
UC Berkeley
UC Berkeley Previously Published Works

Title
Symbolic metaprogram search improves learning efficiency and explains rule learning
in humans.

Permalink
https://escholarship.org/uc/item/2k47v3bw

Journal
Nature Communications, 15(1)

Authors
Rule, Joshua
Piantadosi, Steven
Cropper, Andrew
et al.

Publication Date
2024-08-10

DOI
10.1038/s41467-024-50966-x

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2k47v3bw
https://escholarship.org/uc/item/2k47v3bw#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Article https://doi.org/10.1038/s41467-024-50966-x

Symbolic metaprogram search improves
learning efficiency and explains rule learning
in humans

Joshua S. Rule 1 , Steven T. Piantadosi 1, Andrew Cropper2, Kevin Ellis 3,
Maxwell Nye4 & Joshua B. Tenenbaum 5

Throughout their lives, humans seem to learn a variety of rules for things like
applying category labels, following procedures, and explaining causal rela-
tionships. These rules are often algorithmically rich but are nonetheless
acquired with minimal data and computation. Symbolic models based on
program learning successfully explain rule-learning in many domains, but
performance degrades quickly as program complexity increases. It remains
unclear how to scale symbolic rule-learning methods to model human per-
formance in challenging domains. Here we show that symbolic search over the
space of metaprograms—programs that revise programs—dramatically
improves learning efficiency. On a behavioral benchmark of 100 algor-
ithmically rich rules, this approach fits human learning more accurately than
alternative models while also using orders of magnitude less search. The
computation required tomatchmedianhumanperformance is consistentwith
conservative estimates of human thinking time. Our results suggest that
metaprogram-like representations may help human learners to efficiently
acquire rules.

Humans acquire a wide variety of concepts throughout their lives, many
of which are well-described as rules, i.e. symbolic expressions in a kind
of mental language or language of thought1. Category learning, for
example, can be described as learning a rule which accepts or rejects
potential category members based on their individual features2–5. Simi-
larly, procedure learning can be described as acquiring a rule for which
behaviors to sequence together in what order6–8. Theory learning can
also be described as acquiring a network of rules explaining the rela-
tionships between various causes and effects9–11. The exact scope of
human rule-learning is unclear: even if they can describe a wide variety
of concepts12,13, theories of rule-learning face a number of challenges14–16.
Moreover, exactly how many concepts are actually represented using
rules is an often difficult empirical question, as seen, e.g., in debates over
how humans process past-tense constructions in English17,18. Even so,
rules are a significant part of humans’ cognitive landscape.

Moreover, many of the rules people learn are algorithmically rich.
They go beyond associative pairings or even simple logical or arith-
metic formulae to encode a series of stepswith a variety of algorithmic
content19. For example, the rules children learn for basic arithmetic
require pattern matching, conditional reasoning, iteration, recursion,
maintaining state, and caching partial results. Beyond logic and
mathematics, these sorts of complex rules appear in domains as varied
as game playing, social reasoning, food preparation, and natural lan-
guage understanding.

Theories of how people acquire algorithmically rich rules must not
only explain task performance but must also capture other hallmarks of
human learning.While there aremany, we focus here on three. First, the
representations should be interpretable in ways that support the kinds
of composition, explanation, sharing, and reuse we see in humans1,20–23.
Second, learning should also be possible from sparse data on the scale

Received: 25 January 2024

Accepted: 23 July 2024

Check for updates

1Psychology, University of California, Berkeley, Berkeley, CA 94704, USA. 2Computer Science, University of Oxford, Oxford, UK. 3Computer Science, Cornell
University, Ithaca, NY 14850, USA. 4Adept AI Labs, San Francisco, CA 94110, USA. 5Brain and Cognitive Sciences, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA. e-mail: rule@berkeley.edu

Nature Communications | (2024) 15:6847 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-3376-9337
http://orcid.org/0000-0003-3376-9337
http://orcid.org/0000-0003-3376-9337
http://orcid.org/0000-0003-3376-9337
http://orcid.org/0000-0003-3376-9337
http://orcid.org/0000-0001-5499-4168
http://orcid.org/0000-0001-5499-4168
http://orcid.org/0000-0001-5499-4168
http://orcid.org/0000-0001-5499-4168
http://orcid.org/0000-0001-5499-4168
http://orcid.org/0000-0001-6586-0632
http://orcid.org/0000-0001-6586-0632
http://orcid.org/0000-0001-6586-0632
http://orcid.org/0000-0001-6586-0632
http://orcid.org/0000-0001-6586-0632
http://orcid.org/0000-0002-1925-2035
http://orcid.org/0000-0002-1925-2035
http://orcid.org/0000-0002-1925-2035
http://orcid.org/0000-0002-1925-2035
http://orcid.org/0000-0002-1925-2035
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50966-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50966-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50966-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50966-x&domain=pdf
mailto:rule@berkeley.edu

that people realistically encounter24,25. Third, learning should require
only moderate amounts of computation and search, consistent with
human limits on thinking time and cognitive resources25,26.

One theory of rule-learning treats the language of thought as a
sort of mental programming language, such that learning proceeds by
constructing program-like representations. For example, the concept
LIFT could be a simple program combining primitives for CAUSE, GO,
and UP to mean, roughly, “cause to go up”27. This approach makes
human learning analogous12 to program induction28—discovering
programs to explain data. Humans learning new rules, much like
computer programmers writing new programs, fluidly operate over a
broad space of computations and appear to efficiently construct
interpretable structures from sparse data19. Symbolic programs pro-
vide interpretable hypotheses by decomposing complex computa-
tions into discrete and semantically meaningful parts—i.e. simpler
computations—that support modular explanation, reuse, and
sharing29. Program-induction models are also typically data efficient,
learning from relatively few observations. Human learning has been
modeled as program induction in many domains, including structure
discovery30, number acquisition31, rule learning32, physical reasoning33,
memory34, and cultural transmission35. They have even been applied in
domains seemingly resistant to program-based approaches, such as
perceptual learning36–39, language learning40–42, andmotor learning43,44.

Despite successes, program inductionmodels face a fundamental
obstacle: the hard problem of search. The space of possible programs
grows exponentially in both program length and the number of pri-
mitive operators; it is unclear how to narrow the search space to pre-
vent combinatorial explosions45. While continuous weights and
differentiable error functions scale gradient-based search to arbitrarily
complex neural networks46, no effective methods exist for the highly
discontinuous spaces of symbolic programs. The need for effective
search mechanisms is so intense that it has been hypothesized as a
motivating force behind play47 and childhood48, highlighting just how
significant it is that program induction models lack this ability.

To help address this problem, this paper focuses on a hypothesis
about a class of representations which might help people search effi-
ciently over program-like content. More specifically, we hypothesize
that in addition to object-level content, people directly incorporate
sophisticated forms of reasoning into their hypotheses. We predict
that doing so reshapes inductive biases by simplifying relevant
hypotheses49 and making them easier to find.

This hypothesis does not fit cleanly into the classicMarr levels50. It
makes a theoretical claim not about a general computational problem
or specific representation but instead about a class of representations,
i.e. something between a computational and algorithmic-level claim.
While many algorithmic-level details, such as the specific search
algorithm, the particular domain, and even the content of individual
metaprimitives, are significantly less important to our claims, we
assume that algorithmic concept learning does involve a serial search
process that cannot involve too many steps. These are algorithmic-
level constraints on human thinking and we seek an algorithm that is
consistent with them.

We therefore instantiate a version of this hypothesis in a model
calledMPL (MetaProgramLearner), which incorporatesmetaprograms—
programs that revise programs—into its representation language. We
test MPL against humans alongside recent and classic baselines on a
benchmark of 100 program induction problems.

Before describing MPL, we present the task domain and outline
our benchmark. The domain consists of list functions51–54, where lear-
ners encounter datasets pairing input and output lists of numbers. To
see how learning in this domain might resemble program induction,
consider F , a list function where:

½1, 3, 9, 7�!F ½1, 1, 3, 3, 9, 9, 7, 7� ð1Þ

Brief observation leads most people to a strong hypothesis. They
notice that values in the output appear twice consecutively, suggesting
duplication. Each input element also appears in the output in the same
order. Together, these features suggest an iterative process like: repeat
every element two times in order of appearance. This rule seemingly
has no strong competitors, a sense that grows after seeing more
examples:

½1, 3, 9, 7�!F ½1, 1, 3, 3, 9, 9, 7, 7� ð2Þ

½6, 9, 2, 8, 0, 5�!F ½6, 6, 9, 9, 2, 2, 8, 8, 0, 0, 5, 5� ð3Þ

½9, 2�!F ½9, 9, 2, 2� ð4Þ

People see up to eleven examples in our experiments, but nearly all
participants acquire this rule within three examples. Program induc-
tion models might hypothesize that learners represent it with a pro-
gram like:

F = ðλ xs ðif ðempty xsÞxs ½ðhead xsÞ, ðhead xsÞj ðF ðtail xsÞÞ�ÞÞ
ð5Þ

(λ xs ...) uses the λ operator from λ-calculus, which here creates a
function taking a list, xs, as input. (if (empty xs) ...) tests whether
xs is empty. If so,F returns xs; there is nothing toduplicate. Otherwise,
[(head xs), (head xs) ∣ ...] creates a list repeating xs’ first ele-
ment, or head, twice ([x,... ∣ zs] prepends x,... to the list zs).
(F(tail xs)) completes the list by recursively applying F to xs’
remaining items, or tail.

Some list functions are harder to learn. Consider G:

½7, 9, 0, 2, 6, 8, 3, 4, 6�!G ½0, 9, 7, 4, 6, 3� ð6Þ

Some peoplemay notice that the output contains a subset of the input
elements, but there seems to be no obvious pattern. Unlike withF , it is
difficult to form strong hypotheses without more data:

½7, 9, 0, 2, 6, 8, 3, 4, 6�!G ½0, 9, 7, 4, 6, 3� ð7Þ

½1, 7, 8, 2, 5, 6, 1�!G ½8, 7, 1, 4, 5, 1� ð8Þ

½6, 7, 1, 3, 2, 0, 8, 9, 4, 5�!G ½1, 7, 6, 4, 2, 8� ð9Þ

Many people remain puzzled even after studying these examples.
About half of our participants never acquire a rule for G; the others
usually need three to five examples. Those who do acquire it may
notice several unlikely coincidences. First, G does not trivially map
every input to the same output. Second, input length varies but the
output always has six elements. Third, many but not all input elements
appear in the output (perhaps G filters elements using some test or
shuffling operator). Fourth, shared elements differ in order, sofiltering
seems unlikely. Fifth, fixed positions in the input are copied to fixed
positions in the output. Element 1 becomes element 3, 2 stays 2, 3
becomes 1, 5 stays 5, and 7 becomes 6. Finally, output element 4 is
always 4.

