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25

SUMMARY26

27

Understanding complex metabolic interactions that occur between heterologous and native28

biochemical pathways represents a major challenge in metabolic engineering and synthetic29

biology. We present a workflow that integrates metabolomics, proteomics, and genome-scale30

models of Escherichia coli metabolism to study the effects of introducing a heterologous31

pathway into a microbial host. This workflow incorporates complementary approaches from32

computational systems biology, metabolic engineering, and synthetic biology, provides33

molecular insight into how the host organism microenvironment changes as a result of pathway34

engineering, and demonstrates how biological mechanisms underlying strain variation can be35

exploited as an engineering strategy to increase product yield. As a proof-of-concept, we present36

the analysis of eight engineered strains producing three biofuels: isopentenol, limonene, and37

bisabolene. Application of this workflow identified the roles of candidate genes, pathways, and38

biochemical reactions in observed experimental phenomena, and facilitated the construction of a39

mutant strain with improved isopentenol productivity. The contributed workflow is available as40

an open-source tool, in the format of three iPython notebooks.41

42

43



3

INTRODUCTION44

The confluence of high-throughput omics technologies and computational advances has45

dramatically changed our ability to probe biological phenomena across a vast range of chemical46

and biological scales (Berger et al., 2013; de Jong et al., 2012; Kuehnbaum and Britz-McKibbin,47

2013; Tyo et al., 2007). Large-scale improvements in data coverage and measurement fidelity48

enable the quantitative tracking of dynamic changes in RNA transcripts, ribosome profiling,49

proteins, and metabolites in unprecedented detail (Aebersold and Mann, 2003; de Godoy et al.,50

2008; Fuhrer and Zamboni, 2015; Gross, 2011; Kahn, 2011; Metzker, 2010; Zhang et al., 2014).51

Yet, current computational tools for handling such data are rapidly becoming inadequate when52

compared to the amount of omic data that can now be generated (Stephens et al., 2015). This53

challenge, referred to as Big Data to Knowledge (Margolis et al., 2014), requires balancing the54

deluge of experimental55

Some of the major impediments to realizing the potential impact of big data resources56

include: a lack of appropriate in silico tools, poor data accessibility, and insufficient cross-57

disciplinary training (Berger et al., 2013). Current computational methods are limited in their58

capabilities to accommodate the increasingly diverse range of experimental techniques and to59

contextualize new data within existing data sets (Berger et al., 2013). To make matters worse, the60

skillsets required of scientists in the era of big data now extend outside the traditional scope of61

biochemistry and molecular biology to include bioinformatics, biostatistics and computer science.62

Hence, despite the interest to collaborate or use tools from an orthogonal field of research,63

domain-specific jargon is yet another obstacle to overcome by the prospective practitioner in big64

data science (Rolfsson and Palsson, 2015).65
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In this work, we hope to lower the barrier of entry into computational systems biology by66

creating a framework upon which disparate biological data types can be analyzed and interpreted.67

We take advantage of three synergistic, accelerating domains of science- systems biology,68

metabolic engineering and synthetic biology- to develop a workflow that reconciles systems-69

level, multi-omics analysis and genome-scale modeling with synthetic pathway engineering.70

While the generation of large-scale omic data has already enabled numerous metabolic71

engineering efforts (Alonso-Gutierrez et al., 2015; George et al., 2014; Han et al., 2003, 2001;72

Kabir and Shimizu, 2003; Landels et al., 2015; Lee et al., 2005), the high-dimensionality of73

multi-omics data makes systematically extracting biologically meaningful information for a74

single strain, let alone a multi-strain comparison, a significant challenge (Kwok, 2010; Nielsen et75

al., 2014; Palsson and Zengler, 2010). In most cases, engineering strategies, such as the design76

build test analyze (DBTA) cycle, (Bailey, 1991) are based on relatively few experimental77

e.78

This motivates the development of tools to better characterize the biological components of these79

complex systems, decrease the heavy reliance on iterative trial-and-error, and, ultimately, bring80

biological engineering closer to other, more rational, engineering disciplines.81

To address this multi-layered challenge, our hierarchical workflow consists of three stages82

(Figure 1). In the first stage, basic strain differences are assessed through a global analysis of83

computationally -84

analysis to identify relevant patterns and correlations in key metabolites and proteins. In the last85

stage, these inputs are reconciled with genome-scale models to identify perturbed metabolic86

nodes that are subsequently validated and investigated as engineering leads. We apply this87

framework to eight engineered strains of E. coli producing three isoprenoid-derived advanced88
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biofuels, and demonstrate that this strategy is capable of clarifying convoluted metabolic89

network responses, identifying potential bottlenecks, and elucidating the complex interplay90

between synthetic and endogenous E. coli metabolism.91

92

RESULTS AND DISCUSSION93

Pathway description, strain selection, and multi-omics data generation94

95

heterologous genes and metabolic pathways into a microbial host. In the last decade, broad96

classes of chemicals including isoprenoids, polyketides, branched chain alcohols, and fatty acids97

have been successfully produced using a variety of microbial hosts and renewable, bio-based98

materials (Janßen and Steinbüchel, 2014; Jullesson et al., 2015; Jung et al., 2010; Peralta-Yahya99

et al., 2012; Ro et al., 2006; Runguphan and Keasling, 2014; Sarria et al., 2014; Shen and Liao,100

2013; Steen et al., 2010; Trinh et al., 2011; Yim et al., 2011). The native mevalonate pathway101

from Saccharomyces cerevisiae, which consists of six reactions that convert acetyl-CoA into the102

isoprenoid precursor isopentenyl diphosphate (ipdp or IPP), has been heterologously expressed103

in E. coli (Martin et al., 2003) and adapted to produce a variety of terpene fuels and chemicals104

(George et al., 2015a).  By expressing additional genes, this core pathway has been modified to105

produce C5 (hemiterpene) isopentenol (Chou and Keasling, 2012), C10 (monoterpene) limonene106

(Alonso-Gutierrez et al., 2013), and C15 (sesquiterpene) bisabolene (Peralta-Yahya et al., 2011),107

terpenes that serve as drop-in replacements for gasoline, jet fuel, and diesel, respectively.108

Optimization of each of these heterologous pathways has yielded strains with significantly109

improved titers through methods such as codon optimization of poorly-expressed genes,110

promoter supplementation, altered operon order, and changes in plasmid copy number (Alonso-111

Gutierrez et al., 2015; George et al., 2015b, 2014; Peralta-Yahya et al., 2011). Though the titer of112
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each fuel target has consistently improved, the impact of these optimizations on endogenous E.113

coli metabolism has yet to be comprehensively explored (Supplementary Figure S1). Given that114

previous strain optimization has focused primarily on the mevalonate pathway itself, we115

suspected that a systematic exploration of the interplay between heterologous pathway116

engineering and endogenous metabolism could better characterize strain variation, identify117

perturbed metabolic nodes, and ultimately yield new engineering targets.  To explore this issue,118

we selected representative strains for each biofuel (Figure 2(a)) with different levels of119

optimization (Figure 2 (b)) and collected extensive omics data (Figure 2(c)) for both120

heterologous and endogenous metabolism in a fermentation time-course.121

Our analysis included three isopentenol-producing strains (I1-I3), three limonene-122

producing strains (L1-L3), two bisabolene-producing strains (B1-B2), and wild-type E. coli DH1123

(WT) (9 strains total; Supplementary Figure S2 and Table S1). The numbering of the strains in124

each set represents their overall performance (product yield) and evolution of the optimization125

-126

better performance). Samples were collected to measure cell growth, product titer, intracellular127

and extracellular metabolites, and selected proteins at multiple time-points (0 to 72 hours post-128

induction) in the batch fermentation. Altogether, our analysis included the absolute129

quantification of more than 80 metabolites and the relative quantification (via a targeted SRM130

method (Picotti and Aebersold, 2012)) of more than 50 proteins or protein complexes spanning131

132

133

134
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Our goal over the next three stages of the contributed workflow is to elucidate the effect135

that optimization has on host metabolism through a combined data-driven and hypothesis-driven136

approach, in which the generation of multi-omics data is complemented with both statistical and137

bottoms-up, metabolic modeling methods.138

Stage one: Integrating multi-omics data and profiling batch fermentation dynamics139

Stage one of the workflow (Figure 3) integrates raw, multi-dimensional omics data to140

identify basic differences between strains.  First, we assign test (e.g., engineered strain) and141

control (e.g., WT) conditions, which can vary depending upon the question being addressed. We142

take the difference of measured metabolite concentrations in the test and control conditions at143

each144

145

Figure 3), and systematically146

identify global trends to characterize broad changes between any two strains. With this147

148

facilitate large-scale strain comparisons and statistical analysis.149

Using the above schema, we generated dynamic difference profiles for the 8 biofuel-150

producing strains to examine which metabolites were among the most perturbed nodes with151

maximal changes relative to WT. Strains I1, L1, and B1 consistently secrete acetate at similar152

153

I2, L2 and I3 strongly deviate (concentrations 14, 15 and 18 fold lower than WT). Dynamic154

difference profiles also highlight changes in less-155

differences between strains are often more subtle. Certain strains show large-156

changes in the intracellular concentrations of citrate (cit_c), alpha-ketoglutarate (akg_c),157
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glycolate (glyclt_c) and amino acids, such as glutamate and lysine, which are most dramatic for158

isopentenol producers - the strains that produce the most biofuel (Figure 2(b)).159

Our findings generally point to a global pattern: the profiles of low-producing strains tend160

