UC Davis

UC Davis Electronic Theses and Dissertations

Title
JPEG Encoding on Fine-Grain Manycore Platforms

Permalink

Ihttps://escholarship.org/uc/item/2k54m3mw|

Author
Abbott, Thomas Walker

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library

University of California

https://escholarship.org/uc/item/2k54m3mw
https://escholarship.org
http://www.cdlib.org/

JPEG Encoding on Fine-Grain Manycore Platforms
By

THOMAS ABBOTT
THESIS

Submitted in partial satisfaction of the requirements for the degree of
MASTER OF SCIENCE
in
ELECTRICAL AND COMPUTER ENGINEERING
in the
OFFICE OF GRADUATE STUDIES
of the
UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Professor Bevan M. Baas, Chair

Professor Hussain Al-Asaad

Professor Venkatesh Akella
Committee in Charge

2023

Copyright © 2023 by
Thomas Abbott

All rights reserved.

Abstract

JPEG encoding is a powerful image compression algorithm capable of compressing
image data at the cost of image quality. A variety of architectures implement JPEG encoding,
each leveraging either serial execution superiority (general-purpose programmable processors),
massive parallelization abilities (GPUs), or dynamic architecture arrangements (FPGAS).
However, all these architectures need help to simultaneously handle the serial and parallel
components of the JPEG encoding algorithm. This thesis proposes 29 JPEG encoder
implementations on the KiloCore platform (a fine-grain manycore processor array), compares
each algorithm to one another, and compares the top algorithms to designs on differing
architectures.

This work benchmarks throughput, throughput per area, energy per megapixel encoded,
and energy-delay product across 29 KiloCore JPEG encoder versions. Furthermore, this work
compares the top KiloCore designs against JPEG implementations on a Xilinx Zyng-7000 FPGA
(VISENGI), Tl C66x Embedded Processor, Intel i9 9900 CPU (libjpeg-turbo), and Intel
Platinum 8168 with an Nvidia A100 GPU (nvJPEG).

JPEG encoding implementations on KiloCore require low amounts of energy while still
reaching competitive throughput. JPEG encoding implementations on KiloCore achieve higher
throughput than the C66x and Intel i9 9900 JPEG encoders by at least 6.6x. JPEG encoding
implementations on KiloCore have the lowest area usage and have the highest throughput per
area by 1.45x to 100x. JPEG encoding implementations on KiloCore have the lowest energy per
megapixel encoded of tested general-purpose processors, by 1.88x to 100x. Finally, JPEG
encoding implementations on KiloCore boast a 20x to 261,733x lower energy-delay product

than its general-purpose industry competition.

Acknowledgments

Thank you to my advisor and mentor, Professor Baas. His mentorship through my
undergraduate and graduate education inspired me further to apply myself to your digital design
and VLSI classes. Furthermore, his guidance in my research helped me stay motivated and
focused.

Thank you to Dr. Bohnenstiehl for his work on KiloCore and for guiding me in my
development using the KiloCore software toolchain.

Thank you to the previous graduate students of the VCL labs whose documentation
helped guide me through my thesis.

Thank you, Professor Akella and Professor Al-Assad, for your time and effort in
reviewing my thesis.

Thank you, Derek Li, for assisting with finding performance metrics of competing
designs. Thank you, VISENGI, for providing performance data of your IP block upon request.

Most importantly, | thank my family, friends, and partner for their support throughout my

academic journey. It would not have been possible without any one of you.

Contents

ADSTTACT. ...

Acknowledgmentsccccoovvvinenne.

INtrodUCtiON.....cooeeeeeeeeee

1.1

1.2

Motivationccceeceeeeeeeee,

Thesis Organization.................

Background of JPEG Encoding

2.1

2.2

2.3

2.4

2.5

2.6

OVEIVIEWoovveieiiieiieeie e
Baseline and Progressive Form
2.2.1 Baseline Format............
2.2.2 Progressive Format.......
Header Organization................
Lossy and Lossless Formats
24.1 Lossy Format................
2.4.2 Lossless Format............

Color Spaces and Subsampling

AL Lt renee

25.1 RGB t0 YCDBCrK Transformationcoooeeeeeoe oo,

2.5.2 Color Subsampling.......

2D Discrete Cosine Transform

26.1 Series Definition 0f the DCT -1 ... 9

2.6.2 Matrix Transformation Definition of the DCT-11........c..ccooeiiiiniiiiiiiciiens 10

2.6.3 AA&N Algorithm to Compute the DCT-1......ccooiiiiiiiiiieee 10

2.6.4 PreciSion CONSIABIALIONSccveiuiriiriiiiiieiei et 11

p B O TV T g (2 L1 o] PSSRSO 11
271 OVEIVIEW ..ottt bbbt 11

2.7.2 Quality and Quality Factor (QF)ccccceiieiieiicie e 13

S T A [0 Vo [SRS 13

2.9 AC Coefficient Run-length ENCOTINGooviiiiriiiiiiies s 13
2.10 DC Coefficient Difference ENCOUINGcoviirieieiieieieicseseeeeee e 14
2.11 Huffman and Arithmetic ENCOAINGccoeiieiiiieiiccecc e 15
2.11.1 HUuffman ENCOAINGc.coveiiiiicc e 15

2.11.2 Arithmetic ENCOAING........cccviiieiiiiccie e 15
Background of the KiloCore PIatFOrMc.oiiiiiiii e 16
3L OVEIVIBW ..ttt bbb b bbbttt bbb 16

3.2 Relevant Architectural HIgGhHGhEScoooiiiiiiii e 17
321 Core INFOrMALION ..o 17

3.2.2 FIFO INfOrMALIONcooiiiiiiiiiiee e 17

3.3 Programming 0N KIOCOIEcoviiiieiee e 18
JPEG Implementation on the KiloCore PIatfOrm ..o 19

4.1 OVErVIEW aNd TESHING....eeviiieiieie ettt e e e e sre e reesae et e sreenneenee e 19

A.1.1 OVEIVIBW .ottt 19

B.1.2 TESHING c.eeveieeieeii ettt bbb 19

4.1.3 Relevant ADDreviationscocoiiiiiiieiiies e 22
4.2 JPEG ENCOUEr VEISION Louiiiiiiiiiieiiiieieie st 24
4.3 JPEG ENCOUEI VEISION 2 ...ttt 26
4.4 JPEG ENCOUEr VEISION 3 ...ttt 27
4.5 JPEG ENCOUEI VEISION 4 ...ttt 27
4.6 JPEG ENCOUEr VEISION 5 ...t 28
4.7 JPEG ENCOUEN VEISION Bc.voviiiiieiieieieesie sttt 28
4.8 JPEG ENCOUEI VEISION 7 ..ottt 28
4.9 JPEG ENCOUEr VEISION 8 ...ttt 29
4.10 JPEG ENCOOEr VEISION 9 ..ot 30
411 JPEG ENCOder VErsion 10ccccoieieiiiiieiie ittt 32
4,12 JPEG ENCOUEr VEISION 11 ..ottt 32
4.13 JPEG ENCOUEr VEISION 12 ..ottt 33
4.14 JPEG ENCOTEr VEISION 13 ..ottt 33
4.15 JPEG ENCOUEr VEISION 14ocuiiiiiiiiiieieiee s 34
4.16 JPEG ENCOTEr VEISION 15ottt 34
4,17 JPEG ENCOUEr VEISION 16ccuiiiiiiiiiieieiieiie ettt 35

Vi

4.18 JPEG ENCOUEr VEISION 17 ..ottt 36
4.19 JPEG ENCOEr VEISION 18 ..ottt 36
4.20 JPEG ENCOTEr VEISION 19ooiiiiiiieiieiie it 36
4.21 JPEG ENCOTEr VEISION 20cciiiiieieiieiie sttt 37
4.22 JPEG ENCOUEr VEISION 21ocuiiiiiiiiiieieieeie st 38
4.22 JPEG ENCOUEr VEISION 22 ..ottt 38
4.24 JPEG ENCOUEr VEISION 23 ...ttt 39
4.25 JPEG ENCOUEr VEISION 24 ..ottt 40
4.26 JPEG ENCOUEr VEISION 25ouiiiiiiiiiieieiesie et 41
4.27 JPEG ENCOUEr VEISION 26ccueiiiiiiiiieieieesie ittt 41
4.28 JPEG ENCOUEI VEISION 27 ...ttt 43
4.29 JPEG ENCOOEr VEISION 28oouiiiiiiiiiieieie ettt 44
4.30 JPEG ENCOOEr VEISION 29cuiiiiiiiiiiieieie et 44
Simulation Results of JPEG IMplementations............coviiiiiiiiiiine e 45
5.1 OVEIVIBW ..ttt bbb bbb bbbt b bbbttt enes 45
5.2 Throughput ANAIYSISccoiiiiiiie s 49
5.3 POWET ANAIYSIS ..ociiiiiieiie ettt et 51
5.4 Energy per Megapixel Encoded ANAlYSISccveiieiiiiiie i 54
55 Throughput per Area ANAIYSIScooviiiiiiiece e 56
5.6 Energy-Delay ProdUCTccooiiiiiiiiiiei s 58

Vil

5.7 Energy per Megapixel Encoded vs. Area per Throughput Analysis.............cccceeueenee. 60
Comparisons to Other Notable JPEG ENCOTENS.........cccocveiiiiieiie e 73
T A O 1 =T VT TSP RPOP 73

6.2 Comparison of JPEG Encoder KiloCore Implementations with Competing Designs 73

B.2.1 OVEIVIBW .ottt bbbttt bbb 73

6.2.2 ATEA ANAIYSIS ...veiviiiiiecieeie e e nn 77

6.2.3 Throughput ANAIYSISc.coeiiieiiiie e 77

6.2.4 Energy per Megapixel Encoded ANalysisc.ccccevveiiiiieiieii e 78

6.2.5 Throughput per Area ANAIYSISccoiiiiiiiiiieiese e 78

6.2.6 Energy-Delay Product ANAlYSIScccoiiiiriiiiniiisisieeeeee e 79

6.2.6 Energy Per Megapixel Encoded vs. Area per Throughput Analysis............... 80

8.3 CONCIUSION ...ttt bbbttt 81
ConCluSioN and FULUIE WOTKc.ciuiieiiiiiiieieiiite et 83
7.1 CONCIUSTON ..ttt ettt bbb 83

7.2 FULUIE WOTK ...ttt 83
7.2.1 CH++and Assembly DiSCrepanCIes.........cooveieieiereienisiieeeee e 83

7.2.2 Additional JPEG ENcoding FEAtUIeSc.cccveiiiiiieiie e sie e 85

7.2.3 Future KiloCore IMProvemMENtS.........ccoveiieeiiieiie et 85

7.24 JPEG DECOUING......uiiitiiiiiiitie sttt et e e re e 86
BIDHOGIAPNY ...t 88

List of Figures

FIGURE 2.1: JPEG ENCODING DIAGRAM [L] ...ttt 5
FIGURE 2.2: SAMPLE JPEG HEADER WITH TAGS OUTLINED IN A RED BOX.....cccviiieiiiaiinieenieenesieennes 7
FIGURE 2.3: AA&N DCT ALGORITHM [4] ..ottt 11
FIGURE 2.4 ZIGZAG ORDER [1]...tittitiitiitiiiieiieieie ettt 13
FIGURE 2.5: DIFFERENTIAL DC ENCODING [1] ...ecuveiiiiiiiiiiisiieiieieie et 14

FIGURE 3.1: DIE PHOTO OF THE KILOCORE ARRAY AND CORE SPECIFICATION INFORMATION [5]... 16

FIGURE 4.1: TESTING BLOCK DIAGRAM FOR JPEG IMPLEMENTATIONS, USING THE PIL PYTHON

JPEG LIBRARY AS A GOLDEN REFERENCEuciiutietitaitiesieessteesteeasessineasessseesssessssesnsesssnesnsenss 19
FIGURE 4.2: JPEG ENCODER DESIGN L......uoiiiiiiiiiiie ettt 24
FIGURE 4.3: JPEG ENCODER DESIGN 2......uiiiiiiiiiiiie ittt 27
FIGURE 4.4: JPEG ENCODER DESIGN 3......oiiiiiiiiiiiie ittt 28
FIGURE 4.5: JPEG ENCODER DESIGN 4 ..ottt sttt 29
FIGURE 4.6: JPEG ENCODER DESIGN 5......uiiiiii ittt 30
FIGURE 4.7: JPEG ENCODER DESIGN B......ceiiiiiiiiiaiie sttt sttt 32
FIGURE 4.8: JPEG ENCODER DESIGN 7 ...ttt ittt sttt 33
FIGURE 4.9: JPEG ENCODER DESIGN 8.......ciiiiiiiieiie ettt 33
FIGURE 4.10: JPEG ENCODER DESIGN 6, N PIPELINES PER CHANNELccovviiivrrrieieieeesssivvereeeeeeens 35
FIGURE 4.11: JPEG ENCODER DESIGN 6, N PIPELINES PER CHANNEL, M INPUT BUFFERS 37
FIGURE 4.12: PRE-ORGANIZER BLOCK DIAGRAMcciiiiieiieiitienteesteesteessteesseessesssesssessseesnsesssessnns 38
FIGURE 4.13: JPEG ENCODER DESIGN 9.....eiiuiiiiiiieiie ittt 39
FIGURE 4.14: JPEG ENCODER DESIGN 9, N PIPELINES PER CHANNEL, M INPUT BUFFERS 40

FIGURE 4.15: JPEG ENCODER DESIGN 10......cciiiiiiiiiiiiiie ettt 41
FIGURE 4.16: JPEG ENCODER DESIGN 10, N PIPELINES PER CHANNEL, M INPUT BUFFERS 43

FIGURE 4.17: JPEG ENCODER DESIGN 10, N PIPELINES PER CHANNEL, WITHOUT RGB CONVERSION

... 44
FIGURE 5.1: “VGL_6548 0026.PPM” ENCODED USING QUALITY FACTOR 0 [8]...cvcvevrvrervriririririnnne. 47
FIGURE 5.2: “VGL_6434_0018.JPEG™ ENCODED USING QUALITY FACTOR 0 [8] ..., 48
FIGURE 5.3: “VGL_5674_0098.JPEG” ENCODED USING QUALITY FACTOR 0 [8]cvovvvrvrvririririinne. 48
FIGURE 5.4: THROUGHPUT VERSUS VERSION NUMBER (1.2 GHZ @ 0.9V) ...oooieviiceeecccee 49
FIGURE 5.5: THROUGHPUT VERSUS VERSION NUMBER (1.78 GHZ @ 1.1V) ...ccveiiiiiiiececiecee 50
FIGURE 5.6: AVERAGE PAOWER VERSUS VERSION NUMBER (1.20 GHZ @ 0.9 V)....ccccovevveieiiene 52
FIGURE 5.7: AVERAGE POWER VERSUS VERSION NUMBER (L.78 GHZ @ 1.1 V).....cccooveveiiecieene 53

FIGURE 5.8: ENERGY PER MEGAPIXEL ENCODED VERSUS VERSION NUMBER (1.20 GHz @ 0.9 V) . 54

FIGURE 5.9: ENERGY PER MEGAPIXEL ENCODED VERSUS VERSION NUMBER (1.78 GHz @ 1.1V) . 55

FIGURE 5.10: THROUGHPUT PER AREA VERSUS VERSION NUMBER (1.20GHz @ 0.9 V) 56
FIGURE 5.11: THROUGHPUT PER AREA VERSUS VERSION NUMBER (1.78 GHZ @ 1.1 V) 57
FIGURE 5.12: ENERGY-DELAY PRODUCT VERSUS VERSION NUMBER (1.20 GHZ @ 0.9 V) 58
FIGURE 5.13: ENERGY-DELAY PRODUCT VERSUS VERSION NUMBER (1.78 GHz @ 1.1 V) 59
FIGURE 5.14: ENERGY PER MEGAPIXEL ENCODED VERSUS AREA PER THROUGHPUT (QF =0) 60

FIGURE 5.15: ENERGY PER MEGAPIXEL ENCODED VERSUS AREA PER THROUGHPUT (QF =0.1) 60
FIGURE 5.16: ENERGY PER MEGAPIXEL ENCODED VERSUS AREA PER THROUGHPUT (QF =0.1667) 61
FIGURE 5.17: ENERGY PER MEGAPIXEL ENCODED VERSUS AREA PER THROUGHPUT (QF =0.5) 61

FIGURE 5.18: ENERGY PER MEGAPIXEL ENCODED VERSUS AREA PER THROUGHPUT (QF =1) 62

FIGURE 6.1: ENERGY PER MEGAPIXEL ENCODED VERSUS AREA PER THROUGHPUT ANALYSIS,
KILOCORE IMPLEMENTATIONS AND COMPETING VENDORS (QF = 0.1, ALL PROCESSES SCALED

OIS 722N L) PSSR 80

Xi

List of Tables

TABLE 2.1: JPEG’S SAMPLE LUMINANCE QUANTIZATION TABLE ...cvviveieieiieieresiesieeniesieseesessesens 12
TABLE 2.2: JPEG’S SAMPLE CHROMINANCE QUANTIZATION TABLEoveviiieierieienieeeesieseeennenens 12
TABLE 4.1: DCT-11 ACCURACY COMPARISONScviuiiriateitesiaresteseeseasesseseesessessesessessessssessessesessesees 20
TABLE 5.1: DATAFOR 1.2 GHZ @ 0.9V USING QUALITY FACTOR 0...cvovieviiiiieisienieieese e 63
TABLE 5.2: DATAFOR 1.78 GHZ @ 1.1V USING QUALITY FACTOR O...covveviiieienisesieieese e 64
TABLE 5.3: DATAFOR 1.2 GHZ @ 0.9V USING QUALITY FACTOR 0.1...c.ocoviiiiiiiiiieieesesieisie e 65
TABLE 5.4: DATAFOR 1.78 GHZ @ 1.1V USING QUALITY FACTOR 0.1....ccviiiiiiiieiieieesie e 66
TABLE 5.5: DATAFOR 1.2 GHZ @ 0.9V USING QUALITY FACTOR 0.1667ccccveiveeieciie e, 67
TABLE 5.6: DATAFOR 1.78 GHz @ 1.1V USING QUALITY FACTOR 0.1667ccecevveevirevieeieennee. 68
TABLE 5.7: DATAFOR 1.2 GHZ @ 0.9V USING QUALITY FACTOR 0.5.....ccoiiiiiiiecie e, 69
TABLE 5.8: DATAFOR 1.78 GHz @ 1.1V USING QUALITY FACTOR0.5...cccviiiiiiiciic e, 70
TABLE 5.9: DATAFOR 1.2 GHZ @ 0.9V USING QUALITY FACTOR L....ccoviiiiiiiieiiee e 71
TABLE 5.10: DATAFOR 1.78 GHZ @ 1.1V USING QUALITY FACTOR L....ccccveiiiiieeiie e 72
TABLE 6.1: AREA SCALING FACTORSoiiiiiiiiiiie ittt sttt sttt ettt sbes st saeeete e sne e b nneas 74

TABLE 6.2: UNSCALED COMPARISON DATA FOR VARIOUS JPEG ENCODER IMPLEMENTATIONS... 75

TABLE 6.3: DELAY FACTOR CALCULATIONS USING EQUATION 6.1.......oooiiiiiiiiieeiiiiiee e, 76
TABLE 6.4: ENERGY FACTOR CALCULATIONS USING EQUATION B.2......coeiviiiiieeiciieee e, 76
TABLE 6.5: SCALED COMPARISON DATA FOR VARIOUS JPEG ENCODER IMPLEMENTATIONS 77

Xii

Chapter 1

Introduction

1.1 Motivation

JPEG Encoding is a unique algorithm that has both serial and parallel components.
Innovations in GPUs, CPUs, and FPGAs have all contributed to higher efficiency in JPEG
encoding, but each architecture contains disadvantages. KiloCore represents a unique
architecture that can simultaneously take advantage of the inherent parallelism in JPEG
encoding's DCT-II and quantization steps while excelling at the serial tasks of encoding and
bitstream combinations.