Each observation identifies a simple pattern produced by aligning
shared structure in the data. Putting them together leads to the rule:
elements 3, 2, 1, the number 4, then elements 5 and 7. While this rule
explains the data, it seems unusual. We can nevertheless model it as

Article https://doi.org/10.1038/s41467-024-50966-x

Nature Communications | (2024) 15:6847 2

the program:

G= ðλ xs ðswap 31 ðreplace 44 ðcut 6 ðtake 7 xsÞÞÞÞÞ ð10Þ

It againuses λ to create a function binding xs, (λxs...).Working from
the inside out in the remaining expression, (take 7 xs) takes the first
seven elements, (cut 6 ...) removes the sixth, (replace 4 4 ...)
replaces the fourth with a 4, and (swap 3 1 ...) swaps the first and
third. Composing a few simple operations represents an unlikely
concept that can still be learned from sparse data.

Like other classic domains such as numerical functions55–58 and
Boolean functions2,3,5,49,59, list functions might superficially seem
abstract and focused on a narrow corner of human cognition, but they
are well suited to empirical study and modeling of how people learn
rules. Numbers and sequences both have a long andproductive history
in the study of human learning8,37,60–63. List functions are in fact parti-
cularly useful for testing the sorts of program-learning models of
concept learning which have now been deployed to explain rule-
learning in dozens of domains11,12,19,27,30–44. They provide a general and
well-controlled setting where problems vary widely in difficulty and
algorithmic content (the domain is Turing-universal) and canbe tested
easily in humans and machines. Indeed, many bear a strong resem-
blance to everyday tasks such as sifting out junk mail (filtering);
counting the books on a shelf (folding separate items into a composite
result); alphabetizing a list of names (sorting by a criteria); and dec-
orating a tray of cupcakes (mapping a transformation over a collection
of items). Being analogous, however, does notmean that we claim that
the tasks are equivalent. In more naturalistic cases, it seems likely that
context-specific knowledge effects64 aid learning, but our results
(including the replication described in Supplemental Note 8) showthat
in this domain, as inmany others, people can rapidly acquire and apply
rules from sparse data. Human performance on our task in particular is
far above chance and remains interesting in its own right.

We conducted a study of human andmachine concept learning by
constructing a benchmark of 100 list functions that vary widely in

learnability (Fig. 1). The set includesF and G, so the discussion above is
relevant to the entire benchmark. Our primary goals in constructing
this benchmark were to collect functions: demonstrating broad var-
iation in learning difficulty for humans (i.e. not dominated by floor/
ceiling effects);which couldbe describedwith a small set of primitives;
and that are easy enough to learn that the performance of program
induction models would not be dominated by floor/ceiling effects.
Moreover, testing our hypothesis requires problems where we can
compare solutions which do and do not incorporate representations
of structured reasoning. Most benchmark problems thus emphasize
reasoning techniques which MPL can leverage during search. We
compared MPL’s performance on this benchmark to leading alter-
native explanations of human rule-learning.

Building on the idea of learning over program-like representa-
tions, our approach to concept learning draws on three core insights
inspired by the techniques of human programmers19.

First, most program learning models search over programs
composed of object-level primitives, such as head and take in
Eqs. (5) & (10). Assuming search operators are fully parameterized,
programs can also be described using the decisions required to
produce them during search. These decisions describe how to
construct a program, namely by repeating the search process
producing it. While this process is typically implicit in search
algorithms, programmers often consider it explicitly, discussing
transformations and their effects—e.g. swapping iteration for
recursion or extracting repeated code into a shared function—in
addition to actual code.

Second, many search algorithms apply a single generic operator,
e.g. enumerating from a grammar or sampling from a distribution.
Some bias search toward the best hypotheses discovered so far: con-
sider Markov chain Monte Carlo’s accept/reject step65; particle filter-
ing’s resampling66; or genetic programming’s tournaments67. Even so,
learning inefficiently relies on accumulating small, often random, local
changes. By contrast, human programmers can flexibly combine hun-
dreds of structured techniques for revising programs68. Many cater to

0

11

Concept

To
ta

l

Fig. 1 | List functions vary widely in difficulty and algorithmic content. Six list
functions with an English description, human mean accuracy (n = 389 people) in
parentheses, and input → output examples. Plot shows empirical distribution over

accuracy per function (100 functions) for humans (darker =moremass); dots show
mean accuracy with example functions marked in blue.

Article https://doi.org/10.1038/s41467-024-50966-x

Nature Communications | (2024) 15:6847 3

particular problems and specify context-dependent solutions, much
like high-level actions in hierarchical planning69.

Third, many search algorithms begin without regard for available
data, e.g. starting from the lexicographicallyfirst programor a random
sample. Such hypothesis-driven learning generates proposals inde-
pendently of data70. Thesemethods are very general butmust discover
relevant structure by chance rather than by inferring it from data. By
contrast, data-driven learning generalizes input/output pairs directly
into a program using some inference technique, e.g. for detecting
recurrent structure. It minimizes search but requires strong assump-
tions that sharply constrain which programs can be learned fromwhat
data. Human programming techniques supersede both approaches in
many ways: they are often designed to expose latent structure and can
be flexibly composed to apply to nearly any problem. They can thus be
rooted directly in the data whose structure needs to be explained (e.g.
“recursive data can be rewritten like so” or “if data contains repetition
with minor differences, perhaps those differences can be abstrac-
ted away.”).

Given these observations, we hypothesize that people extend
languages of object-level primitives with patterns of structured
transformation called metaprimitives. Some metaprimitives might
simplify repeated structure; others might memorize data for
further analysis or to encode exceptions. On this view, primitives and
metaprimitives can be freely composed into expressions called
metaprograms that combine object-level content and structured
transformation. Metaprimitives operate on structures built of primi-
tives, so ametaprogramcanalways be evaluated to producea program
without metaprimitives. That is, metaprimitives provide an alternative
way of expressing certain programs, shifting the inductive bias so that
they become easier to describe.

While the introduction of new object-level primitives also shifts
the inductive bias49,71, metaprimitives can capture different kinds of
bias from object-level primitives. In particular, object-level primitives
cannot leverage the internal structure of their arguments; they must
treat those arguments as black boxes. By contrast, metaprimitives are
program transformations and so can change their behavior based on
this internal structure. For example, the MPL model includes a meta-
primitive called AntiUnify, whose primary effect is to introduce
variables into programs. There are many ways to do this, and con-
sidering them all would require a long search. AntiUnify, however,
uses the structure of the input program to decide where to introduce
variables without additional search. That is, AntiUnify uses the
structure of its arguments to ignoreportions of the search spacewhich
methods using only object-level primitives would otherwise have to
consider.

Metaprimitives thus take advantage of all three insights above.
First, they make program transformations an explicit part of the lan-
guage instead of leaving them only implicitly available as search
operators. Second, just as languages typically containmany primitives,
they can also containmanymetaprimitives, each expressing adifferent
program manipulation. Third, if some metaprimitives can memorize
data, other metaprimitives can extract information from those data
and learn more efficiently than using primitives alone by introducing
different kinds of inductive bias. By encoding search operators remi-
niscent of data-driven search and embedding them into the language
of a hypothesis-driven learner, metaprimitives perhaps combine the
best of both approaches.

To evaluate these ideas, we implement MPL, a symbolic learner
which extends traditional program induction approaches by incor-
porating metaprimitives. We seek to investigate the usefulness of the
metaprimitive approach rather than to make strong claims about any
specific metaprimitive. The particular metaprimitives implemented
here (Table 1; Supplementary Note 2) thus capture relatively simple
patterns of reasoning inspired by operators in inductive logic
programming72, analytical induction73, automated theorem proving74,

and refactoring techniques in software engineering68. In practice, some
metaprimitives do more work than others but each describes an
operation for reasoning about program structure.

Program-induction-based models of concept learning often use
languages whose primitives (and in this case, metaprimitives) are
closely related to the concepts being studied. This can be seen, for
example, in recent work on learning in the domains of number31,75,
logic49,76, and geometry37,77, among others. The claim is not that these
limited languages constitute a learner’s entire mental repertoire, nor
that the studieddomain is the only one inwhichhumans are capable of
learning. Nor is the claim that the simple existence of computational
primitives (ormetaprimitives) is enough to explain human learning, or
that any existing model is sufficient to explain all of human learning.
They are instead case studies comparing a plausible set of primitives
and learning dynamics against human learners in a particular domain.
We take the same approach in introducing metaprimitives.

Metaprimitives are useful for working with list functions because
they capture patterns of reasoning (e.g. simple forms of structure
mapping, composition, generalization) that are useful for reasoning
about lists specifically or about programs generally, similar to human
code manipulation techniques. Previous learning systems embed
these operators directly into search algorithms and apply them in
stereotypical patterns. Explicit metaprimitives allow MPL significantly
more flexibility than previous models.

Figure 2A–C illustrates MPL using F , described earlier. Given
examples (Fig. 2A), MPL learns a metaprogram (Fig. 2B) combining
primitives—namely the empty program, ε—and metaprimitives.
MemorizeAll adds data directly to a program, making their latent
structure available to other metaprimitives. Recurse hypothesizes
that rules involving certain limited transformations of linearly
recursive structures (e.g. elementwise transformations of lists, unary
numbers, strings) can themselves be recursively decomposed into
simpler rules. Here, it captures people’s observation that each input
element explains two consecutive output elements by aligning and
unrolling input/output lists. This change reveals latent structure but
introduces many new rules. AntiUnify is helpful here. It uses anti-
unification—an important program synthesis technique78,79—to com-
pute a least-general generalization that systematically aligns shared
structure across rules into a single general rule. For example, com-
paring F[1∣[3, 9, 7]] ≈ [1, 1∣(F[3, 9, 7])] and
F[3∣[9, 7]] ≈ [3, 3∣(F[9, 7])] reveals a common structure: the
first element is repeated twice, and the rest of the list is processed
recursively. AntiUnify discovers a corresponding rule, F [x ∣ y] ≈

[x, x ∣ (F y)], by similarly aligning common structure and gen-
eralizing over differences.

Because metaprimitives represent program transformations,
applying a series of metaprimitives produces intermediate results and
then a final program that both explains the data and can be applied to
novel inputs (Fig. 2C). Because MPL can freely mix primitives and
metaprimitives, it can also learn programs directly, e.g. for problems
where available metaprimitives are not applicable.

Figure 2D–F repeat the process for G. While G is complex to
describe in English, its metaprogram is even simpler than F ’s. Lacking
recursive structure, G can be described using structural alignment
alone. After encoding data with MemorizeAll, a call to AntiUnify is
sufficient. The resulting program, however, is more complex than the
one for F . MPL is sensitive to this complexity, which helps to explain
why G is harder to learn than F . While the metaprogram is simple, the
complexity of the resulting program requires observing a sufficient
amount of data.

