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Abstract

We address the question of memory maintenance in
a neuronal system whose synapses undergo continuous
metabolic turnover. Our solution is based on neuronal
regulation mechanisms. We develop this concept and
demonstrate it within the framework of a neural model
of associative memory. It operates in conjunction with
random activation of the memory system, and is able to
counterbalance degradation of synaptic weights, and to
normalize the basins of attraction of all memories. Over
long time periods, when the variance of the degrada-
tion process becomes important, synapses are no longer
maintained at their original values. Nonetheless, mem-
ories can be maintained provided there exist appropri-
ate bounds on synaptic growth. The remnant memory
system is obtained by a dynamic process of synaptic se-
lection and growth driven by neuronal regulatory mech-
anisms.

Introduction

Memories can be maintained for very long periods of
time, even during our whole lifetime. A fundamental
dogma in the Neurosciences is that memories are en-
graved in the brain via specific, long-term, alterations in
synaptic efficacies. However, synaptic turnover is rela-
tively widespread in the mature nervous system (Goelet
et al.1986; Lismanl994; Wolff et al.1995). How then
are memories maintained for very long periods? Clearly
memories can be maintained if synaptic weights can be
kept fixed, which is the purpose of several mechanisms
that were suggested in the literature. An interesting
alternative, that we will explore below, is maintaining
memories with altered synaptic values, i.e., synapses
change dynamically and still encode the original memo-
ries (Kavanaul994).

Memory maintenance is carried out on the neuronal
level and compensates for synaptic degradation. It has
the interesting property of normalizing basins of attrac-
tion, and prevents the formation of pathologic neural as-
semblies. To perform memory maintenance, the neurons
in our model regulate their overall level of synaptic in-
puts (i.e., average post-synaptic potential) by activating
neuronal requlatory (NR) processes that jointly modify
all the incoming synapses of the neuron by a common
factor.

Our proposal is biologically motivated by the extensive
experimental evidence of homeostasis mechanisms that
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act to maintain neuronal activity (see (van Ooyen1994)
for a comprehensive review). It is a generalization of a
previous work (Horn et al.1996a) where we have stud-
ied a similar mechanism for the extreme case of synaptic
deletion in the context of Alzheimer’s Disease. A first
version of this model was presented in the Cogsci con-
ference last year (Horn et al.1996b). The present work
extends the previous version significantly in two impor-
tant ways: First, by incorporating dynamical synaptic
learning. Second, by introducing bounds on synaptic
weights. The latter turns out to be crucial for the em-
bedding of long term memories, which can be maintained
with modified synaptic values.

The Model

We study NR in the framework of an excitatory-
inhibitory associative memory network (Tsodyks1989).
M memory patterns are encoded on the N excitatory
neurons only, with sparse coding level p << 1. The in-
hibitory neurons are assumed to serve the role of induc-
ing competition between the excitatory neurons. Their
effect is represented by a global term. The initial synap-
tic efficacy J;;(t = 0) between the jth (presynaptic) neu-
ron and the 7th (postsynaptic) neuron is chosen in the
Hebbian manner

M
1
Jij(t=0)= N—pZn"m"j (1)
u=1

where n# are the stored memory patterns. The updating
rule for the activity state V; of the ith binary neuron is
given by

Vi(t' + At') = S (hi(t') - T) (2)

where 1’ denotes the fast time scale of the updating of the
network in a single retrieval trial, and T is the threshold.
S(z) is a stochastic sigmoid function, getting the value
1 with probability (1 +e~%)~! and 0 otherwise.

hi(t') = hi(t') — Q') + L (3)

is the local field, or membrane potential. It includes
the excitatory Hebbian coupling of all other excitatory
neurons,

N
Ri(t') =Y JiiVi(t) (4)
i
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an external input ;, and inhibition that is proportional
to the total activity of the excitatory neurons

N

Q)= 5= L) )

J

As long as the inhibition strength obeys v > Mp? the
network performs well. Performance is measured by ns-
sessing the average recall of all memories. The retrieval
quality at each trial is measured by the overlap function,
m*, that denotes the similarity between the final state
V' the network converges to and the memory pattern n*
that is cued in each trial, defined by

N
mh(t') = m Y (*—pilt) . (6)
i=l1

Synaptic weakening due to metabolic turnover, or
synaptic degradation, is modeled by

Jij(t + At) = (1 — ;) Ji5(2) , (7)

where the time t denotes the number of degradation and
maintenance steps, or epochs. The degradation parame-
ters ¢;; are generated randomly with average ¢ and stan-
dard deviation ¢.. Synaptic strengthening resulting from
NR is represented by