JPEG encoding assists with the compression of images with minimal loss of quality.
However, with high-fidelity images, current JPEG encoders can take orders of magnitudes longer
than lower-resolution images. GPU solutions like nvJPEG can address the throughput problem.
However, they use a wasteful amount of energy and area to accomplish the simple task. Many-
core processor arrays can fill the gap between having a competitive throughput and not using an
overwhelming amount of energy and area on a given chip. Furthermore, JPEG encoding occurs
mainly in video and photography editing circumstances, so users who are not videographers or
photographers likely prefer to use their silicon real estate differently. Hence, fine-grain manycore
processor's programmability allows the area to adapt to other needs (where an ASIC or hardware
accelerator would take up space).

In the grander scheme, video and photo encoding and decoding are growing more popular

with social media websites and streaming services. Therefore, a chip that can reprogram itself to

accelerate a given codec will be precious, and this thesis is one step closer to fine-gran manycore

processors like KiloCore filling this niche.

1.2

Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 outlines the JPEG specification and relevant algorithms for color space
conversion, the DCT-II, quantization, run-length encoding and Huffman encoding.
Chapter 3 reviews relevant KiloCore chip architectural information.

Chapter 4 introduces the JPEG encoding algorithms implemented.

Chapter 5 showcases the JPEG encoding algorithms simulation results, including
throughput, area, energy per megapixel encoded, throughput per area, and energy-delay
product.

Chapter 6 compares the most competitive KiloCore implementations with general-
purpose processors, GPUs, and FPGAs.

Chapter 7 summarizes the thesis and provides starting points for future work.

Chapter 2

Background of JPEG Encoding

2.1 Overview

The JPEG encoding algorithm exploits photos' low-frequency nature to compress image
data without sacrificing too much image quality [1]. Therefore, the first step in the algorithm is
to convert the color space of the image data (likely RGB) to YCbCr. This transform intends to
consolidate more information in one channel (the luminance or Y channel) instead of evenly
spreading across multiple channels as RGB does. Consequently, the Cb and Cr channels can
compress into much smaller sizes as they aid the visual fidelity of the image much less than the
Y channel.

Images are transformed to the frequency domain using the 2D discrete cosine transform
(DCT-I). For the average realistic photo, it is much more common for high-frequency
components of an image to be near zero. Like how the color transformation consolidates more
information into one channel, the DCT-II consolidates the information in an 8-by-8 block to low-
frequency elements.

The non-integer output of the DCT-I11 is quantized to allow for the binning of similar
elements. Finally, to prioritize low-frequency parts of the DCT-II matrix, quantization tables
provide weight to corresponding regions of the matrix.

The low-frequency parts of an 8-by-8 block after DCT-II (and quantization) are toward

the top-left of the matrix, and the highest-frequency details are toward the bottom-right.

Reorganizing the order of the matrix to go from low frequency to high frequency is called
zigzagging.

Next, the zigzagged AC output is run-length encoded by counting how many zeros have
come before the next value. Consequently, runs of zeros are consolidated out of the data to save
space. Furthermore, the size of the non-zero value encountered prevents any extra bits from
being used to specify a smaller value (i.e., the value three needs only two bits while twenty-one
needs five bits). Finally, the first element in the block is the DC coefficient, and it is difference-
encoded with the DC coefficient of the previous block in the same channel (the last value is O for
the first block).

Finally, the zero count and size pairs are Huffman encoded to save space further.
Huffman encoding allows more frequent pairs to take less space (pairs with low zero counts or
sizes), while less frequent pairs (pairs with large zero counts or sizes) may take more space.
Statistically, this tradeoff compresses data further, depending on what Huffman table encodes the
pairs.

Finally, the process is repeated across all 8x8 blocks of an image and then paired with a
header that contains information about the settings of a given JPEG file. The JPEG specification
defines multiple possible JPEG encoding methods, but this thesis covers baseline, Huffman, 8-bit
color, lossy, and 4:4:4 JPEG encoding. Alternative modes are outlined below; however, the

presented implementations do not support them.

DCT-based encoder

8 x 8 blocks
. I -
‘ zigzag — e
_" DCT-11 —% Quantzer —3 run-length —p!
‘ huffman L
Source Table Table Compressed
imege duta specifications specifications image data

Figure 2.1: JPEG encoding diagram [1]

2.2 Baseline and Progressive Formats

2.2.1 Baseline Format

A baseline formatted JPEG file encodes its 8-by-8 blocks one at a time, starting in the top
left corner of the image, traveling right, and then wrapping to the next row [1]. When decoding
the image, each row appears one at a time. When internet bandwidth is limited, or many photos
must appear quickly at once, loading the image this way can be disadvantageous. In those cases,
a progressive JPEG format is preferred; however, our architecture implements only a baseline

format.

2.2.2 Progressive Format

Progressive JPEG formats allow the decoder to determine the whole image in low fidelity
on its first pass and then build image quality as the number of passes increases [1]. This can be
advantageous for high-resolution images that are decipherable at lower resolutions. In addition,
websites with multiple high-resolution images needing to load immediately should leverage
progressive JPEGs; however, the benefit of a progressive format is not so clear when the internet
speed is too fast for the baseline load time to matter. The additional processing cost of encoding
and decoding a progressive JPEG can arguably make it the lesser of the two options in the case

of a high-speed internet connection.

2.3 Header Organization

JPEG reserves unique two-byte tags to denote specific settings for the decoder of the
given JPEG file [1]. Typically, these are at the top of the binary file, then the encoded data
follows, and finally, it terminates with an end-of-image tag. There are 623 bytes encoded in a
standard JPEG header to store the size, quantization tables (2), Huffman tables (2), color
subsampling mode, color depth, greyscale information, a general description, and more. Most
encoders can replicate this header before each image, changing only the picture size and the
quantization tables (which adjust with the quality level of the encoding). Some encoders use a
Huffman table customized to the specific photo’s data for the highest possible compression. In
this case, it also needs to be encoded differently on each image produced.

In Figure 2.2, a sample JPEG header is provided, where each two-byte tag is boxed in
red. Following each tag is data is typically the size of the data to follow, and the information
relevant to said tag. For example, OXFFDB is followed by 0x0043 which denotes that the
information to follow will be 67 bytes (excluding the original tag, but including the size), and
then either 0x00 or 0x01 is encoded to denote which quantization table is being stored. The next
64 bytes includes the 64 values present in the given quantization table. A similar formatting

applies for most tags, and more information is outlined in the JPEG specification [1].

Offset(h) 00 Ol 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
00000000 |[FF D2[FF E0|00 10 4A 46 49 4€ 00 Ol Ol 00 00 Ol
00000010 00 01 00 0O |FF DB|/00 43 00 02 O1 01 Ol 01 01 02
00000020 01 Ol O1 02 02 02 02 02 04 03 02 02 02 02 05 O

00000030 04 03 04 0 05 0€ 06 06 05 O€ 06 0 07 0% 08 06
00000040 07 09 07 06 06 08 OB 02 09 OA OA OA OA OA 06 08
00000050 OB OC OB OA OC 09 OA OA OA[FF DB|00 43 01 02 02
00000060 02 02 02 02 05 03 03 05 OA 07 06 07 OA OA OA OA
00000070 OA OA OA OA OA OA OA OA OA OA OA OA OA OA OA OA
00000080 OA OA OA OA OA OA OA OA OA OA OA OA OA OA OA OA
00000090 OA OA OA OA OA OA OA OA OA OA OA OA OA OA FF CO
000000A0 00 11 08 03 CO 04 D8 03 01 11 00 02 11 01 03 11
000000B0 OL1[FF C4)/00 1F 00 00 01 05 01 01 Ol 01 01 Ol 00
000000CO 00 00 00 00 00 00 00 Ol 02 03 04 05 06 07 08 09
000000D0 OA OB[FF C4/00 BS 10 00 02 01 03 03 02 04 03 05
000000E0 05 04 04 00 00 Ol 7D Ol 02 03 00 04 11 05 12 21
000000F0 31 41 06 13 51 €1 07 22 71 14 32 81 91 Al 08 23
00000100 42 Bl Cl 15 52 D1 FO 24 33 62 72 82 09 OA 16 17
00000110 18 19 1A 25 26 27 28 29 2A 34 35 36 37 32 39 3A
00000120 43 44 45 46 47 42 49 4A 53 54 55 S5€ 57 58 59 SA
00000130 63 64 65 66 67 63 €9 €A 73 74 75 76 77 78 79 7A
00000140 83 24 85 26 87 88 89 SA 92 93 94 95 96 97 98 99
00000150 9A A2 A3 A4 AS A€ A7 AS A9 AA B2 B3 B4 BS Bé B7
00000160 B8 BS BA C2 C3 C4 C5 Cé C7 C2 C9 CA D2 D3 D4 DS
00000170 D6 D7 D8 D@ DA El E2 E3 E4 ES E6 E7 E8 E9 EA Fl
00000180 F2 F3 F4 FS Fé F7 F8 F9 FA[FF C4/00 1F 01 00 03
00000190 01 01 01 01 Ol 01 01 Ol Ol 00 00 0O 00 00 00 01
000001A0 02 03 04 05 06 07 08 09 OA 0B[FF C4/00 BS 11 00
000001BO 02 01 02 04 04 03 04 07 05 04 04 00 Ol 02 77 00
000001CO 01 02 03 11 04 0S5 21 31 06 12 41 51 07 €1 71 13
000001D0 22 32 81 02 14 42 91 Al Bl Cl 09 23 33 52 FO 15
000001E0 62 72 D1 OA 16 24 34 E1 25 F1 17 18 19 1A 26 27
000001F0 28 29 2A 35 36 37 38 39 3A 43 44 45 46 47 48 49
00000200 4A 53 54 55 56 57 58 59 SA 63 64 €5 66 €7 €8 €9
00000210 6A 73 74 75 76 77 78 79 7A 82 83 84 85 86 87 88
00000220 89 SA 92 93 94 95 96 97 98 99 9A A2 A3 A4 AS A6
00000230 A7 AS A9 AA B2 B3 B4 BS5 B6é B7 B8 BS BA C2 C3 C4
00000240 C5 CE€ C7 C2 C9 CA D2 D3 D4 D5 Dé D7 D8 DS DA E2
00000250 E3 E4 ES E6 E7 E8 E9 EA F2 F3 F4 F5 F6 F7 F8 F9
00000260 FA[FF DA/00 OC 03 01 00 02 11 03 11 00 3F 00 FS3

Figure 2.2: Sample JPEG header with tags outlined in a red box

2.4 Lossy and Lossless Formats

2.4.1 Lossy Format
A lossy JPEG is the most common format of a JPEG, as loss allows for the most amount
of compression [1]. Loss occurs during the DCT-II phase, where the nature of computing the

DCT-Il incurs a rounding error. The quantization stage amplifies this loss because numbers are

scaled and rounded, leading to easily compressible data but with lower fidelity. This work

focuses on the lossy format, the de facto standard for JPEG encoding.
2.4.2 Lossless Format

JPEGs also come in the lossless variety to compete with PNG and RAW file formats [1].
The JPEG lossless format skips DCT-I1 and quantization and instead jumps into a predictor to

further compress the image before Huffman or Arithmetic encoding.

2.5 Color Spaces and Subsampling

2.5.1 RGB to YCbCr Transformation

Transforming RGB to YCbCr is often necessary to create a JPEG image; the JPEG
standard lists equations for the calculation to better use the YCbCr format [2]. Typically, the
YCDbCr format has both headroom and footroom, meaning the range of Y is from 16 to 235, and
the range of CbCr is from 16 to 240. This headroom is useful in other digital formats, but for
JPEG encoders, it lowers the possible color depth of the signal. Therefore, the footroom of all the
signals is subtracted from the value and then scaled to take up the data's full 8-bit or 12-bit space.
Equations 2.1, 2.2, and 2.3 show the conversion after headroom and footroom have both been
removed [2]. Although there is a 12-bit JPEG format, this work covers only 8-bit JPEG
encoding. Finally, each number is level shifted such that 0 is the mean value; in the 8-bit case,

this means subtracting 128 from the value and storing it in 2’s complement form.

Y = 0.299R + 0.587G + 0.114B (2.1)
Cb = —0.1687R — 0.3313G + 0.5B + 128 (2.2)
Cr = 0.5R —0.4187G + 0.0813B + 128 (2.3)

2.5.2 Color Subsampling

One channel’s information can be prioritized using color subsampling. Typically, JPEG
encoders use a 4:2:2 or a 4:4:4 color subsampling mode. 4:4:4 takes no preference as to what
channel to collect, whereas 4:2:2 skips every other CbCr value as the Y channel has a much more
substantial impact on the given image’s fidelity. Equations 2.4 and 2.5 show how to compute the
given column or row (x; or yi) given the max column or row (X or Y), the sampling factor (Hi or
Vi), and the maximum sampling factor across each color component (Hmax Or Vimax) [1]. This work

explores the 4:4:4 format as it creates the most work for encoding.

[x w i] (2.9)
X = .
' Hmax
Vi
%=Px] (2.5)
Vmax

2.6 2D Discrete Cosine Transform

2.6.1 Series Definition of the DCT-II

The series definition of DCT-II is given in Equation 2.6 [1]. A DCT-II transform and a
2D DCT-II transform are not the same thing. DCT-I1 is a specific DCT type corresponding to the
DFT of 4N real inputs. A 2D DCT-II is when one performs the DCT-II across all the rows or
columns of a matrix and vice versa. Equations 2.6 through 2.7 show a 2D DCT-II for 8-by-8

dimensional matrices.

1 SR (2x + Dur Qy+1Dvr (2.6)
Sou = 7 C, C, Z Syx COS 16 cos 16
x=0y=0
where
1 (2.7)
C, Cv:{ﬁ u,v=20
1 otherwise

2.6.2 Matrix Transformation Definition of the DCT-II

Equations 2.8 and 2.9 give the matrix transformation definition of the DCT-II [3].
Equation 2.8 defines building the 8-by-8 transformation matrix where p is the column index and
q is the row index, and Equation 2.9 shows how to apply the transform to an arbitrary 8-by-8
block A. The benefit of this equation over 2.6.1’s series representation is the possible parallelism
to exploit in the matrix multiplication and the no need to take the cosine of any element. This
work avoids costly cosine calculations. The matrix transformation definition contains 1024
multiplies and 896 additions, resulting in two 8-by-8 matrix multiplications. When using a GPU,

using this parallelizable algorithm may be beneficial.

(! =0,0<qg<7
T, = 2v2 PTTEAE
pa 1 7w(2q+Dp l<p<ro<a<r? (2.8)
5 cos Te <p<70<qg<
A=TXAXT" (2.9)

2.6.3 AA&N Algorithm to Compute the DCT-II

The final algorithm to compute the DCT-I1 is Arai, Agui, and Nakajima’s (AA&N)
Algorithm, denoted in Figure 2.3 [4]. It collapses the total operations of calculating a 2D DCT-II
to only 144 multiplies and 464 additions. Also, 64 of these multiples are with the quantization
step of the JPEG algorithm meaning the actual computational cost is closer to 80 multiplies.
Figure 2.3 is the DCT butterfly diagram of the AA&N algorithm. Shaded dots denote addition,
arrows indicate negation, and boxes with constants represent multiplication by the constant in the
box. Since the algorithm is computationally much faster than the method discussed in 2.6.2,

JPEG encoders prefer it.

10

fily] CoF10)
M) CuF(4)
fiZ) o (. F(2)
fi3) . Fi6)
fid) C:F5)
fi5) CiAL

fi6)
A7) -

C.F(T)
C;F(3)

a—c=0707106718, 5= 0.541196100,
d = 1.306562963, e = 0.382683432,
GCo=8,Ci=GC=0C=0=0=0C=0;=16.

Figure 2.3: AA&N DCT algorithm [4]
2.6.4 Precision Considerations
Each method of computing the DCT-II ends up with close to the same result when using
double floating-point precision; however, in situations where accuracy is limited, they will end
up with slightly different results. Rounding error does not imply that the previous equations are
approximations but rather is a result of computing with non-integer values. The JPEG standard
explicitly mentions this and purposefully does not put a strict precision requirement on the DCT-

Il method to allow for further innovations in the calculation.

2.7 Quantization

2.7.1 Overview

Elements of a given 8-by-8 block are scaled-down and quantized. The encoder specifies
quantization tables, typically scaled down or up depending on the identified quality factor. The
quantization table gives inherent weights to certain parts of the 8-by-8 blocks over another.
Usually, these weights are given to the lower frequency values, although that is not a
requirement. A given JPEG specifies two gquantization tables; typically, one is used for the Y

channel, while the other is for the CbCr channels. The JPEG format requires an accurate

11

rounding method after the element-wise division (Equation 2.11) [1]. Quantization tables are
embedded in the header of a given JPEG file to allow a future decoder to reverse the process.
Quantization tables can become intellectual property, and in this work, we use the sample
quantization tables provided by the JPEG standard and scale them appropriately with a quality

factor. Tables 2.1 and 2.2 contain the JPEG standard’s quantization tables [1].