To balance simplicity and fit, MPL models learning as MAP infer-
ence in a Bayesian posterior over metaprograms. Computing the
posterior exactly is intractable; MPL approximates it using Markov
Chain Monte Carlo (MCMC) over programs42,76 extended to the space
of metaprograms. Monte Carlo methods are notable as rational

Article https://doi.org/10.1038/s41467-024-50966-x

Nature Communications | (2024) 15:6847 4

process models80, addressing computational-level concerns with psy-
chologically plausible methods. This approach might appear to suffer
from the problem that we identified earlier of learning inefficiently via
small, local changes. Searching over metaprograms, however, helps to
address this problem. Because metaprimitives can encode arbitrary
program transformations, even small changes can have large, non-
local impacts on the resulting program.

Results
We compare MPL to a variety of symbolic, neural, and neurosymbolic
models of learning, namely Fleet42, Enumerate71, Metagol81,
RobustFill82, and Codex83 (See Methods for additional motivation and
details on eachmodel). Allmodels except Codex use similar primitives
(Table 1) adapted to their computational paradigms (e.g. lambda cal-
culus, first-order logic, term rewriting); Codex uses the python pro-
gramming language. Only MPL uses metaprimitives to construct
metaprograms, which comprise its central hypothesis. Critically, these
metaprimitives represent structured ways of manipulating the primi-
tives; they change the inductive bias, but not the theoretical expres-
siveness ofMPL. Given enough time, eachmodelwillfind a solution if it
exists. The critical questions are then how quickly solutions can be
found and whether adding metaprimitives to the representation lan-
guage’s compositional basis improves the speed with which high-
quality solutions are found.

This paper evaluates metaprimitives as an explanation of how
humans rapidly acquire complex rules. We therefore focus on the rate
of acquisition, considering a rule acquired on trial n if the learner gives
correct responses on all trials ≥n. In these experiments, participants
complete a trial by observing an input list, typing in and submitting a

predicted output, and then observing the correct output. Because
perfect performance is a strict test of learning, we also examine mean
accuracy. On these measures, human list function learning provides a
challenging target for model learners (Supplementary Note 3). 54% of
functions were acquired by ≥50% of human learners within eight trials.
This value is high given that chance performance on any single trial is
approximately 1 in 1030. 50% of functions were acquired by at least one
person after a single trial, 75% after two trials, and fully 99% within
eight trials.Only 2%were acquiredby all participantswithin eight trials.
Mean human accuracy tells a similar story. Averaging across functions,
it was high (Mean = 0.521, 95% CI [0.479, 0.559]; SD = 0.202, 95% CI
[0.180, 0.221]) relative to chance, and ranged from 0.042 to 0.868 for
individual functions. Supplementary Note 8 reports similar results for
a replication.

Participants’performance is perhapsparticularly impressive given
their relatively low levels of programming experience. Of the 392
participants in our sample, 259 (66%) provided an interpretable free-
response statement of their prior programming experience. Of these,
151 (58%; mean accuracy = 0.49) indicate no prior programming
experience, an additional 27 (10%; mean accuracy = 0.50) indicate
social exposure to programming concepts and perhaps simplewebsite
construction. 43 (17%; mean accuracy = 0.50) report encountering
programming through introductory coursework or by building several
websites. Only 38 (15%, mean accuracy = 0.53) indicate significant
academic or professional exposure to programming (See also Sup-
plementary Note 8).

Figure 3A compares humans to models given a large search
budget. Only MPL (500K) and Fleet (500K)—so named because each
takes 500K search steps per trial—explain human behavior well in this

Table 1 | MPL relies on primitives and metaprimitives

MPL Metaprimitives

Kind Usage Description

(MemorizeAll p) add all data to program p

(Memorize p ψ) add datum ψ to program p

(Recurse p ψ) add recursion ψ to program p

(Delete p ψ) delete rule ψ in program p

(Variable p ψ) add variable ψ to program p

(Compose p ψ) add composition ψ to program p

(Subproblem p ψ) extract problem ψ from program p

(AntiUnify p) unify similar rules in program p

Object-Level Primitives

ε the empty program

(λ x body) bind variable x for use in body

0, 1, 2,…,99 natural numbers

nan number < 0 or > 99

true, false Boolean values

[] empty list

[x ∣ xs] prepend x to xs

(+ x y) add x and y

(- x y) subtract y from x

(> x y) true if x is less than y

(if p a b) a if p is true, else b

(== x y) true if x and y are identical

(is_empty xs) true if xs is empty

(head xs) first element of xs

(tail xs) drop the first element of xs

(fix x f) recursively apply f to x

MPL used metaprimitives for observation (orange circles) and inference (green diamonds); ψ represents a random choice. All models also used object-level primitives (blue squares).

Article https://doi.org/10.1038/s41467-024-50966-x

Nature Communications | (2024) 15:6847 5

setting. Figure 3B comparesmodel and humanmean accuracy for each
function; again, only MPL (500K) and Fleet (500K) capture human-
level performance. By contrast, Enumerate, Metagol, and RobustFill
failed to achieve human-level accuracy, performing at or below
humans’ 25th percentile and deviating significantly from human mean
accuracy. Codex inhabits amiddle ground, acquiring approximately as
many functions as 25th percentile humans and similarly deviating from
human mean accuracy.

Both Fleet and MPL implement MCMC over programs, a form of
stochastic hillclimbingwhich probabilistically accepts new hypotheses—
typically incremental updates to current hypotheses—based on their
score relative to the current hypothesis. They thus encourage rapid
improvement by generally accepting only small, beneficial changes. By
contrast, both Enumerate and Metagol use exhaustive search algo-
rithms. As target programs grow more complex, exponentially many
simpler programsmust be considered.Most functions in our dataset are
simply too complex for them to discover even with tens of millions of
search steps. RobustFill is neither exhaustive nor hillclimbing but gen-
erates independent samples (conditioned on the training data), which is
extremely inefficient for low-probability programs. Codex also

generates conditionally independent samples, but its significantly larger
training set and more sophisticated architecture help it to outperform
RobustFill.

While MPL (500K) and Fleet (500K) both perform well, there are
important differences between them. For example, bothmodels fail to
predict a single trial correctly for a small number of unique functions
(MPL = 12, Fleet = 13). For Fleet, these include a mix of recursive and
non-recursive problems primarily characterized by long description
lengths. For MPL, none deal with non-recursive structural reasoning
(e.g. indexing, swapping, removing elements). Metaprimitives like
Antiunify and Variablize give MPL an advantage over Fleet on
these problems. Instead, all twelve involve recursion. The Recurse
metaprimitive captures a limited form of recursion (see Supplemental
Note 2), and eleven of the twelve use recursive patterns for whichMPL
has no relevant metaprimitive. Without appropriate metaprimitives,
solutions to these problems are difficult to discover. While humans
struggle with some of these problems—using the first two elements of
the input list to specify a sublist of the remaining elements has a mean
human accuracy of just 4.2%—others like computing the maximum
element, computing the sum of the elements, and reversing the

Fig. 2 | Two examples of how MPL uses metaprograms to discover programs.
A The target function (not observed by MPL) and observed input/output pairs.
B MPL searches over metaprograms which compose primitives (blue) and meta-
primitives for observation (orange) and inference (green).A, B is shorthand for (B)
(A). Given data, metaprograms can be reduced to programs of primitives (solid

blue box), often via intermediate programs (dashed blue boxes). F represents the
target function; [x, y,…, z ∣ xs] is shorthand for prepending elements x, y,…, z to list
xs; ψi represents uniformly random selection among multiple options so that
metaprograms reduce deterministically. C Applying the learned program to novel
data. D–F A second example.

Article https://doi.org/10.1038/s41467-024-50966-x

Nature Communications | (2024) 15:6847 6

elements have human mean accuracies well above 50%. More gen-
erally, MPL is highly accurate in producing non-recursive solutions to
non-recursive problems; MPL (500K) does so in 97.0% of runs. It is less
accurate in producing recursive solutions for recursive problems;MPL
(500K) does so for just 34.4% of runs.

Only Fleet (500K) and MPL (500K) match human performance
while acquiring explainable hypotheses from sparse data. We now
consider another important aspect of human learning: search effi-
ciency. Human cognition is resource-constrained25; many forms of
reasoning are well-modeled with just a handful of search steps26. MPL
and Fleet differ in how well they approximate human behavior with
more cognitively plausible resources. MPL learns much faster than
Fleet given afixeddataset. Each thin curve in Fig. 4Aplots the posterior
probability of the best hypothesis discoveredbya given step as a result
of search (i.e. not the posterior probability of the generating function,
towhich neithermodel ever had access) for either Fleet orMPL for one
of the 100 functions. It also plots the mean of these scores when
averaging across all 100 functions (thick curves). Because the two
models were tested on the same functions and ultimately searched the
same space of programs (i.e. MPL’s metaprograms compile to pro-
grams in Fleet’s search space), these curves demonstrate how effi-
ciently the models search relative to one another. Notably, this mean
posterior probability of the best discovered hypotheses is higher for
MPL at five thousand search steps than for Fleet at five million, sug-
gesting that MPL discovers concise descriptions of the data much
more quickly. Figure 4B and C plot acquisition rate andmean accuracy
with 5K search steps per trial, just 1% of the previous budget. Fleet’s
acquisition rate sharply declines while MPL’s is ≥84% of that seen for
the large budget. MPL is also reliably closer to human accuracy per
function via a two-tailed paired sample Wilcoxon signed-rank test
(V = 874, p < 0.001, effect size = 0.39, 95% CI = [0.176, 0.634]). MPL
remains a good model participant for this task (Supplementary
Note 4); Supplementary Note 5 contains more details on the errors

individual models make and on correlations in accuracy between
models.

While MPL (5K) performs well, 5000 search steps may approach
humans’ upper limit on this task. The median human response time is
14.7s, and the 75th percentile is 29.5s. If people respond slowly and
search exceptionally quickly, say on the order of 5–10ms per step (e.g.
by considering hypotheses in parallel or using very shallow networks
of neurons84), they may take on the order of 3000–6000 steps. If a
single step takes 500–1000ms, however, people may respond on the
basis of just 30–60 steps, extremely few for a search-based program
learning model. Though worse than MPL (5K), learning rates for MPL
(500), MPL (50), and even MPL (20) still fall within the band of human
performance (Fig. 5A). After just 5 trials at 10 steps/trial (i.e. 50 total
search steps), MPL surpasses Metagol’s, Enumerate’s, and RobustFill’s
performance (Fig. 3A) and Fleet (5K)’s performance (Fig. 4C), all of
which consumed orders of magnitude more search (see also Supple-
mentary Note 5).