-producing strains of the same fuel target.  Despite the161

introduction of different heterologous pathways, the metabolite profiles of the poorly-optimized162

strains (i.e., I1, L1, and B1) show minimal deviations from WT.  Similar to WT, these strains do163

not consume all available glucose and the concentrations of intracellular central carbon164

metabolites, like succinate (succ_c) and phosphoenolpyruvate (pep_c), match WT levels (e.g.165

). In contrast, profiles of top producing strains show large-scale deviations166

from WT, especially for citric acid cycle (TCA) metabolites (strains I2, I3, and L3 with 16-30167

fold changes in concentration of succ_c and between 5-13 fold changes in concentration of pep_c168

for strains I2, I3, L2 and B2; Supplementary Figure S3). These findings suggest that the level of169

pathway optimization, rather than the identity of the target biofuel, tends to dictate the170

endogenous metabolic response.  While this is not entirely unexpected given the common171

172

potentially confounding factors such as biofuel toxicity (Dunlop et al., 2011) or FPP (frdp_c)173

feedback inhibition (Primak et al., 2011), which vary markedly for each fuel target or pathway, is174

minimal in these strains compared to impact of overall product titer.175

In summary, the first stage of this workflow provides a rapid means to filter complex omics176

177

understanding gained from this stage of the workflow is that, for the current group of strains,178

optimization level (i.e., overall product yield), rather than chosen fuel target, dictates degree of179

metabolic perturbation.  While this analysis also provides valuable insight into the broad180
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metabolic response to engineering by highlighting maximally perturbed nodes, additional181

analyses are needed to: (1) explore how these changes are correlated over time (stage two) and (2)182

contextualize these perturbations within a biochemical network (stage three).183

Stage two: correlations in key metabolic fingerprints distinguish strain behavior184

Despite the high dimensionality of multi-omics datasets, unsupervised learning methods, like185

PCA, capture much of the variation in a few key metabolites. In stage two of the workflow, we186

use standard multivariate analyses to reduce the dimensionality of multi-strain metabolomics187

data and identify common patterns in changing metabolite concentrations over time (Figure 4,188

steps (1) and (2)).  Specifically, we carry out Principal Component Analysis (PCA) on the189

aggregate metabolomics data set (9 strains, 13 time points, and 86 metabolites) to identify key190

metabolites that drive strain variation, determine how these drivers change over time, and191

uncover unique features for strain characterization.192

Using PCA on this data set shows that the first, second, and third singular vectors account193

for more than 80% of the variance in the dataset (Supplementary Figure S4). For the top-194

producing strains, coefficients (factor loadings) for the fuel products tend to be the most195

significant, coinciding with the increased production yields for these strains. Not surprisingly,196

certain extracellular metabolites, including lactate, pyruvate, formate, and acetate, also have197

higher coefficients. Performing PCA on extracellular versus intracellular metabolites, we find198

that the first two eigenvectors sum to more than 60% and 70%, respectively, indicating that (i)199

changes in intracellular concentrations are correlated over time and (ii) the uptake and secretion200

of extracellular metabolites are also correlated processes.201

Plotting the first two singular vectors of PCA on the exometabolome shows a distinct three-202

state behavior in all 9 strains. We find that these three phases correspond to distinct time203
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intervals in the data set: (i) phase I (0-6 hours); (ii) phase II (6-20 hours); and (iii) phase III (20-204

72 hours), as illustrated in a simplified depiction in Figure 4. The variation in each phase is205

driven by changes in extracellular metabolites, such as, in the case of WT, glucose in phase I,206

lactic acid, formate, and pyruvate in phase II, and acetate in phase III, which is consistent with207

what is commonly observed in exponential, early stationary, and late stationary growth phases of208

E. coli. These same metabolites show completely different behavior in top-producing strains (e.g.209

acetate becomes a driver of phase II in strains I3, L3, and B2 and formate and lactic acid drive210

phase III; Supplementary Figure S5). The shift in acetate is interesting because its assimilation,211

or uptake, following its secretion is a key differentiator between optimized strains and non-212

optimized derivatives. By assimilating acetate in phase II, optimized strains such as I3 can213

-CoA through the action of acetyl-CoA synthetase214

(Wolfe, 2005).215

Intriguingly, changes in key intracellular metabolites also appear to coincide with this three216

phase behavior. As expected, amino acids are the main drivers of variation during the first phase.217

In the second phase, variation in low-producing strains is driven by glycolate (glyclt_c),218

glyoxylate (glx_c), and isocitrate (icit_c), which is consistent with glyoxylate metabolism and219

wild-type behavior. In top-producing strains, however, phosphoenolpyruvate (pep_c), citrate220

-ketoglutarate (akg_c) become the main drivers of phase II, which suggests the221

metabolic use of other TCA cycle reactions in these strains and corroborates the respective222

dynamic difference profiles from stage two.223

To summarize, stage two of our workflow provides a means for correlating changes in224

metabolite concentrations over time. Using PCA, we identified three phases in time-course225

metabolomics data that are driven by the uptake and secretion of key metabolites, in addition to226
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specific intracellular metabolite changes. The identification of these three metabolic phases227

motivates a more in-depth characterization of each of these states by genome scale-modeling228

(stage three of our workflow). In the following section, we seek to understand whether the229

perturbed nodes discovered in the first stage of this workflow impact genome-scale flux230

networks. As described below, we use the findings from stage two to model pseudo-metabolic231

steady states.232

Stage three: genome-scale modeling provides mechanistic insights into strain variation233

In stage three, genome-scale models provide contextual basis for the analysis of multi-scale234

omics data sets . Instead of235

only looking at one reaction, metabolite, or protein at a time, multiple reactions are modeled and236

assessed simultaneously, which helps in gaining insight into the reaction system as a whole. It is237

important to note that, while reduction of multidimensional data is an important principles of238

stage two, reduction of network-level information can be non-informative and misleading (e.g. if239

an important metabolic lead lies in a peripheral pathway not in the core metabolism). Here, we240

use the comprehensive biochemical content of the metabolic network reconstruction of E. coli241

(Orth et al., 2011) and the predictive capability of constraint-based modeling approaches242

to elucidate metabolic perturbations through the chemical243

connections contained in the reconstruction.244

The identification of the three phases from PCA implies that each phase is a different245

metabolic state with a unique phenotype. While all nine strains share a similar characteristic246

three-phase behavior, the metabolites driving the variation in a given phase differ greatly (see247

stage two).  This supports the hypothesis that even small variations in pathway engineering could248

lead to significant changes in endogenous metabolism. To investigate this, we carried out flux249



12

balance analysis (FBA) together with a Markov chain Monte Carlo-based (MCMC) sampling250

approach (Almaas et al., 2004) on each of the three phases for each strain. As discussed in detail251

below, this analysis shows that the exometabolome causes significant shifts in key reaction252

fluxes (p-value < 0.05 using an empirical test) relative to WT (Figure 4 steps (3) and (4)). Most253

importantly, these shifting reactions cluster around the highly perturbed nodes that are observed254

in both metabolomic and proteomic data sets.255

Significantly changing reaction fluxes indicate an increase or decrease in the flux (or flow256

of metabolites through a reaction), relative to WT. For each phase, we identified the most257

perturbed reaction fluxes, clustered the shifting reactions to find any common links between258

these nodes, and visualized the clusters graphically. The majority of shifting pathways include259

reactions in the pentose phosphate pathway (PPP), glycolysis/gluconeogenesis, and TCA (Figure260

5 (a-c), respectively), with the exception of some peripheral reactions (e.g. phosphopentomutase-261

2 deoxyribose). For high-producing strains, most of the significant shifting reactions (relative to262

WT) occur either in late exponential phase (phase I, Figure 5 (d)) or early stationary phase263

(phase II, Figure 5 (e)). Interestingly, we see strain-specific groupings in the types of reactions264

that shift significantly in these phases. For example, in strains L2 and B2 we observe increased265

flux through specific reactions in PPP, namely phosphogluconate dehydrogenase (GND) and 6-266

phosphogluconolactonase (PGL), whereas for isopentenol-producing strains we see large-scale267

perturbation in flux networks surrounding triose phosphate isomerase (TPI), sedoheptulose 1,7-268

bisphosphate D-glyceraldehyde-3-phosphate-lyase (FBA3), transaldolase (TALA), and269

transketolase (TKT1, TKT2) (see Figure 5 (d), (e)). Other phenotypic changes become270

pronounced in certain strains during early stationary phase (phase II), such as flux diverting to271

TCA pathway reactions including alpha-ketoglutarate dehydrogenase (AKGDH), aconitase272
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(ACONTa, ACONTb), citrate synthase (CS), and isocitrate dehydrogenase (ICDHyr) (Figure 5273

(e) and Supplementary Figure S6).274

Visualization of these perturbed reaction nodes brings about a striking commonality that275

many are NADPH-producing reactions, such as ICDHyr, GND, and those related to specific276

amino acid biosynthetic pathways (e.g., AKGDH; Figure 6 (a)). Ultimately, modeling indicates277

that the cumulative flux to NADPH-producing reactions is significantly elevated for higher-278

producing strains (Supplementary Figure S7). This observation is consistent with previous work279

that identified NADPH availability as a limiting factor in isoprenoid production in280

Saccharomyces cerevisiae, the native host for the mevalonate pathway (Asadollahi et al., 2009).281

One explanation for an apparent depletion of NADPH is related to the NADPH-dependent282