Svu) (2.10)

vu

Squu = round(

16 |11 110 {16 | 24 | 40 | 51 | 61
12 |12 | 14 | 19| 26 | 58 | 60 | 55
14 | 13 | 16 | 24 | 40 | 57 | 69 | 56
14 |17 | 22 |29 | 51 | 87 | 80 | 62
18 | 22 | 37 | 56 | 68 | 109 | 103 | 77
24 | 35|55 |64 | 81 104|113 | 92
49 | 64 | 78 | 87 | 103 | 121 | 120 | 101
72 192195 |98|112 100|103 | 99

Table 2.1: JPEG standard T.81’s sample luminance quantization table [1]

17 |18 | 24 | 47 199 | 99 | 99 | 99
18 {21 |26 | 66 |99 | 99 | 99 | 99
24 | 26 |56 | 99 | 99 | 99 | 99 | 99
47 166 {99 |99 |99 |99 | 99 | 99
99 199 1991999999 |99 |99
99 19999 |99 99 99|99 |99
99 199 1991999999 |99 |99
99 199 1991999999 |99 |99

Table 2.2: JPEG standard T.81’s sample chrominance quantization table [1]

12

2.7.2 Quality and Quality Factor (QF)

Scaling the quantization table of an encoder can change the quality and compression ratio
of the resultant image. The scale factor applied to the quantization table is called the quality
factor (QF), and this work focuses on profiling performance when the quality factor is equal to
0.1 which typically provides a 10:1 compression ratio in an image. Smaller quantization factors
create more work for encoding steps following quantization, similarly larger quality factors

result in less work for encoding steps following quantization.
2.8 Zigzag

After quantizing a matrix, the elements are read in a zigzag fashion (Figure 2.4) to
increase the likelihood of a string of zeros [1]. The operation exploits the fact that there is a
significant chance of higher frequency elements of a given 8-by-8 being zero, allowing for more
effective compression.

DC ACy; AC g7

O '

ops y
»/L(—' ﬁ TIS 00600-534005
/ N

AC 70 AC 7

Figure 2.4: Zigzag order [1]
2.9 AC Coefficient Run-length Encoding

In JPEG, runs of consecutive zeros are run-length encoded. The zigzagged block is

converted to a series of bytes [1]. In a given byte, the top 4 bits specify the length of the run of

13

zeros, and the bottom 4 bits are the size of the nonzero value in bits (3 would be 2 bits in size, for
example). In the event of a negative number, JPEG encodes value without its sign bits in 1°s
complement format. There are two special bytes reserved, 0xf0 and 0x00. 0xfO denotes a string
of 16 zeros with no value to encode after it; this is a ZRL. No more nonzero values are left in the
block when 0x00 is encoded. For this reason, 0x00 is the EOB or end-of-block signal, and there
is never a value coded after it. If the last element of an 8-by-8 block is nonzero, an EOB signal is
not encoded. The first value in an 8-by-8 block is the DC coefficient, which is not run-length

encoded.
2.10 DC Coefficient Difference Encoding

The first element of an 8-by-8 block is the DC coefficient (Figure 2.5), and it is encoded
differently than the following AC coefficients [1]. The DC coefficient is difference-encoded with
the previous block's value in the same channel, as described in Equation 2.12 (where PRED is
the DC coefficient of the previous block and DC; is the coefficient of the current block) [1]. The
first DC coefficient is encoded as is, given there is no previous block. DC components between
blocks should be similar in magnitude, and thus difference encoding should leave a smaller value
to encode into the JPEG. Difference-encoding breaks the block-level parallelism present in the

previous steps.

DC; _; DC;

. FBO{:R,, (Block;

Figure 2.5: Differential DC encoding [1]

DIFF = DC; — PRED (2.11)

14

2.11 Huffman and Arithmetic Encoding

2.11.1 Huffman Encoding

Huffman encoding shortens the length of the more familiar characters in a string while
increasing the size of the least common characters [1]. The Huffman codes in JPEG are always
less than or equal to 16 bits but can be as small as 2 bits. The Huffman tables in JPEG specify a
value of all possible combinations of run-length encoded bytes, except those where the value size
is greater than 10, as these values are impossible after DCT-II. There are 2 DC coefficient
Huffman tables and two AC Coefficient Huffman tables. Of the two tables reserved for each of
these cases, it is possible to assign a color channel to either one in the header, although it is
typical to set one table to the Y channel and the other to the CbCr channels. Advanced JPEG
encoders can compute an optimal Huffman table for each color channel for each JPEG; however,
this inherently takes multiple passes over the data and thus is not recommended for throughput

reasons. Instead, this work uses the provided standard Huffman tables in the JPEG specification.

2.11.2 Arithmetic Encoding

Arithmetic encoding is an advanced encoding technigue supported by the JPEG standard
[1]. However, not many JPEGs use arithmetic encoding as encoding techniques are patentable
and thus legally barred in some cases. This work does not support arithmetic encoding to avoid

legal complications and align itself with competing results.

15

Chapter 3

Background of the KiloCore Platform

li
I!I]
L1111 o
gaasn : ;
ji
: EHEEEE 5 £
£ SRR IR 3 3
Ejunnnn 1ibie] 2]
= HINSH & H 0 »
& FHERERE X
els] nx on iIFIFO1
N "“" : A -
e B A Route
MINIODT o
r T - 00
[. 00
1
NEEEEEN SR
232 ym
7 67 mm Processor
8 mm Tile Area 0.055 mm?
=2 Chip Transistors 575,000
vl e 32nm IBM
Technology PD-SOI CMOS Instruction Memory|128 x 40-bit
o| O Data M 2 16-bit
e Num. Cores |1000 —ata emory ROX16-D8
£ A IFIFO(0/1) Size |32 x 16-bit
:_ ___‘a"‘ A . N %
g an acro Num. Oscs. 12012 Instruction Types |72
ey Die Area 64 mm?2 Independent Memory
O C:) Trans. 621 M Tile Area 0.164 mm?2
g C4 Bumps 564 (162 l/O) SRAM Macro Size (64 KB
(i/0)FIFO(0/1) Size (32 x 16-bit
Package 67.6 Pa‘.’ . : 2
446 pm Flip-Chip BGA | |IFIFO2 Size 16 x 2-bit

Figure 3.1: Die photo of the KiloCore array and core specification information [5].

3.1 Overview

KiloCore represents the 3™ generation of manycore processor architectures from the UC
Davis VCL laboratory [5]. It contains 697 energy-efficient cores that are all independently
programable (MIMD). Each of the cores can communicate with its adjacent neighbors using

dual-clock FIFOs, and when a core is not in use, it can power down independently. In addition,

16

there are 14 memory modules containing 64 KB of memory each; they can host data or
instructions information. Finally, the chip comprises packet switch routers, a circuit switch

network, and independent core clock oscillators.

3.2 Relevant Architectural Highlights

3.2.1 Core Information

Each KiloCore core allows for two inputs through 32 x 16-bit FIFOs [5]. Cores can clock
to 1.78 GHz using 1.1 V regardless of what instructions are issued, and cores are the most energy
efficient at 1.20 GHz using 0.9 V [5]. Additionally, the cores can reach 2.29 GHz, but only when
avoiding “critical paths related to ALU carry and zero flags” [20]. Each core allows 128 40-bit
instructions and 256 16-bit words [5]. It is only possible to get the total 256 words out of the data
memory if 128 words of the data are entirely independent of the other 128 words of the data. For
example, if you would like to add two elements to the data memory, they would need to come
from two different 128 x 16-bit memory banks. The processor may replicate the same data in

both memory banks to use fewer cycles during a read, sacrificing space in the data memory.
3.2.2 FIFO Information

Each core contains two 32 x 16-bit input FIFOs. However, FIFOs slow their operation
when nearing 24 words to prevent overflows [5]. Only the first 24 writes to the input FIFOs are
guaranteed to occur without any stalls. If a core needs to transfer a large amount of data to
another core, sending 24 words to each input FIFO in alternating order is recommended.

Consequently, the first input FIFO is more likely to be empty before it is written to again.

17

3.3 Programming on KiloCore

Programming on KiloCore is done using KiloCore assembly, C++, or (under limited
circumstances) Python. The simulator for KiloCore will compile C++ to LLVM using Clang and
then convert Clang’s output to KiloCore assembly [5]. As with all compilers, it is essential to
write C++ code in a manner that the assembly output code is optimized.

Specialized pragma codes such as “pragma unroll” are supported and can drastically
affect performance. The branch predictor can also be influenced by explicitly labeling a
conditional as unlikely or likely when programming. Branch flags always force the branch
predictor to assume the branch is taken, increasing performance.

Finally, the KiloCore simulator allows the user to change speed and voltage data on the
process to generate accurate throughput and power information. The simulator reports the time of
the first output, the final output, the energy used, branch prediction accuracy, core count, and
total core utilization. The simulator runs with minimal overhead; however, unoptimized

applications can take a significant time to simulate.

18

Chapter 4

JPEG Implementation on the KiloCore Platform

4.1 Overview and Testing

4.1.1 Overview

This chapter showcases 29 working implementations of JPEG encoders on the KiloCore
platform. Architectural details are outlined for each implementation, including core layout, code
changes, and drawbacks. All implementations are for 4:4:4 baseline JPEG encoding using the
sample quantization tables and scaling them based on a provided quality input. Sample JPEG
tables are used during Huffman encoding. Although all the Huffman and quantization tables are
replaceable, there are no hardcoding decisions based on the given qualities of these specific
sample tables. The sample tables focus on algorithmic improvements rather than compression or

quality considerations.

4.1.2 Testing

/ Compare [— Difference Statistics

Y

'Y

Y

Input .png MATLAB’
(RGB) = rgb2ychcr() s dct2)

PIL GR .
IPEG ~ PEI)L JPdEG Kllo(i;;)(r:(i_aﬂer Compare |—s Match/No
Encoder ecoder Match

Figure 4.1: Testing block diagram for JPEG implementations, using the PIL Python JPEG library
as a golden reference

¥

19

Testing for JPEG encoders is challenging due to the loose precision requirement of the
JPEG specification. Due to this, two accurate JPEG encoders can have different outputs while
still being compliant. The DCT transform method and precision result in differing outputs
between JPEG encoders. The PIL Python JPEG library, built on libjpeg, is used as a reference to
validate KiloCore implementations.

First, a sample input file is converted to YCbCr and then passed to KiloCore’s DCT-II
cores, MATLAB’s build in dct2() function, and PIL’s JPEG Encoder [3,6]. PIL’s JPEG
Encoder’s output is then decoded to the DCT coefficients and provided as input to a MATLAB
script that compares it with the KiloCore implementation and the MATLAB built-in function
implementation. A quantization table of all ones avoids additional errors in the decoding process;
furthermore, the output from KiloCore’s and MATLAB’s functions is rounded as JPEG
quantization rounds the numbers; thus, comparisons of the rounded outputs have a more
significant impact on image fidelity. Finally, there is a comparison to see the magnitude and
frequency of discrepancies between the reference MATLAB built-in DCT-II. Table 4.1
summarizes the results of the comparisons, showing that KiloCore’s DCT-II computation is
closer to the reference MATLAB implementation than PIL for the given input. PIL is compliant;

however, PIL's method used to compute the DCT-II is prone to more rounding errors.

KiloCore DCT-II KiloCore PIL’s DCT-1I
Matrix Transform DCT-Il AA&N AA&N
Algorithm Algorithm Algorithm
Max Error 1 1 1
Min Error -1 -1 -1
Average |Error| 0.0063 0.0177 0.0625

Table 4.1: DCT-II accuracy comparisons

20

This process repeats for both DCT-I1I algorithms implemented on KiloCore, the matrix
multiplication method outlined in 2.6.2, and the AA&N method outlined in 2.6.3. Furthermore,
the decoded PIL output was passed to the remaining KiloCore JPEG cores to confirm that the
output from KiloCore perfectly matches the output from PIL. Finally, implementations that did
not change DCT-II algorithms were compared with previous implementations to ensure both
outputs matched perfectly. The same justifications of compliance stand for all versions. In fact,
for most versions (sans version 1 and 2), the output should perfectly match the previous version's
output.

KiloCore does not support floating point operations, so fixed point 16-bit operations are
used for the DCT-II transform. However, fixed-point operations create errors between version 1
of the JPEG encoder and the MATLAB built-in function, even though they use the same matrix
transformation method to calculate the DCT-II. Although the AA&N fixed point method is not
as accurate as the fixed-point matrix transformation method, it is the method of choice for most
implementations because it is significantly faster and the industry standard for JPEG encoders.

Finally, images used for testing include all exceptional cases (covered in Section 2.9)
relevant to JPEG: ZRL (sixteen consecutive zeros), EOB (the last value of the 8x8 pixel matrix is
zero), and no EOB (the last value of the 8x8 pixel matrix is nonzero), ensuring that any image,
regardless of data, will successfully encode on every encoder version. Images particularly
challenging due to color depth were also used, for example, an all-white image. RGB to YCbCr
conversions that fail to remove headroom or footroom are unable to display colors like true

white. Every JPEG version completes proper color conversion and can show the full-color range.

21

4.1.3 Relevant Abbreviations

The following abbreviations are used in future diagrams, and are clarified for the reader’s

reference:

DCTII_p1: The first part of the calculation of the 2-dimensional discrete cosine
transform (DCT-II) which calculates 1-dimensional discrete cosine transforms
(DCT) of the eight horizontal rows of pixels within each 8x8 pixel block (Section
2.6).

o DCTII_pla: Same as DCTII_p1, but with only the top four rows.

o DCTI_plb: Same as DCTII_p1, but with only the bottom four rows.
DCTII_p2: The second part of the calculation of the 2-dimensional discrete cosine
transform (DCTII) which calculates 1-dimensional discrete cosine transforms
(DCT) of the eight vertical rows of pixels within each 8x8 pixel block (Section
2.6).

o DCTII_p2a: Same as DCTII_p2, but with only the left four rows.

o DCTIIl_p2b: Same as DCTII_p2, but with only the right four rows.
Quantize_Y/Quantize_CbCr: The element-wise multiply of a given 8x8 pixel
block with respective quantization tables and proper rounding (Section 2.7).
RLE: Run-length encoding a given 8x8 pixel block (Section 2.9).
Huffman_Y/Huffman_CbCr: Huffman encoding (Section 2.11) and difference
encoding a given 8x8 pixel block (Section 2.10).
Organizer/Organizer_i/Organizer_h: Concatenates the variable length bit streams
into one final output.

Header: Outputs the JPEG header before the image data (Section 2.3).

22

Zigzag: Performs the zigzag operation (Section 2.8) on a given 8x8 pixel block.
Compress_Y/Compress_CbCr: Concatenates entropy codes into a single bit
stream for a given 8x8 pixel block.

Encode_Y/Encode_CbCr: Performs run-length encoding (Section 2.9), Huffman
encoding (Section 2.11), and difference encoding (Section 2.10) on a given 8x8
pixel block.

Quantize_zigzag_Y/Quantize_Zigzag_ChbCr: Performs both quantization
operations (see Quantize_Y/Quantize_CbCr) and zigzags the given 8x8 pixel
block (see ZZ).

o Quantize_Zigzag_Y_pl/Quantize_Zigzag CbCr_pl: same as
Quantize_Zigzag_Y/Quantize_Zigzag_CbCr, but only operates on the
even matrix indexes of a given 8x8 pixel block.

o Quantize_Zigzag_Y_p2/Quantize_Zigzag_CbCr_p2: same as
Quantize_Zigzag_Y/Quantize_Zigzag_CbCr, but only operates on the odd
matrix indexes of a given 8x8 pixel block.

RGB-2-Y/RGB-2-Cb/RGB-2-Cr: Performs RGB to YCbCr conversion to the
respective channel (Section 2.5).

Sizer: computes the length in bits of run-length encoded codes.

Color_Pass: Distributes 8x8 pixel blocks amongst the proper pipelines.

Pass: Funnels bit streams from pipelines to the organizer core(s) in the proper
order

Chain: Serves as a buffer

23

e Byte Stuff/Byte Stuff pl/Byte Stuff p2: Inserts 0x00 bytes when a Oxff byte is
naturally encountered in the output stream to remain complaint with the JPEG

standard.

4.2 JPEG Encoder Version 1

Image
Size
J Quantize . [. IPEG
" CbCr Organizer Header Output
¥
Input Quantize
Data ¥

Figure 4.2: JPEG Encoder Design 1

The first implementation of the JPEG encoder focused on functionality over performance.
It uses the least number of cores within reason. Quantize_CbCr and Quantize_Y are the
quantization cores for their respective color channels. They pipeline the quantization process as
one KiloCore core cannot fit both quantization tables and allow for rounding intermediates.

The DCT-II cores are divided into two parts as KiloCore cannot store an 8-by-8 matrix
and the output of both matrix multiplications without running out of space. It can, however, store
the input 8-by-8 matrix and then output the matrix after one matrix multiplication. Furthermore,
multiple iterations of the DCT-II cores exist to extract the most precision from the operation.
Initially, the signed 8-bit input multiplies a fixed point s0.15 value from the matrix multiplication
and then truncates back down to s15.0 so that KiloCore could pass the data to the following core
in one cycle. After realizing the possible output range for the DCT-II multiplication could yield
only 9-bit numbers before the decimal point, the next generation truncated to s9.6 before entering

24

part two. These values were then multiplied by s0.14 values of the transformation matrix (to
prevent overflow) and turned into s11.4 outputs for quantization. Finally, cores are updated to
include rounding. Rounding is done by Equation 4.1, where “z” is the value to be rounded,
“LSB” is the value of the least significant bit after the decimal point, and “truncate” removes all
bits after the decimal [7]. The special case z = xx...x.100...0 means the value after the decimal
point has a 1 in the most significant position and zeros everywhere else. This rounding method is

unbiased.

1
truncate (Z + ELSB — 1), z<0andz =xx..x100...0

round(z) = 1 4.1)
truncate (z + > LSB) , otherwise

Quantization occurs in the Quantize_CbCr and Quantize_Y blocks (Figure 4.2).
Quantize_CbCr comes first to allow the Y channel to pass through it and compute the
quantization concurrently with the Cb channel. Next, the two cores are separated to store the full
8-by-8 sample quantization table provided by the JPEG specification and intermediate values
needed in rounding without overflowing the data memory. Quantization uses the same rounding
method described in Equation 4.1.

The RLE block in Figure 4.2 is the run-length encoding core. It handles both run-length
encoding and zigzagging. It uses an algorithm that computes the following value to read from the
input 8-by-8 matrix based on the previous value read. It then generates the run-length codes,
combines them with the value size to be encoded as described in the JPEG specification, and
sends both the code and value to be Huffman encoded in the following core.