MPL leverages the idea that an inferential process, or metapro-
gram, can be simpler than the program it produces. If so, the prob-
ability of sampling ametaprogram should generally be higher than the
probability of directly sampling the associated program, which would
help explainMPL’s high performance compared to alternativemodels.
We find that 82.8% of metaprograms are at least as simple as their
corresponding program (Fig. 5B; see also Supplementary Note 6).

MPL searches overmetaprograms rather than over programs, but
its prior (Eq. (12) in “Methods”) is sensitive to both metaprogram
complexity (i.e. cost of inferring a program) and program complexity
(i.e. cost of representing a program). Both components are necessary—
lesions sensitive to just one of the two components dramatically
underperform the full model (Fig. 5C). The program prior encourages
generalization anddiscouragesmemorization. Themetaprogramprior
may help MPL assign credit to useful metaprimitives and so search
more efficiently.

MPL (500K) Fleet (500K) Codex Metagol

0 5 10 0 5 10 0 5 10 0 5 10
0

25

50

75

100
F

un
ct

io
ns

A
cq

ui
re

d
(%

)

(A)

0

1

2

3

MPL (500K) Codex Enumerate
Fleet (500K) Metagol RobustFill

Model

H
um

an
R

el
at

iv
e

S
co

re

(B)

Enumerate RobustFill

0 5 10 0 5 10
0

25

50

75

100

Trial (of 11)

Fig. 3 | MPL and Fleet outperform other models given large search budgets.
A Percentage of functions (100 total) acquired permodel (subplots) by a given trial
(11 total) with human median performance (n = 389 people; gray curve), 25%-75%
human performance (dark gray band), and best-worst human performance (light
gray band). We measure acquisition using the strict criterion of generating correct
predictions on all future trials. B Ratio of model mean accuracy to human mean

accuracy (n = 389 people) per concept (dots; 100 total) per model, with parity
between models and humans (dotted line) and a kernel density estimate (colored
regions). The crossbars show themedian across functions with a 95% bootstrapped
CI. Each model is associated with a unique color for easier comparison across
figures.

Article https://doi.org/10.1038/s41467-024-50966-x

Nature Communications | (2024) 15:6847 7

5K

Samples

500K

Samples

0

−10
−20

−50
−100
−200

−500
−1000
−2000

0 5 10 15
Log Search Step

Lo
g

P
os

te
rio

r
MPL
Fleet

(A)

MPL (5K) Fleet (5K)

0 5 10 0 5 10
0

25

50

75

100

Trial (of 11)

F
un

ct
io

ns
A

cq
ui

re
d

(%
)

(B)

0

1

2

3

MPL (5K) Fleet (5K)
Model

H
um

an
R

el
at

iv
e

S
co

re

(C)

Fig. 4 | MPL searches more efficiently than other models. A Loge posterior of the best solution discovered by a given loge search step per function (n = 100 functions;
thick =mean) per model with a fixed training set of 10 input/output examples per function. (B) and (C) follow Fig. 3A, B, respectively, with 5K search steps per trial.

MPL (5) MPL (10) MPL (20) MPL (50) MPL (500)

0 5 10 0 5 10 0 5 10 0 5 10 0 5 10
0

25

50

75

100

Trial (of 11)

F
un

ct
io

ns
A

cq
ui

re
d

(%
)

(A)

0

2

4

6

0 50 100 150 200
Log Metaprogram Prior

Lo
g

N
eg

. L
og

P
ro

gr
am

 P
rio

r

(B)

0

25

50

75

100

0 5 10
Trial (of 11)

F
un

ct
io

ns
A

cq
ui

re
d

(%
)

Full MPL Model
No Metaprogram Prior
No Program Prior

(C)

Fig. 5 | Metaprimitives are central to MPL’s performance. A Follows (Fig. 3A),
varying MPL's search steps per trial. B MPL's loge � loge program prior (pP ðeHÞ)
relative to MPL's loge metaprogram prior (pMðHÞ) for the highest-posterior

hypotheses in each trial (dots; n = 1, 100 trials) with parity between the two priors
(curve). C Follows (Fig. 3A) for the full MPL model and when lesioning the two
priors.

Article https://doi.org/10.1038/s41467-024-50966-x

Nature Communications | (2024) 15:6847 8

Discussion
This paper uses functions over lists of natural numbers to test the
hypothesis that people efficiently learn program-like representations
by composing object-level operators and structured program trans-
formations called metaprimitives. Instead of explaining learning
purely in terms of the complexity of object-level content5,49,76, this
approach also incorporates the reasoning by which content is pro-
duced. An implementation of this theory, called MPL, uniquely
achieves human-level performance in the test domain while capturing
the hallmarks of human learning we emphasize in this paper: inter-
pretable hypotheses; data efficiency; and computational efficiency.
MPL does so by: (1) explicitly representing program transformations in
the modeling language rather than merely implicitly in the search
algorithm; (2) incorporating many kinds of program transformation
rather than just one; and (3) extracting latent structure directly from
data rather than discovering it by chance. Even so, MPL is only a first
step toward more human-like models; we do not examine other
essential traits like neural plausibility or the ability to generalize
straightforwardly to related tasks.

These results reveal nuance in the relationship between simplicity
and learning. All else being equal, people often prefer simpler
explanations85,86 and find them easier to acquire5. Classic program
learningmodels thus strongly link psychological complexity to object-
level simplicity. However, simplicity is language-dependent87—differ-
ent primitives affect a language’s inductive bias and thus how well it
explains learning49,71. Relatedly, different axiomatic systems can pro-
duce shortest proofs of dramatically different lengths for the same
theorem88. MPL’s metaprimitives suggest a way to assess simplicity
that goes beyond object-level content to incorporate structured
inferences. These inferences reshape inductive bias, describing certain
concepts easily but being poorly suited to others. Metaprograms are
often shorter than programs because they can describe concepts in
terms of observed data, which already contain relevant structure.
Models tracking the complexity of both metaprograms and programs
explain human learning better than models tracking just one or the
other, suggesting that learning is sensitive to multiple kinds of
simplicity.

Unless otherwise noted, all the models reported here use the
same primitives asMPL and search over the same set of programs. We
used a deliberatelyminimal DSL that could be easily implemented on a
wide variety of models. For example, we do not include any higher-
order functions in the DSL because manymodels, including Fleet, lack
the typesystem needed to easily implement these functions. The key
point here is that any program MPL discovered could also have been
discovered by the other models, including Fleet.

What differentiates MPL is its use of metaprimitives, though it is
important to note that MPL’s success depends on having specific
metaprimitives (and it might be possible to add metaprimitives that
harm performance). A small collection of metaprimitives dramatically
reshapes the initial inductive bias given by our expressive set of object-
level primitives. For the problems studied here, this change in the
inductive bias significantly improves the ability to explain human
performance. Different primitives would almost certainly produce
different results (e.g. performance would likely be much higher for all
models if we added the target functions as primitives, or even if we
moved from the primitives in Table 1 to those in Supplementary
Table 2). More rigorously comparing a variety of languages with dif-
ferent combinations of primitives and metaprimitives—as has been
done previously for primitives alone49—is a valuable direction for
future work.

Metaprimitives seem likely to remain useful, however, because
they can be sensitive to the internal structure of their arguments in
ways that object-level primitives cannot. This sensitivity can allow
metaprimitives to effectively prune the search space by ignoring
hypotheses which are syntactically valid but inconsistent with the

internal structure of their arguments.When search starts by observing
or memorizing data—which already contains the structure to be
explained—this pruning effect can sometimes allow search to quickly
compose metaprimitives that reason backward from the data to a
concise generating program. This approach overcomes shortcomings
of traditionalhypothesis-driven learners (whichmustdiscover relevant
structure largely by chance) and data-driven learners (which typically
apply a fixed pattern of reasoning).

We are not suggesting that it is only possible to encode the right
inductive bias for a particular task using metaprimitives, but rather
that metaprimitives provide a valuable and flexible way to encode a
range of human-like inductive biases which rule-learning models can
easily leverage. Some metaprimitives, like AntiUnify, are very gen-
eral. A model would require many additional primitives and archi-
tectural changes to compensate for its loss. Others, such as our limited
Recurse operator, might only require a couple of primitives or a
change to the typesystem.More generally, metaprimitives are likely to
excel when some pattern in a program’s syntactic structure justifies
transforming that program in a well-specified way. Primitives are likely
to excel most when the internal structure of the arguments is largely
irrelevant to the search process.

The diverse algorithms in our model comparison demon-
strate that there are many ways to leverage composition, e.g.
modifying sub-trees and using the rules of composition to con-
strain search. Future work can more systematically characterize
the various ways composition can inform search and how each
affects performance. Even more generally, it would be useful to
precisely characterize the implications of adopting a composi-
tional versus a non-compositional representation.

This paper demonstrates the promise of metaprimitives with an
implemented example in the computationally universal list functions
domain. Yet, neither program induction broadly nor the specific
techniques we introduce here are limited to list functions.We focus on
a benchmark of 100problems emphasizing themodestly diverse set of
computational patterns which MPL is capable of leveraging during
search; this makes it possible to test our hypothesis by comparing
solutions described with and without metaprimitives. Future meta-
primitive models should address a broader set of problems by for-
malizing additional inference techniques and linking them to human
behavior. This could include more sophisticated versions of the
metaprimitives studied here, such as one capturing a more general set
of fold-like computations or one capturing recursion with latent state.
In addition, while Memorize and AntiUnify capture general patterns
of reasoning, Recurse and Compose focus on transformations that are
most useful only for limited classes of list functions.Metaprimitives are
thus neither exclusively domain-specific nor domain-general, and their
use could be extended to explicitly incorporate domain-specific ana-
lyses modeling well-known knowledge effects64. Developing a general
model of the many forms of computational reasoning people can
perform is likely to be a large-scale collaborative endeavor involving
many kinds of empirical and computational experiments. What we
aimed to do here was to take an initial and necessarily limited step
toward such a model. We would not be surprised to find that humans
use amuch larger set ofmore sophisticated reasoning techniques than
MPL. We would be surprised, however, to find that humans do not
flexibly combine techniques for reasoning about data to significantly
improve the speed of learning.

Future models can move beyond small and unchanging model
languages to better match people’s immense and largely learned
cognitive repertoire45,63. Algorithms that expand modeling languages
over time71 begin to capture this dynamic, but more is needed. It
remains unclear, for example, how to model people’s apparent crea-
tion of genuinely novel symbols89. Finally, children go beyond col-
lecting primitives; they appropriately select between them and can
explain their choices90. MPL’s stochastic search could be extended to

Article https://doi.org/10.1038/s41467-024-50966-x

Nature Communications | (2024) 15:6847 9

behave similarly by including additional elements of analytical
synthesis53,91,92 and pattern-based reasoning93–95. This work would help
refine program learning into a comprehensive formal account of dis-
tinctively human learning.