HMG-CoA reductase (HMGR), which catalyzes the second step of the heterologous mevalonate283

pathway in each engineered strain. Due to the action of this enzyme, two molecules of NADPH284

are consumed for each molecule of mevalonate that is produced, coupling high biofuel titers with285

increased demand for NADPH.286

In summary, we turn to genome-scale modeling as a diverse tool for elucidating the287

underlying biology of pathway optimization. The third stage of this workflow serves as a288

predictive method to connect various perturbed nodes in mechanistic detail and highlight a289

common function link, as opposed to a static network or statistical analysis, which mainly290

provides descriptive purpose. While the apparent NADPH limitation highlighted by these291

simulations seems obvious in retrospect, it is important to note that understanding how networks292

re-route to accommodate such bottlenecks is less trivial. In the section that follows, we describe293

how tracing perturbations through a genome-scale flux network helps elucidate experimentally294
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observed metabolic perturbations that, upon first glance, have no apparent connection with the295

NADPH node.296

Model-aided predictions of engineered metabolic phenotypes are consistent with297

experiments298

Perturbations in the intracellular flux networks, identified through modeling, can be cross-299

validated with complementary data sets, such as intracellular metabolomics and proteomics data.300

As mentioned in the above section, modeling intracellular flux networks makes use of uptake301

and secretion rates of glucose, organic acids, amino acids, and the fuel product. Therefore, the302

consistency of model predictions can be evaluated by comparing them to significantly perturbed303

nodes observed in the data. In this section, we demonstrate how three different data types,304

metabolomics, proteomics, and genome-scale flux predictions, are reconciled and corroborate305

our model-driven hypothesis that specific metabolic pathways re-route to meet the demands of306

pathway-induced NADPH depletion.307

Our findings suggest that NADPH is depleted in engineered strains and that heterologous308

expression of HMGR is the main source of this behavior. The largest perturbations in reactions309

linked to a common NADPH node are found in strains expressing high levels of HMGR protein310

(e.g. strain L2, the sole engineered strain with pathway genes on a high-copy plasmid, has311

HMGR levels 10-20 fold higher than any other strain). Consistent with increased flux through312

the HMGR reaction, intracellular concentrations of NADP+ in strain L2 are significantly elevated313

compared to other strains, (Figure 6 (b) box A), linking HMGR expression with NADPH314

depletion. Furthermore, the cellular demand for NADPH appears to perturb several reactions in315

glycolysis and the TCA cycle, in accordance with both modeling and experiments related to316
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-ketoglutarate, and malate levels increase by nearly 10-fold,317

5-fold, and 3-fold, respectively, during the time-course (see Figure 6 (b) boxes B and C).318

While strain L2 is useful in establishing a clear link between HMGR expression and319

NADPH depletion, strain I3, the top performing strain on the basis of yield and product titer,320

provides even more convincing evidence of a metabolic response to pathway optimization, and321

consequently, NADPH depletion. Model predictions for strain I3 indicate that key nodes in322

glycolysis/gluconeogenesis, such as glyceraldehyde-3-phosphate dehydrogenase (GAPD),323

triphosphate isomerase (TPI), and enolase (ENO), divert flux to provide the cell with routes to324

NADPH regeneration. One route for regenerating NADPH is through the PPP (e.g., GND and325

glucose-6-phosphate dehydrogenase, or G6PDH2r). Constructing dynamic difference profiles326

(stage one) from proteomics data, we find perturbations in key PPP proteins (e.g., G6PDH2r,327

GND, TALA, and TKT1) that are consistent with model predictions (Figure 6 (c) and328

Supplementary Table S2). Another route the cell uses for regenerating NADPH is through the329

TCA cycle (e.g., ICDHyr). Model predictions of increased flux through the TCA cycle are330

consistent with metabolomic measurements for strain I3: intracellular citrate and aconitase levels331

increase by 2-3 fold over WT (Figure 6 (b) box C) and dynamic difference profiles for proteins332

involved in these reactions increase by 2 to 3-fold over WT (e.g. CS and ACONTb protein levels;333

Figure 6 (c)).  In this context, a previously perplexing observation -334

assimilated acetate into the TCA cycle rather than the mevalonate pathway (Supplementary335

Figure S8) is succinctly explained as a means to regenerate NADPH through ICDHyr rather than336

deplete it through HMGR.337

While we do not observe significant shifts in the levels of some PPP proteins that would338

play an active role in NADPH regeneration, such as GND (perhaps partially due to low signal339
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intensity or noise), we do find that many have significant increases (p-value < 0.05 using an340

empirical test) in RNA levels; particularly >5-fold changes (over WT) for the expression of GND341

(unpublished data). Intriguingly, ENO and AKGDH expression levels are also 5-fold over WT,342

which coincides with increases in metabolite levels of -ketoglutarate-derived amino acids (e.g.,343

glutamate, glutamine, histidine, arginine), which were found to be enriched in high-producing344

isopentenol strains in stage one of this workflow.345

Taken together, reconciliation of metabolomics and proteomics with genome-scale346

modeling proposes a general mechanism by which the cell responds to HMGR-mediated cofactor347

depletion by redirecting flux through the TCA cycle and/or PPP to regenerate NADPH.348

Importantly, the workflow highlights NADPH regeneration as a potential engineering strategy to349

improve mevalonate pathway function and product yields.  As a validation, we attempted to350

address NADPH depletion not through mevalonate pathway engineering (Ma et al., 2011), but by351

identifying single gene knockouts (SKOs) that re-route flux to produce higher product yield.352

Identifying metabolic properties relevant to re-engineering353

Using the knowledge gained from the three-stage workflow, we reevaluated our constraint-354

based modeling simulations in the presence of single gene knockouts (SKOs). We were355

interested in discovering SKOs that re-route flux in pathways that compete with the mevalonate356

pathway and are related to NADPH production/depletion. As a proof-of-concept, we generated357

model-driven predictions of SKO candidates using the genome-scale metabolic model of strain358

I3, which produced the most biofuel and showed strong evidence for NADPH depletion.359

Using flux variability analysis, we rank-ordered SKO candidates using several metrics that360

were identified to be important factors underlying strain variation in stage three of this workflow:361

(i) minimized flux through NADPH-consuming reactions; (ii) maximized flux through NADPH-362
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producing reactions; and (iii) maximized flux through PPP reactions. The SKO candidates363

identified using these metrics are provided in Table 1 and in Supplementary Information (see364

365

To test the effects of the model-predicted SKOs, we experimentally tested the top four366

SKO candidates in strain I3 (Supplementary Figure S9). We found that one of the SKOs, ydbK367

(blattner code b1378), shows especially intriguing characteristics related to enhanced biofuel368

production. This gene is predicted to act as a pyruvate synthase (reaction POR5 in the iJO1366369

(Orth et. al. 2011)), which converts pyruvate to acetyl-CoA. When this gene is knocked out from370

strain I3 (I3 ydbK), we observe an almost 2-fold increase in the specific (i.e., growth-371

normalized) production of isopentenol (Figure 7).  In I3 ydbK, the specific production is372

increased at every time point during batch fermentation, and by 48 hours, I3 ydbK shows a373

higher absolute titer of isopentenol (920 mg/L versus 800 mg/L for strains I3 ydbK and I3,374

respectively). Intriguingly, ydbK also significantly increases the specific production of375

limonene in strain L3, which also demonstrated strong evidence for NADPH depletion376

(Supplementary Figure S10), suggesting a commonality between isopentenol and limonene377

producing strains. In contrast, this SKO has minimal effects on bisabolene production in strain378

B2.379

380

CONCLUSION381

To date, the majority of metabolic engineering efforts serve as demonstrations of future382

potential rather than industry-ready technology. Achieving large-scale, economical production of383

microbial-derived products requires production strains to be exhaustively optimized for high384

yields and productivities. The challenges associated with this goal are numerous and massive in385

386
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and metabolite toxicity, feedback inhibition, strict energetic requirements, cofactor imbalances,387

and competition with endogenous pathways (Paddon and Keasling, 2014). Thus, the inherent388

complexity of biological systems makes them difficult to effectively design and control (Endy,389

2005).390

Greater synergy between systems biology, metabolic engineering, and synthetic biology391

would greatly benefit all three disciplines, given their complementary, yet classically separate,392

approaches to bioengineering (Nielsen et al., 2014). A major challenge in both metabolic393

engineering and synthetic biology is understanding how the introduction of engineered or non-394

native components into a biochemical network influences the behavior of the entire system. To395

meet this challenge, we have developed a three-stage workflow to interpret complex multi-omics396

data for multi-strain characterization. Each of the three stages of the workflow works together as397

a concerted pipeline to efficiently process highly dimensional datasets.398

The first two stages of the workflow act as a flexible framework to interpret raw, multi-399

omics data by sorting strain phenotypes based on their dynamic difference profiles and400

correlating measurements based on distinct patterns derived from thousands of measurements.401

These two stages of the workflow in particular are well-suited for integration with high-402

403

omics data is not feasible.  While evaluating multi-omics data using statistics-based approaches,404

such as multivariate analyses, has been shown to be useful as a stand-alone method for making405

sense of highly over-expressed heterologous pathways(Alonso-Gutierrez et al., 2015), unraveling406

the global response of the cell to pathway engineering requires moving beyond statistics-based407

approaches and incorporating system-wide analyses. To account for the systems-level response408
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to pathway engineering, the third stage of this workflow leverages these statistics-based409

approaches with genome-scale metabolic modeling.410

Here, we demonstrate that through the pairing of synthetic pathway construction and a411

systems-level, model-driven analysis, our multi-omics-based workflow successfully reconciles412

metabolomics data, proteomics data, and predictions from genome-scale models. Using413

mevalonate pathway engineering as a case study, we demonstrate that our approach is capable of414

elucidating the complex interplay between heterologous pathway engineering and endogenous415

metabolism in a microbial host. The utility of such a workflow is expected to become416

increasingly important with the parallel, accelerating advances in technologies related to strain417

generation and high-throughput analyses (e.g., on the order of thousands of strains and thousands418

of measurements).419

420
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EXPERIMENTAL PROCEDURES445