Huffman encoding happens in Huffman_Y and Huffman_CbCr (Figure 4.2). The Y and
CbCr channels have their own core for Huffman encoding to fit their respective Huffman tables

into data memory. Although the name mentions only AC, DC difference-encoding occurs in

25

these blocks. The codes are sent to the following core once the Huffman code is found from the
look-up table.

Organizer (Figure 4.2) is the only core not explicitly discussed or highlighted in the JPEG
specification. It combines each channel's variable length bit streams into one-bit stream.
Huffman_Y and Huffman_CbCr cannot do this without knowing the output of each other’s
cores; therefore, Organizer handles this. The last input into the design is always 0x8000, which is
an unachievable output for all cores, signaling them to pass that value to the next core without
processing. This value then ends at Organizer to allow the last byte in the image to be stuffed.

Finally, the header core takes the size of the image as an input. It outputs the
corresponding header of the image before passing all outputs from the organizer directly to the

output. All outputs are one byte wide in this design.
4.3 JPEG Encoder Version 2

Version 2 uses JPEG Encoder Design 1 (Figure 4.2) but replaces the DCT-II matrix
transformation algorithm with the AA&N DCT-I1 algorithm. Fixed point s1.14 format values
represent the five constants in the AA&N algorithm, and the output of part one of the
transformation is s10.2, and the output of part two of the transformation is s13.2. s10.2 is used
instead of s10.5 to prevent 32-bit operations from happening in part two of the transform to
balance the pipeline better. The accuracy numbers in part 4.1.2 reflect this choice.

Minimizing the number of cycles it takes to read in an input, the KiloCore architecture
uses address generators. Likewise, writing values to the output of the cores also uses address

generators [5].

26

4.4 JPEG Encoder Version 3

Version 3 uses JPEG Encoder Design 1 (Figure 4.2) and the previous changes from
version 2. Version 3 is the first of many cores to push work upstream away from the organizer
core to prevent the anticipated bottleneck. At this point in development, the goal was to
parallelize the channels of the JPEG encoder; however, that would prove ineffective with how
much work the organizer core currently does. It was suspected that the organizer core would
create a significant bottleneck negating any performance benefits from parallelizing the channels.

The organizer core no longer calculates the size of the AC Huffman or DC Huffman
codes but instead it passes that information in the following input from either Huffman_Y or
Huffman_CbCr. As a result, the naive size algorithm is O(n), creating a significant delay in the
organizer core. By moving it upstream, the eventual parallelization of the channels helps

minimize this delay.

4.5 JPEG Encoder Version 4

Image
Size
L]
Quantize . | J . JPEG
" CbCr Organizer Header Output

Input

Data

-.--
Y

Figure 4.3: JPEG Encoder Design 2

Version 4 is the first core to use JPEG Encoder Design 2 (Figure 4.3). Version 4 includes
all the updates of version 3 while also pulling the zigzag task out of the RLE core and placing it

in its own separate ZZ core. In addition, the zigzag algorithm now reorganizes the input data on-

27

the-fly, storing a minimal amount before writing it back to the input. By skipping index
calculations on the zigzag process and not keeping any unnecessary values in the zigzag core, the

overall throughput is expected to increase.
4.6 JPEG Encoder Version 5

Version 5 uses JPEG Encoder Design 2 (Figure 4.3) and builds upon improvements
present in VVersion 4. Although simple, Version 4 updates the rounding algorithm in the DCT-1I
and quantization cores by removing one comparison per round. Previously the two conditions in
Equation 4.1 were checked separately, but now one logical and comparison and equivalency

check handles both conditions simultaneously.
4.7 JPEG Encoder Version 6

Version 6 uses JPEG Encoder Design 2 (Figure 4.3). In addition to Version 5’s rounding
fixes, Version 6 increased the word width of the organizer core’s output to 16 bits. Therefore,
minimizing the number of times the organizer core needs to write to its output and helping

relieve the future anticipated bottleneck.

4.8 JPEG Encoder Version 7

Input | . Quantize iver |
Data Pass 0 E% Organizer
) 3

.

. . Quantize
_CbCr

Figure 4.4: JPEG Encoder Design 3

Itnage
Size

Header - JPEG
Output

28

Version 7 is the first core to parallelize the color channels of the input using JPEG
Encoder Design 3 (Figure 4.4). As a result, there is no dependency between color channels
besides the need to concatenate the bit streams in the correct order. This fact allows the three
independent color channels to be parallelized.

Pass_0 and Pass_1 are added to the design to aid with passing one block at a time to each
of the channel’s pipelines. The top track is reserved for Y, the middle channel for Cb, and the
bottom for Cr.

The quantization cores have been updated to no longer anticipate a two-stage
quantization process. Instead of six total cores from scaling up, there are only three for this
reason. Similarly, the RLE core is updated to output everything to the same output channel. A
single Huffman_CbCr core combines the CbCr channels before the organizer core as they are
likely easier to merge due to the chrominance quantization table’s values being larger on average
than the luminance quantization table’s values, saving a passer core that would be needed if there

was a second Huffman_CbCr core as every core can have only two inputs.

4.9 JPEG Encoder Version 8

Image
Size

Input Quantize . JPEG
Data - ¥ Organizer Header Output
L3
Quantize
_ChCr
. . Quantize
_ChCr

Figure 4.5: JPEG Encoder Design 4

29

Version 8 was the first version to use JPEG Encoder Design 4 (Figure 4.5), the same as
Design three but with RGB conversion built in. The RGB conversion cores each read three
values of RGB, convert them into an s7.0 rounded color value of their respective channel, and
pass it to the following core. Each of these cores uses fixed-point arithmetic in the conversion
but still follows Equation 2.1, Equation 2.2, and Equation 2.3.

The RGB core that handles the Y channel conversion passes one block of output (3 x 64
words) downward to the Cb channel before processing that same block. The Cb channel does the
same for the Cr channel, and the Cr channel processes only the block. Each RGB core needs to

process 192 words to create an 8-by-8 block for its output.

4.10 JPEG Encoder Version 9

gf;t -... qu,ﬁm .M -
. . _ !
. Quantize J . JPEG
[}
Itnage
. Quantize | Size
_ChCr

Figure 4.6: JPEG Encoder Design 5

Version 9 uses JPEG Encoder Design 5 (Figure 4.6), which replaces RLE with
Entropy_Y and Entropy_CbCr. In addition, Compress replaces Huffman_Y and Huffman_CbCr.
The entropy cores handle both run-length and Huffman encoding. These cores are designated by
color channel to allow the entire Huffman encoding table of a respective channel to fit inside the
data memory (similar to why Huffman_Y and Huffman_CbCr were separated). The entropy
encoding cores dump Huffman codes, Huffman code sizes, values, and value sizes to the

compression cores.

30

The compression cores compress the output of the entropy cores into variable-length bit
streams—the bit streams output 16 bits at a time to the organizer core. When a new block arrives
at the compressor cores, the compressor cores dump the rest of the bit stream along with the
number of valid bits. Consequently, the organizer core knows when the next block is coming. At
times it outputs an empty bit stream as its last output and a size of zero; this is required to avoid
the case where the last bit stream is 16-bits long and therefore indistinguishable as the bitstream
ending. The compressor cores are separated by channel to handle their individual channels to
support exceptional Huffman cases (EOB and ZRL are covered in Section 2.9).

Finally, the organizer core covers 2 cases: the incoming bitstream has no offset and needs
to be routed to the output, and the incoming bitstream has and offset and needs to combine the
current word with the previous 16-bit word before rounding to the output. Future bottlenecks are
avoided as much as possible; each case uses the fewest operations possible.

Case one, the no offset case:

1. Reads the input value.
2. Reads the input values size.
3. Checks if the size is still 16 (not the EOB).
4. Writes the value to the output.
Case two, the offset case:
1. Reads the input value.
2. Reads the input values size.
3. Checks if the size is still 16 (not the EOB).
4. Shifts the previous value over until only its unwritten valid bits are available.

5. Shifts the current value over to fill the rest of the previously shifted value.

31

6. Performs a bitwise OR to combine the values.
7. Writes the output value.

8. Saves the new output value as the old.

4.11 JPEG Encoder Version 10

Version 10 uses the same design as Version 9 (Figure 4.6), except the task of deciding the
size of the Huffman AC code is passed to the compress cores instead of the entropy cores to help

balance the pipelines to handle high amounts of data better.

4.12 JPEG Encoder Version 11

Quantize

- - _Figzag + Organizer +— Byte Stuff
e

1 ;

Quantize TPEG
... _Zimg - S_O - — O“tput
CbCr
. |1
Quantize Image
- ~ Figzag Size
_CbCr

Figure 4.7: JPEG Encoder Design 6

Input
Data

Version 11 uses JPEG Encoder Design 6 (Figure 4.7). It scraps the changes of Version 10
and elects to combine zigzag and Quantization instead. Theoretically, this helps reduce the
number of cores without affecting bandwidth, as zigzagging and quantization are relatively small

pipeline operations.

32

4.13 JPEG Encoder Version 12

Input i
o —....... - ‘{ -

i }

JPEG
. | Pass_o -])y
T
Itnage
) Size

Figure 4.8: JPEG Encoder Design 7

Version 12 uses JPEG Encoder Design 7. It scraps the changes from Version 10 and 11
and combines zigzagging and entropy encoding into the same core. One of the most expensive
operations in entropy encoding is getting the value size and code; that operation is now moved to
its independent core to help balance the pipelines.

The new sizing algorithm has a time complexity of O(log(n)) but had to do additional
checks for edge cases, so the total amount of operations was closer to 18--dramatically down
from the 32 operations that were possible in the worst case using the previously implemented

O(n) algorithm.

4.14 JPEG Encoder Version 13

.... . .l - o
| S
._.“m o - i IPEGt
T
|
Inage
Size

Figure 4.9: JPEG Encoder Design 8

Input _
Data

33

Version 13 uses JPEG Encoder Design 8 (Figure 4.9). The main difference of this design
is that it gives the zigzag operation its own core. Furthermore, Version 13 builds upon Version
12 by adding a more efficient size calculation algorithm to the sizer core. Luckily, there is a
built-in leading zero-counting instruction in KiloCore’s ISA. The LSDU instruction takes an
unsigned input and returns how many leading zeros the number contains; however--due to a
hardware oversight—it returns 0 when the input is 0 (instead of 16). Consequently, it takes one
check, one LSDU instruction, and one subtraction to determine the size of a word. With this
change, the size check algorithm is down from O(log(n)) to O(1).

Additionally, optimizations are made to the compressor core to help alleviate any
pipeline imbalance from a particularly noisy image. The compiler can optimize the compressor

core better since the central helper subroutine is now in-line.
4.15 JPEG Encoder Version 14

Version 14 returns to JPEG Encoder Design Version 5 (Figure 4.6), favoring the core

savings over further balancing and the pipelines.
4.16 JPEG Encoder Version 15

Version 15 follows Version 14’s lead by combining quantize and zigzag to form JPEG
Encoder Design 6 (Figure 4.7). Preliminary performance numbers detailing the pipelines’ most
prolonged delay come from DCT-II, motivating the additional core savings to combine quantize

and zigzag yet again.

34

4.17 JPEG Encoder Version 16

Input |
Data

Tnput
Data

Input |
Data

_IPEG
Cutput

Paszz 0 = Orzanizer
i i
— Byte Stuff
] pl
R T
Byte Stuff
_p2
Pass_(N-1}
PR S—
Header
Pass N
T Image
Size
Pasz (N+1)
Pa=s (INC1)
Bazm (1)
1
Pass_(IN+1)
L)
Pazs_(IN-1)

Figure 4.10: JPEG Encoder Design 6, N pipelines per channel

Version 16 uses JPEG Encoder Design 6, scaled to 2 pipelines per channel (Figure 4.10).

The design has three inputs, each carrying the same data, to increase the bandwidth of the input

port. This design marks the first to scale the number of pipelines per channel, and with that came

algorithmic changes to the QZ and Entropy cores.

35

Since DC difference encoding depends on the previous block’s value, the Entropy core
now passes its DC coefficient downward to the following pipeline. This process recurses until
the last pipeline passes the DC coefficient back to the QZ core and the first pipeline for the
channel. The DC coefficient cannot pass back up through the Entropy cores as they already have
two inputs.

A Python algorithm automatically generates the Color_Pass cores (Figure 4.10). The
cores move data from the input and evenly distribute a JPEG processing block’s worth of data (3
X 64 words, RGB input). Similarly, the Pass cores (Figure 4.10) collect the processed blocks and

route them to the organizer core to ensure that bitstreams concatenate serially.
4.18 JPEG Encoder Version 17

Version 17 uses JPEG Encoder Design 6, scaled to 4 pipelines per channel (Figure 4.10).

This design reflects no other notable changes.
4.19 JPEG Encoder Version 18

Version 18 uses JPEG Encoder Design 6, scaled to 8 pipelines per channel (Figure 4.10).

This design reflects no other notable changes.
4.20 JPEG Encoder Version 19

Version 19 uses JPEG Encoder Design 6, scaled to 16 pipelines per channel (Figure

4.10). This design reflects no other notable changes.

36

4.21 JPEG Encoder Version 20

Byte Stuff
_pl

Byte Stuff
2

Header _ IpEG

Size

%Tpus - ------- -
Y A l
T, Colorfes Pass (N1

Figure 4.11: JPEG Encoder Design 6, N pipelines per channel, M input buffers

Version 20 uses JPEG Encoder Design 6, 8 pipelines per channel, with four input buffers
(Figure 4.11). KiloCore FIFOs hold 32 words before forcing the output of the providing core to
stall. Stalling FIFOs can become an issue in the Color_Pass cores as they need to distribute 192
inputs to the RGB converter cores. The RGB converter cores cannot process all 192 inputs fast
enough not to stall and prevent the other pipelines from working. Since there are 192 inputs, 6
FIFOs are needed to completely store an entire block for processing without needing to stall. For
this reason, Version 20 adds four input buffers in front of the RGB converter cores. Combined
with the input FIFOs of the Color_Pass and RGB convert cores, this totals the needed 6 FIFOs.

Similarly, Version 20 adds an output buffer to the end of each pipeline to ensure that a

pipeline would not stall due to the organizer not being able to process data fast enough. The

37

average 8-by-8 block does not produce more than 64 words to its output. Therefore, the input

buffer of the Pass cores and the added output buffer adequately address the bandwidth limitation.
4.22 JPEG Encoder Version 21

Version 21 uses JPEG Encoder Design 6, with 16 pipelines per channel and four input
buffers (Figure 4.11). This design reflects no other notable changes.

4.22 JPEG Encoder Version 22

Pass () + Organizer i
'y
— Pazz_l — Orgapizer | + Orzanizer b
' Y
Orgamizer i * Organmizer h +» Organizer h
= Pass (N-1)
\ I T
I|
I'I Organizer_i Orzanizer = Byte Stuff
| - _pl
- Pazz M \
! ' ¥
I|
i |
1
\
Input From —= Pass (N=1)
Pipelines

T ‘1 CHADN Byte Staff
1
1
I|

i 1

vl
i 1
\ Organizer 1 = Orzamizer b = Orgamzer b Hezder —-'PEG
| = = = = = = = Qutput
1
|
1
— Pass (IN-1) \ 1 4
\ Imaz=
| | Orgamizer i + Organizer h Size
|
|II
— Pasz (IM) \
1
A \ Organizer_i
— Pass (IN+1)
A
== Pass (3N-1)

Figure 4.12: Pre-Organizer block diagram

Version 22 uses the same design as Version 20, with a new Pre-Organizer stage appended

at the end (Figure 4.12). The algorithm that handles switching between two bitstreams takes

38

more operations than handling words within the same stream. The new pre-organizer stage
allows 24 bitstream combinations to have the same operations as two. Each Organizer_i core
combines three bitstreams of the same block (for each channel), and the Organizer_h blocks
further consolidate these bitstreams into one.

Pass cores now target one block at a time, eliminating the need for buffer cores in the pre-

organizer stage.

4.24 JPEG Encoder Version 23

= --.. = “. i

4 ¥
Tnput Quantize TEG
o _»E!_...-. = —.-_.-‘ = - - e
Input = Quantiza I Lmage

Figure 4.13: JPEG Encoder Design 9

Version 23 revisits the basic JPEG pipeline design for rebalancing (Figure 4.13). The
DCT-II now uses four pipeline stages to complete the operations to minimize the bottleneck on
lower-quality images. DCTII_p1 handles column-wise DCT-II operations, whereas DCTII_p2
handles row-wise DCT-I11 operations. DCT_p1la handles the first four columns, and DCT_p1b
handles the last four. Similarly, DCT_p2a handles the first four rows, and DCT_p2b handles the
last four rows. The cores that handle the first half of each block are farther in the pipeline to

allow simultaneous processing with the last half of each block.

39

4.25 JPEG Encoder Version 24

M

.. B ’-...‘.‘-‘
s
. 7 m“ :
=Y
=

Quantize Pass

-.-. l m. _u _m
4

F_- -.-...‘. 7l} [“. m+
* H 4
: AJ M

L (N1

Figure 4.14: JPEG Encoder Design 9, N pipelines per channel, M input buffers

SRR

i
=g

Header JPEG

R

Tnput
Data

¥
|Z'F§ i

EE 2y

=

SRR

Input
Data

}
i1

Version 24 uses JPEG Encoder Design 9 but scales up to 8 pipelines per channel with one
input buffer (Figure 4.14). Although FIFOs can carry up to 32 words in KiloCore, they start to
slow down after 24 to prevent overfilling. Color_Pass cores have been updated to write to their
sequential core across both input buffers 24 words at a time to avoid this. When the core returns
to the original input buffer to write, the data will be sufficiently removed to write another 24
words. Not only does this prevent stalling—the design never violates the reserve space in the
FIFO—but we also effectively get 48 words per input buffer core.

RGB conversion is also updated to serve across both its input FIFOs. Consequently, in
addition to performing the conversion operation, the core also serves as an additional buffer
before the DCT cores. These three cores now allow for 144 words of buffer space. This design

relies on the RGB converter being fast enough to process 48 words without stalling the previous

40

input buffers (as 192 words need to be processed to unblock the processing for the next pipeline

in the chain.

4.26 JPEG Encoder Version 25

Version 25 uses the same JPEG Encoder Design 9, scaled to 8 pipelines per channel, with
one input buffer. In addition, it innovates Version 24 by improving the DCT algorithm to use its

two input FIFOs to help ensure an entire block can be stored in the FIFOs, avoiding any stalls.