Jii(t+ A1) = eaii (1) (8)

in which the regulation factors ¢; correct the values of
all excitatory synaptic connections projecting on neuron

) ¢; = 1+ rtanh [n (l - h;}—fj)))] (9)

where Hf = (h®;(t = 0)) and & and 7 are rate constants.
This choice of ¢; maintains the average neuronal input
field at its baseline value, H, since it counterbalances
the effect of any shift in hf. The tanh function limits
the effects of sudden large changes in the field, thus in-
creasing the stability of the resulting network dynamics.
In numerical simulations we use x = 10 and 7 = 0.01,

In every simulation experiment described below, a se-
quence of synaptic degradation and maintenance steps
is executed. Each such step (one time unit, or ‘epoch’,
in the results reported below) is composed of the follow-
ing substeps: 1. Synaptic degradation is performed by
decrementing J;; following Eq. 7. 2. The average input
field of each neuron is measured by presenting random in-
puts to the network and letting it flow into its attractors.
3. After averaging over many inputs the new ¢;’s are cal-
culated via Eq. 9 and the synaptic weights are modified
accordingly. 4. The network’s current performance level
is measured by Eq. 6, before another degradation step is
applied.

Results

This algorithm implements successfully, in a local man-
ner, the global optimal synaptic regeneration strategy
described in (Horn et al.1993). Interestingly, it can also
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Figure 1: (a) Size of basins of attraction as measured by
the percentage of retrievals of specific memories. This
simulation of an N = 1000 network has 50 memories
stored such that three have strengths of g = 4, 3 and 2,
and all the rest have g = 1. (b) Shares of memory space
(relative sizes of basins of attraction) at the beginning
(upper figure) and the end (lower figure) of the simula-
tion. Random inputs lead either to encoded memories or
to the null attractor (gray shading) in which all activity
stops.

counteract the formation of pathologic attractors. The
latter are strongly embedded patterns, that dominate
all other memory patterns. Suppose that at some point
of time such pathologic attractors are formed, and the



system finds itself with a synaptic efficacy matrix
1 M
Jij(t) = Np I;lg“fl".'?ﬁj (10)

where some of the memories are encoded with weights ¢
larger than 1. We find that if at this point the NR mech-
anism is applied, allowing the system to evolve through
degradation and maintenance cycles, such attractors are
trimmed down, as demonstrated in Figure 1. We display
here the basins of attraction of our model, as measured
by a retrieval process which is initiated by random in-
puts. Whereas at the beginning the strong memories
dominate the scene, their weights are gradually reduced
by the maintenance method, until an almost homoge-
neous embedding is achieved.
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Figure 2: Alternating synaptic learning and mainte-
nance. We start out with a system of N = 1000 neurons
holding 30 memories. Every 15 epochs a new pattern is
stored during 5 epochs, followed by 10 epochs of regular
synaptic degradation and maintenance. The top figure
shows how the null attractor gradually vanishes. The
lower figure portrays the basins of attraction of the dif-
ferent memories (larger basins are darker) at subsequent
epochs. As evident, homogeneous memory retrieval is
maintained throughout the simulation.

Neuronal regulation works well also when it is com-
bined with ongoing learning of new, unfamiliar, memory
patterns. This is demonstrated in Figure 2. Here every
few epochs the network acquires another memory in an
activity dependent manner. A new memory is presented

to the network via an external input and the synaptic
efficacies of co-active neurons are allowed to change in a
Hebbian fashion.
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Figure 3: The collapse time t. of network performance
(logarithmic scale) as a function of the standard devia-
tion of the synaptic degradation process o.. Both exper-
imental (small circles) and analytic (solid curve) results
are shown. N = 1000, M = 50, p = 0.05.

By maintaining the mean of the neuron’s local field,
the NR method prevents rapid memory loss that would
otherwise occur due to synaptic decay. Thus, with a
uniform degradation process, the network’s performance
will be maintained forever. However, a non-uniform
degradation process will eventually lead to an imbalance
of synaptic weights, resulting in a finite network life-time
t.. This is demonstrated in Figure 3 where we compare
simulations with analytic results calculated by a mean-
field approach (Sompolinsky1986; Tsodyks1989; Her-
rmann et al.1995). As the variance of synaptic degrada-
tion increases, the network’s life-time rapidly decreases.
Translating this result to the biological realm in a precise
quantitative manner is currently impossible, since data
about biological synaptic turnover rates are yet scarce
and inconclusive. Several studies suggest that synapses
undergo complete turnover in a period of several weeks
(Goelet et al.1986; Purves and Voyvodicl1987; Wolff et
al.1995). If we think of the degradation and mainte-
nance cycle as occurring few times in 24 hours, ! this
implies that ¢ is of order 10~2. Taking ¢, to be roughly
the same, implies that the critical life time will be of
order 10%, or about 100 months. But if o, is larger,