All chemicals and media components were purchased from Sigma-Aldrich (St. Louis, MO),446

VWR (West Chester, PA), or Fischer Scientific (Pittsburgh, PA) and used without modification447

unless noted otherwise.  The E. coli strains used in the work, DH10B and DH1, were purchased448

from Invitrogen (Carlsbad, CA) and ATCC, respectively.  For proteomics experiments, mass449

spectrometric-grade trypsin was purchased from Sigma-Aldrich.450

451

Plasmid and strain construction452

E. coli DH10B was the host for pathway cloning and plasmid manipulations, while E. coli DH1453

was used as the production host.  Plasmids were assembled according to the BglBrick454

standard(Anderson et al., 2010) using standardized vectors(Lee et al., 2011) with the exception455
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of pTrc99A(Amann et al., 1988).  Transformations were performed with chemically-competent456

cells as described previously (Chung et al., 1989).  A list of plasmids and strains used in this457

study is provided in Supplementary Table S1.458

459

Growth conditions and production of advanced biofuels460

Seed cultures of 8 biofuel-producing strains (Supplementary Table S1) and E. coli DH1 were461

grown overnight in 5 mL volumes of LB medium with appropriate antibiotics at 37°C.  For462

production, 100 mL volumes of EZ-Rich defined medium with 1% glucose in a 1 L Erlenmeyer463

flask were inoculated with seed cultures to an initial OD600 of 0.1.  Production cultures were464

grown in rotary shakers (200 rpm) at 30°C to an OD600 of 0.6 and induced with 500 µM465

isopropyl -D-1-thiogalactopyranoside (IPTG).  For limonene- and bisabolene-producing strains,466

a 10% overlay of dodecane was added at induction. Proof-of-concept gene deletion experiments467

were carried out in 25 mL of EZ-Rich defined media in 250 mL Erlenmeyer flasks with the same468

induction parameters.469

470

Metabolomics sampling and analysis471

Samples were collected for metabolomics and proteomics at set time-points during the batch472

473

induction rather than the initial inoculation).  For metabolite sampling, 1.8 mL of culture was474

harvested by centrifugation in a 2 mL microfuge tube.  From this sample, 0.1 mL was used to475

measure OD600 and 0.2 mL was frozen at -20°C and extracted with ethyl acetate to measure476

isopentenol (see(George et al., 2014) for GC-FID methods).  For limonene- and bisabolene-477

producing strains, 0.1 mL of dodecane overlay was collected and diluted into ethyl acetate478

(see(Peralta-Yahya et al., 2011) and(Alonso-Gutierrez et al., 2013) for GC-MS methods).  The479
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remaining volume (1.5 mL) was pelleted (14,000 x g) in a tabletop centrifuge at 4°C.  For480

organic acid analysis, 0.25 mL of supernatant was collected and frozen at -20°C until analysis.481

Another 0.25 mL of supernatant was mixed 1:1 with ice cold MeOH and stored at -20°C for the482

quantification of extracellular metabolites.  The remaining supernatant was decanted, and the483

pellet was resuspended in 0.3 mL of ice cold MeOH and stored at -20°C for the quantification of484

intracellular metabolites.  The intracellular metabolite sample was vortexed thoroughly and485

centrifuged (8000 x g) for 10 minutes at 4 C.  The supernatant was collected, mixed with a 1:1486

volume of water, and filtered through a MilliporeTM Amicon Ultra 3kD MW cut-off filter (14000487

x g for 60 minutes at -2°C).  Extracellular metabolite samples were filtered in an identical488

manner.  Water was added to the flow-through to a final volume of 1 mL and the samples were489

lyophilized overnight.  Samples were reconstituted in 90 µL MeOH:H2O (1:1) prior to analysis.490

Extracellular organic acids were analyzed by an Agilent 1200 Series HPLC system equipped491

with a photodiode array detector set a 210, 254, and 280 nm.  Metabolites were separated on an492

Aminex HPX-87H column with 8% cross linkage (150 mm length, 7.8 mm internal diameter, 9493

µm particle size; Bio-Rad, Richmond, CA, USA).  An isocratic elution was performed using 4494

mM sulfuric acid with a flow rate of 0.6 mL/min.  A refractive index detector (RID) was used to495

detect organic acids and glucose, while pyruvate was detected with a diode array detector (DAD)496

at 210 nm.497

Intracellular and extracellular metabolites were analyzed by liquid chromatography mass498

spectrometry (LC-MS) on a ZIC-HILIC column (150 mm length, 2.1 mm internal diameter, 2.5499

µm particle size) using an Agilent 1200 Series HPLC.  The HPLC system was coupled to an500

Agilent 6210 time-of-flight mass spectrometer by a 1/2 post-column split.  All metabolites were501

quantified via eight-point calibration curves ranging from 781.25 nM to 200 µM.   A variety of502
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methods were used to quantify different classes of metabolites.  Please see previous references503

for details on the quantification of glycolysis and TCA cycle intermediates(Juminaga et al.,504

2012), amino acids(Bokinsky et al., 2013), organic acids(Juminaga et al., 2012), nucleotides and505

CoAs(Bokinsky et al., 2013), and mevalonate pathway intermediates(Weaver et al., 2015).506

507

Proteomics sampling and analysis508

For proteomics, 5 mL of culture was collected by centrifugation in a 15 mL falcon tube (5000 x509

g at 4°C).  Supernatant was decanted, and cell pellets were stored at -80°C prior to analysis.  Cell510

pellets were extracted with chloroform/methanol and protein samples were prepared as described511

previously (Redding-Johanson et al., 2011).  Following drying in a vacuum concentrator512

(ThermoSavant), the protein pellet was resuspended in ammonium bicarbonate and quantified513

using DC Protein reagent (BioRad, Hercules, CA).  Protein was diluted to 0.5 mg/mL and514

disulfide bonds were reduced with tris(2-carboxyethyl)phosphine (TCEP) for 30 minutes at room515

temperature followed by disulfide bond blocking with 10 mM iodoacetamide at room516

temperature in the dark for 30 minutes.  Samples were analyzed using an AB Sciex (Foster City,517

CA) 5500Q-Trap mass spectrometer operating in MRM (SRM) mode coupled to an Agilent 1100518

system.  For method details, please see references (George et al., 2014) and (Batth et al., 2014).519

520

Constraint-based modeling521

Constraint-based modeling and analysis of metabolic networks have been extensively reviewed522

and described elsewhere (Bordbar et al., 2014; Feist and Palsson, 2008; Price et al., 2004). To523

summarize, all of the reactions in a metabolic network can be described mathematically by a524

stoichiometric matrix, S, which has dimensions m × n (the number of total metabolites and525

reactions in a model, respectively). Each element in S represents a stoichiometric coefficient of526
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the metabolite in its respective reaction. The mass balance equations at steady state are527

represented as528

[1]529

where v is a flux vector, indicating the direction of flux through a reaction. Constraints on the530

system can be imposed such that fluxes range between a defined maximum and minimum and531

can be reversible or irreversible,532

[2]533

Once the topology and set of constraints is known, the model can be used with various534

constraint-based methods (Bordbar et al., 2014) to understand or predict cellular phenotypes.535

In this work, S matrix was constructed from a previous reconstruction (Orth et al., 2011).536

Heterologous genes and non-native mevalonate pathway intermediates were added to the model537

in the form of mass and charge balanced reactions. Select metabolites, known to cross the cell538

membrane (based on extracellular measurements), were added as exchange reactions, allowing539

those metabolites to leave or enter the extracellular space in the model. When available, uptake540

and secretion rates were used from new or published data to constrain the upper and lower541

bounds of the exchange reactions (George et al., 2014). All parameters are detailed in542

Supplementary Files, Metabolomics and Proteomics Data Analyses.543

544

Monte Carlo sampling545

Markov chain Monte Carlo (MCMC) sampling was used to generate a set of feasible546

distributions of fluxes in the genome-scale network. The method uses the artificially centered hit-547

and-run algorithm with slight modifications. In the initial step, the algorithm generates a set of548

non-uniform, pseudo-random points. Through several iterations, each of the flux points in the549

network is randomly modified such that they remain within the feasible solution space. The550
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random modifications follow specific rules: (i) the direction in which the point is moved is551

random, (ii) the amount of space a point travels is limited and (iii) a new random point is then552

chosen along the new line. If carried out for enough time, the set of points will distribute553

uniformly throughout flux space and will provide a distribution (or range) in fluxes through a554

given reaction. This range represents most likely flux for a given reaction in the metabolic555

network, and depends on the network topology and model constraints. For more details, see the556

Supplementary Information.557

558

Predicting phenotypic differences between wild-type and engineered strains559

The phenotypic differences between wild-type and engineered strains were computed based on560

published data (George et al., 2014; Peralta-Yahya et al., 2012) as well as newly generated561

datasets. Using Principal Component Analysis (PCA), we determined the phases of growth (i.e.562

exponential, late exponential, early stationary phase and late stationary phase) and used the563

average uptake and secretion of extracellular metabolites as input to the genome-scale models.564

For single measured values of a given metabolite or peptide, we estimated the variance using565

triplicate measurements taken for the same metabolite or peptide from wild-type cultures at the566

initial time-point. The original dataset for 9 strains provided secretion and uptake measurements567

for glucose and many of the major organic acids (e.g., formate, succinate, pyruvate, acetate, etc.).568

