
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Thinking about doing: Representations of skill learning

Permalink
https://escholarship.org/uc/item/2k55t50d

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors
Zhang, Xiuyuan
McDougle, Samuel David
Leonard, Julia Anne

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2k55t50d
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Thinking about doing: Representations of skill learning
Xiuyuan Zhang (flora.zhang@yale.edu)

Samuel D. McDougle (samuel.mcdougle@yale.edu)
Julia A. Leonard (julia.leonard@yale.edu)

Department of Psychology, Yale University

Abstract

Skill learning usually unfolds exponentially — we improve
rapidly early on, and then performance levels off. However, we
do not know whether people’s representations of skill learning
accurately reflect this fact. Here, we asked people to predict
the learning trajectory for a novel visuomotor task, “Lollitoss.”
First, we established that skill learning unfolds exponentially
on Lollitoss (Exp. 1). Across two experiments probing peo-
ple’s trial-by-trial predictions of learning in Lollitoss using di-
rect performance (Exp. 2a) and likelihood estimates (Exp. 2b),
we found that people accurately represent the learning curve
as exponential. However, we also found systematic errors -
people think individuals start out better, make less errors, and
learn slower in the task than in reality. Taken together, we find
that people are surprisingly accurate at representing the overall
shape of learning, but misestimate certain features, like the rate
of learning, which may potentially have downstream effects on
self-directed learning.

Keywords: intuitive theories of learning; visuomotor learning;
learning curve

How does a child go from never riding a bike before to con-
fidently riding one all the way to school? Even if you have
never ridden a bike, you probably have some intuition about
how learning this skill might unfold over time. The child
probably didn’t hop on the bike and master it right away.
Instead, she most likely made gradual improvements, from
biking with training wheels, to riding just a bit by herself,
to eventually riding all the way to school. Although track-
ing major skill learning milestones is intuitive, it is not clear
if people have fine-grained, accurate representations of how
learning typically unfolds over time (e.g., from minute to
minute, hour to hour). Critically, our beliefs about how learn-
ing proceeds over time can influence our actions: If a child
thinks their progress should be swift the first day that they
try learning to ride a bike, but it turns out to be slow, then
they may prematurely quit. Here, we ask whether people have
granular and accurate representations of skill learning.

Decades of research have tracked how skill learning un-
folds across a wide range of task domains, from simple mo-
tor skills, to complex routines, to perception and memory
tasks(Thorndike, 1913; Newell & Rosenbloom, 1981; Heath-
cote, Brown, & Mewhort, 2000; Gallistel, Fairhurst, & Bal-
sam, 2004). These studies reveal that performance gains, es-
pecially during the acquisition of motor skills, proceed ac-
cording to a decelerating exponential (or power) function,
just like riding a bike. That is, a naı̈ve learner will experi-
ence a lot of initial improvement over a short period of time,
then the amount of improvement per unit time will decrease
as their performance approaches an asymptote (Heathcote et
al., 2000; Krakauer, Hadjiosif, Xu, Wong, & Haith, 2019).

Although individuals can approach these asymptotes at dif-
ferent rates, the general shape of learning across individuals
remains the same.

However, reasoning about exponential functions is noto-
riously difficult. In seminal work, Wagenaar and Sagaria
(1975) showed that people tend to “linearize” observations
that actually are generated by exponential functions. This is
true not only when people have to extrapolate from a few data
points presented numerically, but also when data is presented
graphically (Wagenaar & Sagaria, 1975), or in contexts of vi-
sual storytelling (e.g., watching a pond fill up with duckweed
and predicting the amount of time left before the whole pond
is covered; Wagenaar & Timmers, 1978). Even in more con-
sequential, real-world situations, like planning for long-term
financial investments, people believe that the growth of their
savings is linear when it is exponential, and they misestimate
how much to invest (known as the “exponential growth bias”,
see Mckenzie & Liersch, 2011; Stango & Zinman, 2009). Al-
though it has been well documented that people have trou-
ble reasoning about exponential functions in a wide variety
of domains (e.g., financial decisions in Mckenzie & Liersch,
2011, and Covid-19 growth forecasting in Lammers, Crusius,
& Gast, 2020, Hutzler et al., 2021), we know surprisingly
little about people’s exponential reasoning in the domain of
learning.