4.27 JPEG Encoder Version 26

Quantize Quantiza
g’:t“‘ —~ REEIV > .. R - R E"’;* Orgamizer —+ Byte Stuff
* pLY P Y =
- ' ¥
Input Quantize Quantize Encods PEG
Dat= * RGE-ILE = _Zigrag —+ _Zigmg ChCr Pass 0 Header ™
_p1_ChCr _p2_ChCr E Output
1 t
I . : Imag,
. RGB2G - - J fage
_p1_ChCr _p2_ChCr E

Figure 4.15: JPEG Encoder Design 10
Version 26 uses JPEG Encoder Design 10 (Figure 4.15). Almost every core in this design

uses a new on-the-fly philosophy. Storing any data in a core takes additional unneeded
processing, so every algorithm instead (where possible) processes all data without storing
anything. Notable exceptions are the zigzag process where storing needs to take place.

All 4 DCT cores previously held 32 words before starting computation. During the
column-wise DCT-II, this was particularly taxing due to the amount of uncoalesced reads and
writes required in column-wise operations. Programming all data to be processed as it comes in
leads to better compiler optimizations as it removes the loops used to store and save data. The
DCT-II cores unroll all loops.

After initial performance numbers boomed from removing all loops in DCT-II cores, the

quantization and zigzag cores unroll all loops with #pragma unroll. However, the quantize core

41

was still delayed, so it now shares its work with the previously named zigzag core. Now
Quantize_Zigzag_pl and Quantize_Zigzag_p2 accomplish a pipelined quantization and
zigzagging of the block.

Entropy and Compression were both updated to remove all unneeded operations further.
Consequently, the Entropy core partially unrolls the run-length encoding loop present in the
Entropy core. A corner case exists where the Entropy core needs to check if it has counted more
than 16 zeros in a row, as that would require inserting a 0xf0 byte. Still, that check only comes
after passing through the 16 unrolled iterations and being sent to a nearly identical loop
containing a said check. Consequently, blocks that do not have a run of 16 zeros can accelerate
their performance by skipping 64 operations and blocks that can save at least 16 operations (and
likely more).

Compression was initially written to append the entropy codes on the end of a 32-bit
word until there were 16 valid bits to write to the output. Then, the 32-bit word would be shifted
to find what bits to write and cleared of those bits. 32-bit operations are particularly taxing on
KiloCore, a 16-bit data path architecture. Therefore, something as simple as a 32-bit shift can
take multiple operations. Instead of using a 32-bit word to track the currently unwritten bits, a
16-bit value is now used. In an overflow, the bottom 16 bits are written to the output while the
extra bits replace the “unwritten bits” value. Functions are also made inline to further increase
compiler optimizations.

This pipeline is balanced to handle better the typical quality setting of the JPEG encoder,
rather than the previous balance that served unrealistically high qualities. Finally, nearly all cores
(besides the RGB converter core, as it has to light of a workload) have a similar delay with this

design.

42

4.28 JPEG Encoder Version 27

s 1 A1

H
1]
g g

Headar TPEG

SEEE R

Tnput
Data ™

\Z'Eg A

s i i 1

Input
Data

¥
LFE

Figure 4.16: JPEG Encoder Design 10, N pipelines per channel, M input buffers

Version 27 scales Version 26 to 8 pipelines per channel, with two input buffers (Figure 4.16).
Additionally, Version 27 adds input buffers to ensure an entire block can be stored without
depending on the RGB converter’s delay. With Color Pass, two input buffers, and the RGB

converter, there are now eighter 24-word FIFOs being used to store the entire 196-word block.

43

4.29 JPEG Encoder Version 28

-+ Organizer

ﬂeafi
SLF o

v
41
=

‘Eg

_, TPEG

i

Quantize

_Zigzag

Y

5 . Header

Color Chuantiza Quantize
Pas Zigzazg — _Zigzag Pa; Qutput
0 »lCh 2 Ch = T
[} [} 4 Image
Color Quantize Quantize Pass Size
_Pazs Zigzazg — _Zigzag 051
1 »lCh 2 Ch =
: ! - :

E m -

2 Ch

Color Chuantiza

gt:t_.— £ .m EC
N _pl Ch

Chuantiza

Zigzag >

_pl Cr

Quantiza

Zigzag

_pl Cr
Color Chuantiza

g_ﬁ £ m e
N _pl Cr

Figure 4.17: JPEG Encoder Design 10, N pipelines per channel, without RGB conversion

v

i -

!

v
-

=

- Eg Ll EE

Version 28 removes RGB conversion and the necessary input buffers from Version 27
(Figure 4.17). Version 28 gives an alternative design to cases where input data is already in
YCbCr format. Furthermore, it was impossible to simulate the complete performance

characteristics of Version 27 due to a lack of input bandwidth (to be discussed in Chapter 5).
4.30 JPEG Encoder Version 29

Version 29 scales Version 28 to 16 pipelines per channel (Figure 4.17). This design

reflects no other notable changes.

44

Chapter 5

Simulation Results of JPEG Implementations

5.1 Overview

Chapter 5 compares throughput, throughput per area, power, energy per megapixel
encoded, and energy-delay product among the 29 implementations introduced in Chapter 4.
These metrics show the benefits and disadvantages of different implementations.

All metrics vary between different quality factors and images due to the nature of JPEG
encoding. For this reason, five different quality levels were tested to profile every version.
Quality factor of zero is a worst-case scenario where the quantization table is wholly composed
of ones. Furthermore, a quality factor of zero is not a realistic scenario as other encoding
standards handle higher quality encoding better, whereas JPEG encoding trades image fidelity
for compression. The higher the compression, the less load there is on the entropy, compression,
and organizer cores, allowing higher throughput. Quality factor 0.1 gives a reasonable high-
fidelity image benchmark of the design. While still demonstrating the performance penalty that
comes with higher levels of quality, quality factor 0.1 better showcases JPEG encoders'
strengths. Quality factors 0.1667, 0.5, and 1 represent a range of qualities to demonstrate how
metrics change over different quality factors and how the relationship is not linear. Quality factor
changes are not linearly proportional to compression changes; therefore, quality factor changes
are not linearly proportional to the profiled metrics. Most designs industry designs are
benchmarked at quality factor 0.1, and JPEG encoders are most used between quality factor 0.1

and 0.5.

45

Three test images were chosen (all 1240 x 960 pixels), and the metrics are averages
between the three test images. libjpeg-turbo’s testing also includes these test images and a
quality factor of 0.1. These images (Figures 5.1 to 5.3) are more accessible to outside design
comparisons and have below-average encoding times [8]. While the encoding times are below
average, they are not corner cases; their results are relatively close to average picture results.
Generally, images with higher frequency 8-by-8 pixel blocks have longer encoding times.

Throughput was calculated using Equation 5.1:

(# of Pixels) = 220
Delay

Throughput = (5.1)

Average throughput was computed using Equation 5.2, where N is 3 for the three images:

N
1
Average Throughput = NZ Throughput,

n=0

(5.2)

Average power was calculated using Equation 5.3, where N is 3 for the three images:

N
1
Average Power = N Z Power, (5.3)

n=0
Energy per megapixel encoded was calculated using Equation 5.4:

Average Power

E Megapixel Encoded =
nergy per Megaptxet tncoae Average Throughput (5.4)

Throughput per area was calculated using Equation 5.5, where 0.05545 is the number of
square millimeters per core on the KiloCore chip fabricated at 32nm [5]:

Average Throughput

Throughput per Area =

2
of Cores * 0.05545 rglor;le (5.9)

Energy-delay product was calculated using Equation 5.6:

Energy per Megapixel

Energy-delay Product = (5.6)

Average Throughput

46

O /l"l N /.‘ =
% »5{ @
£ A

2

Figure 5.1: “vgl 6548 0026.ppm” encoded using quality factor O [8]

47

N

Figure 5.3: “vgl 5674 _0098.jpeg” encoded using quality factor 0 [8]

48

5.2 Throughput Analysis

The following section discusses how throughput changes throughout the implementations
and quality levels. As described in section 5.1, three images determine the average throughput of
the design. However, these images have above-average complexity to encode; therefore, other
more straightforward images yield higher than average throughput. Throughput values were

taken directly from the KiloCore simulator’s output.

Average Throughput vs. Version Number (1.2 GHz @ 0.9 V)
1000
900
800
700
600
500

400

Throughput (MP/s)

30

o

20

o

10

o

0 _..............III-IIIIIlIIlIIlIIlIIlIIlIII"I|II||I||| | | |"| | III

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Version Number

mQF=0 QF=0.1 QF=0.1667 mWQF=05 mQF=1

Figure 5.4: Throughput versus version number (1.2 GHz @ 0.9V)

49

Average Throughput vs. Version Number (1.78 GHz @ 1.1 V)

1600
1400
1200
1000

800

600

Throughput (MP/s)

40

o

20

o

0 an an o o - 11} 11} 1] 11} [[[1] [1] 11} “ II || II “ II
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Version Number

QF=0 QF=0.1 QF=0.1667 mQF=0.5 mQF=1

Figure 5.5: Throughput versus version number (1.78 GHz @ 1.1V)

Figure 5.4 and Figure 5.5 graph the throughput of the various implementations with
different quality factors. As expected, the general trend shows upward throughput JPEG
implementations innovate the encoding process. A notable exception is Version 26, as it was a
single pipeline implementation that laid the groundwork for Versions 27, 28, and 29. Version 27
is faster than Version 28 due to the increased input bandwidth, not the exclusion of the
RGB2YCDCr core. The workload of the RGB2Y ChCr core is not the bottleneck of Version 27.

Increasing the clock speed has a proportional increase in throughput, showing the design
scales with clock speed. This trend should hold indefinitely, so long as the clock speed increases
are level across all cores. If not, increases to the bottleneck cores (DCT for low qualities,
compress/entropy/organizer for higher qualities) result in the most significant speedups.

Higher quality factor values result in higher levels of throughput, and vice versa. This is

due to the greater amount of non-zero data to encode, and more work for the entropy,

50

compression, and organizer cores when encoding with lower quality factor values. The best-case
result for throughput was 286 MP/s for the quality factor set to 0, while 1.332 GP/s for the
quality factor set to 1. Quality factor zero is an extreme case, so it is not representative of the
average encoder experience, whereas quality factor 0.1 is a far more realistic test case. By
slightly increasing the quality factor, throughput is increased to 549 MP/s, showing a non-linear
relationship between the quality factor and throughput.

Version 1 sees no difference between quality factors as the bottleneck is the DCT-II

operation. DCT-II’s workload does not depend on quality factor.
5.3 Power Analysis

The following section discusses how power changes throughout the implementations and
quality levels. As described in section 5.1, three images determine the average power of the

design. Power values were taken directly from the KiloCore simulator’s output.

51

4.5

g ot
N) wn w " IS

Power (W)

=
(6]

0.

(€]

o

Average Power vs. Version Number (1.20 GHz @ 0.9 V)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Version Number

BQF=0 mQF=0.1 mQF=0.1667 mQF=05 mQF=1

Figure 5.6: Average power versus version number (1.20 GHz @ 0.9 V)

52

Average Power vs. Version Number (1.78 GHz @ 1.1 V)

. |||||||||||||||||||II|IIIIIIIIIIIIIIIIIIIIIII|||| | ‘ 0 A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Version Number

10

Power (W)
w S (6] [e)} ~

N

=

mQF=0 QF=0.1 QF=0.1667 mQF=05 mQF=1

Figure 5.7: Average power versus version number (1.78 GHz @ 1.1 V)

The general trend between versions within the same quality factor is the same in Figures
5.6 and 5.7. An interesting side effect of increased throughput (and thus decreased delay) is
increased power consumption as the quality factor increases. Therefore, the compression factor is
getting larger, and so is the power.

Implementation 29 (1.78 GHz @ 1.1V) has the highest power of the group (9.26W when
the quality factor is 1), likely due to it having the most throughput and high core usage. On the
other hand, Version 1 (1.2 GHz @ .9V) has the lowest power usage at .2093 W (when the quality
factor is 1). Lower power usage is not necessarily positive, as version one runs significantly
longer than Version 29. In the next section, we explore energy per megapixel encoded to better

understand the most energy-efficient design.

53

5.4

Energy per Megapixel Encoded Analysis

The following section discusses how energy per megapixel encoded changes throughout

the implementations and quality levels. As described in section 5.1, three images determine the

average energy per megapixel encoded of the design.

Energy/Megapixel (mJ/MP)

Energy per Megapixel Encoded vs. Version Number (1.20 GHz @
0.9V)

200
180
160
140
120
100

80

60

40
> LI
i 0 0 0 0 T 0 e e D e e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Version Number

o

BQF=0 mQF=0.1 QF=0.1667 ®mQF=0.5 mQF=1

Figure 5.8: Energy per megapixel encoded versus version number (1.20 GHz @ 0.9 V)

54

Energy per Megapixel Encoded vs. Version Number (1.78 GHz @
1.1V)

300
250
200
150

100

Energy/Megapixel (mJ/MP)

wu
o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Version Number

mQF=0 QF=0.1 QF=0.1667 mQF=05 mQF=1

Figure 5.9: Energy per megapixel encoded versus version number (1.78 GHz @ 1.1 V)

Energy per megapixel encoded decreases over the various implementations (Figures 5.8
and 5.9), but notably, 1.2 GHz is consistently more energy efficient than 1.78 GHz. It was
chosen precisely for this reason, while 1.78 GHz is the maximum clock speed. Energy per
megapixel encoded also decreases with higher quality factors because lower-quality images have
higher throughput and less work, making them a more energy-efficient option.

Version 28 (1.2 GHz @ 0.9 V) used just 4.24 mJ/MP (quality factor 1), making it the
most energy-efficient design. On the other hand, Version 1 (1.78 GHz @ 1.1V) used 264.89
mJ/MP, making it the least energy efficient of all the designs at the same quality factor.

Version 1 uses more energy per megapixel encoded than the rest of the version due to its

slower run time. Section 5.3 shows the average power of Versions 1 and 2 are about the same,

55

whereas the runtime of Version 1 is 4.2x longer than Version 2. Relatively constant power over a

longer period of time equates to more energy per megapixel encoded. Version 2 goes from 512

to 40 multiplies and 448 to 232 additions, explaining the runtime and efficiency difference.

5.5 Throughput per Area Analysis

The following section discusses how throughput per area changes throughout

implementation and quality levels. As described in section 5.1, three images determine the

average throughput per area of the design.

Throughput/Area (MP/(s*mm~2))

45

40

35

3

o

2

[€,]

N
o

1

[€,]

1

o

(€]

Throughput Per Area vs. Version Number (1.20 GHz @ 0.9 V)

2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Version Number

BQF=0 mQF=0.1 QF=0.1667 mQF=05 mQF=1

Figure 5.10: Throughput per area versus version number (1.20 GHz @ 0.9 V)

56

Throughput Per Area vs. Version Number (1.78 GHz @ 1.1 V)

70
60
50

4

o

w
o

Throughput/Area (MP/(s*mm?2))

1

o

2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Version Number

BQF=0 mQF=0.1 QF=0.1667 mQF=05 mQF=1

Figure 5.11: Throughput per area versus version number (1.78 GHz @ 1.1 V)

Throughput per Area (Figures 5.10 and 5.11) does not always increase with version
number because implementations with only one pipeline have higher throughput per area than
implementations with that pipeline scaled up. After all, while throughput scales well with
pipeline count (assuming it is the same pipeline design), the area does not. Additional processing
cores that organize the data coming into and out of the designs create this discrepancy. Notably,
Version 28 outperforms Version 27 in throughput per area as they are the same design but with
color conversion removed. Consequently, throughput increased, and area decreased between
Version 27 and 28.

The highest throughput per area version was Version 26 (1.78 GHz @ 1.1V), the single

pipeline version later scaled up in Version 26 through 29. Version 26 achieves 61.61

57

MP/(s*mm?) using quality factor 1, whereas the least area-efficient design, Version 1 (1.20 GHz
@ 0.9V), only achieves 2.45 MP/(s*mm?) with the same quality factor.
Version 1 sees no difference between quality factors as the bottleneck is the DCT-1I

operation. DCT-II’s workload does not depend on quality factor.
5.6 Energy-Delay Product

The following section discusses how energy-delay product changes throughout
implementation and quality levels. As described in section 5.1, three images determine the

average throughput per area of the design.

Energy-Delay Product vs. Version Number (1.20 GHz @ 0.9 V)

1000
= 100
<
a
=
=
o 10
£
5
=} 1
Re)
o
a
&
@ 0.1
[a)]
>
g
9]
S o.01
0.001 |

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Version Number

BQF=0 mQF=0.1 QF=0.1667 mWQF=05 mQF=1

Figure 5.12: Energy-delay product versus version number (1.20 GHz @ 0.9 V)

58

Energy-Delay Product vs. Version Number (1.78 GHz @ 1.1 V)

1000
100

10
0

0.0
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Version Number

Energy Delay Product ((mJ*s)/(MP~2))
=

=

mQF=0 mQF=0.1 QF=0.1667 mQF=0.5 mQF=1

Figure 5.13: Energy-delay product versus version number (1.78 GHz @ 1.1 V)

Energy delay product across all versions and quality factors is plotted logarithmically in
Figures 5.12 and 5.13. Energy delay product trends downward throughout the version-to-version
innovations but is lowest at Version 29 (1.2 GHz @ 0.9 V) at 0.0050 mJ*s/(MP?) for quality
factor 1. The energy-delay product is worse for Version 1 (1.78 GHz @ 1.1V), coming in a
146.2549 uJ*s/(MP?) using the same quality factor.