A validation set provided amino acid uptake measurements and additional measurements in the569

exponential phase of growth. See Supplementary Information for more details.570

Simulations were conducted using the iJO1366 model of E. coli K12-MG1655. Comparisons to a571

different E. coli metabolic reconstruction, the DH1 strain, did not show significant changes in572

model topology. The models were allowed to take up the same substrates provided573

574
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575

states. This was done for different phases of growth, ranging late exponential to early and late576

stationary phases. A z score-based analysis was carried out to determine the most significantly577

shifting fluxes between wild-type and engineered strains as well as between various regions of578

growth (i.e. exponential versus stationary phase). The z-score calculation was repeated 1,000579

times and the mean value is reported. Comparisons with the experimental data were done by580

calculating differences in concentration and peak areas for the metabolomics and proteomics data581

sets. Similarly, z-scores were computed to determine which shifts were significant over others.582

See Supplementary Notes for more details.583

584
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FIGURE LEGENDS746

Figure 1: A workflow for bridging the genotype-phenotype relationship with multi-omics747

data and genome-scale models of E. coli metabolism expressing heterologous pathways. (a)748

Multi-scale data types that are generally collected to elucidate changes in metabolic phenotypes749

of engineered strains: information on gene expression, protein abundance, metabolite750

concentrations, and predicted fluxes in a genome-scale metabolic network. (b) Our workflow751

involves a hierarchical staging of computational analysis methods. In the first stage, basic strain752

differences are binned based on characteristic changes. The second stage seeks to find relevant753

patterns and correlations in the data. The last stage builds on knowledge gained from the754

previous stages to elucidate mechanisms of action in the context of a genome-scale network that755

can explain apparent differences in strain behavior.756

757

Figure 2: Pathway assembly, strain selection and multi-omics data generation. (a) This758

study focuses on the characterization of three versions of a heterologous mevalonate pathway759

engineered to synthesize isopentenol, limonene, and bisabolene. (b) Over a 72-hour time course,760

the engineered strains show various levels of fuel production due to changes in heterologous761

pathway architecture and expression. Each strain is indicated by its respective color, shown in762

the legend to the right. (c) The nine (eight engineered and one wild-type) strains were further763

analyzed using a multi-omics approach to generate measurements for 86 metabolites and 55764

protein complexes at 9 different time-points during batch fermentation to generate detailed omics765

profiles.  The complete data set is available in Supplementary Information.766

767

Figure 3: Systems-level multi-omics integration and analysis of batch fermentation768

dynamics. (a) The first stage of the workflow filters, maps, and identifies system level769
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differences between control (e.g., WT) and test (e.g., engineered strain) conditions through the770

construction of dynamic difference profiles. The filtered multi-omic dynamic profiles are771

mapped onto the metabolic network for quick identification of trends in different strain772

phenotypes. (b) A categorization of the differences between control and test conditions for each773

data type was filtered into dynamic profiles. The differences for each data point relative to the774

control were calculated, and the errors of the measurements were propagated to determine the775

range of change (from significant to not changing) between the control and test conditions. The776

777

-778

shifts. Standard deviations for the test and control condition for each data point were calculated779

from triplicate measurements or estimated based on the percent root-squared deviation (%RSD)780

of representative triplicate measurements. (c) A cartoon depiction of the data types included in781

this analysis, namely endo- and exo- metabolomics, proteomics, and sampled flux distributions.782

Top left refers to protein level measured by proteomics, top right refers to the product measured783

through metabolomics, bottom left refers to the substrate measured through metabolomics and784

bottom left refers to predicted flux computed for a specific reaction.785

786

Figure 4: Integrating multi-omics data with genome-scale models of metabolism. Stages two787

and three of the workflow combine multivariate analyses and genome-scale models of788

metabolism to understand how correlated a data set is, and establish patterns, or phases, that can789

then be used as a basis for metabolic modeling. (1) Standard metabolomics and growth790

measurements for over 80 metabolites were taken for nine different strains over a 72-hour time791

course. (2) Applying PCA on this dataset, we dramatically reduce the dimensionality of this792

dataset and find three distinct metabolic phases that align with different phases of the growth:793
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exponential, early, and late stationary phases. (3) These metabolic phases can be modeled using794

constraint-based methods, such as Markov-chain Monte Carlo based sampling, by taking the795

average of the extracellular measurements within a given phase as inputs to the model. Using796

constraint-based modeling, we observe perturbed reactions in host metabolism resulting from797

pathway engineering (illustrated by the red colored nodes in the network). These perturbed798

reactions can be clustered to determine common links, such as cofactor usage. (4) Model799

predictions, used to identify which reactions in the network are expected to shift between phases800

or across different strains, can then be validated with other omics datasets, such as proteomics.801

802

Figure 5: Genome-scale modeling revealed perturbations in TCA cycle and pentose-803

phosphate pathway activity associated with certain engineered phenotypes. Reactions804

colored by the shift (absolute value) in flux in a top-producing strain, I3, compared to wild-type805

in different pathways in central carbon metabolism: (a) the pentose-phosphate pathway; (b)806

glycolysis/gluconeogenesis; (c) TCA cycle. Shown in (d) are significant reaction flux shifts (p <807

0.05) corresponding to various reactions in these pathways in phase I (0-6 hrs) and those for808

phase II (6-20 hrs) are displayed in (e). Here, shifts in metabolic flux represent overall changes809

(both positive and negative perturbations) from wild-type behavior. All metabolic maps810

generated using Escher maps.811

812

Figure 6: Constraint-based modeling elucidates pathways that allow for coupling of813

NADPH metabolism and biofuel production. Displayed in (a) are the main NADPH-producing814

and consuming reactions in the genome-scale model of E. coli that carry the majority of flux.815

The sum of flux through these reactions is significantly higher in top-producing strains over WT.816

This coincides with the increased expression of HMGR (a NADPH-dependent reaction) in these817
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strains as well as increased accumulation of intracellular NADP concentrations. In (b), increases818

in cofactor (box A), glycolysis/gluconeogenesis (box B) and TCA (box C) metabolite819

concentrations (relative to wild-type E. coli) indicate which regions in metabolism are perturbed820

in different821

protein levels for isopentenol-producing strains. Proteins were clustered into dynamic difference822

profiles and further categorized by whether protein levels increase (green) or decrease (lavender)823

during the time-course. As shown in the lower left panel, key glycolysis (yellow), PPP (orange),824

and TCA (red) proteins shift above WT levels in higher producing strains (I2 and I3). On the825

lower right panel is an example of how progressive engineering efforts change the dynamic826

difference profile for acetate synthase (ACS). In this case, progressing from minimal engineering827

to optimized strain (I1 to I2 to I3), the dynamic difference profile changes from having828

decreasing protein levels early on in the time course to increased protein levels at the end of the829

time course. Shifts in protein levels of other strains are given as Supplementary Information.830

831

Figure 7: Model-driven predictions discover a gene-knockout that increases the specific832

production of isopentenol. Growth-normalized isopentenol titer (mg/L/OD600) is displayed for833

strain I3 (black) and I3 with ydbK knockout (gray). At every non-zero time point, the knockout834

variant produces significantly more isopentenol than the highest producing strain, I3 (stars835

denote p-values: 4 hrs p = 0.0058 (**), 8 hrs p < 0.0001 (****), 24 hrs p = 0.002 (***), 48 hrs p836

= 0.0037 (**), using an unpaired two-tail t-test). At 48 hours, absolute isopentenol titers are 920837

mg/L versus 800 mg/L for strains I3 ydbK and I3, respectively.838

839
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Table 1: Model-based predictions select gene-knockouts that produce a desired phenotypic840

state. Single gene knock-out simulations were performed using the genome-scale model of E.841

coli (iJO1366) to identify candidate targets that increase the production of isopentenol.842

Candidates were selected based on three specific characteristics: (1) the flux through all NADPH843

producing reactions was maximized; (2) the flux through the pentose-phosphate pathway was844

maximized, which is a characteristic of higher-producing strains; (3) the total flux through all845

NADPH consuming reactions was minimized. Genes in bold were experimentally tested and the846

gene in bold and underlined, ydbK, increases specific production of isopentenol. Genes in italics847

are transporters. The list of genes and their respective biological roles are displayed in848

Supplementary Table S3.849

Fitness characteristic Gene knock-outs Gene names

maximized flux through NADPH
producing reactions

b0197, b0198, b0199,
b4238

metQ, metL, metN, nrdD

maximized flux through the
pentose-phosphate pathway

b1378, b0197, b0198,
b0199, b4238

ydbk, metQ, metL, metN, nrdD

minimized flux through NADPH
consuming reactions

b4209, b1748, b1747,
b2501, b4468

ytfE, astC, astA, ppk, glcE

850
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Figure S1. Core metabolic network of E. coli model together with the heterologous pathway
This figure depicts the core metabolic network of E. coli and the integration of the heterologous non-
native mevalonate pathway (in blue). Shown in green is the native isoprenoid pathway in E. coli ( DXP
pathway). In cyan is the part of the network where these two pathways intersect, shown by the red sphere,
highlighting the metabolite isopentenol diphosphate (ipdp_c). In purple are the reactions downstream of
both the native and non-native pathways, which convert the pathway intermediates to fuel products, such
as bisabolene (bis_c), limonene (lim_c) and isopentenol (ipoh_c).
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Experimental Results

Pathway organization, strain selection, and multi-omics data generation

Table S1.  Strains and plasmids used in this study.
Previous optimization of the pathway plasmids for each biofuel has included codon optimization of
selected genes, the insertion of supplemental
separate operons, and altered operon gene order (e.g., PMK-MK rather than MK-PMK).  The primary
result of these optimizations is the altered expression of key pathway proteins (see Figure S2), which in
turn influences product yield and numerous aspects of host metabolism.  A key focus in the optimization
process has been the modulatio
(i.e., atoB, HMGS, and HMGR, aka

-optimized versions of HMGS and HMGR -
optimized HMGS and HMGR, HMGS and HMGR that is derived from
Staphylococcus aureus. For each fuel product, we choose strains with vario
while ensuring that a non-optimized variant (e.g., I1, L1, B1) was included for a baseline comparison.
Please see the references provided in the table for additional detail. References were taken from ((George
et al. 2014; Alonso-Gutierrez et al. 2013; Chubukov et al. 2015; Peralta-Yahya et al. 2011; Hanahan
1983))
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Figure S2 Representative set of metabolomics data and aggregate mevalonate pathway
metabolomics and proteomics
A. Time course profiles of selected metabolites characterized by pathway. B. Multi-omics view of
mevalonate pathway metabolomics and proteomics.