When it comes to intuitions about our own and others’
learning, often known as “metacognition,” past work has pri-
marily focused on single item or single time point predic-
tions, and not the shape of learning over time. One line
of work focuses on people’s judgements of learning spe-
cific items before a test (see Finn & Metcalfe, 2008, 2014;
Richardson, Sheskin, & Keil, 2021). For instance, Finn and
Metcalfe (2008) found that college students were more ac-
curate at judging which specific cue-target word-pairs they
would remember after repeated exposure. Importantly, this
literature has shown that metacognition impacts actual learn-
ing — accurate representations of learning individual items
leads people to hone in on areas that need the most atten-
tion (Thiede, Anderson, & Therriault, 2003; Son & Metcalfe,
2005; Metcalfe & Finn, 2008; Son & Sethi, 2010). Another
line of research in metacognition concerns people’s broad in-
tuitions about learning particular subjects (see Keil, Lock-
hart, & Schlegel, 2010; Letourneau & Sobel, 2020; Lock-
hart, Goddu, & Keil, 2021). For example, to understand what
children think learning means, Letourneau and Sobel (2020)
asked four- to eight-year-old children open-ended questions,
such as “Can you think of something that you have learned?”
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and “How did you learn that?”. However, prior work leaves
open the question of whether people can accurately simulate
the time course of learning over longer time scales. Under-
standing how people intuitively represent learning progress is
important not only to informing theory related to represen-
tations of the mind, but also practices related to effectively
guiding learners’ efforts on the path to mastery.

Here, we ask whether people intuitively represent skill
learning as it actually progresses - that is, exponentially.
To compare people’s conceptions of skill learning to actual
learning, we first collected learning data from naı̈ve partic-
ipants playing a novel visuomotor learning task, “Lollitoss”
(Exp. 1). These data established “ground-truth” exponen-
tial learning trajectories in Lollitoss. Next, we examined a
separate group of participants’ predictions of learning in Lol-
litoss on a trial-by-trial basis, with no prior practice on the
task. In one experiment, participants simulated a precise pre-
diction of others’ behavior across trials (Exp. 2a) and in
another experiment, participants specified a set of numeri-
cal likelihood estimations for possible outcomes across trials
(Exp. 2b). We probed representations of learning in two dis-
parate ways to validate findings across methods and reduce
the chance that the way we queried learning biased partici-
pant’s answers. Across all three experiments, we fit the actual
and simulated learning curves with either exponential or lin-
ear functions, and compared the fit of these models. To more
precisely examine how people’s predictions of learning dif-
fered from actual learning, we compared the parameters (i.e.,
the starting point, slope, and asymptote) obtained from the
best model fits of actual learning data to people’s simulated
learning data. Together, these studies are designed to probe
people’s intuitions (Exp. 2a & b) about the time course of
skill learning.

Experiment 1
The goal of Experiment 1 is to establish the ground-truth
learning trajectory of individuals on our novel visuomotor
task. Based on nearly a century of work on the shape of skill
learning curves (see Heathcote et al., 2000 for a summary),
we hypothesized that learning would unfold following an ex-
ponential decay function - fast at first, then slowly thereafter.
Exp. 1 was preregistered here.

Methods
Participants We recruited 55 adult U.S. participants online
through Prolific. We expected to observe learning in the task
(i.e., minimization of errors over time), so we preregistered
fitting a simplified linear model (error ∼ trial number) for
each participant and excluding any participant who did not
show a negative slope (i.e., no evidence for a trend of learn-
ing). Based on this criteria, we excluded five participants (fi-
nal n = 50).

Procedure Participants were introduced to a novel game -
Lollitoss. The goal of Lollitoss is to try to get as many points
as possible by ‘tossing’ lollipops that move back and forth

Figure 1: Schematics for (a) Exp.1 - actual learning, (b)
Exp.2a - direct prediction, and (c) Exp.2b - likelihood esti-
mation.

along the bottom of the screen towards the middle of a tar-
get (see Figure 1). To ‘toss’ the lollipops, participants first
needed to stop the lollipop using the ‘space bar’ key, which
moved at speed 970pixel/1000ms across the screen horizon-
tally. Then, participants ‘launched’ the lollipop by pressing
the ‘Enter’ key, with the amount of time they held down the
key dictating the vertical distance that the lollipop traverses.
We set the optimal interval to 1412 ms, with hold intervals
less than 1079 ms or more than 1746 ms fully missing the
target. If a player got the lollipop in the bullseye of the target
(yellow circle, see Figure 1), they got 50 points. For each con-
centric ring outside of the bullseye (starting from red, ending
at white) they got 30, 20, 10, and 5 points respectively, and
0 points for landing the lollipop outside of the target. After
reading the instructions, participants had to pass two com-
prehension questions before proceeding to game play: “How
many points will you get if you hit the lollipop on the bulls-
eye?” and, “Which key will be used to toss the lollipop toward
the board?”.