Methods
List functions
Wemanually created a benchmark set of 250 list functions designed to
vary widely in learning difficulty and algorithmic content. Each func-
tion can be expressed in a rich domain-specific language (DSL)
embedded in a typed lambda calculus. Lambda calculus is a Turing-
universal formalism that models computation as function abstraction
and application96. It plays a fundamental role in computer science and
frequently appears in computational models of learning97–99. We equip
our language with a Hindley-Milner typesystem100 which provides
syntactic guarantees on the semantic correctness of programs. Intui-
tively, the type system eliminates programs which are semantically
nonsensical (e.g. take the second element of the number 3) while
allowing all semanticallymeaningful programs. Supplementary Table 1
describes the type system and Supplementary Table 2 describes the
language primitives.

Supplementary Table 11 lists the 250 list functions in our dataset.
84 functions exclusively use the numbers 0–9; the remainder also use
10–99. Themodel comparison involved concepts c001–c100. Very few
of these functions require numerical abilities beyond counting and
basic arithmetic. The functions more typically focus on structural
manipulations like inserting, swapping, or removing elements. The full
250-function dataset is intended as a benchmark for assessing human
learners and future formal theories of learning; the language used to
generate them contains many more primitives than the language
available to model learners, which is described in the main text. The
first 100 functions can be expressed in this much smaller language,
making them more amenable to formal analysis by existing compu-
tationalmodels. This 100-function subset still varies widely in terms of
human learning and the algorithmic abilities required to express them,
which include conditional, recursive, arithmetic, and pattern-based
reasoning.

To generate input/output pairs for each function, we randomly
generated one million sets of 11 input/output pairs and selected the
best according to a per-function custom scoring function. Input and
outputs were restricted to contain 0 to 15 elements. The per-
function scoring function always favored variance in input and
output length, variance in the elements of the lists, a high number of
unique outputs, and a low number of examples in which the input
and output were identical. Each was then also customized to favor
features relevant to the given concept. For example, a concept
indexing the third element might favor inputs with three or more
elements, while a concept using the first element as an index might
favor lists in which the first element was less than or equal to the
length of the list. After selecting a set of examples, we then gener-
ated five thousand random orderings and selected the one with the
highest score based on: applying the per-concept scoring function
to the first five pairs, applying the per-concept scoring function to
the last six pairs, whether the input differed from the output in the
first example, and the distance between 5 and the length of the
first input.

Experimental procedure
We report the results of a behavioral experiment involving human
participants. Our procedure complies with all relevant ethical regula-
tions and was approved by the Institutional Review Board at Massa-
chusetts Institute of Technology where the study was conducted.
Participants provided informed consent and received a flat fee of $7.50
for participating plus a $0.01 bonus for each correct response. This
study was not preregistered.

Supplementary Fig. 1 shows a representative display from the
behavioral paradigm. Participants agreed to play a guessing gamewith
the computer and began by reviewing the game’s instructions. After a
short comprehension check, participants completed 110 trials—10
rounds of 11 trials each, with the current round clearly indicated
onscreen. In each round, the computer selected one of the 250 list
functions as a rule for transforming input lists into output lists. Func-
tions were selected uniformly at random for each participant; neither
the experimenter nor the participant knew the functions being tested
at the time of the experiment. Each function took a list of natural
numbers as input and returned a list of natural numbers as output.
Lists could include the numbers 0–99 as elements and contain 0–15
elements. To help participants learn the rule, the computer presented
a series of trials. To begin each trial, the computer would show a novel
input list and ask the participant to predict the output associated with
the input by typing their predicted response into the text box. Parti-
cipants were told that their job was to guess the rule and use it to
correctly respond to as many of the computer’s queries as possible.
Participants were required to type in the entire list and had to do so
without typos for their response to be considered correct. After each
prediction, the computer revealed the correct output, ending the trial.
The input, output, and participant prediction remained on screen for
the rest of the experiment to reduce working memory load; partici-
pants could review it on any future trial, including those in subsequent
rounds. The paradigm thus encouraged online learning in an attempt
to reduce long-term memory demand and more accurately measure
trial-by-trial generalization49. Progress indicators at the bottom of the
screen informed participants of their performance and the number of
remaining trials. At the end of each round, the computer asked parti-
cipants to enter a natural languagedescription of the rule they thought
the computer had been using. The experiment ended with a brief
demographical survey. No statistical methods were used to pre-
determine sample sizes but our sample sizes are similar to those
reported in previous publications49.

Participants
In total, 498 people provided informed consent and participated in the
experiment, hosted on Amazon Mechanical Turk using PsiTurk
(https://psiturk.org). While we attempted to define highly learnable
concepts, not all our participants appeared tomake a good faith effort.
This situation is typical for online experiments. Based on pilot data, we
excluded participants who completed the experiment: in less than
20min; with fewer than 10 correct responses; or by giving the same
response for more than 20 trials. This excluded 106 participants, a
significant proportion of our original sample, raising concerns that the
task was simply too difficult, perhaps due to its abstract formulation.
Among the excluded participants, mean task timewas 51.7min (95% CI
[46.1, 57.8]), number of mean correct responses was 10.2 (95% CI [7.6,
13.1]), and mean number of appearances of the most common
response was 20.3 (95% CI [17.3, 23.7]). Only 4 of the 106 excluded
participantsmentioned task difficulty in their post-experiment survey.
By contrast, 72 provided some sort of positive comment about liking
the task or finding it engaging. To reinforce the trustworthiness of our
findings, we conducted a targeted replication focused on the 100
functions in the model comparison (Supplementary Note 8). To
increase participant engagement and data quality101, we recruited
participants through Prolific (https://prolific.co) rather than Amazon
Mechanical Turk and, per Prolific’s policies, provided compensation
based on median time requirements. Critically, we excluded only a
single replication participant using our original exclusion criteria and
find results similar to our original sample (mean accuracy was actually
significantly higher in the replication sample.). Together, these results
show that the task is neither too abstract nor too difficult for partici-
pants. They instead suggest that, rather than excluding the lowendof a
single statistical distribution, the exclusion criteria separate an small

Article https://doi.org/10.1038/s41467-024-50966-x

Nature Communications | (2024) 15:6847 10

https://psiturk.org
https://prolific.co

but expected group of participants failing to make a good faith effort
from a much larger distribution of earnest participants.

We analyzed data from the remaining 392, where mean task time
was 78.3min (95% CI [75.1, 81.9]), number of mean correct responses
was 50.9 (95% CI [49.2, 52.7]), andmean number of appearances of the
most common response was 6.0 (95% CI [5.6, 6.3]). Participant age for
this group ranged from 18.6yrs to 69.4yrs (median: 39.2yrs), with 253
males, 132 females, and 2 of other genders (self-reported; 5 did not
respond). Neither sex nor gender were included in the study design
and did not figure into any reported analyses. We did not actively
assess language skills but requested that participants speak English
fluently. Participants received a median compensation of $8.00 for a
median 72min of work. Participants found the task difficult but enga-
ging with a mean self-reported difficulty rating of 4.9 and a mean self-
reported engagement rating of 5.9, both on a 7-point Likert scale.
Because each participant completed 10 rounds of trials, we collected
data from about 16 participants for each list function. 3 of our pool of
392participantswere randomly assignedonly functions thatwedonot
analyze in this paper; this paper analyzes results from the
remaining 389.

Model procedure
Everymodel completed 5 runs of all 11 trials for eachof the first 100 list
functions in our dataset. As with people, learning progressed in an
online fashion. For each trial 1≤ i≤ 11, the correct input/output pairs for
the previous i − 1 trials were made available as training data, as well as
the input for trial i. The correct output of trial i was held out as test
data. The training set was thus empty during the first trial, as it was for
human participants. Each model except Metagol started trial i + 1
where trial i finished, reusing computation from trials 1…i to hotstart
trial i + 1. Metagol’s designmakes online learning difficult, so it treated
trials independently. At the end of trial i’s search period, each model
selected a best hypothesis and used it to predict an output for the
current input. Each model used a similar DSL (i.e. the primitives in
Table 1) with slight modifications to accommodate each model’s par-
ticular representation format (e.g. lambda calculus, Prolog, term
rewriting).

In abundant resource simulations, MPL and Fleet completed
500,000 search steps per trial (5,500,000 total) and the other models
searched for 10min/trial. The larger budget allotted these other
models allowed Enumerate to take more than one million steps per
trial and Metagol to take more than one billion steps per trial.
RobustFill took approximately 10,000 steps/trial but also benefited
from amortizing inference over the course of three additional days
spent training theneural network. In constrained resource simulations,
MPL and Fleet completed 5000 search steps per trial unless otherwise
clearly indicated. In the batch simulations (Fig. 4A), bothMPL and Fleet
completed five runs on each analyzed function. For each run, they
observed the first ten of the eleven input/output pairs available for the
target function and completed five million search steps.

Comparison models
Enumeration. Enumerate71 uses an exhaustive and symbolic technique
known as enumerative search. It considers hypotheses approximately
in order of description length, returning the first one consistent with
observed data. This approach may seem implausible, but it tightly
couples learning to simplicity measures like description length, as do
humans in some domains5. It is also the simplest algorithm in this
comparison and can be performed extremely quickly.

We used the high-performance enumeration algorithm from
DreamCoder71. This model performs type-directed top-down grammar-
based enumeration in approximately decreasing order of prior prob-
ability. That is, it treats the type system as a grammar over programs
and, starting from a requested type, iteratively lists all programs
matching the given type, starting with the shortest. The enumeration

proceeds in depth-first fashion, with an outer loop of iterative dee-
pening: it first enumerates programs whose description length lies in
0–Δ, then all programs whose description length is Δ–2Δ, then 2Δ–3Δ,
and so on until the end of the trial.Δwas set to 1.5 nats; each task used a
single CPU with no offline training or parameter learning. To accom-
modate online learning, Enumeration used a simple win-stay, lose-shift
strategy102. When asked to make a prediction, it used the first program
discovered which correctly explained all previously observed input/
output pairs. If its predicted output was also correct, it continued to
use that program to make predictions on subsequent trials. If the
predicted output was incorrect, it would select the first program to
correctly explain all previously observed input/output pairs plus the
newly observed pair revealed after making the prediction. Assuming
terminating programs, grammar-based enumeration is also guaranteed
to discover the simplest possible solution103 (Levin search104 performs
similarly with non-terminating programs).

Stochastic search. Fleet42 is stochastic and symbolic. It samples froma
Bayesianposterior over programs thatbalances simplicity againstfit to
data, consistent with psychological theories of learning as stochastic
search105. This approach explains human learning in domains like
Boolean concepts49, counting routines31, and kinship systems106. It is a
forerunner of MPL but lacks metaprimitives in the language and a
sensitivity to metaprograms in the prior.