A

B

Representative data from the fermentation time-course is shown above.  The aggregate dataset is

optimization level rather than chose fuel target.  Indeed, the measured profiles of a variety of metabolites
in strains I1, L1, and B1 mirrored WT.  Though still more similar to WT than optimized strains, strain I1
deviated from WT more than L1 or B1, potentially due to the accumulation of IPP, which is known to be
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toxic (George et al., 2014).  Changes pathway protein expression in optimized strains resulted in large
changes in nearly every measured metabolite, including secreted organic acids and intracellular products
of central carbon metabolism.  Strains with high HMGS expression accumulated higher steady state levels
of mevalonate and secreted less acetate than those with low HMGS.  Careful analysis of pathway
metabolomics and proteomics supports the notion that a balance between HMGS and MK expression
directs flux towards IPP and downstream products.  Strains with weak HMGS expression maintained low
steady-state concentrations of mevalonate, but achieved high flux to downstream products (e.g. strain I1).
This relationship likely stems from the substrate inhibition of MK by high concentrations of mevalonate.
The importance of pathway balance is illustrated most dramatically by strain L2, where pathway genes

of AtoB, HMGS, and HMGR were more than 10-fold higher than L1 and L3 (Figure S2 (B)).  Due to this
enrichment, strain L2 accumulated high levels of intracellular and extracellular mevalonate and secreted
the least acetate of any engineered strain.  Despite st
portion of the pathway, flux to limonene was severely reduced.  Given the poor kinetics of each terminal
enzyme (i.e. NudB, Limonene synthase, Bisabolene synthase), we expected to observe the accumulation
of IPP, GPP, or FPP depending on the biofuel target.  While IPP did indeed accumulate to high levels in
isopentenol strains (i.e. I1 I3), levels of GPP and FPP were surprisingly low in limonene and bisabolene
producers, perhaps indicative of GPP and FPP depletion to make quinones and other essential compounds.

Computational Results

The three-stage iPython notebook series files can be found at the following links:
Stage one:
https://github.com/ebrunk/Strain_characterization_workflow/blob/master/ipython_notebook/Stage_one_D
ynamic_Differences.ipynb
Stage two:
https://github.com/ebrunk/Strain_characterization_workflow/blob/master/ipython_notebook/Stage_two_
multivariate.ipynb
Stage three:
https://github.com/ebrunk/Strain_characterization_workflow/blob/master/ipython_notebook/Stage_three_
GEM.ipynb

Stage one: Integrate multi-omics data and profile the batch fermentation dynamics

For metabolites or peptides that did not have a triplicate measurement, we estimated the variance
using the average variance for all metabolites or peptides measured.  The standard deviation was scaled to
the mean of the measured value according to the calculated %RSD for either triplicate measurements or
the average of all measurements as stated above.  The standard deviation was scaled using the following
formula: standard deviation = 100 * %RSD * measured value.

Stage_one_Dynamic_Differences.ipynb
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Figure S3. Difference profiles for various organic acids
Increased intracellular concentrations of glutamate, lysine and tyrosine were observed in the top-
producing isopentenol strains; increases in intracellular arginine and phenylalanine concentrations were
observed in all isopentenol strains as well as in the top-producing bisabolene strain; and increases in
intracellular serine concentrations were observed in all strains, but most significantly in the top-producing
isopentenol strains.



7

The process we took to construct the dynamic difference profiles was the following:
(1) subtract metabolite and protein concentrations or normalized peak areas, respectively, of the

engineered strain from that of the WT strain (based on time point)
(2) For each time point during batch fermentation, track whether the difference measurement is greater

than zero or less than zero, indicating a change in the engineered strain from WT
(3) Bin the clustering from (2) into several groups to establish common motifs: (i) difference

measurement is constantly at zero (no change); (ii) difference measurement starts off at zero but
increases (+) or decreases (-) at a later time point (shift/deviation) and remains shifted over WT; (iii)
difference measurement does not start off at zero (+/-), but does return to zero at a later time point
(return); (iv) difference measurement undergoes dynamic changes throughout the time series (cross).

(4) Once the clusters have been formed, analysis of engineered strains show similarities and differences
based on (i) fuel product and/or (ii) pathway optimization level.

These six dynamic difference profiles are used to identify global patterns in the data, indicating whether
the test condition: (i) matches the control throughout the time course (no change); (ii) is shifted above or
below the control throughout the time course (constant (+/-)); (iii) is shifted above or below the control at
the end of the time course (deviation (+/-)); (iv) is shifted above or below the control at the beginning of
the time course (return (+/-)); (v) is shifted above or below the control at one point during the time course,
but matches the control at the beginning and end of the time course (shift (+/-)); or (vi) is transiently
shifting, or oscillating, both above and below the control at multiple time points (transient ++/--, -+/-+).
As discussed in this section and the sections below, this analysis is applied to both metabolomics and
proteomics data.

Stage two: Identify correlations in key metabolic fingerprints that distinguish strain

behavior

Singular Value Decomposition (SVD) and principal component analysis (PCA) are multivariate analysis
techniques that have been successfully applied in the reduction of highly dimensional data sets to find
biological meaning. These approaches are generally used to examine the relationship among a set of p
correlated variables. The first step in this analysis is organize all metabolomic and proteomic data into a
matrix with each column containing the values of a different property, such as metabolite concentration,
and each row a given the time that measurement was taken. Performing SVD and PCA in the context of
analyzing metabolomic, proteomic and other datasets can provide answers to different questions.

i of the matrix represent the variances (the degree of correlated change in the data set)
associated with each new axis formed as a result of performing SVD. The eigenvector with the largest
eigenvalue is called the first principal component (in the case of PCA analysis) and the singular vector
with the second largest eigenvalue is the second principal component. The coefficients of an eigenvector
indicate the contribution of the original variables to the vector and are referred to in the text as  factor
loadings. The new coordinates, Y, are called scores. If the variance along some of the axes is very small,
then it can be ignored and the data can be represented in less than p dimensions. If the properties are
completely independent, such that there is very little correlation between measurements, then all the
property axes are needed to describe the dataset in its entirety. On the other extreme, if all the
measurements are perfectly correlated, then a minimal subset of axes are needed to fully describe the data
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set. Moreover, for a highly correlated set, given the value of one property, the values of other properties
are also known. That is, the intrinsic dimensionality of the data set is now 1 instead of p, thus a huge
reduction of the dimensionality takes place. Normally, the situation is somewhere in between these two
extremes.
Overall, exo- and endo-metabolomics time series datasets were pre-processed, normalized and subjected

timepoints with the average concentration between immediately adjacent timepoints. Subsequently, each
metabolite concentration was mean-centered and standardized (i.e., divided by the standard deviation)
across timepoints. This data normalization allowed us to compare the variation of metabolites even when
their absolute magnitudes were different. We then applied SVD to the normalized data using the Numpy
function, svd(). The three time phases are robust against the choice of data preprocessing (i.e., normalized
or not) for all strains, although strains L3, B2, and DH1 show a potentially less distinct phase 2.
We identified the major bioprocess time phases based on the first two eigenvectors, as described earlier.
Finally, we tested the robustness of our chosen time phases against the choice of data normalization, data
imputation, and whether exometabolites were used exclusively versus the use of both exo- and endo-
metabolites. We tested normalized (i.e., mean-centered and standardized) and imputed, normalized but
not imputed, mean-centered but not standardized nor imputed, mean-centered and imputed but not
normalized. Our chosen time phases were similar in all cases.
For the majority of strains, the first principal component represents 40% of the data, the second principal
component represents 20% and the third principal component represents 20%, which sums to 80% of the
variance explained in the first three principal components. Since the data is normalized, we expect that
additional axes are required to explain the variance in the dataset. However, these findings demonstrate
that the dataset is indeed highly correlated.
We also performed PCA on the proteomics data sets to understand how correlated proteome allocations
are over 72 hours for different strains versus that of wild-type DH1. In general, PCA on normalized peak
areas (normalized to BSA) indicates that the data is highly correlated (for most strains the first singular
vector explains 50% or more of the variation) but we do not see a similar three state behavior as seen for
the metabolomics data sets. For strains I2, I3, L2, L3 and B2, many of the proteins that have the highest
coefficients on the first singular vector are indeed the mevalonate pathway proteins (as they are
overexpressed).
Native E. coli proteins that also have large coefficients on the first singular vector are typically directly
interacting with the mevalonate pathway (e.g. Acetyl-coa acetyltransferase, ACACT1r). This is to be
expected, physiologically, as acetyl-coa acetyltransferase is expected to play a large role in redirecting
carbon flux to the mevalonate pathway through the acetyl-coA node. In general, we do not expect to see
the same degree of variation (e.g. the three-state behavior) in the native E. coli. As induction takes place
at an OD600 of 1.5-2.0 (late exponential growth phase), most of the proteome in the cell has been
established. Stage_two_multivariate.ipynb

Figure S4. Singular Value Decomposition of Metabolomics Data
A. Singular Value Decomposition of all extracellular (phenotypic) and endometabolomic data from all 8
strains. Each point in the graph is indexed by the time (in hour) that the sample was taken. Missing
measurements were imputed using the mean between timepoints. B. The relative variance explained by
eigenvectors (components) from SVD of the normalized metabolomics data.
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Figure S5. Distinct behavior distinguishes phenotypic behavior between different fuel
producers and different levels of pathway optimization
Singular Value Decomposition of all extracellular (phenotypic) and endometabolomic data from all 8
strains (I1, I2, I3, L1, L2, L3, B1, and B2), producing isopentenol, limonene and bisabolene fuel products.

data.