'Note that the degradation and maintenance process is
assumed to proceed in small steps in our mechanism. In
principle, there exists an alternative, in which the synapse
undergoes major changes over only a small fraction of its (e.g.
monthly) life cycle. This seems to be the case for perforated
synapses.(Jones et al.1991)



the system will lose its homeostasis much sooner. We
conclude therefore that the NR mechanism may be in-
sufficient to account for lifelong memory maintenance, if
synapses are unbounded.

Long Term Maintenance

Clearly deletion leads eventually to a breakdown of the
memory system. The compensation by ¢; just postpones
the demise of the system. Nonetheless, we find that
our method can be altered in a way that will allow for
ongoing memory maintenance although the synapses no
longer maintain their original values. For this purpose
we find that we have to introduce a finite variation span
for the synaptic weights. As the synapses J;; undergo a
series of degradation and maintenance steps, their val-
ues are allowed to change in the interval [B~, B*]. If the
dynamics lead to J;; < B, the synapse is declared dead
and Ji; is set to 0. If the dynamics lead to J;; > B*
it is reset to B*, representing a limit on the strength a
synapse may attain in real biological networks.
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Figure 4: The effect of synaptic bounds. The small
circles denote the performance of the network without
synaptic bounds, B* = oo. The ‘+’ symbols denote the
performance of the network with BY = &8/Np (ie., 8
times the size of a synapse that stores one memory at
t = 0), while the “*’ symbols correspond to the case of
Bt = 3/Np. The other parameters of the simulation
were N = 500, M = 25, p=0.075, ¢ = 0.005, o = 0.2.

The normalization property and the ability to learn
new patterns are retained when bounded synapses are
employed. The difference is that now, for appropriate
synaptic upper bounds, the network may successfully
maintain its stored memories forever even in face of on-
going, continuous, synaptic turnover, as demonstrated
in Figure 4. The simple intuitive explanation is that
by letting the degradation-maintenance process continue
for a long time the synapses undergo a random walk
process with bounds. If the synaptic bound is suffi-
ciently low, the number of large synapses retained by the
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NR mechanism will be higher than the minimal number
of synapses required to maintain memory performance.
This is the case for Bt = 3/Np in the simulation pre-
sented in Figure 4. ? By maintaining the neurons’ av-
erage post-synaplic potentials, the NR mechanism pre-
serves the number of large synapses practically forever,
even though the identity of these synapses may change
during the network’s life-time. The existence of synap-
tic upper bounds prevents the formation (‘runaway’) of
synapses with very large values. The formation of the
latter would have deleterious effects on the network’s
performance since, together with the concomitant action
of the NR mechanism, they may reduce the number of
large synapses beyond the threshold of memory capacity.
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Figure 5: The fraction of remaining synapses in a neu-
ron that undergoes a series of synaptic degradation and
NR steps, ¢ = 0.01, o = 0.1. The simulated neuron
has 10? synapses, whose initial values follow the typical
distribution of synaptic values of a neuron in a network
of N = 500 neurons storing 25 memories with p = 0.4.
The bounds are B* = 10/Np and B~ = 0.5/Np. The
small synapses traced here store a single memory pat-
tern, while the large synapses store seven patterns each.

The possibility that the network can achieve stabil-
ity, i.e. that it will continue to exhibit high retrieval
performance forever, is further enhanced when a ‘via-
bility’ bound (B~ > 0) is incorporated. In this case,
synapses whose values decrease below B~ die and their
values are set to zero. This selective synaptic death pro-
cess helps preserve the network’s performance because
synapses with large initial values (i.e., synapses that code
several memories) have greater chances to survive than
synapses with small initial values, 2

?Note that this corresponds to the amount needed to en-
code three memories in the original synaptic weights, whose
average value at t = 0 was .14/Np.