Because exact sampling is intractable, Fleet uses a high perfor-
mance implementation of the Rational Rules algorithm76 for MCMC
over programs. This technique proposes changes to entire subtrees of
a program tree by selecting a node uniformly at random and regen-
erating it from the grammar. Ourmodel also used a parallel tempering
scheme107 with five chains adaptively spaced to have efficient proposal
acceptance rates. The maximum temperature was set to the trial
number plus one, and the minimum temperature was fixed to 1.0,
meaning the lowest temperature chain theoretically sampled from the
target posterior. Swaps between chains were proposed every second
and temperatures were adapted every 30s. The Fleet grammar did not
include lambda abstraction due to limitations of the current imple-
mentation. Fleet is explicitly Bayesian. In these simulations, it used a
grammar-based prior and a likelihood based on string edit distance
(treating lists as strings of characters) which deleted each character
from the end of a list with probability 10−4, and then appended uni-
formly random characters with the same probability. To support
online learning, each new trial was started on the hypothesis with the
best posterior in the preceding trial.

Proof-driven search.WeusedMetagol54,81,108, an ILP systemwhich uses
a Prologmeta-interpreter to induce Prolog programs. Like Enumerate,
Metagol is also exhaustive and symbolic but models learning as con-
straint satisfaction. It learns by recursively constructing a compact
first-order logical proof which includes encodings of the data and task
constraints. It builds on techniques which learn programs using Boo-
lean formulae109 or first-order clauses72. This approach aggressively
prunes hypotheses known to be inconsistent with the data and learns
successfully in many domains, including data transformation tasks
similar to list functions110. It has also been used to model the way that
humans’ inductive bias shifts with repeated exposure to a domain111.

Metagol uses metarules, or program templates, to restrict the
form proofs can take. Metarules are higher-order clauses such that the
goal of Metagol is to find substitutions for the higher-order variables.
Deciding which metarules to use for a given task is an unsolved
problem112,113. Supplementary Table 3 shows the eight metarules used
by the Metagol simulations in this work. Metagol also induces longer
clauses though predicate invention, similar to the introduction of
lambda abstractions. Metagol works by partially constructing and
evaluating programs, pruning the search spacewhen a partial program
fails to cover the positive examples or erroneously covers negative

Article https://doi.org/10.1038/s41467-024-50966-x

Nature Communications | (2024) 15:6847 11

examples.We only used positive examples in these simulations. Prolog
programs encode nondeterministic relations. To evaluate Metagol, we
called the learned Prolog program with the input given as the first
argument and asked for answer substitutions for the secondargument,
taking the first provided substitution as the output.

Neural program synthesis. We used RobustFill82, a stochastic algo-
rithm that blends elements of neural and symbolic approaches to
learning. It searches stochastically for programs guided by a deep
neural network (in particular, a neural sequence-to-sequence encoder-
decoder model with attention). Like Fleet, the network can be seen as
approximating Bayesian inference over programs. RobustFill, how-
ever, uses a different technique for sampling programs. It samples a
series of program symbols using weights generated by the network
given observed data and the previous program symbol as input. It
seems unlikely that human learning is either purely continuous or
purely symbolic. We test RobustFill because it is neurosymbolic and
because it outperformed both purely symbolic and purely neural
approaches on string manipulation tasks similar to list functions.

Our implementation is nearly identical to the Attn-A RobustFill
model82. The model differs in that we added a learned grammar mask
using a separate LSTM languagemodel over the programsyntax114. The
output probabilities of this LSTM were used to mask the output
probabilities of the Robustfill model, encouraging the model to put
less probability mass on grammatically invalid sequences. The model
uses standard supervised, teacher-forcing techniques for training
sequence to sequence models, minimizing cross-entropy loss on the
training data. We used a hidden size of 512 and an embedding size of
128. We trained the network for 3 days. This meant approximately
105,000 iterations with a batchsize of 16 programs (~1.6 million ran-
dom programs seen during training). Training programs could have a
maximum depth of 6, and each was associated with 1 to 10 input/
output pairs, with the number of examples being sampled uniformly at
random for each program.

Large language models. We used Codex83, a stochastic neural model
similar in spirit to RobustFill but which uses a different architecture
trained on a far broader and bigger dataset. It is based on the large
language model GPT-3115, trained on hundreds of billions of tokens of
text scraped from the Internet and fine-tuned on billions of lines of
code fromGitHub (https://github.com).We evaluate it here because its
recent successes on reasoning and computer programming tasks
suggest it as one of the most compelling models of intelligence
available today.

We used the OpenAI API to run the Codex83 model. Each task was
presented in a few-shot manner, presenting four preceding example
tasks with five input/output pairs each taken from the instructions in
the human behavioral paradigm before presenting the test task. Each
trial was completed independently; trial n presented n − 1 complete
input/output pairs followed by input n. To test Codex as a form of
symbolic search, we asked it to produce python programs predicting
outputs given inputs. The task embedded training data in a python
docstring, requesting the body of a python function that would pro-
duce the corresponding output when applied to the test input. API
calls requested a single response at temperature 0 and ended at the
first newline or after a maximum of 150 tokens, whichever came first.
Because it is unclear whether GPT-3 or Codex had access to our ori-
ginal benchmark data, which is publicly available online, we also gen-
eratednovel input/output pairs to testCodex. Performancewas similar
to using the original stimuli from the humanbehavioral experiment, so
we report results using the original stimuli.

MPL (MetaProgram Learner) model
MPL represents programs as first-order term rewriting systems
(TRS)116,117 (Supplementary Note 1). They are a less common basis for

program synthesis systems than alternative representations like first-
order logic72,118, combinatory logic13,119,120 or lambda calculus38,49,71,121,
but have previously appeared in inductive learning systems122,123. MPL
augments a user-provided domain-specific language consisting of
object-level primitives with a set of metaprimitives (Supplemen-
tary Note 2).

To balance simplicity and fit, MPL models learning as MAP infer-
ence in a Bayesian posterior over metaprograms computed using
Bayes’ Law:

pðH jDÞ / pðD jHÞpðHÞ: ð11Þ

whereH is ametaprogram reducing toprogram eH givendata,D.p(H) is
given as

pðHÞ / exp
lnpMðHÞ+ lnpPðeHÞ

2

 !
ð12Þ

where pM is a grammar-based metaprogram prior given by a type-
constrained probabilistic context-sensitive grammar over primitives
and metaprimitives and pP is a similar grammar-based program prior
over just primitives. Both favor simple expressions.

MPL assumes that each input/output pair, (x, y), is generated
independently. p(D ∣H) is a prefix-based likelihood42 It scores respon-
ses by assuming a noise process that deletes from and appends to lists
stochastically such that each change occurs with probability η (In all
our experiments, η = 10−6.). Output likelihood increases with the size of
its common prefix with the correct response. If append operations can
select fromN characters, eHðxÞ is the predicted output for input x using
metaprogramH, I½x,y,i� indicates whether lists x and y share a prefix of
length i, and ∣x∣ is the length of list x, then:

pðD jHÞ=
X

ðx,yÞ2D

XminðjeHðxÞj,jyjÞ

i=0

I½eHðxÞ,y,i�ηjeHðxÞj�i η
N

� �jyj�i
ð1� ηÞ1 + minði,1Þ

ð13Þ

This likelihood is useful whenever the output contains multiple
elements that can be explained incrementally. This is the case both for
recursive functions producing multiple elements (e.g. remove every
other element), but it is also useful for non-recursive problems such as
G (Eq. (10)). The prefix-bias will be less helpful for functions which
recursively fold or reduce the input into a single element (e.g. input
length) and for functions which select a single element of the input
non-recursively (e.g. the third input element).

Computing the posterior exactly is intractable;MPL approximates
it using Markov Chain Monte Carlo (MCMC) over programs42,76

extended to the space of metaprograms. Inference used a custom
implementation of parallel tempering with two pools of five tem-
peratures each, ranging from 1.0 to the current trial number plus one,
spaced exponentitally, and proposing swaps every 25s. One pool
searched over hypotheses formed from the full DSL, i.e. the object-
level DSL plus theMPLmetaprimitives. The other used the object-level
DSL only, i.e. primitives only. Chains used tree-regeneration
proposals76 and custom proposals for inserting, removing, and
regenerating metaprimitives.

The model had access to instances of both pools, which main-
tained separate state but reported their hypotheses to a shared col-
lection of the best hypotheses observed by either pool. At each search
step, themodel would collect a single sample from either pool but not
both. This decision was made randomly, choosing the full DSL pool
with probability α and the object-level DSL pool with probability 1 − α.
The auxiliary model varies α, while all other experiments fix it to 1.0.

MPL considered metaprograms containing 50 or fewer random
choices and 7 or fewer metaprimitives. It also only considered

Article https://doi.org/10.1038/s41467-024-50966-x

Nature Communications | (2024) 15:6847 12

https://github.com
https://openai.com/api

metaprograms producing deterministic TRSs. To support online
learning, MPL retained paths to the 100 top-scoring solutions between
trials and initialized chains for the next trial using the best known
hypothesis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The rawmodel data and processed humandata generated in this study
have been deposited in the Open Science Foundation database at
https://doi.org/10.17605/OSF.IO/GQ2HJ. The raw human data gener-
ated in this study are protected and are not available due to data
privacy laws.

Code availability
The code needed to reproduce the figures and results has been
deposited in theOpen Science Foundation database at https://doi.org/
10.17605/OSF.IO/GQ2HJ. Key libraries are also available for: Markov
Chain Monte Carlo over programs (https://github.com/joshrule/
program-induction); term rewriting systems (https://github.com/
joshrule/term-rewriting-rs); and Hindley-Milner type inference
(https://github.com/joshrule/polytype-rs).

References
1. Fodor, J. The languageof thought (Harvard University Press, 1975).
2. Bruner, J. S., Goodnow, J. J. & George, A. A study of thinking

(Routledge, 1956).
3. Shepard, R. N., Hovland, C. I. & Jenkins, H. M. Learning and

memorization of classifications. Psychol. Monogr. Gen. Appl. 75,
1 (1961).

4. Nosofsky, R. M., Gluck, M. A., Palmeri, T. J., McKinley, S. C. &
Glauthier, P. Comparing modes of rule-based classification
learning: A replication and extension of Shepard, Hovland, and
Jenkins (1961). Mem. Cognition 22, 352–369 (1994).

5. Feldman, J.Minimizationof Boolean complexity in humanconcept
learning. Nature 407, 630–633 (2000).

6. Fuson, K. C., Richards, J. & Briars, D. J. The acquisition and ela-
boration of the number word sequence. In Brainerd, C. J. (ed.)
Children’s Logical and Mathematical Cognition, 33–92 (Springer-
Verlag, 1982).