Energy delay product varies slightly between 1.2 GHz and 1.78 GHz implementations of
the same version, but typically 1.2 GHz comes out slightly lower. In Version 29 specifically, the

1.2 GHz version (using quality factor 1) comes in .2 mJ*s/(MP?) lower.

59

5.7 Energy per Megapixel Encoded vs. Area per Throughput Analysis

Energy per Megapixel Encoded vs. Area per Throughput

(QF=0)
80
=70 2
S e @
E
S 50
'%40
ao 2o8° 8@
%30
2 20 ®
S 4 @ QQ%% 29 @ ® ' D D

o

0 0.05 0.1 0.15 0.2
Area/Throughput (s*mmA2/MP)

®12GHz@ 9V ®@1.78GHz @ 1.1V

Figure 5.14: Energy per megapixel encoded versus area per throughput (QF = 0)

Energy per Megapixel Encoded vs. Area per Throughput

(QF =0.1)

60
T 50 %
S
S
£ a0
2 30
%" 15171141%13
3" D
()
5 10 28] 29 @ 234 ® b

0

0 0.05 0.1 0.15 0.2

Area/Throughput (s*mmA2/MP)

®12GHz@ .9V ®1.78GHz @ 1.1V

Figure 5.15: Energy per megapixel encoded versus area per throughput (QF = 0.1)

60

Energy per Megapixel Encoded vs. Area per Throughput
(QF =0.1667)

(%2
o

B
o

2
354

w
o

1??&91
2105711%412319 i)

? 294] (20] ap

0 0.05 0.1 0.15
Area/Throughput (s*mmA2/MP)

N
o

Energy/Megapixel (mJ/MP)

=
o

o

®12GHz@ .9V ®1.78GHz @ 1.1V

Figure 5.16: Energy per megapixel encoded versus area per throughput (QF = 0.1667)

Energy per Megapixel Encoded vs. Area per Throughput
(QF =0.5)

60

")

o
=
}
E
°@
§-° 30
s
<< 20
>
2 o % Pooo
0
0 0.05 0.1 0.15

Area/Throughput (s*mm~”2/MP)

®12GHz@ 9V ®@1.78GHz @ 1.1V

Figure 5.17: Energy per megapixel encoded versus area per throughput (QF = 0.5)

61

Energy per Megapixel Encoded vs. Area per Throughput

(QF =1)
60
g 50 e@
;E, 40
% 30 e@
é 20 @
2 %o P 0o
5 10 2822628 ' ® ® ®
’ 0 0.05 0.1 0.15

Area/Throughput (s*mmA2/MP)

®12GHz@ .9V ®1.78GHz @ 1.1V

Figure 5.18: Energy per megapixel encoded versus area per throughput (QF = 1)
Energy per Megapixel Encoded vs. Area per Throughput (Figures 5.14 through 5.18)

show the tradeoff between low energy and high throughput per area across the 29 versions of
JPEG encoders. It is more desirable for a version (denoted by a labelled data point) to be closer
to the origin as this denotes a low energy high throughput per area design. Versions 26 and 28
consistently fall closer to the origin, while Version 1 is too far to be plotted on all charts.
Versions at 1.78 GHz balance energy per megapixel encoded and area per throughput
better (closer to the origin) at higher quality factors, while versions at 1.2 GHz have a better

balance at lower quality factors but tend to not surpass 1.78 GHz versions.

62

Version
Number

© 00 N o O~ W NP

NN NMNRNNNMNNMRNNNMNERERREPRRRERERRER R R
© 0O N R WNELRO®OODLWMNO®U D WN PR O

Quality =0

Area
(mm~*2)

0.4991
0.4991
0.4991
0.5545
0.5545
0.5545
1.1090
1.1645
1.3863
1.3863
1.2199
1.3863
1.5526
1.3863
1.2199
2.8834
5.8777
11.8663
23.8435
14.5834
37.2070
22.1246
1.5526
16.9677
16.9677
1.7190
19.6293
15.6369
30.2757

Average
Throughput
(MP/s)
1.2210

4.5644
5.3416
5.4715
5.5802
5.9318
10.8123
10.2504
14.7857
13.4430
14.6638
15.0060
16.4349
16.4039
16.3470
30.1579
42.6734
47.2878
49.2760
84.0618
102.4844
119.0326
22.6370
106.0952
108.0474
46.8120
159.8874
181.4568
193.0376

Table 5.1: Data for 1.2 GHz @ 0.9V using quality factor 0

Average
Power (W)

0.2126
0.2156
0.2205
0.2133
0.2132
0.2141
0.2542
0.2542
0.2863
0.2762
0.2881
0.2949
0.2901
0.2880
0.2901
0.4030
0.5302
0.6178
0.7130
0.9458
1.3429
1.3392
0.3398
1.1880
1.1971
0.4007
1.2993
1.2024
1.4377

1.2 GHz @ 0.9V

Energy per Throughput per

Megapixel Area

Enc. (mJ/MP) (MP/(s*mm”"2))

174.0958 2.4466
47.2447 0.1462
41.2739 10.7036
38.9787 0.8674
38.2053 10.0634
36.0976 10.6975
23.5080 9.7496
24.7954 8.8028
19.3625 10.6660
20.5463 9.6974
19.6471 12.0205
19.6502 10.8249
17.6497 10.5854
17.5548 11.8333
17.7435 13.4003
13.3622 10.4591
12.4253 7.2602
13.0636 3.9851
14.4692 2.0666
11.2508 5.7642
13.1031 2.7544
11.2510 5.3801
15.0108 14.5801
11.1976 6.2528
11.0796 6.3678
8.5604 27.2329
8.1262 8.1453
6.6262 11.6044
7.4479 6.3760

63

Energy-Delay
Product
(mJ*s/(MP~2))
142.5849
10.3507
7.7268
7.1240
6.8466
6.0855
2.1742
2.4190
1.3095
1.5284
1.3398
1.3095
1.0739
1.0702
1.0854
0.4431
0.2912
0.2763
0.2936
0.1338
0.1279
0.0945
0.6631
0.1055
0.1025
0.1829
0.0508
0.0365
0.0386

Version
Number

© 00 N o O~ W NP

NN NMNRNNNMNNMRNNNMNERERREPRRRERERRER R R
© 0O N R WNELRO®OODLWMNO®U D WN PR O

Quality =0

Area
(mm~*2)

0.4991
0.4991
0.4991
0.5545
0.5545
0.5545
1.1090
1.1645
1.3863
1.3863
1.2199
1.3863
1.5526
1.3863
1.2199
2.8834
5.8777
11.8663
23.8435
14.5834
37.2070
22.1246
1.5526
16.9677
16.9677
1.7190
19.6293
15.6369
30.2757

Average
Throughput
(MP/s)
1.8111

6.7705
7.9234
8.1160
8.2773
8.7988
16.0382
15.2048
21.9321
19.9404
21.7513
22.2589
24.3785
24.3325
24.2480
44,7342
63.2988
70.1436
73.0928
124.6916
152.0185
176.5651
33.5782
157.3745
160.2703
69.4378
237.1663
269.1609
286.3391

Table 5.2: Data for 1.78 GHz @ 1.1V using quality factor 0

Average
Power (W)

0.4872
0.4942
0.5053
0.4888
0.4886
0.4907
0.5825
0.5825
0.6561
0.6330
0.6602
0.6758
0.6648
0.6599
0.6647
0.9235
1.2151
1.4157
1.6340
2.1674
3.0775
3.0691
0.7787
2.7226
2.7435
0.9184
2.9776
2.7555
3.2949

1.78 GHz @ 1.1V

Energy per
Megapixel
Enc. (mJ/MP)
268.9743

72.9921
63.7673
60.2212
59.0264
55.7701
36.3194
38.3083
29.9147
31.7436
30.3544
30.3591
27.2684
27.1218
27.4134
20.6443
19.1968
20.1830
22.3546
17.3822
20.2440
17.3825
23.1913
17.3000
17.1177
13.2256
12.5548
10.2374
11.5068

64

Throughput per
Area
(MP/(s*mm~2))
3.6292
13.5668
15.8770
14.6367
14.9274
15.8679
14.4619
13.0575
15.8212
14.3844
17.8304
16.0569
15.7017
17.5527
19.8771
15.5144
10.7693
5.9112
3.0655
8.5503
4.0858
7.9805
21.6271
9.2749
9.4456
40.3955
12.0823
17.2132
9.4577

Energy-Delay
Product
(mJ*s/(MP~2))
148.5106
10.7809
8.0480
7.4200
7.1311
6.3384
2.2646
2.5195
1.3640
1.5919
1.3955
1.3639
1.1185
1.1146
1.1305
0.4615
0.3033
0.2877
0.3058
0.139%4
0.1332
0.0984
0.6907
0.1099
0.1068
0.1905
0.0529
0.0380
0.0402

Version
Number

© 00 N o O~ W NP

NN NMNRNNNMNNMRNNNMNERERREPRRRERERRER R R
© 0O N R WNELRO®OODLWMNO®U D WN PR O

Quality = 0.1

Area
(mm~*2)

0.4991
0.4991
0.4991
0.5545
0.5545
0.5545
1.1090
1.1645
1.3863
1.3863
1.2199
1.3863
1.5526
1.3863
1.2199
2.8834
5.8777
11.8663
23.8435
14.5834
37.2070
22.1246
1.5526
16.9677
16.9677
1.7190
19.6293
15.6369
30.2757

Average
Throughput
(MP/s)
1.2210

5.6092
5.9730
6.0626
6.2264
6.3516
14.7420
14.2785
16.5482
15.6990
16.4022
16.9454
17.9213
17.9110
17.8930
35.4394
59.1340
69.2270
72.2233
141.1890
223.5339
147.2507
27.5962
201.9905
208.7887
56.3868
278.7267
323.8956
370.2318

Table 5.3: Data for 1.2 GHz @ 0.9V using quality factor 0.1

Average
Power (W)

0.2109
0.2185
0.2200
0.2114
0.2114
0.2112
0.2661
0.2694
0.2834
0.2786
0.2861
0.2928
0.2874
0.2859
0.2887
0.4155
0.6140
0.7510
0.8662
1.2862
2.2524
1.4376
0.3572
1.7876
1.8187
0.4216
1.8765
1.6693
2.1121

1.2 GHz @ 0.9V

Energy per Throughput per

Megapixel Area

Enc. (mJ/MP) (MP/(s*mm”"2))

172.7282 2.4466
38.9454 11.2398
36.8392 11.9687
34.8742 10.9334
33.9562 11.2289
33.2437 11.4547
18.0509 13.2931
18.8658 12.2620
17.1258 11.9374
17.7455 11.3248
17.4408 13.4455
17.2790 12.2239
16.0382 11.5428
15.9640 12.9205
16.1356 14.6676
11.7233 12.2908
10.3832 10.0607
10.8487 5.8339
11.9939 3.0291
9.1100 9.6815
10.0763 6.0079
9.7629 6.6555
12.9450 17.7742
8.8498 11.9044
8.7109 12.3051
7.4769 32.8030
6.7325 14.1995
5.1537 20.7135
5.7048 12.2287

65

Energy-Delay
Product
(mJ*s/(MP~2))
141.4648
6.9431
6.1677
5.7524
5.4536
5.2339
1.2245
1.3213
1.0349
1.1304
1.0633
1.0197
0.8949
0.8913
0.9018
0.3308
0.1756
0.1567
0.1661
0.0645
0.0451
0.0663
0.4691
0.0438
0.0417
0.1326
0.0242
0.0159
0.0154

Version
Number

© 00 N o O~ W NP

NN NMNRNNNMNNMRNNNMNERERREPRRRERERRER R R
© 0O N R WNELRO®OODLWMNO®U D WN PR O

Quality = 0.1

Area
(mm~*2)

0.4991
0.4991
0.4991
0.5545
0.5545
0.5545
1.1090
1.1645
1.3863
1.3863
1.2199
1.3863
1.5526
1.3863
1.2199
2.8834
5.8777
11.8663
23.8435
14.5834
37.2070
22.1246
1.5526
16.9677
16.9677
1.7190
19.6293
15.6369
30.2757

Average
Throughput
(MP/s)
1.8111

8.3203
8.8599
8.9928
9.2359
9.4216
21.8673
21.1798
24.5464
23.2868
24.3299
25.1357
26.5832
26.5680
26.5413
52.5684
87.7154
102.6868
107.1312
209.4304
331.5752
218.4219
40.9344
299.6193
309.7033
83.6404
413.4447
480.4451
549.1771

Table 5.4: Data for 1.78 GHz @ 1.1V using quality factor 0.1

Average
Power (W)

0.4833
0.5006
0.5043
0.4845
0.4845
0.4839
0.6098
0.6173
0.6495
0.6384
0.6556
0.6710
0.6587
0.6553
0.6617
0.9521
1.4071
1.7211
1.9852
2.9477
5.1618
3.2946
0.8187
4.0966
4.1680
0.9662
4.3005
3.8255
4.8404

1.78 GHz @ 1.1V

Energy per
Megapixel
Enc. (mJ/MP)
266.8613

60.1698
56.9158
53.8798
52.4616
51.3608
27.8882
29.1472
26.4590
27.4164
26.9456
26.6958
24.7787
24.6641
24.9292
18.1122
16.0418
16.7611
18.5303
14.0747
15.5676
15.0835
19.9998
13.6728
13.4581
11.5516
10.4016
7.9623
8.8138

66

Throughput per
Area
(MP/(s*mm~2))
3.6292
16.6723
17.7535
16.2179
16.6562
16.9911
19.7181
18.1886
17.7071
16.7984
19.9442
18.1322
17.1218
19.1654
21.7570
18.2314
14.9234
8.6536
4.4931
14.3609
8.9116
9.8724
26.3651
17.6582
18.2525
48.6578
21.0626
30.7251
18.1392

Energy-Delay
Product
(mJ*s/(MP~2))
147.3439
7.2317
6.4240
5.9914
5.6802
5.4514
1.2753
1.3762
1.0779
1.1773
1.1075
1.0621
0.9321
0.9283
0.9393
0.3445
0.1829
0.1632
0.1730
0.0672
0.0470
0.0691
0.4886
0.0456
0.0435
0.1381
0.0252
0.0166
0.0160

Version
Number

© 00 N o O~ W NP

NN NMNRNNNMNNMRNNNMNERERREPRRRERERRER R R
© 0O N R WNELRO®OODLWMNO®U D WN PR O

Quality = 0.1667

Area
(mm~*2)

0.4991
0.4991
0.4991
0.5545
0.5545
0.5545
1.1090
1.1645
1.3863
1.3863
1.2199
1.3863
1.5526
1.3863
1.2199
2.8834
5.8777
11.8663
23.8435
14.5834
37.2070
22.1246
1.5526
16.9677
16.9677
1.7190
19.6293
15.6369
30.2757

Average
Throughput
(MP/s)
1.2210

5.8712
6.0632
6.1529
6.3370
6.3709
16.0332
15.5404
16.9076
16.2835
16.7843
17.3873
18.1923
18.1845
18.1708
37.2292
67.3941
79.3939
79.3847
148.2313
253.8204
150.8911
29.0750
222.0329
231.1969
59.2018
320.4217
381.7691
461.9862

Average
Power (W)

0.2105
0.2189
0.2193
0.2104
0.2104
0.2098
0.2701
0.2739
0.2816
0.2786
0.2845
0.2913
0.2859
0.2845
0.2874
0.4215
0.6608
0.8152
0.9054
1.3103
2.4525
1.4206
0.3622
1.8938
1.9364
0.4278
2.0794
1.8506
2.4489

1.2 GHz @ 0.9V

Energy per Throughput per

Megapixel Area

Enc. (mJ/MP) (MP/(s*mm”"2))

172.3698 2.4466
37.2764 11.7648
36.1675 12.1496
34.1969 11.0963
33.2063 11.4283
32.9298 11.4894
16.8480 14.4573
17.6243 13.3457
16.6549 12.1966
17.1086 11.7464
16.9480 13.7588
16.7535 12.5427
15.7131 11.7173
15.6463 13.1178
15.8180 14.8954
11.3207 12.9116
9.8051 11.4661
10.2679 6.6907
11.4055 3.3294
8.8392 10.1644
9.6622 6.8219
9.4148 6.8201
12.4590 18.7267
8.5292 13.0856
8.3754 13.6257
1.2267 34.4407
6.4895 16.3236
4.8474 24.4146
5.3008 15.2593

Energy-Delay
Product
(mJ*s/(MP~2))
141.1712
6.3490
5.9650
5.5578
5.2401
5.1688
1.0508
1.1341
0.9851
1.0507
1.0098
0.9635
0.8637
0.8604
0.8705
0.3041
0.1455
0.1293
0.1437
0.0596
0.0381
0.0624
0.4285
0.0384
0.0362
0.1221
0.0203
0.0127
0.0115

Table 5.5: Data for 1.2 GHz @ 0.9V using quality factor 0.1667

67

Version
Number

© 00 N o O~ W NP

NN NMNRNNNMNNMRNNNMNERERREPRRRERERRER R R
© 0O N R WNELRO®OODLWMNO®U D WN PR O

Quality = 0.1667

Area
(mm~*2)

0.4991
0.4991
0.4991
0.5545
0.5545
0.5545
1.1090
1.1645
1.3863
1.3863
1.2199
1.3863
1.5526
1.3863
1.2199
2.8834
5.8777
11.8663
23.8435
14.5834
37.2070
22.1246
1.5526
16.9677
16.9677
1.7190
19.6293
15.6369
30.2757

Average
Throughput
(MP/s)
1.8111

8.7090
8.9938
9.1268
9.3999
9.4502
23.7825
23.0516
25.0796
24.1539
24.8968
25.7912
26.9852
26.9737
26.9534
55.2233
99.9679
117.7677
117.7540
219.8764
376.5002
223.8217
43.1280
329.3487
342.9421
87.8160
475.2922
566.2908
685.2795

Average
Power (W)

0.4823
0.5016
0.5026
0.4822
0.4822
0.4808
0.6191
0.6277
0.6453
0.6384
0.6519
0.6676
0.6551
0.6520
0.6587
0.9659
1.5144
1.8682
2.0750
3.0027
5.6204
3.2556
0.8302
4.3400
4.4376
0.9805
4.7654
4.2410
5.6122

1.78 GHz @ 1.1V

Energy per
Megapixel
Enc. (mJ/MP)
266.3077

57.5913
55.8781
52.8335
51.3031
50.8758
26.0298
27.2292
25.7315
26.4324
26.1844
25.8839
24.2765
24.1733
24.4384
17.4902
15.1487
15.8636
17.6212
13.6564
14.9279
14.5456
19.2488
13.1775
12.9398
11.1652
10.0262
7.4891
8.1896

Throughput per
Area
(MP/(s*mm~2))
3.6292
17.4511
18.0219
16.4595
16.9520
17.0427
21.4450
19.7962
18.0917
17.4239
20.4089
18.6050
17.3807
19.4580
22.0948
19.1521
17.0080
9.9245
4.9386
15.0772
10.1191
10.1164
27.7779
19.4103
20.2115
51.0870
24.2134
36.2150
22.6346

Energy-Delay
Product
(mJ*s/(MP~2))
147.0381
6.6129
6.2129
5.7888
5.4578
5.3836
1.0945
1.1812
1.0260
1.0943
1.0517
1.0036
0.8996
0.8962
0.9067
0.3167
0.1515
0.1347
0.1496
0.0621
0.0396
0.0650
0.4463
0.0400
0.0377
0.1271
0.0211
0.0132
0.0120

Table 5.6: Data for 1.78 GHz @ 1.1V Using quality factor 0.1667

68

Version
Number

© 00 N o O~ W NP

NN NMNRNNNMNNMRNNNMNERERREPRRRERERRER R R
© 0O N R WNELRO®OODLWMNO®U D WN PR O

Quality = 0.5

Area
(mm~*2)