Stage three: Perform genome-scale modeling to gain mechanistic insights into strain
behavior
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Building metabolic models for different fuel product producing strains
While multivariate analyses provide an efficient means to reducing the highly dimensional nature of

high-throughput datasets, '-omics data sets can still be unwieldy and challenging to interpret owing to the
unpredictable nature of metabolic circuitry. These challenges have recently been approached through the
construction of large mechanistic models for various organisms, tissues and cell types (Becker and
Palsson 2008; Shlomi et al. 2008; Lewis et al. 2010; Mo, Palsson, and Herrgård 2009) that serve as a
context for further analysis. A workflow for generating metabolic models of biofuel-producing strains of
E. coli consists of the following three steps. Stage_three_GEM.ipynb

more information.

Step 1. Reconstruct a metabolic network for the organism of interest from genome annotation, lists of
biomolecular components and literature (Thiele and Palsson 2010).

Published metabolic models are continually being updated through many iterations of manual
curation, generating hypotheses, validation through experiments and incorporation of new knowledge.
Here, we use a recently updated metabolic model of E. coli (iJO1366).
Step 2. Identify reactions specific to the heterologous pathway of interest which will not be in the
metabolic network reconstruction of the organism.

Characteristic stoichiometries for the various heterologous pathway intermediates are generally
found in online databases, such as EcoCyc(Keseler et al. 2005) and Brenda(Schomburg et al. 2004; Chang
et al. 2009).
Step 3. Simulation and analysis (Oberhardt, Palsson, and Papin 2009; Feist and Palsson 2008).

Once the network is accurately reconstructed and converted into an in silico model, it is used to
generate hypotheses and to obtain insight into systems-level biological functions. This workflow was
used to build three different biofuel producing models of E. coli metabolism (isopentenol, limonene and
bisabolene). Genome-scale models use uptake and secretion rates of metabolites to constrain the flux
solution space of the entire metabolic network. We apply our findings from PCA on the extracellular
metabolomics to assign pseudo-steady states (i.e. exponential, early stationary and late stationary phases)
to carry out a constraint-based modeling approach. Metabolite concentrations taken from each of the three
phases were used to constrain the solution space of the flux network.

Markov-chain Monte Carlo Sampling of Flux space (MCMC)
We utilized the Artificial Centering Hit-and-Run (ACHR) Monte Carlo (MC) sampling algorithm

(Thiele et al. 2005; Price, Schellenberger, and Palsson 2004) to uniformly sample the metabolic flux
solution space defined by the set of constraints described above. This approach allowed biasing the
sampling towards physiologically relevant parts of the solution space without imposing the requirement
of strictly maximizing a predetermined objective function.

We assumed an error of 20% to set the lower and upper bounds of the constraint on uptake,
secretion, thus inherently accounting for the sampling calculation sensitivity. In order to study more
physiologically relevant portions of the flux space we restricted the sampling to the part of the solution
space where the growth rate was at least 20% of the measured growth rate for the condition as determined
by FBA and OD600 measurements. This assures that cellular growth remains an important overall
objective by the E. coli cells even in batch cultivation conditions, but that the intracellular flux
distributions may not correspond to maximum biomass production (Schuetz, Kuepfer, and Sauer 2007).

Carrying out this MC sampling procedure results in a distribution of a range of flux values for each
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reaction in the metabolic network. Typically, the most likely flux state for a given reaction is represented
by the mean of this distribution. Due to the overall shape of the metabolic flux solution space, most of the
values in the sampled flux distributions are close to the minimally allowed growth rate (i.e. biomass
production). The following sections describe the approaches that were used in the analysis of this data set.
Post-processing of the flux distributions considers removal of reactions and their participating metabolites
which are found to participate in intracellular loop reactions (Price, Thiele, and Palsson 2006) as they
have been shown to have arbitrary flux values.

The three phases taken from the SVD analysis on the metabolomic datasets for each strain were
used to constrain the solution space of the flux network. Relative levels of quantitative extracellular
metabolome (EM) data were averaged across a given phase (e.g. 0 to 6 hours, 8-20 hours and 24 to 72
hours) to simulate the three different pseudo steady states for each strain. Different input constraints were
used for each phase of each strain, thus the calculated solution spaces between the conditions differed
based only on variations in the experimental secretion measurements.

The excreted mevalonate and DXP pathway intermediates together with the secreted organic acids
were incorporated into the constraint-based framework as overflow secretion exchange fluxes to simulate
the low-level production of experimentally observed excreted metabolites. The rates of secretion and
uptake were approximated based on a normalization of the metabolite concentration with respect to the
biomass (OD600 measurement) such that the flux is given in units of mmol/hr/gDW.

Z-score based analysis of Flux shifts from WT phenotype
We were interested in characterizing the flux shifts across various conditions, for example, a shift in

time (e.g. between two phases) as well as the shift between strains (e.g. wild-type DH1 versus strain I3).
As explained in the section above, the output of the MC sampling procedure is a distribution of flux for
every reaction in the E. coli metabolic network model. Certain flux distributions are highly constrained
(i.e. their distributions are not broad) whereas other flux distributions are not constrained and can vary
across a wide range of flux values. Comparing changes between any two conditions must address the
characteristic flux distributions to determine whether or not a shift can be considered significant.

We used a Z-score based approach based on a previously reported MC sampling based analysis
(Mo, Palsson, and Herrgård 2009). To account and correct for background distribution, the Z-score was
normalized by computing reaction,Nj and reaction,,Nj corresponding to the mean mreaction and its standard
deviation for 1,000 randomly generated reaction sets of size Nj. Z-scores for subsystems were calculated
similarly by considering the set of reactions that belong to the given subsystem. Similarly, Z-scores were
computed on the metabolite level by computing a normalized Z-score based on the number of reactions a
metabolite is involved in. Z-scores for reactions that have a value greater than 1.74 indicate that they are
significantly shifting (i.e. highly perturbed regions of metabolic space), such that the overlap between two
flux distributions across two different conditions is significantly less, given a pvalue of less than 0.05%.
Perturbation of subnetworks of reactions and connecting metabolites were visualized using Escher maps
(http://escher.io.github).

Significantly perturbed regions of space were determined for each phase for each strain based on
the Z-score methodology described above. The most significantly perturbed regions were compared

potentially interesting mechanisms that arise from the engineering of the strains.
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Highly perturbed nodes in glycolysis/gluconeogenesis include phosphofructokinase (PFK),
fructose-bisphosphate aldolase (FBA), glyceraldehyde-3-phosphate dehydrogenase (GAPD) and pyruvate
dehydrogenase (PDH), which is linked directly to the synthesis of acetyl-coA. Highly perturbed nodes in
pentose-phosphate pathway include triose-phosphate isomerase (TPI), sedoheptulose 1,7-bisphosphate D-
glyceraldehyde-3-phosphate-lyase (FBA3), transaldolase (TALA) and transketolase (TKT1, TKT2).
Finally, in the citric acid cycle, the most perturbed reactions are alpha-ketogluterate dehydrogenase
(AKGDH), aconitase a and b (ACONTa, ACONTb), citrate synthase (CS) and isocitrate dehydrogenase
(ICDHyr). Other highly perturbed nodes in glycolysis/gluconeogenesis include phosphofructokinase
(PFK), fructose-bisphosphate aldolase (FBA), glyceraldehyde-3-phosphate dehydrogenase (GAPD) and
pyruvate dehydrogenase (PDH), which is linked directly to the synthesis of acetyl-coA (see
Supplementary Figures 19 and 20). To test the sensitivity of the results to the sampling times, separate
Monte Carlo samples were run for each of the strains and convergence was confirmed. We also tested the
sensitivity of the results to the relative magnitude of the extracellular metabolite secretion rates by
performing the sampling for isopentenol-producing strains using different uptake/secretion data
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Figure S6. Reactions that are significantly perturbed as a result of Engineering
A. Computed reaction z scores, indicated the perturbed metabolic regions, detected by constraint-based
modeling and ranked significant if z-scores are greater than 1.74. B. Venn diagram clusters of highly
perturbed reaction nodes shared or unique in fuel product groupings.

A

B
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Figure S7. Sum of fluxes to NADPH-producing reactions.
Model predictions of phase I vs phase II fluxes through NADPH-producing reactions. Given is the
difference of the sum of all fluxes producing NADPH in engineered versus WT strains.