#The intuition of retaining synapses with large initial val-
ues is clear, since these synapses encode a large number of



This synaptic selection process is depicted in Figure 5,
which demonstrates that a significantly greater fraction
of large synapses than small ones is retained through the
action of the NR algorithm as time evolves. These results
were obtained by studying numerically the evolution of a
single neuron whose synapses undergo a series of degra-
dation and NR steps, assuming that the NR algorithm
maintains a fixed total sum all synaptic weights. This
approximation of the dynamics of a network undergoing
synaptic degradation and NR enabled us to trace the
resulting synaptic values for very long periods of time.
Interestingly, the pattern of decrease in overall synaptic
counts as time evolves is remarkably reminiscent of that
observed experimentally in primates (Rakic et al.1986;
Rakic et al.1993). The level of the selection bias toward
synapses with large initial values depends on the pattern
of synaptic degradation employed.

Discussion

We have described a developmental, ongoing, process
of synaptic turnover including Hebbian changes, noisy
degradation and NR correction steps. Our maintenance
process has a temporal scale determined by the vari-
ance of synaptic degradation, as shown in Fig. 3. For
short times, ¢ < t. , NR compensates for the loss of
synaptic efficacy. It also helps to normalize memory
retrieval, by equalizing the basins of attraction of the
stored memories, and preventing the formation of patho-
logic attractors. For long times, t > t., a network with
unbounded synapses cannot maintain its memory. How-
ever, NR can maintain memory forever in networks with
appropriately bounded synapses. During the NR pro-
cess some synapses die while others approach the upper
synaptic bound and remain in its vicinity, realizing long-
term memory maintenance. Memory maintenance may
therefore be achieved even though the synapses are not
maintained at their original values.

The NR mechanism described in this paper pro-
vides a biological realization of synaptic ‘clipping’,
bearing similarity to a process described previ-
ously(Sompolinsky1986) in the context of a Hopfield
model. In the latter, the synaptic memory matrix is
clipped so that all synaptic weights whose absolute value
lies below some threshold vanish, while the values of all
other are set as plus or minus the threshold value. This
process (Sompolinsky1986) causes a surprisingly small
decrease in the capacity of the associative memory net-
work. In our model, a subset of the surviving synapses
approaches the upper bound. The choice of these strong
synapses is stochastic and time-varying, but synapses
with large initial values have much larger chances to sur-
vive than initially weak synapses. That is, the action
of the NR mechanism gradually transforms the network
from having continuous synapses to quasi-binary ones,

memories and hence are more significant than synapses with
small initial values. This intuitive notion, supported by the
work of (Sompolinsky1986) on clipped synapses, has recently
been proven formally by (Chechick and Ruppin1996).
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in a computationally efficient manner. From a biclogical
point of view, analog networks may be a transitional,
developmental, stage of associative memories as their
synapses saturate and become quasi-binary. For a fixed
number of synapses per neuron, this process is compu-
tationally advantageous versus Willshaw-like networks
that are based on binary synapses to begin with, since
it leads to a more efficient synaptic matrix where only
synapses representing several memories are retained.

Our mechanism relies on activation of the memory
system by random inputs, thus testing all basins of at-
traction without resorting to activation by the memories
themselves. As such, it is reminiscent of previous sugges-
tions (Crick and Mitchison1983; Hopfield et al.1983) that
utilize random activity to unlearn spurious attractors in
the network. Such attractors are rare in the Tsodyks
model, and, therefore, were irrelevant in our study. No-
tice, though, that our NR mechanism does weaken the
memories that are frequently retrieved through random
activation, thus leading to the normalization exempli-
fied in Fig. 2. Random activation of cortical memory
systems may be triggered by PGO waves (Hobson and
McCarley1977) during REM sleep. It is however still un-
clear whether this is indeed the appropriate and the only
period in which synaptic maintenance occurs. In any
case, it seems preferable to have a clear separation be-
tween the processes of memory consolidation and mem-
ory maintenance since they require activation of different
(and complementary) mechanisms.

NR can be viewed as a particular realization of ‘dy-
namic stabilization’, a term that describes the idea that
during sleep there exist dynamic processes that main-
tain synaptic efficacies. Kavanau (Kavanaul994; Ka-
vanaul996) has presented an extensive review of the
literature on this subject, including many experimental
findings that bear on the possible roles of different stages
of sleep, and theoretical suggestions as to how these may
be beneficial to synaptic maintenance.

In summary, there are two natural time scales in our
model, defined by the effect of the variance of synaptic
degradation. On short time scales NR performs synaptic
maintenance. Over long time periods it performs mem-
ory maintenance provided synaptic sizes are appropri-
ately bounded. In both cases it relies on random acti-
vation of the system, and, hence, is the first biologically
plausible realization of dynamic memory maintenance.
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