0.4991
0.4991
0.4991
0.5545
0.5545
0.5545
1.1090
1.1645
1.3863
1.3863
1.2199
1.3863
1.5526
1.3863
1.2199
2.8834
5.8777
11.8663
23.8435
14.5834
37.2070
22.1246
1.5526
16.9677
16.9677
1.7190
19.6293
15.6369
30.2757

Average
Throughput
(MP/s)
1.2210

6.1680
6.1692
6.1821
6.3785
6.3785
18.3853
17.7709
17.8381
17.5946
17.7155
18.2398
18.4103
18.4103
18.4091
38.2378
75.0399
87.4887
85.3746
152.8550
294.2089
152.8756
32.4776
254.1803
269.1876
66.3594
373.9308
502.3248
724.4761

Table 5.7: Data for 1.2 GHz @ 0.9V using quality factor 0.5

Average
Power (W)

0.2097
0.2180
0.2172
0.2073
0.2073
0.2067
0.2762
0.2803
0.2798
0.2793
0.2830
0.2883
0.2811
0.2801
0.2832
0.4171
0.6908
0.8453
0.9223
1.2903
2.6646
1.3746
0.3747
2.0455
2.1209
0.4460
2.2927
2.2089
3.4215

1.2 GHz @ 0.9V

Energy per Throughput per

Megapixel Area

Enc. (mJ/MP) (MP/(s*mm~2))

171.7324 2.4466
35.3493 12.3596
35.2113 12.3620
33.5300 11.1490
32.4962 11.5032
32.4055 11.5032
15.0204 16.5782
15.7716 15.2612
15.6877 12.8679
15.8729 12.6922
15.9748 14.5221
15.8062 13.1577
15.2685 11.8577
15.2162 13.2807
15.3856 15.0907
10.9068 13.2613
9.2053 12.7669
9.6617 7.3729
10.8027 3.5806
8.4414 10.4815
9.0567 7.9074
8.9916 6.9098
11.5378 20.9182
8.0476 14.9802
7.8788 15.8647
6.7207 38.6046
6.1313 19.0496
4.3973 32.1243
4.7227 23.9293

69

Energy-Delay
Product
(mJ*s/(MP~2))
140.6493
5.7310
5.7075
5.4237
5.0946
5.0804
0.8170
0.8875
0.8794
0.9021
0.9017
0.8666
0.8293
0.8265
0.8358
0.2852
0.1227
0.1104
0.1265
0.0552
0.0308
0.0588
0.3553
0.0317
0.0293
0.1013
0.0164
0.0088
0.0065

Version
Number

© 00 N o O~ W NP

NN NMNRNNNMNNMRNNNMNERERREPRRRERERRER R R
© 0O N R WNELRO®OODLWMNO®U D WN PR O

Quality = 0.5

Area
(mm~*2)

0.4991
0.4991
0.4991
0.5545
0.5545
0.5545
1.1090
1.1645
1.3863
1.3863
1.2199
1.3863
1.5526
1.3863
1.2199
2.8834
5.8777
11.8663
23.8435
14.5834
37.2070
22.1246
1.5526
16.9677
16.9677
1.7190
19.6293
15.6369
30.2757

Average
Throughput
(MP/s)
1.8111

9.1493
9.1510
9.1701
9.4615
9.4615
27.2715
26.3602
26.4599
26.0986
26.2779
27.0558
27.3086
27.3086
27.3069
56.7194
111.3092
129.7750
126.6389
226.7349
436.4098
226.7654
48.1751
377.0341
399.2950
98.4331
554.6641
745.1151
1,074.6395

Table 5.8: Data for 1.78 GHz @ 1.1V using quality factor 0.5

Average
Power (W)

0.4805
0.4997
0.4978
0.4750
0.4750
0.4737
0.6329
0.6423
0.6413
0.6400
0.6486
0.6607
0.6442
0.6420
0.6491
0.9558
1.5830
1.9372
2.1136
2.9570
6.1064
3.1502
0.8588
4.6878
4.8604
1.0221
5.2542
5.0621
7.8412

1.78 GHz @ 1.1V

Energy per
Megapixel
Enc. (mJ/MP)
265.3229

54.6139
54.4006
51.8032
50.2059
50.0659
23.2062
24.3668
24.2372
24.5233
24.6808
24.4202
23.5896
23.5088
23.7705
16.8507
14.2220
14.9272
16.6899
13.0417
13.9924
13.8918
17.8257
12.4333
12.1725
10.3834
9.4727
6.7937
7.2965

70

Throughput per
Area
(MP/(s*mm~2))
3.6292
18.3333
18.3369
16.5377
17.0631
17.0631
245911
22.6375
19.0874
18.8268
21.5411
19.5172
17.5890
19.6997
22.3845
19.6710
18.9375
10.9364
5.3113
15.5475
11.7293
10.2495
31.0287
22.2207
23.5327
57.2635
28.2569
47.6511
35.4951

Energy-Delay
Product
(mJ*s/(MP~2))
146.4945
5.9692
5.9447
5.6491
5.3063
5.2915
0.8509
0.9244
0.9160
0.9396
0.9392
0.9026
0.8638
0.8609
0.8705
0.2971
0.1278
0.1150
0.1318
0.0575
0.0321
0.0613
0.3700
0.0330
0.0305
0.1055
0.0171
0.0091
0.0068

Version
Number

© 00 N o O~ W NP

NN NMNRNNNMNNMRNNNMNERERREPRRRERERRER R R
© 0O N R WNELRO®OODLWMNO®U D WN PR O

Quality = 1

Area
(mm~*2)

0.4991
0.4991
0.4991
0.5545
0.5545
0.5545
1.1090
1.1645
1.3863
1.3863
1.2199
1.3863
1.5526
1.3863
1.2199
2.8834
5.8777
11.8663
23.8435
14.5834
37.2070
22.1246
1.5526
16.9677
16.9677
1.7190
19.6293
15.6369
30.2757

Average
Throughput
(MP/s)
1.2210

6.1820
6.1820
6.1821
6.3785
6.3785
19.0574
18.3550
18.3480
18.2955
18.2732
18.4090
18.4092
18.4091
18.4091
38.2382
75.0399
87.4843
85.3703
152.8550
304.2217
152.8756
34.6272
273.9292
294.3106
71.3936
381.3416
557.2255
898.1440

Table 5.9: Data for 1.2 GHz @ 0.9V using quality factor 1

Average
Power (W)

0.2093
0.2166
0.2158
0.2057
0.2056
0.2052
0.2760
0.2799
0.2793
0.2797
0.2828
0.2850
0.2780
0.2773
0.2806
0.4115
0.6793
0.8310
0.9055
1.2620
2.6906
1.3500
0.3834
2.1363
2.2449
0.4600
2.3005
2.3632
4.0407

1.2 GHz @ 0.9V

Energy per Throughput per

Megapixel Area

Enc. (mJ/MP) (MP/(s*mm~2))

171.4515 2.4466
35.0325 12.3876
34.9120 12.3876
33.2752 11.1490
32.2401 11.5032
32.1680 11.5032
14.4838 17.1843
15.2475 15.7628
15.2226 13.2357
15.2870 13.1978
15.4776 14.9793
15.4815 13.2797
15.1032 11.8570
15.0610 13.2798
15.2411 15.0907
10.7622 13.2615
9.0528 12.7669
9.4983 7.3725
10.6066 3.5804
8.2565 10.4815
8.8443 8.1765
8.8305 6.9098
11.0735 22.3027
7.7989 16.1442
7.6275 17.3453
6.4429 41.5333
6.0327 19.4272
4.2411 35.6353
4.4989 29.6655

71

Energy-Delay
Product
(mJ*s/(MP~2))
140.4192
5.6668
5.6473
5.3825
5.0545
5.0432
0.7600
0.8307
0.8297
0.8356
0.8470
0.8410
0.8204
0.8181
0.8279
0.2815
0.1206
0.1086
0.1242
0.0540
0.0291
0.0578
0.3198
0.0285
0.0259
0.0902
0.0158
0.0076
0.0050

Version
Number

© 00 N o O~ W NP

NN NMNRNNNMNNMRNNNMNERERREPRRRERERRER R R
© 0O N R WNELRO®OODLWMNO®U D WN PR O

Quality = 1

Area
(mm~*2)

0.4991
0.4991
0.4991
0.5545
0.5545
0.5545
1.1090
1.1645
1.3863
1.3863
1.2199
1.3863
1.5526
1.3863
1.2199
2.8834
5.8777
11.8663
23.8435
14.5834
37.2070
22.1246
1.5526
16.9677
16.9677
1.7190
19.6293
15.6369
30.2757

Average
Throughput
(MP/s)
1.8111
9.1700
9.1700
9.1701
9.4615
9.4615
28.2684
27.2265
27.2162
27.1383
27.1053
27.3067
27.3070
27.3069
27.3069
56.7200
111.3092
129.7683
126.6326
226.7349
451.2622
226.7654
51.3637
406.3283
436.5607
105.9006
565.6567
826.5511
1,332.2469

Table 5.10: Data for 1.78 GHz @ 1.1V using quality factor 1

Average
Power (W)

0.4798
0.4963
0.4946
0.4714
0.4713
0.4702
0.6326
0.6414
0.6401
0.6410
0.6482
0.6531
0.6372
0.6354
0.6430
0.9431
1.5568
1.9043
2.0751
2.8923
6.1662
3.0938
0.8787
4.8959
5.1446
1.0541
5.2722
5.4159
9.2601

1.78 GHz @ 1.1V

Energy per
Megapixel
Enc. (mJ/MP)
264.8889
54.1245
53.9383
51.4095
49.8103
49.6989
22.3772
23.5571
23.5186
23.6181
23.9126
23.9186
23.3342
23.2689
23.5471
16.6274
13.9864
14.6747
16.3870
12.7561
13.6642
13.6430
17.1083
12.0491
11.7843
9.9541
9.3205
6.5524
6.9507

72

Throughput per
Area
(MP/(s*mm~2))
3.6292
18.3750
18.3750
16.5377
17.0631
17.0631
25.4900
23.3814
19.6330
19.5768
22.2193
19.6983
17.5879
19.6984
22.3845
19.6712
18.9375
10.9359
5.3110
15.5475
12.1284
10.2495
33.0824
23.9472
25.7289
61.6077
28.8170
52.8590
44.0038

Energy-Delay
Product
(mJ*s/(MP~2))
146.2549
5.9023
5.8820
5.6062
5.2645
5.2527
0.7916
0.8652
0.8641
0.8703
0.8822
0.8759
0.8545
0.8521
0.8623
0.2931
0.1257
0.1131
0.1294
0.0563
0.0303
0.0602
0.3331
0.0297
0.0270
0.0940
0.0165
0.0079
0.0052

Chapter 6

Comparisons to Other Notable JPEG Encoders

6.1 Overview

Performance metrics reported in Chapter 5, throughput per area, energy, and energy-
delay product, are compared to competitive industry designs in this chapter. These metrics

represent low-power and high-throughput implementations.

6.2 Comparison of JPEG Encoder KiloCore Implementations with
Competing Designs

6.2.1 Overview

To represent all platforms on a level playing field, all designs have been scaled to 32nm.
If data is ambiguous for a given design, the narrowest range deducible is provided to keep the
design in the comparisons. In addition, predictive polynomial models can scale CMOS device
performance accurately between voltages and technology. The following two equations (6.1 and
6.2) are required to scale both delay (used in throughput) and energy [9]:
DelayFactor = ag3V3 + ag,V:+ agV + ag (6.1)
EnergyFactor = ag,V?+ a,V + ae (6.2)
Equations 6.1 and 6.2 are used with the following equations to scale Delay and Energy

[9]:

DelayFactor,

Delay, = * Delay, (6.3)

DelayFactor,

73

EnergyFactor, (6.4)
* Energy,

E =
ner9Yx = ner gyFactor,

The following table (6.1) and equation (6.5) are provided for area scaling calculations

[9]:

Technology Scale Factor
Node
32 nm 1
45 nm 0.46
20 nm 2.2
14 nm 2.7
7 nm 7.8

Table 6.1: Area scaling factors

Area, = AreaFactor, x Area, (6.5)

After reviewing the results of Chapter 5, Versions 26 and 29 of the JPEG encoders stood
out as stronger contenders than the rest of the implementations. Version 26 lacks high throughput
but has great throughput per area, and Version 29 has the most competitive throughput and
energy metrics. Alongside KiloCore implementations are four competing designs. First, Texas
Instruments provides a low-power JPEG encoder implemented on the C66x digital signal
processor [10,11]. Second, VISENGI offers an FPGA JPEG implementation profiled on the
Xilinx Zynqg 7020 FPGA [12,13]. Third, libjpeg-turbo (v2.1.5.1) is considered the standard
implementation on x86-based platforms and is profiled on an Intel i9 9900 [8,14]. The Intel i9
9900 was not chosen for any particular reason. Finally, Nvidia’s nvJPEG library is profiled on
the A100 architecture with an Intel Xeon Platinum 8168 [15,16,7,18]. The A100 GPU and Intel
Xeon Platinum were chosen as Nvidia uses them in their promotional material for nvJPEG. The
GPU computes DCT-II, quantization, and run-length and Huffman encoding, while the CPU
handles difference encoding and concatenating the bit streams. The following table includes all

found metrics and ranges:

74

Clock Energy per

Technology Area Throughput ~ Megapixel

Vendor Architecture Frequency

Node (nm) (mm"2) (MP/s) Enc.
(GHz) (UIIMP)
TI Embedded C 40 6.48 1.25 66.66 20,252
VISENGI FPGA 28 16261 0.200 533 375
libjpeg- CPU 14 175780 5.00 152.790 98,170
turbol.5
o 826 - 73,600 —
Nvidia GPU+CPU 7+14 5120 1.41 5438 111,300
KiloCore
29 0.9V CPU 32 30.276 1.20 370.232 5,705
KiloCore
12911V CPU 32 30.276 1.78 549.177 8,814
KiloCore
V26 0.9V crl 32 1.719 1.20 56.387 7477
KiloCore
2611V CPU 32 1.719 1.78 83.640 11,552

Table 6.2: Unscaled comparison data for various JPEG encoder implementations

TI’s implementation assumes one DSP core is used and operating at average power
consumption [10]. Nvidia’s implementation has a scale for area and energy per pixel, as it is
unclear how much the CPU assists during the JPEG encoding process. The lower bound
demonstrates just the GPU, whereas the upper bound demonstrates the GPU with 80% of the
CPU. VISENGI does not have public performance information, but after reaching out, they
agreed to provide the information listed in Table 6.2; they warn that power and energy
information can vary between which FPGA is chosen for their IP core. There is no public data
for the size of a register slice or a LUT slice for the Xilinx FPGA, so an unweighted average was
taken of the memory, registers slices, and LUT slices used to make a crude approximation of
area utilized (5.63%). Since only one of eight cores is used in the libjpeg-turbo implementation,
area and energy metrics have been scaled down by 8x. All performance data represents 4:4:4
subsampling and a 10:1 image compression factor (quality factor 0.1). Unfortunately, Nvidia did
not post what compression factor or quality they used to achieve the represented numbers. They

could have used a lower quality to drive a higher throughput.

75

Delay and energy factors were calculated for each unigue technology node using

Equations 6.1 and 6.2 and are tabulated below:

Technology
Node
32 nm HP
@ 0.9v
45 nm HP
@ 1.0V
20 nm HP
@ 1.0V
14 nm HP
@ 1.0V
7nmHP @
1.0V

Delay Coefficients
ad3 ad2 adl ado
-1047 2982 -2797 8735
-501.6 1567 -1619 566.1
0 34.63 -66.37 41.15
-40.66 109.2 -100.6 35.92
-28.58 76.6 -70.26 24.69

Delay
Factor

8.357
12.5
9.41
3.86

2.45

Table 6.3: Delay factor calculations using Equation 6.1

Technology
Node
32 nm HP
@ 0.9V
45 nm HP
@ 1.0V
20 nm HP
@ 1.0V
14 nm HP
@ 1.0V
7 nmHP @
1.0v

Energy Coefficients
ae2 ael ae0
0.8367 -0.4341 0.1701
1.018 -0.3107 0.1539
0.373 -0.1582 0.04104
0.2363 -0.09675 0.02239
0.1776 -0.09097 0.02447

Energy
Factor

0.457
0.861
0.256
0.162

0.111

Table 6.4: Energy factor calculations using Equation 6.2

Table 6.2 represents scaled performance metrics to 32 nm HP, using Tables 6.1,6.3, and

6.4 along with Equations 6.3 through 6.5.

76

Clock Energy per Throughput

Quality Throughput Megapixel per Area Energy-Delay

Scaled Area

*
Vendor (mMmA2) Fr(eg‘;fzr;cy Factor (MPIs) Enc. (MP/ Prlo(dl\‘jl‘gA(zu)‘; s
(uJ/MP) (s*mm"2))
1.25- 66.66 - 10,749 — 10.287 —
Tl - 1.870 oL 99.71 38,155 33.460 Al = e
16.261 - 0.200 - 16.772 -

VISENGI | 0205 01 533-600 375-670 29778 0.704—1.117
libjpeg- 474.61 230 0.1 70.57 277,036 0.149 3,926
turbol.5

o 6442.8 - 302,842 — 0.088 -
Nvidia 18035 6 0.41 N/A 1594.25 408,265 0247 190 - 257

KiloCore
2900y | 30276 1.20 0.1 370.23 5,705 12.228 15
KiloCore
oo1qy | 30276 1.78 01 549.18 8,814 18.139 16
KiloCore
Prpey 1.719 1.20 0.1 56.39 7.477 32.804 138
KiloCore
OB L1y 1.719 1.78 01 83.64 11,552 48.656 138

Table 6.5: Scaled comparison data for various JPEG encoder implementations

6.2.2 Area Analysis

KiloCore Version 26 has the lowest area by at least 1.73 times (Table 6.5). KiloCore can
run multiple programs simultaneously; thus, a lower-area version of the JPEG encoding
algorithm can prove helpful in specific applications. Besides TI’s DSP and VISENGI’s FPGA
design, most designs are multiple magnitudes larger than both KiloCore versions showcased.