A general, iterative workflow
The main text Figure 4 serves mainly as a conceptual demonstration of the detailed procedure carried out
in Stages 2 and 3. In the first step (top right), we illustrate the type of data flowing into this stage of the
workflow, using a typical metabolomics (e.g. organic acid) profile. The cartoon stacks of data/graphs
indicate the amount of data we are dealing, since we are using high-throughput metabolomics data (86
metabolites, 13 time points and 9 strains in total). In the second step, data reduction using PCA unveils
certain correlations from this highly dimensional dataset. The example discussed in the main text is the
occurrence of the three phase behavior, determined from metabolite variation. In the third step, we can
use knowledge of these patterns to define pseudo-steady states during the time course to carry out genome
scale modeling. It is important to note that, while data reduction in phase two is important for pattern
recognition and identifying correlations, reduction of network-level information can be non-informative if
solutions lie in peripheral pathways in metabolism (i.e. not in central carbon metabolic pathways). The
inputs into the model at this step are the metabolites that are consumed or secreted at each of the phases
determined from PCA. At the end of this step, we compare all perturbed reaction fluxes due to pathway
engineering and cluster them to find common links, such as cofactor usage. Finally, genome scale
modeling provides insights into possible metabolic changes (e.g. endogenous flux changes) that we can
compare to disparate omic data: RNAseq or, in this case, proteomics. It is important to note that genome-
scale models predict optimality and, as input to the model, we use metabolite level changes (both
secretion and uptake rates). Consequently, we see discrete flux changes for different levels of pathway

usage in the model, but we can
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observe its effects (i.e. flux changes) through the higher/lower levels of measured secreted product and/or
pathway intermediates that are used as inputs into the model simulation. Thus, in the fourth step, we
compare changes in protein levels to changes detected in predicted fluxes (which can be linked to a
protein, through a gene-protein-reaction relationship). This workflow is iterative in nature, since the
knowledge gained from step 4 can feed back into the workflow and guide the focus of which changes

essentially using genome scale models to model all possible states of metabolism, both in wild-type and
engineered strains. In total, we model three specific products: isopentenol, limonene and bisabolene.

Model-aided prediction of engineered metabolic phenotypes is consistent with
experiments

In general, we find that certain key metabolic phenotypes are consistent with the measurements. For
example, flux through the mevalonate pathway, and, in particular, through HMGS and HMGR is
significantly enriched for the higher producing strains (e.g. I2 and I3) versus the lower producing strains
(e.g. I1). This is to be expected, as the HMGS and HMGR genes in I2 and I3 strains are codon-optimized
and have been shown to produce 2-10 fold the amount of protein of I1. Also, the model is consistent with
observed phenotype correlations from the second step of this workflow (raw data curation and analysis).
For example, as more flux is observed through the mevalonate pathway for strains I2 and I3, we also
observe an increased flux through certain reactions in the TCA cycle (e.g. citrate synthase (CS) and alpha-
keto glutarate dehydrogenase (AKGDH)).

The most perturbed regions of metabolic space between phase I and phase II can be classified into
five main subsystems: (i) upper glycolysis; (ii) lower glycolysis; (iii) TCA; (iv) PPP; and (v) amino acid
metabolism. In the upper and lower glycolysis node, the reactions that are most significantly shifting are
(TPI), glycerol-3-phosphate dehydrogenase (GAPD), and enolase (ENO). In TCA, citrate synthase (CS),
alpha ketoglutarate dehydrogenase (AKGDH), aconitase (ACONTa/b) and fumerase (FUM) are detected
to be significantly shifting in certain strains. In PPP, GND, TALA and TKT1/TKT2 are significantly
shifting. Finally, in the amino acid biosynthetic changes we see changes in glutamate and glutamine
synthetases.

Table S2. Fold differences between WT and engineered strains in central carbon protein
levels (at 48 hours)

strain ACONTa ACONTb ACS AKGDH

I1 2.307297 1.025409 1.324224

I2 1.992266 2.237486 1.494973

I3 1.012421 2.079424 3.098786 1.336769

L1 1.096099 1.235977 1.3773 1.423511

L2 1.277886 2.251004 1.598908

L3 1.044519 2.221093 1.62796

B1 1.167407

B2 1.280888 1.558578 1.842991 1.555346
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strain CS FUM G6PDH2r GAPD

I1 1.413036

I2 1.939038 1.667288 1.325948 1.204843

I3 2.114611 1.861303 1.149866

L1 1.703191 1.208672 1.103652

L2 3.078821 1.910281 1.836256 1.14185

L3 2.372887 1.214664 1.094854 1.047619

B1 1.128843 1.029352 1.062454 1.080027

B2 2.003581 1.351933 1.160594 1.115617

strain GLYCL ICDHyr MDH MDH2

I1 1.283383 1.064527 1.576199 72.93218

I2 1.232722 1.616791 1.885506 81.65983

I3 1.328493 1.341796 1.715059 93.90099

L1 1.134186 1.463079 1.58885 56.7601

L2 1.358191 1.312792 1.252991 55.62739

L3 1.424241 1.515198 1.771878 86.59948

B1 1.091344 1.08939 1.496675 44.42694

B2 1.175677 1.263758 1.507556 48.73817

strain ME1 ME2 PDH SUCDi

I1 1.34884 1.100605 1.283383 1.431546

I2 1.857113 1.340254 1.232722 1.993585

I3 1.662339 1.39373 1.328493 1.391514

L1 1.789447 1.134186 1.708613

L2 2.008588 1.740199 1.358191 2.83125

L3 2.105288 1.363425 1.424241 2.054385

B1 1.483183 1.091344 1.213318

B2 2.377251 1.145139 1.175677 1.959825

Figure S8. Acetate assimilation links to TCA cycle.
Applying multi-omics to track changes in the acetate cycle between DH1 WT (gray) and strain I3.
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-derived acetyl-CoA into
the TCA cycle rather than the mevalonate pathway, which are both possible routes for the carbon.  In
strain I3, acetate assimilation, which begins in phase II and continues until 48 hours post-induction,
coincides with a 5-fold increase in protein levels of ACS and a 4-fold increase in the concentration of
AMP, a by-product of the ACS-catalyzed reaction. Even though the acetyl-CoA generated from this
reaction should provide additional carbon for the mevalonate pathway, no further increase in isopentenol
titer (or steady state levels of any mevalonate pathway intermediate) was observed after 36 hours. The
fact that intracellular citrate concentration and levels of TCA cycle proteins (such as CS and ACONTb)
steadily increase during the time-course is consistent with the notion that acetyl-CoA is preferentially
shunted into the TCA cycle (to regenerate NADPH) instead of to the mevalonate pathway.

Table S3. Single gene knock outs (SKOs) predicted from Flux variability analysis
Shown in red and bold is gene ydbK, which was experimentally tested to have higher production yields
compared to the top-producing strain, I3. The other two genes in red, ytfE and astC, were also
experimentally tested but did not have higher production yields compared to strain I3. See iPython

gene gene_name uniprot role

b0197 metQ P28635 transporter

b0198 metI P31547 aspartate kinase

b0199 metN P30750 transporter

b4238 nrdD P28903 ribonucleoside-triphosphate reductase

b1378 ydbK P52647
Probable pyruvate-flavodoxin

oxidoreductase

b4209 ytfE P69506 iron-sulfur cluster, repair

b1747 astA P0AE37 arginine catabolism

b1748 astC P77581 transaminase

b2501 ppk P0A7B1 component of RNA degradosome

b4468 glcE P52073 glycolate oxidase

A detailed workflow (with all scripts and output) is given in the iPython notebook. In summary, model-
driven predictions of SKOs are generated using constraint-based modeling simulations of the wildtype E.
coli strain constrained by phenotypic data (extracellular metabolomics), similar to stage 3 of this
workflow. Here, we ran flux variability analysis (FVA) to screen the effects of genome-wide single gene
knockouts. We computed three separate metrics to identif
observations from stage 3 of this workflow: (i) min flux through NADPH consuming reactions; (ii) max
flux through NADPH producing reactions and (iii) max flux through PPP pathway. We then rank-ordered
the SKOs that maximized or minimized these criteria without reducing the growth rate. A subset of the
final list of candidate SKOs were tested experimentally for their effects.
For constructing the single gene knockouts (SKOs), we performed the following procedure: allele
replacement to create mutants in E. coli DH1 was performed following the method of Detsenko et al
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(Datsenko and Wanner 2000). Briefly, a ydbK deletion allele interrupted with a kanamycin cassette was
amplified from the KEIO collection ydbK mutant using primers ydbKF
'GGTAATGCACACATCCCAATC' and ydbKR 'GGCCATCAACTTTGCCATAC'. PCR products were
introduced into E. coli DH1 harboring pKD46 and transformed as previously described (Datsenko and
Wanner 2000). Mutagenesis was confirmed by sequencing.

Identifying metabolic properties relevant to re-engineering

Figure S9. Growth and Isopentenol production for strain I3 (WT) and mutant ( ydbK)
(Top left) A time-course growth profile of wild type (Strain I3) and mutant ydbK strains measured by
optical density as well as isopentenol production over the course of the fermentation. The ydbK I3 strain
produced similar absolute yields of isopentenol with less growth compared to the WT I3 producer. (Top
right) shows glucose uptake and acetate production in the context of growth and isopentenol production
for both WT and mutant ydbK I3 strains. While both strains produced nearly identical amounts of
acetate and isopentenol, the ydbK I3 strain consumed glucose more slowly and appeared to accumulate
less biomass as estimated by optical density. (Bottom) Production and growth profiles for all tested
knockouts.
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Figure S10. Growth and production for limonene and bisabolene in mutant ( ydbK)
strains
Growth-normalized isopentenol titer (mg/L/OD600) is displayed for (a) strain L3 and L3 + ydbK
knockout and (b) B2 and B2 ydbK knockout, at 24 and 48 hours. For L3, the knockout variant produces
significantly more isopentenol than the highest producing strain, L3 (stars denote p-values: 24 hrs p =
0.0437 (**), 48 hrs p < 0.0001 (****), using an unpaired two-tail t-test).
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