Participants played Lollitoss on a 640pixel × 1,000pixel
window. Each participant completed a total of 50 trials during
10 rounds of the game, with 5 trials per round. The lollipops
always appeared first on an extreme side of the window before
starting to move horizontally (randomized left and right start
location). After each toss, participants saw their toss score
and their total score. For a given trial, the Euclidean distance
from the center of the tossed lollipop head to the center of
the target was calculated and recorded to mark participant’s
deviation from the goal (i.e., their error for a given toss). By
calculating participant’s errors over time, we constructed in-
dividual learning curves.

Results and discussion

As expected, learning in Lollitoss was best characterized by
an exponential decay function (Figure 2a). We fit each par-
ticipant’s learning data with an exponential decay function
(error ∼ a * exp(-b * trial number) + c) and a linear func-
tion (error ∼ b * trial number + c), as a comparison. For

283

https://osf.io/cw7g2?view_only=59df8bcdc6f440c99d39cd0b22b3131e


Figure 2: The left panel shows model estimations for individual learning rates fitted with exponential decay for each of the
three experiments, and the right panel includes exponential vs. linear model comparisons for individual subject using AIC for
the corresponding experiment. (a) & (b) Exp.1 - actual learning, (c) & (d) Exp.2a - direct prediction, and (e) & (f) Exp.2c
- likelihood estimation. The average actual learning (a) and average predicted learning (c) & (e) are all presented with 95%
bootstrapped CIs. Here, the y-axes show different scales to present clearly the learning trajectories from the three experiments.

all but one participant, learning data were fit by the expo-
nential decay function. Focusing on these 49 participants,
we evaluated model performance using the Akaike informa-
tion criterion (AIC). As shown in Figure 2b, after comput-
ing the ∆AIC between the exponential and the linear mod-
els for each participant, we found that the exponential model
outperformed the linear model in 44 out of 49 participants
(∆AIC < 0). A paired Wilcoxon signed-rank test across the
49 participants revealed that the exponential model had sig-
nificantly lower AIC scores (i.e., a better model-fit) than the
linear model (V = 41, p < .001). Thus, in line with previous
research on skill learning, our results show that the learning
curve for Lollitoss is best described by an exponential decay
function.

Experiment 2a

In Experiment 2a, we asked whether people can accurately
simulate the trajectory of learning in Lollitoss. We probed
people’s intuitions by asking them to predict the precise lo-
cations of an imagined naı̈ve learner’s tosses at a few time
points across 50 trials. Exp. 2a was preregistered here.

Methods

Participants We recruited 54 adult U.S. participants online
through Prolific. We expected participants to predict the oc-
currence of learning during the game, so we pre-registered fit-
ting a linear model (predicted error ∼ trial number) for each
participant and excluding any participant data if their pre-
dicted errors over the total trials do not show a negative slope
(i.e., no trend of expectation of learning). Based on this crite-
ria, four participants were excluded (final n = 50).

Procedure As in Exp. 1, participants were introduced to
the instructions for Lollitoss. Additionally, to get a feel for the
task, participants were given one opportunity to experience
how the ‘space’ and ‘Enter’ keys work to move the lollipop
without the presence of the target board. However, instead of
performing any actual trials of Lollitoss (which would con-
found our results), participants were told that they would pre-
dict a naı̈ve player’s progress on the game. To proceed to the
prediction phase, participants had to pass three comprehen-
sion questions, including the two comprehension questions
in Exp. 1 and a third question “whose performance will you
be predicting in this game?”.
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In the prediction phase, participants were asked to pre-
dict the landing location of the lollipop tosses for a first-time
learner. To make a prediction, participants simply clicked
on the screen (including inside and outside the target board)
where they thought the lollipop would land on that trial. Par-
ticipants completed seven rounds of predicting bins of trials,
instead of the full 50 trials that participants played in Exp. 1,
to reduce task redundancy and fatigue. In the first six rounds,
participants were asked to predict three consecutive trials per
round with a nine-trial interval between rounds (e.g., 1st, 2nd,
3rd trials, then 10th, 11th, and 12th trials, etc.). To ensure
a matched ending trial between the prediction responses and
the learning responses from Exp.1, participants also predicted
the landing location of the last toss (i.e., the 50th trial) in the
seventh round. The Euclidean distance between the reported
center of the lollipop head and the center of the board was
recorded, as in Exp.1.