7. Carey, S. & Barner, D. Ontogenetic origins of human integer
representations. Trends Cogn. Sci. 23, 823–835 (2019).

8. Siegler, R. & Jenkins, E. How Children Discover New Strategies
(Erlbaum, 1989).

9. Pearl, J. Causality (Cambridge University Press, 2009).
10. Gopnik, A. et al. A theory of causal learning in children: Causal

maps and Bayes nets. Psychol. Rev. 111, 1–30 (2004).
11. Chater, N. & Oaksford, M. Programs as causal models: Specula-

tions on mental programs and mental representation. Cogn. Sci.
37, 1171–1191 (2013).

12. Goodman, N., Tenenbaum, J. B. & Gerstenberg, T. Concepts in a
probabilistic language of thought. In Margolis, E. & Laurence, S.
(eds.) The Conceptual Mind: New Directions in the Study of Con-
cepts, 623–654 (MIT Press, 2015).

13. Piantadosi, S. T. The computational origin of representation.Minds
Mach. 31, 1–58 (2021).

14. Mervis, C. B. & Rosch, E. Categorization of natural objects. Annu.
Rev. Psychol. 32, 89–115 (1981).

15. Fodor, J. A., Garrett, M. F., Walker, E. C. & Parkes, C. H. Against
definitions. Cognition 8, 263–367 (1980).

16. Sloman, S. A. & Rips, L. J. Similarity as an explanatory construct.
Cognition 65, 87–101 (1998).

17. Pinker, S. & Ullman, M. T. The past and future of the past tense.
Trends Cogn. Sci. 6, 456–463 (2002).

18. McClelland, J. L. & Patterson, K. Rules or connections in past-tense
inflections: What does the evidence rule out? Trends Cogn. Sci. 6,
465–472 (2002).

19. Rule, J. S., Piantadosi, S. T. & Tenenbaum, J. B. The child as hacker.
Trends Cogn. Sci. 24, 900–915 (2020).

20. Fodor, J. & Pylyshyn, Z. Connectionismand cognitive architecture:
A critical analysis, connections and symbols. Cognition 28,
3–71 (1988).

21. Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. How
to grow amind: Statistics, structure, and abstraction. Science 331,
1279–1285 (2011).

22. Lombrozo, T. The structure and function of explanations. Trends
Cogn. Sci. 10, 464–470 (2006).

23. Lupyan, G. & Bergen, B. How language programs the mind. Top.
Cogn. Sci. 8, 408–424 (2016).

24. Lake, B., Ullman, T., Tenenbaum, J. & Gershman, S. Building
machines that learn and think like people. Behav. Brain Sci. 40,
e253 (2017).

25. Lieder, F. & Griffiths, T. L. Resource-rational analysis: Under-
standing human cognition as the optimal use of limited compu-
tational resources. Behav. Brain Sci. 43, e1 (2020).

26. Vul, E., Goodman, N., Griffiths, T. L. & Tenenbaum, J. B. One and
done? optimal decisions from very few samples. Cogn. Sci. 38,
599–637 (2014).

27. Siskind, J. A computational study of cross-situational techniques
for learning word-to-meaning mappings. Cognition 61,
31–91 (1996).

28. Gulwani, S., Polozov, O. & Singh, R. Program synthesis. Found.
Trends Program. Lang. 4, 1–119 (2017).

29. Abelson, H., Sussman, G. J. & Sussman, J. Structure and inter-
pretation of computer programs (MIT Press, 1996).

30. Kemp, C. & Tenenbaum, J. B. The discovery of structural form.
Proc. Natl. Acad. Sci. 105, 10687–10692 (2008).

31. Piantadosi, S., Tenenbaum, J. & Goodman, N. Bootstrapping in a
language of thought: A formal model of numerical concept
learning. Cognition 123, 199–217 (2012).

32. Depeweg, S., Rothkopf, C. A. & Jäkel, F. SolvingBongardproblems
with a visual language and pragmatic reasoning. Cogn. Sci. 48,
e13432 (2024).

33. Ullman, T. D., Stuhlmüller, A., Goodman, N. D. & Tenenbaum, J. B.
Learning physical parameters from dynamic scenes. Cogn. Psy-
chol. 104, 57–82 (2018).

34. Planton, S. et al. A theory of memory for binary sequences: Evi-
dence for a mental compression algorithm in humans. PLoS
Comput. Biol. 17, e1008598 (2021).

35. Thompson, B., van Opheusden, B., Sumers, T. & Griffiths, T.
Complex cognitive algorithms preserved by selective social
learning in experimental populations. Science 376, 95–98
(2022).

36. Erdogan, G., Yildirim, I. & Jacobs, R. A. From sensory signals to
modality-independent conceptual representations: A probabil-
istic language of thought approach. PLoS Comput. Biol. 11,
e1004610 (2015).

37. Amalric, M. et al. The language of geometry: Fast comprehension
of geometrical primitives and rules in human adults and pre-
schoolers. PLoS Comput. Biol. 13, e1005273 (2017).

38. Overlan, M., Jacobs, R. & Piantadosi, S. Learning abstract visual
concepts via probabilistic program induction in a language of
thought. Cognition 168, 320–334 (2017).

39. Sablé-Meyer,M., Ellis, K., Tenenbaum, J. &Dehaene, S. A language
of thought for the mental representation of geometric shapes.
Cogn. Psychol. 139, 101527 (2022).

Article https://doi.org/10.1038/s41467-024-50966-x

Nature Communications | (2024) 15:6847 13

https://doi.org/10.17605/OSF.IO/GQ2HJ
https://doi.org/10.17605/OSF.IO/GQ2HJ
https://doi.org/10.17605/OSF.IO/GQ2HJ
https://github.com/joshrule/program-induction
https://github.com/joshrule/program-induction
https://github.com/joshrule/term-rewriting-rs
https://github.com/joshrule/term-rewriting-rs
https://github.com/joshrule/polytype-rs

40. Abend, O., Kwiatkowski, T., Smith, N. J., Goldwater, S. & Steed-
man, M. Bootstrapping language acquisition. Cognition 164,
116–143 (2017).

41. Ellis, K., Albright, A., Solar-Lezama, A., Tenenbaum, J. B. &
O’Donnell, T. J. Synthesizing theories of human language with
Bayesian program induction. Nat. Commun. 13, 5024 (2022).

42. Yang, Y. & Piantadosi, S. T. One model for the learning of lan-
guage. Proc. Natl. Acad. Sci. 119, e2021865119 (2022).

43. Lake, B., Salakhutdinov, R. & Tenenbaum, J. B. Human-level con-
cept learning through probabilistic program induction. Science
350, 1332–1338 (2015).

44. Tian, L., Ellis, K., Kryven, M. & Tenenbaum, J. Learning abstract
structure for drawing by efficient motor program induction. Adv.
Neural Inf. Process. Syst. 33, 2686–2697 (2020).

45. Spelke, E. S. What babies know (Oxford University Press, 2022).
46. Fedus, W., Zoph, B. & Shazeer, N. Switch transformers: Scaling to

trillion parameter models with simple and efficient sparsity. J.
Mach. Learn. Res. 23, 1–39 (2022).

47. Chu, J. & Schulz, L. E. Play, curiosity, and cognition. Annu. Rev.
Dev. Psychol. 2, 317–343 (2020).

48. Gopnik, A. Childhood as a solution to explore–exploit tensions.
Philos. Trans. R. Soc. B 375, 20190502 (2020).

49. Piantadosi, S., Tenenbaum, J. & Goodman, N. The logical primi-
tives of thought: Empirical foundations for compositional cogni-
tive models. Psychol. Rev. 123, 392–424 (2016).

50. Marr, D. Vision (W.H. Freeman, 1982).
51. Green, C. C. et al. Progress report on program-understanding

systems. Tech. Rep. AIM-240, Stanford Artificial Intelligence
Laboratory (1974).

52. Shaw, D. E., Swartout,W. R. &Green, C. C. Inferring LISP programs
from examples. In International Joint Conferences on Artificial
Intelligence, 75, 260–267 (1975).

53. Polikarpova, N., Kuraj, I. & Solar-Lezama, A. Program synthesis
from polymorphic refinement types. ACM SIGPLAN Not. 51,
522–538 (2016).

54. Cropper, A., Morel, R. &Muggleton, S. Learning higher-order logic
programs. Mach. Learn. 109, 1289–1322 (2020).

55. Broadbent, D. E. The effects of noise on behaviour. In Broadbent,
D. E., Perception and communication, 81–107 (Pergamon, 1958).

56. Carroll, J. D. Functional learning: The learning of continuous
functionalmappings relating stimulus and response continua.ETS
Res. Bull. Series 1963, i–144 (1963).

57. Lucas, C. G., Griffiths, T. L., Williams, J. J. & Kalish, M. L. A rational
model of function learning. Psychonomic Bull. Rev. 22,
1193–1215 (2015).

58. Schulz, E., Tenenbaum, J. B., Duvenaud, D., Speekenbrink, M. &
Gershman, S. J. Compositional inductive biases in function
learning. Cogn. Psychol. 99, 44–79 (2017).

59. Goodwin, G. P. & Johnson-Laird, P. N. The acquisition of boolean
concepts. Trends Cogn. Sci. 17, 128–133 (2013).

60. Bartlett, F. Thinking: An experimental and social study. (Basic
Books, 1958).

61. Ericsson, K. A., Chase, W. G. & Faloon, S. Acquisition of a memory
skill. Science 208, 1181–1182 (1980).

62. Tenenbaum, J. B. & Griffiths, T. L. Generalization, similarity, and
Bayesian inference. Behav. Brain Sci. 24, 629–640 (2001).

63. Carey, S. The Origin of Concepts (Oxford University Press, 2009).
64. Murphy, G. L. Knowledge effects. In Murphy, G. L., The big book of

concepts, 141–198 (MIT Press, 2002).
65. Hastings, W. K. Monte Carlo sampling methods using Markov

chains and their applications. Biometrika 57, 97–109 (1970).
66. Doucet, A., De Freitas, N. & Gordon, N. An introduction to

sequential Monte Carlo methods. In Sequential Monte Carlo
methods in practice (eds Doucet, A., De Freitas, N. & Gordon, N.)
3–14 (Springer, 2001).

67. Langdon, W. B. & Poli, R. Foundations of genetic programming
(Springer Science & Business Media, 2013).

68. Fowler, M. Refactoring: Improving the design of existing code
(Addison-Wesley Professional, 2018).

69. Marthi, B., Russell, S. & Wolfe, J. A. Angelic semantics for high-
level actions. In International Conference on Automated Planning
and Scheduling, 17, 232–239 (2007).