KiloCore implementations have higher yields due to smaller area; therefore, KiloCore
designs are more cost-effective solutions. Due to KiloCore’s smaller silicon footprint, SOC

designers will find it easier to add KiloCore as an integrated IP component on their SOC.
6.2.3 Throughput Analysis

Table 6.5 shows Nvidia has the greatest throughput of every implementation, with 1.594
GP/s. However, Nvidia did not provide compression ratio information, and a lower quality ratio
was likely used to highlight the speed of using the A100 (as higher qualities would stress the
CPU since it handles the end of the Huffman encoding algorithm). If that is the case, it should be

compared to Version 29 (1.78 GHz @ 1.1V) using quality factor 1. In this case, Version 29 has

77

1.332 GP/s throughput, much closer to Nvidia’s implementation. VISENGI has the same
throughput as Version 29 (1.78 GHz @ 1.1V). Still, due to scaling information being unavailable
for the 20nm technology node, it is impossible to know what design has a higher throughput.
KiloCore Version 29’s throughput makes it a more competitive option in situations that
demand large amounts of photos to be processed at once, such as data centers. Computers used
for video or photo editing will also benefit from KiloCore Version 29’s throughput as encoding

times will be reduced over standard general-purpose CPUs like the compared i9 9900.

6.2.4 Energy per Megapixel Encoded Analysis

VISENGI’s implementation has the lowest energy per megapixel encoded; at most, it is
670 (uJ)/MP. Although KiloCore (1.2 GHz @ 0.9V) is at least 8.5x less energy efficient than
VISENGI’s implementation, it handily beats the DSP, x86, and GPU implementations by 1.88x
(at least), 48x, and 53x (at least) respectively.

FPGA'’s have lower power consumption than general-purpose processors; therefore, it
VISENGTI’s performance metrics really serve as a best-case scenario for power consumption as it
would be rare for a general-purpose processor to match the power consumption of application
specific hardware. KiloCore JPEG encoders’ low energy consumption relative to the other
general-purpose processors makes it a more compelling option in data center environments
where the system would be running consistently. In these data centers, saving money on power

usage is essential.

6.2.5 Throughput per Area Analysis

KiloCore Version 26 (1.78 GHz @ 1.1V) has the highest throughput per area of all the
designs profiled. It beats the runner-up (VISENGI’s FPGA implementation) by at least 1.45x and

the other designs by at least 100x.

78

KiloCore Version 26 and KiloCore Version 29 throughput per area makes a compelling
case for SOC designs to include KiloCore as a digital signal processor on their designs. SOC’s
have limited area to incorporate a variety of processors, but a design that achieves higher
throughput per area is a more compelling candidate to include over a design that costs too much

area to justify its improved throughput.
6.2.6 Energy-Delay Product Analysis

VISENGI boasts an impressive energy delay products at approximately 1 (uJ*s)/(MP2),
and KiloCore Version 29 (1.78 GHz @ 0.9V) lags by a factor of 15x. KiloCore Version 29 (1.78
GHz @ 0.9V) does beat Nvidia’s design by 12.66x and Intel’s design by 261.73x.

Energy-delay product highlights the design that can simultaneously save the most energy
while having the highest throughput. KiloCore Version 29’s performance in this category is a
testimony to its ability to achieve the lowest energy per megapixel encoded of all general-
purpose designs and the second highest throughput. Nvidia’s solution does have higher
throughput but uses significantly more energy per megapixel encoded than KiloCore Version 29
to achieve this. Data centers looking to balance the price of operating a data center solution and

throughput of said solution will find KiloCore is a stronger competitor than Nvidia’s solution.

79

6.2.6 Energy Per Megapixel Encoded vs. Area per Throughput Analysis

Energy Per Megapixel vs. Area per Throughput

1000000
— S
a:
S 100000 oTi
— ® VISENGI
e @
_ 10000 L > libjpeg-turbo1.5
Q . ® Nvidia
a ® KiloCore v29 0.9V
© 1000
(Y4 ® KiloCore v29 1.1V
Q
E @ KiloCore v26 0.9V
100
; ® KiloCore v26 1.1V
Qo
=
) 10
C
Ll
1
0.01 0.1 1 10

Area/Throughput (s*mm”2/MP)

Figure 6.1: Energy per megapixel encoded versus area per throughput analysis, KiloCore
implementations and competing vendors (QF = 0.1, all processes scaled to 32nm)

Figure 6.1 shows which designs balance low power usage, high throughput, and low area
usage. The data was graphed on a logarithmic scale to allow all vendors to fit on the same graph,
and it is more desirable for a design to be closer to the origin. Nvidia’s implementation has a line
to emphasize that the compression ratio of their metrics is unknown. KiloCore implementations
have higher Energy per megapixel encoded than VISENGI’s implementation (as discussed in
6.2.4) and KiloCore Version 26 beats every vendor in Area per Throughput, while Version 29
lags behind VISENGI’s implementation (as discussed in 6.2.5).

Figure 6.1 shows the KiloCore designs are orders of magnitudes ahead of most industry
general-purpose competition, only challenged by an FPGA implementation (VISENGI).

Comparing general-purpose algorithms with application specific hardware is generally not done

80

as application specific hardware has inherent advantages in energy consumption; however,
KiloCore implementations sit between general-purpose and application specific designs in
energy consumption, making a compelling argument for their usage. It is more economical to
invest in general-purpose hardware over application specific hardware on an SOC, but this
usually comes at the cost of energy or performance. KiloCore JPEG implementations do reflect
this energy cost, but significantly less than other industry competitors making it the most

compelling option amount general-purpose hardware.
6.3 Conclusion

KiloCore designs were able to beat out all competition in area and throughput per area.
KiloCore designs lagged behind VISENGI’s FPGA implementation in energy per megapixel
encoded and energy-delay product. KiloCore features inefficient FF memories in its design that
could be the reason the FPGA implementation was much more energy efficient. Also, the FPGA
implementation is written in a hardware description language, whereas KiloCore’s JPEG
encoders were written in C++. Hardware description languages require more specificity that
could contribute to more efficiency in their design. Finally, KiloCore’s 2.29 GHz feature was
never implemented and used in the KiloCore JPEG encoders due to the simulation lacking
support. With this simulation improvement (and likely a few code changes), the gap between the
two designs may have been much closer.

Furthermore, KiloCore designs fail to surpass Nvidia’s nvJPEG implementation in
throughput, only reaching .34x the scaled performance. However, Nvidia is the only vendor that
did not publish their compression ratio, and it could be that Nvidia’s nvJPEG numbers are for a
larger compression ratio (larger quality factor), in which case KiloCore designs may be much

closer to nvJPEG’s throughput. KiloCore JPEG encoders’ ability to boast competitive

81

performance numbers while beating every general-purpose implementation in energy usage

makes it a desirable alternative to other implementations.

82

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis demonstrates the flexibility of the KiloCore platform by providing 29 working
implementations of JPEG encoders. Of these implementations, there is the flexibility to allow for
different input data types, core counts, and energy efficiencies.

Chapter 1 explains why the JPEG encoding algorithm suits the KiloCore platform.
Chapter 2 discusses the JPEG encoding algorithm step-by-step, summarizing the JPEG standard.
Chapter 3 gives background on the KiloCore platform, and the relevant architectural features
used in JPEG encoding. Chapter 4 introduces 29 Versions of JPEG Encoders on the KiloCore
platform. Chapter 5 details the simulation results of all 29 Versions, comparing each one to the
other. Finally, Chapter 6 compares the most competitive versions with competitive industry

JPEG encoders to determine how KiloCore implementations fair against various architectures.

7.2 Future Work

7.2.1 C++ and Assembly Discrepancies

Currently, C++ code written for KiloCore is passed through a Clang frontend and a
custom KiloCore compiler backend to generate KiloCore assembly. Due to this, multiple
architectural features are not adequately taken advantage of in the demonstrated
implementations. For example, sophisticated looping with no overhead, address generation, and

proper memory management is a hit or miss as the compiler mainly verifies preliminary work.

83

Furthermore, future designers should write the most competitive KiloCore algorithms in
assembly to get even more performance out of the designs.

Unfortunately, the compiler also struggles to minimize the number of instructions per
core. KiloCore is limited to 128 instructions per core, and the compiler rarely compiles C++ to
abide by this rule, even with the C++ code being perfectly capable of it. For example, the
quantization cores are similar; they multiply element by element with 64 incoming elements with
a set quantization table in data memory. However, Quantization_Y does an additional check on
only the first value to see if there is an end-of-image flag before looping 63 times to handle the
rest of the values, whereas Quantization_CbCr directly loops 64 times. This additional check,
which is no more than four lines, leads to Quantization_Y having 36 instructions and
Quantization_CbCr having 107 instructions. It may make sense if Quantization_Y has more
instructions as it does an additional check, but the compiler having almost 3x as many
instructions for the simpler code is far from optimal. Furthermore, Quantization_CbCr does not
leverage the RPT() instruction that allows for zero overhead looping and instead unrolls the loop
partially.

In Version 26 and after, there was an explicit effort to unroll and inline every function
possible to increase performance, leading to an increase of about 2x. Consequently, inlining
functions affects the instruction count, increasing it by nearly 4x in some cases. While this means
that many of the compiled assembly functions cannot be realized in KiloCore, this was a tradeoff
necessary to understand better what the KiloCore platform could do without writing the
assembly directly. However, writing assembly and properly managing instruction count and

memory is the next step for this project.

84

7.2.2 Additional JPEG Encoding Features

Various JPEG encoding features have yet to be implemented on KiloCore, including
color subsampling, progressive JPEGs, RGB-only JPEGs, 12-bit color depth JPEGs, and
arithmetic encoding. Additionally, KiloCore could implement on-the-fly quality changes.
Currently, quantization tables load in compile time, but KiloCore could recalculate them after
detecting the already present end-of-image tag. Combined with an additional signal specifying a

quality value, this could make for a very efficient encoding design on various quality levels.

7.2.3 Future KiloCore Improvements

Although KiloCore has a clever 256 x 16-bit memory algorithm, it is sometimes very
limiting. It makes it challenging to code Huffman encoding, where a Huffman table is around
160 words. Consequently, it is difficult to fit all the words in the same memory, leading to the
need to break up the Huffman table into 16 chunks. If the 256-word memory were truly
contiguous, the Huffman encoding would be far more straightforward. Furthermore, the
quantization cores could be one core, as there would be plenty of room to fit both quantization
tables (64 words each) and intermediates needed in calculations without the compiler throwing
an error. Fitting both quantization tables would be possible if a future designer writes an
assembly version of the encoders.

Longer FIFOs would help clear up input buffer cores, explicitly reducing the reserve
space in the FIFOs to allow 32 words to be written without further delay as the FIFO becomes
full. Juggling 24 words to each input FIFO and back creates additional instructions and input
buffer cores. Although the original work that introduced KiloCore argues that 32 entries are
enough (with eight being in the reserve space), it is relatively myopic to believe that there would

not be algorithms that would struggle with the limited space. Especially, JPEG can use FIFOs

85

that can accommodate 64 words, allowing no input buffers and an entire block to fit in the FIFO
without stalling the other pipelines (without buffers). Admittedly, the flexibility of KiloCore in
allowing buffers to be programmed and added is arguably a sound solution, but not entirely
ideal.

The C++ compiler needs additional work to realize its full potential. Not only does it fail
to take advantage of crucial KiloCore features, but it also fails to relay critical error and warning
information and instead opts for vague error messages. Although out of the scope of JPEG
encoding, it would be advantageous to all future KiloCore development if the C++ compiler was
built from the ground up in a low-level language, possibly skipping Clang entirely. The C++
compiler also lacks algorithmically, containing O(n?) algorithms that create painfully long
loading times.

KiloCore has limited bit streaming functionality, making combining variable bit streams
especially slow. Adding instructions that allow for managing variable length bitstreams would
help with most popular encoding algorithms, as variable length encoding is a powerful data
compression tool.

There is no simulation support for the 2.29 GHz operation mode on KiloCore. This speed
is only possible when replaced with two-cycle instructions (like multiplies and a specific
branching condition). The entropy, compressor, and organizer cores would likely benefit from
this functionality as they do not have any multiplies. In addition, improvements in the serial-

operation cores would help bring the low-quality factor values closer to the high-quality ones.
7.2.4 JPEG Decoding

JPEG decoding is the next logical step after JPEG encoding on KiloCore. Most of the

JPEG decoding algorithm is a relatively simple change from JPEG encoding (DCT, quantization,

86

and run-length encoding); however, reading from a bit stream bit-by-bit and Huffman decoding
is a non-trivial task. Furthermore, decoding has additional features that mimic the encoding

features discussed in section 7.2.2.

87

Bibliography

[1]

[2]
[3]
[4]

[5]

[6]
[7]
[8]
[9]

[10]

[11]

[12]

[13]

Wa3C. "ITU-T Recommendation T.81: Digital Compression and Coding of Continuous-
Tone Still Images — Requirements and Guidelines." Available online:
https://www.w3.org/Graphics/JPEG/itu-t81.pdf.

W3C. "JPEG File Interchange Format Version 1.02." Available online:
https://www.w3.org/Graphics/JPEG/jfif3.pdf.

MathWorks. "Discrete Cosine Transform (DCT)." Available online:
https://www.mathworks.com/help/images/discrete-cosine-transform.html.

Huang, Y., Yang, S., & Tsali, P. "The Fast Computation of DCT in JPEG Algorithm." In
Proceedings of the European Signal Processing Conference (EUSIPCO), Vol. 2, pp.
1293-1296, 1998. Available online:
https://www.eurasip.org/Proceedings/Eusipco/Eusipco1998/sessions/T%20M/TM%20P-
7/149/paper568.pdf.

Bohnenstiehl, B. "Design and Programming of KiloCore Processor Arrays." Ph.D.
Dissertation, University of California, Davis, 2020. Available online:
http://vcl.ece.ucdavis.edu/pubs/theses/2020-
1.bbohnenstiehl/Brent_Dissertation_Final.pdf.

"Pillow Documentation: Image File Formats." Available online:
https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html.

Baas, B. "Rounding Techniques." University of California, Davis. Available online:
https://www.ece.ucdavis.edu/~bbaas/281/notes/Handout.rounding.pdf.

"About libjpeg-turbo: Performance.” Available online: https://libjpeg-
turbo.org/About/Performance.

Stillmaker, A., & Baas, B. "Scaling Equations for the Accurate Prediction of CMOS
Device Performance from 180 nm to 7 nm." Available online:
http://vcl.ece.ucdavis.edu/pubs/2017.02.VLSlintegration. TechScale/\VVLSI-Scaling-
Stillmaker.pdf.

R. Damodaran et al., "A 1.25GHz 0.8W C66x DSP Core in 40nm CMQOS," 2012 25th
International Conference on VVLSI Design, Hyderabad, India, 2012, pp. 286-291, doi:
10.1109/VLSID.2012.85.

Texas Instruments. "JPEG Encoder C6678 Datasheet.” Available online: https://software-
dl.ti.com/dsps/dsps_public_sw/codecs/C6678/JPEG_E/latest/exports/JPEG_BL_Encoder
_C6678_Datasheet.pdf.

Visengi. "JPEG Extended Encoder.” Available online:
https://www.visengi.com/products/jpeg_extended_encoder.

Xilinx. "Zyng-7000 Product Selection Guide.” Available online:
https://docs.xilinx.com/v/u/en-US/zyng-7000-product-selection-guide.

88

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Intel. "Intel Core 19-9900 Processor.” Available online:
https://www.intel.com/content/www/us/en/products/sku/191789/intel-core-i199900-
processor-16m-cache-up-to-5-00-ghz/specifications.html.

NVIDIA. "Leveraging the Hardware JPEG Decoder and nvJPEG on A100." Available
online: https://developer.nvidia.com/blog/leveraging-hardware-jpeg-decoder-and-nvjpeg-
on-al100/.

NVIDIA. "NVIDIA A100 Data Sheet." Available online:
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-
datasheet-us-nvidia-1758950-r4-web.pdf.

NVIDIA. "NVIDIA Ampere Architecture Whitepaper." Available online:
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-
architecture-whitepaper.pdf.

Intel. "Intel Xeon Platinum 8168 Processor.” Available online:
https://www.intel.com/content/www/us/en/products/sku/120504/intel-xeon-platinum-
8168-processor-33m-cache-2-70-ghz/specifications.html.

A. Stillmaker, B. Bohnenstiehl, and B. Baas, "The Design of the KiloCore Chip," in
ACM/IEEE Design Automation Conference (DAC), Austin, TX, June 2017.

B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran, E. Adeaghbo,
and B. Baas, "KiloCore: A 32 nm 1000-Processor Computational Array," IEEE Journal
of Solid-State Circuits (JSSC), vol. 52, no. 4, pp. 891-902, April 2017,

B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran, E. Adeagbo,
and B. Baas, "KiloCore: A Fine-Grained 1000 Processor Array for Task Parallel
Applications," IEEE Micro, vol. 37, no. 2, pp. 63-69, March-April 2017.

B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran, E. Adeagbo,
and B. Baas, "KiloCore: A 32 nm 1000-Processor Array," in Proceedings of the IEEE
HotChips Symposium on High-Performance Chips (HotChips 2016), Cupertino, CA,
August 2016.

B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran, E. Adeagbo,
and B. Baas, "A 5.8 pJ/Op 115 Billion Ops/sec, to 1.78 Trillion Ops/sec 32 nm 1000-
Processor Array," in Symposium on VLSI Circuits, Honolulu, HI, June 2016.

Z. Xiao and B. Baas, "A High-Performance Parallel CAVLC Encoder on a Fine-Grained
Many-Core System,” 2008 IEEE International Conference on Computer Design, Lake
Tahoe, CA, USA, 2008, pp. 248-254, doi: 10.1109/ICCD.2008.4751869.

Z. Xiao, S. Le and B. Baas, "A Fine-Grained Parallel Implementation of a H.264/AVC
Encoder on a 167-processor Computational Platform," 2011 Conference Record of the
Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR),
Pacific Grove, CA, USA, 2011, pp. 2067-2071, doi: 10.1109/ACSSC.2011.6190391.

Z. Xiao and B. M. Baas, "A 1080p H.264/AVC Baseline Residual Encoder for a Fine-
Grained Many-Core System," in IEEE Transactions on Circuits and Systems for Video
Technology, vol. 21, no. 7, pp. 890-902, July 2011, doi: 10.1109/TCSVT.2011.2133290.

89

[27]

[28]

B. M. Baas, "A Parallel Programmable Energy-Efficient Architecture for
Computationally-Intensive DSP Systems,"” The Thrity-Seventh Asilomar Conference on
Signals, Systems & Computers, 2003, Pacific Grove, CA, USA, 2003, pp. 2185-2189
Vol.2, doi: 10.1109/ACSSC.2003.1292368.

A. Stillmaker, Z. Xiao, and B. M. Baas, "Toward More Accurate Scaling Estimates of
CMOS Circuits from 180 nm to 22 nm," Technical Report ECE-VCL-2011-4 VLSI
Computation Lab, ECE Department, University of California, Davis, Dec. 2011.

90