Results & discussion
People intuitively represented the trajectory of learning over
time as being exponential (Figure 2c). As in Exp. 1, we fit
individual participant’s predictions with an exponential de-
cay function and a linear function for comparison. The expo-
nential model provided the fits for 49 out of 50 participants.
We computed the AIC score (see Figure. 2e for individual
∆AIC) for these 49 participants, where 37 out of 49 partici-
pants had a negative ∆AIC (Figure 2d). A paired Wilcoxon
signed-rank test revealed that the exponential models had sig-
nificantly lower AIC scores than the linear models (V = 158,
p < .001).

These data suggest that people intuit that the shape of
learning in Lollitoss as exponential rather than linear, accu-
rately reflecting the general shape of the ground-truth learn-
ing trajectories on the task. However, it is possible that the
way we queried participants could influence people’s predic-
tions. To find converging evidence about people’s intuitions
across methods, we ran a second experiment in which we
asked participants to reason about learning in this task proba-
bilistically.

Experiment 2b
In Experiment 2b, we tested people’s trial-by-trial represen-
tation of the learning trajectory using a distinctly different
measure: people predicted the likelihood of lollipops landing
at specific regions on and outside the target board at different
time points of learning. Exp. 2b was preregistered here.

Methods
Participants We recruited 63 adult U.S. participants on-
line through Prolific. As in Exp. 2a, we expected partici-
pants to predict learning during the game, so we preregistered
fitting a linear model (predicted probability for bullseye ∼

trial number) to each participant’s data and excluding any
participant if their predicted probability for bullseye over 19
trials did not show a positive slope (i.e., no trend of expecta-
tion of learning). Thirteen participants were excluded based

on preregistered inclusion criteria (final n = 50).

Procedure To ensure that participants understood the goal
of the task, we gave them two practice scenarios in which
they predicted the likelihood of a ball landing in a certain
color area on the floor below after being dropped. In one
example, the area below the ball was equal colors yellow and
green. In the other, the green to yellow ratio was 4:1. For each
scenario, participants were asked two questions ‘How likely
will it (the ball) land inside the green/yellow region?’ and
recorded their responses using sliders (0%-100%). Partici-
pants who responded correctly to the two training scenarios
continued to the instruction phase for Lollitoss. Participants
were then introduced to Lollitoss and provided the same in-
struction and comprehension questions as in Exp. 2a.

In the prediction phase, participants were asked to predict
where the lollipop tosses would land for a first-time learner,
just as in Exp. 2a. However, instead of having participants di-
rectly place the lollipop on the screen on a given trial, partici-
pants were asked to estimate the likelihood of the toss landing
on each of the four possible regions: outside the board, on the
white and the black rings, on the blue and the red rings, and
inside the yellow circle. Four sliders (0%-100%) were pro-
vided, one for each region (see Fig. 1c). Participants were
able to submit their response and proceed to the next trial if
the sum of all four sliders was 100%. They completed the
same seven rounds of predictions with a total of 19 trials as
in Exp. 2a.

Results & Discussion

As in Exp. 2a, we found that people’s predictions of learn-
ing over time were again best fit by an exponential decay
function when probed using likelihood estimations (Figure
2e). To convert the reported probabilities to errors in the
task space (e.g., distances from the center), we computed
weighted distances for participants using their likelihood es-
timations on each trial (i.e., P(outside) * Dto center(outside) +
P(white & black) * Dto center(white & black) + P(blue & red)
* Dto center(blue & red) + P(bullseye) * Dto center(bullseye)).
‘Distance to center’ measures were the distance from the mid-
point of each set of concentric rings to the center of the board,
except the ‘outside the board’ area. Since this area was not
bounded by an outer circumference, we used the mean dis-
tance observed in ‘outside’ area trial predictions from Exp.
2a. We again fit two possible functions, exponential decay
and linear, to participant’s predictions of learning data over
the 19 trial bins. As in the last two experiments, 49 out
of 50 participants’ predictions converged for the exponen-
tial model, so we focused on these 49 participants for model
comparisons. 40 out of 49 participant data were better de-
scribed by an exponential model rather than a linear model
and had negative ∆AIC. Furthermore, we found that the ex-
ponential models had significantly lower AIC scores than the
linear models using a paired Wilcoxon test (see Figure 2f for
∆AIC; V = 95, p < .001).