70. Kitzelmann, E. Inductive programming: A survey of program
synthesis techniques. In Approaches and applications of inductive
programming, 3, 50–73 (Springer, 2009).

71. Ellis, K. et al. DreamCoder: Growing generalizable, interpretable
knowledge with wake-sleep Bayesian program learning. Philos.
Trans. R. Soc. A 381, 20220050 (2023).

72. Muggleton, S. &DeRaedt, L. Inductive logic programming: Theory
and methods. J. Log. Program. 19, 629–679 (1994).

73. Kitzelmann, E. Analytical inductive functional programming. In
Logic-based program synthesis and transformation, 18, 87–102
(Springer, 2009).

74. Chlipala, A. Certified programming with dependent types: A
pragmatic introduction to the Coq proof assistant (MIT
Press, 2013).

75. Piantadosi, S. T. The algorithmicorigins of counting.ChildDev.94,
1472–1490 (2023).

76. Goodman, N., Tenenbaum, J., Feldman, J. & Griffiths, T. A rational
analysis of rule-based concept learning. Cogn. Sci. 32,
108–154 (2008).

77. Al Roumi, F., Marti, S., Wang, L., Amalric, M. & Dehaene, S. Mental
compression of spatial sequences in human working memory
using numerical and geometrical primitives. Neuron 109,
2627–2639 (2021).

78. Hwang, I., Stuhlmüller, A. &Goodman,N. D. Inducing probabilistic
programs by Bayesian program merging. arXiv preprint
arXiv:1110.5667 (2011).

79. Cao, D. et al. babble: Learning better abstractions with
e-graphs and anti-unification. Proc. ACM Program. Lang. 7,
396–424 (2023).

80. Sanborn, A. N., Griffiths, T. L. & Navarro, D. J. Rational approx-
imations to rational models: alternative algorithms for category
learning. Psychol. Rev. 117, 1144–1167 (2010).

81. Cropper, A. & Muggleton, S. H. Metagol system. https://github.
com/metagol/metagol (2016).

82. Devlin, J. et al. RobustFill: Neural program learningundernoisy I/O.
In International Conference on Machine Learning, 34, 990–998
(2017).

83. Chen, M. et al. Evaluating large languagemodels trained on code.
arXiv preprint arXiv:2107.03374 (2021).

84. Sabatini, B. & Regehr, W. Timing of synaptic transmission. Annu.
Rev. Physiol. 61, 521–542 (1999).

85. Chater, N. & Vitányi, P. Simplicity: A unifying principle in cognitive
science? Trends Cogn. Sci. 7, 19–22 (2003).

86. Feldman, J. The simplicity principle in perception and cognition.
Wiley Interdiscip. Rev.: Cogn. Sci. 7, 330–340 (2016).

87. Goodman, N. Fact, fiction, and forecast (Athlone Press, 1955).
88. Gödel, K. Collected works, volume 1: Publications 1929-1936

(Clarendon Press, 1986).
89. Barner, D. & Baron, A. S. Core Knowledge andConceptual Change

(Oxford University Press, 2016).
90. Siegler, R. S. Emerging minds (Oxford Univesity Press, 1996).
91. Delaware, B., Pit-Claudel, C., Gross, J. & Chlipala, A. Fiat: Deduc-

tive synthesis of abstract data types in a proof assistant. ACM
SIGPLAN Not. 50, 689–700 (2015).

92. Polozov, O. & Gulwani, S. FlashMeta: A framework for inductive
program synthesis. In ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Appli-
cations, 107–126 (2015).

Article https://doi.org/10.1038/s41467-024-50966-x

Nature Communications | (2024) 15:6847 14

https://github.com/metagol/metagol
https://github.com/metagol/metagol

93. Willsey,M. et al. egg: Fast and extensible equality saturation. Proc.
ACM Program. Lang. 5, 1–29 (2021).

94. Cropper, A. Learning logic programs through divide, constrain,
and conquer. In AAAI Conference on Artificial Intelligence, vol. 36,
6446–6453 (2022).

95. Odena, A. et al. BUSTLE: Bottom-up program synthesis through
learning-guided exploration. In International Conference on
Learning Representations (2021).

96. Barendregt, H. P. et al. The lambda calculus, vol. 3 (North-Holland
Amsterdam, 1984).

97. Piantadosi, S. T. Learning and the language of thought. Ph.D.
thesis (2011).

98. Liang, P., Jordan, M. I. & Klein, D. Type-based MCMC. In Human
Language Technologies: The 2010 Annual Conference of the North
AmericanChapter of theAssociation forComputational Linguistics,
573–581 (2010).

99. Zettlemoyer, L. S. & Collins, M. Learning to map sentences to
logical form: Structured classificationwith probabilistic categorial
grammars. In Uncertainty in Artificial Intelligence, vol. 21, 658–666
(AUAI Press, 2005).

100. Pierce, B.C. Types andprogramming languages (MIT Press, 2002).
101. Douglas, B. D., Ewell, P. J. & Brauer, M. Data quality in online

human-subjects research: Comparisons between MTurk, Prolific,
CloudResearch, Qualtrics, and Sona. PLoS One 18, e0279720
(2023).

102. Nowak, M. & Sigmund, K. A strategy of win-stay, lose-shift that
outperforms tit-for-tat in the prisoner’s dilemma game. Nature
364, 56–58 (1993).

103. Solomonoff, R. J. A formal theory of inductive inference, part i. Inf.
Control 7, 1–22 (1964).

104. Levin, L. A. Universal sequential searchproblems. Probl. Peredachi
Informatsii 9, 115–116 (1973).

105. Ullman, T., Goodman, N. & Tenenbaum, J. Theory learning as
stochastic search in the language of thought. Cognitive Develop-
ment 27, 455–480 (2012).

106. Mollica, F. & Piantadosi, S. T. Logical word learning: The
case of kinship. Psychonomic Bulletin & Review 29, 766–799
(2021).

107. Vousden, W. D., Farr, W. M. & Mandel, I. Dynamic temperature
selection for parallel tempering in Markov chain Monte Carlo
simulations. Monthly Not. R. Astronomical Soc. 455, 1919–1937
(2015).

108. Muggleton, S. H., Lin, D. & Tamaddoni-Nezhad, A. Meta-
interpretive learning of higher-order dyadic datalog: Predicate
invention revisited. Mach. Learn. 100, 49–73 (2015).

109. Solar-Lezama, A. Program synthesis by sketching. Ph.D. the-
sis (2008).

110. Cropper, A., Tamaddoni-Nezhad, A. & Muggleton, S. H. Meta-
interpretive learning of data transformation programs. In Inductive
Logic Programming, vol. 25, 46–59 (Springer, 2016).

111. Lin, D., Dechter, E., Ellis, K., Tenenbaum, J. B. & Muggleton, S. H.
Bias reformulation for one-shot function induction. In European
Conference on Artificial Intelligence, vol. 21, 525–530 (IOS
Press, 2014).

112. Cropper, A. &Muggleton, S. H. Logical minimisation ofmeta-rules
withinmeta-interpretive learning. In Inductive Logic Programming,
vol. 24, 62–75 (Springer, 2015).

113. Cropper, A. & Tourret, S. Logical reduction of metarules. Mach.
Learn. 109, 1323–1369 (2020).

114. Bunel, R., Hausknecht, M., Devlin, J., Singh, R. & Kohli, P. Lever-
aging grammar and reinforcement learning for neural program
synthesis. In International Conference on Learning Representa-
tions (2018).

115. Brown, T. et al. Language models are few-shot learners. Adv.
Neural Inf. Process. Syst. 33, 1877–1901 (2020).

116. Bezem,M., Klop, J. W. & de Vrijer, R. (eds.) Term rewriting systems
(Cambridge University Press, 2003).

117. Baader, F. & Nipkow, T. Term Rewriting And All That (Cambridge
University Press, 1999).

118. Cropper, A., Dumančić, S., Evans, R. & Muggleton, S. H. Inductive
logic programming at 30. Mach. Learn. 111, 1–26 (2021).

119. Liang, P., Jordan,M. I. &Klein, D. Learningprograms:Ahierarchical
Bayesian approach. In International Conference on Machine
Learning, vol. 27, 639–646 (2010).

120. Dechter, E., Malmaud, J., Adams, R. P. & Tenenbaum, J. B. Boot-
strap learning viamodular concept discovery. In International Joint
Conferences on Artificial Intelligence, vol. 23, 1302–1309 (2013).

121. Henderson, R. J. Cumulative learning in the lambdacalculus. Ph.D.
thesis (2013).

122. Rao, M. K. Inductive inference of term rewriting systems from
positive data. In Algorithmic Learning Theory, vol. 15, 69–82
(Springer, 2004).

123. Hofmann, M., Kitzelmann, E. & Schmid, U. A unifying framework
for analysis and evaluation of inductive programming systems. In
Artificial General Intelligence, vol. 2, 74–79 (Atlantis Press, 2009).

Acknowledgements
This work was largely conducted while J.S.R. was a graduate student at
Massachusetts Institute of Technology. It was supported by National
Science Foundation (NSF), Division of Research on Learning Grant
1760874 (S.T.P.), Eunice Kennedy Shriver National Institute of Child
Health & Human Development at the National Institutes of Health Award
1R01HD085996 (S.T.P.), NSF Graduate Research Fellowship Grants
1122374 & 1745302 (J.S.R.), Office of Naval Research Grant N00014-18-1-
2847 (J.B.T.), NSF STC Award CCF-1231216 for the Center for Minds,
Brains and Machines (J.B.T.), Air Force Office of Scientific Research
Award FA9550-19-1-0269 (J.B.T.), and the Siegel Family Endow-
ment (J.B.T.).

Author contributions
J.S.R., S.T.P., and J.B.T. conceived the study and method. J.S.R., S.T.P.,
A.C., K.E., and M.N. developed software and ran simulations. J.S.R. and
S.T.P. analyzed and visualized the data. J.S.R., S.T.P. and J.B.T. drafted
the paper, and all authors revised the paper. S.T.P. and J.B.T. contributed
resources and supervision.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-50966-x.

Correspondence and requests for materials should be addressed to
Joshua S. Rule.

Peer review information NatureCommunications thanksAndersMiltner
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-024-50966-x

Nature Communications | (2024) 15:6847 15

https://doi.org/10.1038/s41467-024-50966-x
http://www.nature.com/reprints

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-50966-x

Nature Communications | (2024) 15:6847 16

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Symbolic metaprogram search improves learning efficiency and explains rule learning in humans
	Results
	Discussion
	Methods
	List functions
	Experimental procedure
	Participants
	Model procedure
	Comparison models
	Enumeration
	Stochastic search
	Proof-driven search
	Neural program synthesis
	Large language models

	MPL (MetaProgram Learner) model
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

