2008) showed an N-wave signal from the shuttle Atlantis with a similar rela-
tionship between infrasonic pressure and vertical displacement waveforms, but with a more complex seismic
waveform.

For the event shown in Figure 3b, the air-ground-coupled arrival in the ATLI vertical seismic velocity waveform
has an additional broadband coda component, which is apparent in the infrasound waveform and presumably
results from additional source complexity (e.g., Johnson et al., 2009; Matoza et al., 2014; Yamada et al., 2016).
An arrival with similar waveform features appears in the PPIG data at the predicted airwave arrival time.

The relatively high sample rate (200 Hz) allows us to examine the spectral signature of Popocatépetl’s Vul-
canian explosions and associated air-ground coupling up to the Nyquist frequency of 100 Hz (Figure 5). The
power spectral density estimates of the infrasound explosion waveforms (Figures 5a and 5e) reveal that these
signals are not limited to the infrasound range (<20 Hz) but extend throughout the sub-bass range, remain-
ing above noise up to the 100-Hz upper limit of our data. Such wave arrivals would likely be perceived by
humans as an audible very low frequency sound, and/or felt. The constant slope of the spectrum from the
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Figure 5. Seismoacoustic cross-spectral analysis for Figures 5a–5d: 13:35:35.175 10 November (day 314) 2017 event
(shown in Figure 3a) and Figures 5e–5h: 04:53:21.470 25 November (day 329) 2017 event (shown in Figure 3b).
(Figures 5a and 5e) Power spectral density of infrasonic waveform; (Figures 5b and 5f) power spectral density of vertical
seismic velocity waveform; (Figures 5c and 5g) coherence; and (Figures 5d and 5h) gain of the transfer function. Black
lines are for the signal from −50 to 50 s around the trigger time. Blue dashed lines are for a 100-s noise sample prior to
the trigger.
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peak frequency near 0.5 Hz up to 100 Hz indicates a common source process for this wide frequency content,
and a seamless transition between the infrasound and sub-bass frequency ranges, likely involving nonlinear
source and propagation effects to some degree (Atchley, 2005; Ishihara, 1985; Marchetti et al., 2013; Matoza
et al., 2019; Yokoo & Ishihara, 2007). Above about 10 Hz, however, we observe additional bumps in the spectra
which we attribute to additional source complexity (see spectrogram figures, supporting information, Figures
S7–S11). The coherence analysis (Figure 5) similarly indicates air-ground coupling across this wide frequency
range ∼0.01–100 Hz, but observation above 10 Hz is limited by the noise levels in the seismic data. We note
the increase in gain of the transfer function as a function of frequency (Figures 5d and 5h), which has previ-
ously been observed and attributed to a site response dependent upon near-surface geology (Matoza & Fee,
2014).

Station PPIG was formerly named PPM and seismic velocity waveforms recorded at this location associated
with Popocatépetl explosions are presented in the study by Arciniega-Ceballos et al. (1999). Comparison of
waveform amplitudes between the present study and those of Arciniega-Ceballos et al. (1999) and Chouet
et al. (2005) indicate that the explosions analyzed in this study have magnitudes similar to past explosions.

Our results reaffirm the utility of infrasound data in interpreting seismic waveforms recorded at volcanoes.
Specifically, our results indicate that air-ground-coupled infrasound contributes significantly to seismic wave-
forms associated with Vulcanian explosions at Popocatépetl. Our results also suggest that vertical seismic
displacement waveforms may be exploited to identify and characterize high-amplitude infrasound explosion
waveforms, even in the absence of dedicated infrasound data.

5. Conclusions

We observe clear seismoacoustic waveform signatures of five Vulcanian explosions at Popocatépetl vol-
cano, Mexico, in November 2017 using a high-broadband infrasound array. For each explosion, we observe
a high-amplitude and rapid-onset infrasound waveform that is air-ground coupled, with inverted vertical
displacement waveforms tracking infrasonic pressure waveforms. Infrasound data facilitate the interpre-
tation of seismic data at volcanoes, allowing significant air-ground-coupled arrivals to be identified in
seismic waveforms. Infrasound technology has clear potential to augment the existing monitoring systems
at Popocatépetl; however, high levels of anthropogenic noise are observed. Ambient anthropogenic infra-
sound source distributions should be considered in the design of future infrasound monitoring networks at
populated volcanoes.
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