Together with the results from Exp. 2a, we found con-
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Figure 3: Model parameters from the best exponential decay model fits in Exp. 1 - actual learning and Exp. 2a - predicted
learning for individual participants: (a) estimates for the starting points (α), (b) estimates for the asymptote (c), and (c) estimates
for the learning rate (β). The grey dashed line indicates the outer border of the target board and the yellow dashed line the border
of the bullseye. (d) average errors across 50 trials for Exp. 1 and Exp. 2a. Participant’s 1st (e) and 50th (f) actual tosses (Exp.
1, dark red) and predicted tosses (Exp. 2a, blue) are overlaid for visualization. Data and estimates shown here are from 49
participants (Exp. 1) and 49 participants (Exp. 2a) where the models converged.

verging evidence that people represent learning trajectories
as exponential when asked to reason about learning by mak-
ing either point estimates (Exp. 2a) or likelihood estimates
(Exp. 2b) of performance. Although people accurately repre-
sent the overall shape of learning as exponential, it is possible
that they are inaccurate in representing specific features of the
learning curve, like the starting point and the learning rate.

Actual vs. Predicted Learning
To probe people’s intuitions about specific features of the
learning curve, we compared parameters from predicted
learning curves (Exp. 2a) to parameters from actual learn-
ing curves (Exp. 1). Exp. 2b was not included in this
analysis because it produced less precise estimates (weighted
distance estimates from participants’ likelihood responses)
than Exp. 2a. Comparing Exp. 1 and 2a, we found that
people assumed learners would have better starting perfor-
mance (M = 179.27, CI = [141.34,218.43]) when provid-
ing trial-by-trial point estimates than they actually do dur-
ing learning (M = 363.09, CI = [301.40,432.03]; Wilcoxon
test, W = 1774, p < .001). When estimating the errors a
naı̈ve learner would make on their first toss, people’s pre-
diction were near the outer border of the target board, while

actual learners’ starting positions are further away from the
target board (Figures 3a & e). People also believed that
learners would get closer to the bullseye (M = 26.38, CI =
[20.42,32.84]) by the end of the learning process than they
actually do (M = 79.22, CI = [72.02,86.50]; Wilcoxon test,
W = 2218.5, p < .001; Figures 3b & f). When we un-
covered the learning rates from people’s point estimates, we
found that people predicted that learners would have a slower
learning rate (M =−.32, CI = [−.42,−.22]) than their actual
learning rates (M =−.48, CI = [−.58,−.38]; Wilcoxon test,
W = 768.5, p < .005; Figure 3c). Similarly, people believed
that learners would make significantly fewer errors on aver-
age (M = 58.29, CI = [44.89,73.89]) than they actually made
(M = 96.26, CI = [87.48,106.94]) across 50 trials (Wilcoxon
test, W = 805, p < .001; Figure 3d).

Thus, although the general shape of people’s predictions
about learning matched the actual learning data, the exact
features (e.g., the range of people’s errors, the starting per-
formance, and the learning rate, etc.) did not. People as-
sumed that learners start closer and end closer to the bullseye
than they actually do across 50 trials. In turn, people assume
that learners make fewer errors than in reality. Miscalibrat-
ing the learner’s starting point may have led people to further
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underestimate naive player’s learning rate. This suggests that
people’s assumptions about task difficulty, indexed by start-
ing point, in Exp. 2a may be key for “parameterizing” the
intuited exponential functions.

General Discussion

Our work shows that people accurately represent the expo-
nential trajectory of skill learning over time. Replicating prior
work (Heathcote et al., 2000), we first established that learn-
ing on a novel visuomotor task, Lollitoss, was best fit by
an exponential decay function (Exp. 1). Across two stud-
ies probing trial-by-trial predictions of learning in Lollitoss
with point estimates (Exp. 2a) and with likelihood estimates
(Exp. 2b), we found converging evidence that people accu-
rately represent learning as unfolding exponentially. How-
ever, we also found that people misestimate specific features
of the learning curve: people tend to overestimate learners
starting and ending performance and underestimate their rate
of learning.

In contrast to prior work, we found that people are surpris-
ingly good at exponential thinking. Participants predicted ex-
ponential learning when providing explicit trial-by-trial point
estimates (Exp. 2a) and more abstract likelihood estimates
(Exp. 2b). Why do our results differ from prior work on
the Exponential Growth Bias (Wagenaar & Sagaria, 1975)?
One reason may be due to how we asked people to make
predictions. For instance, in the classic duckweed and pond
paradigm, Wagenaar and Timmers (1978) asked participants
to indicate “the proportion of elapsed time” in comparison
to when the pond will be fully filled. This task question is
very cognitively demanding, requiring participants to reason
and connect abstract properties like time and growth. In con-
trast, participants in our work were asked to do something
less cognitively demanding - they directly predicted a series
of learning outcomes at specific moments in time (Exp. 2a
& 2b). Importantly, our findings are in line with recent work
showing that exponential reasoning is more accurate when in-
dividuals make predictions on shorter time scales (e.g., how
much will Covid-19 cases increase in 3 days vs. 15 days,
Lammers et al., 2020).

Although people’s predictions of skill learning matched the
exponential decay shape of actual skill learning, we found in-
teresting points of misalignment. People systematically mis-
represent the precise learning curve parameters (i.e., the in-
tercept, rate, and asymptote). For example, individuals think
that naı̈ve learners will start out and end closer to the bulls-
eye than in reality. People also underestimate the amount of
improvement over time (i.e., the rate). This result is in line
with prior work showing that people tend to underestimate the
amount of exponential growth (Wagenaar & Sagaria, 1975;
Wagenaar & Timmers, 1978). Many factors could lead to
discrepancies between predicted and actual learning curve pa-
rameters, including the perceived difficulty of the task (note
that people who predicted learning had never played Lolli-
toss), specific task features (e.g., how long to hold the ‘enter’

key), and the perceived skill level of individuals playing the
game. However, it is exactly these same ‘free parameters’
that make the alignment between people’s predicted and ac-
tual exponential learning functions even more impressive.

Past work has demonstrated that the way people think
about moment to moment learning influences their actual
learning. For example, before a test, people tend to priori-
tize studying vocabulary words that are of medium difficulty
and avoid studying the words they already know or the words
that are very difficult (Thiede et al., 2003; Finn & Metcalfe,
2008). Similarly, adults are sensitive to learning trajecto-
ries and choose to spend their energy on tasks with steeper
learning curves, where they can experience more improve-
ment within a shorter period of time (Ten, Kaushik, Oudeyer,
& Gottlieb, 2021). Thus, a natural extension of the current
work is to ask whether representations of the learning process
also guide actual learning. There are two ways to approach
this question. The first is to see whether individual differ-
ences in people’s prediction of the learning process (the over-
all shape, as well as the intercept and rate) impacts the way
they approach learning (e.g., their motivation, learning pref-
erences, etc). A second way is to prime individuals to think
of learning more or less accurately and see how that impacts
their approach to learning. For example, if we prime people
to incorrectly think that their rate of learning will increase
over time, this may motivate learners initially (they experi-
ence more improvement than expected) but demotivate them
over time (when their actual rate of learning is much lower
than expected).

One open question is when in development people possess
this capacity to intuit the shape of learning. On one hand,
work in developmental psychology and cognitive science
points to the remarkable sophistication of human metacog-
nitive reasoning. Preschoolers accurately track their past per-
formance (Hembacher & Ghetti, 2014) and selectively choose
to switch to easier tasks when their performance hasn’t im-
proved over time (Leonard, Duckworth, Schulz, & Mackey,
2021). Furthermore, children allocate attention towards dis-
plays of intermediate complexity (Kidd, Piantadosi, & Aslin,
2010) and possess an intuitive sense of difficulty, at least on
simple tasks (Gweon, Asaba, & Bennett-Pierre, 2017). How-
ever, simulating the time course of learning may be a cogni-
tive challenging task that emerges later in development. On-
going work is exploring whether young children intuit that
learning unfolds non-linearly using a simplified paradigm.

In sum, we found that people are remarkably accurate at
representing the shape of learning over time in the domain
of skill learning. However, we also identified specific mis-
conceptions of parts of the learning process - people over-
estimate learner’s starting and ending performance and un-
derestimate their rate of learning. This works sets the stage
for a series of follow-up studies probing representations of
learning across ages, question types, and domains, as well as
work exploring the functional consequences of misrepresen-
tations of learning trajectories.
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