UC San Diego UC San Diego Electronic Theses and Dissertations

Title

Engineered Adenovirus for Selective Replication in Tumors and Druggable Control of Virus Progression

Permalink https://escholarship.org/uc/item/2k3957sr

Author Partlo, William

Publication Date 2018

Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA SAN DIEGO

Engineered Adenovirus for Selective Replication in Tumors and Druggable Control of Virus Progression

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy

in

Biology

by

William N. Partlo

Committee in charge:

Professor Clodagh C. O'shea, Chair Professor Randolph Y. Hampton Professor Jeff Hasty Professor Trey Ideker Professor Reuben J. Shaw

©

William N. Partlo, 2018

All rights reserved.

The Dissertation of William N. Partlo is approved, and is acceptable in quality and form for publication on microfilm and electronically:

Chair

University of California San Diego

TABLE OF CONTENTS

Signature Page	iii
Table of Contents	iv
List of Figures and Tables	vi
Acknowledgements	xii
Vita	xiii
Abstract of the Dissertation	xiv
Chapter One : Historical Methods for Imparting Selectivity in Oncolytic	
Adenovirus Constructs	1
Introduction	2
Oncolovtic Adenovirus Selectivity	3
Adenovirus Deletions/Mutations to Achieve Tumor Selectivity	3
Replacement of Endogenous Ad Promoters with	
Tumor-Specific Promoters	5
Modifications to Enhance Oncolutic Virus Dotancy	5
Immune Activation by Oncolytic Ad	
Conclusions	0 7
Conclusions	/
Figures	9
References	10
	1.5
Chapter I wo: Flourescence-Based Viral Kinetics Assay	15
Historical Methods for Measuring Adenovirus Replication Kinetics	16
Single Step Virus Kinetics Assay	17
Criteria for Ideal Vial Kinetics Assay	19
Fluorescence-Based Virus Kinetics Assay	21
Optimized Conditions for Fluorescence Readout	22
Comparisons of Fluorophore Placement within the Ad Genome	25
Plate Reader Instrumentation Optimization	27
Detailed Assay Description	29
Example Results	31
Conclusions	32
Figures and Tables	34
References	47
Chapter Three: Kinetics Comparison Between Ad3, Ad5, Ad9, and Ad34	
Serotypes and their Fiber and Shaft Chimeras	50
Adenovirus Tropism	51
Replication Competent Virus vs. Vector	52
Kinetics Testing Across Serotypes and Chimeras	52
Virus Replication Kinetics in PC3 Cells	55
Virus Replication Kinetics in a Variety of Tissue Types	
Conclusion	

Figures and Tables	59
References	72
Chapter Four: Selective Oncolytic Virus	76
Introduction	77
Prostate-Specific Expression from Ad Vector	77
Two Step Transcriptional Activation (TSTA)	78
Replacing Endogenous Ad Promoter with Prostate-Specific Promoter	79
TSTA Applied to a Replicating Ad	79
Safe Location in Ad5 Genome for Exogenous Gene Placement	81
TSTA Control of an Ad Promoter	
TSTA Control of a Single Ad Gene	
Prostate-Specific Promoter Testing	
Conclusions and Future Work	
Figures and Tables	92
References	
Chapter Five: Negatively Regulated Selective Oncolvtic Virus	
Introduction	
Previous Work Toward p53-Selectgive Oncolvtic Viruses	
Virus Regulated by the TetR System	
n53-Sensitive Promoter	
p53-Selective Negatively-Regulated Ad	118
Illtimate Performance of a p53-Selective Ad	118
Conclusions	119
Figures	120
References	126
	120
Chapter Six: Experimental Procedures.	
Cell Culture	
Virus Expansion	129
Virus Purification	132
Virus Titration	142
Virus Whole Genome Plasmid: Adsembly Protocol	144
Virus Whole Genome Plasmid: AdSLIC Protocol	144
References	146
Appendix A: Detailed Map of the Adenovirus Serotype 5 (Ad5) Genome	147
Need for a Detail Genomic Map	
Detailed Map of the Ad5 Genome	
Figures and Tables	
References	168
Appendix B: Table of Adenovirus Whole Genome Plasmids	171

LIST OF FIGURES AND TABLES

Figure 1.1a. Trends in cancer death rates for females in the US since 19309
Figure 1.1b. Trends in cancer death rates for males in the US since 19309
Figure 2.1. Plot of bacteriophage concentration vs. time at initial infection with low MOI
Figure 2.2. Typical workflow for construction, production, and testing of an engineered Adenovirus
Figure 2.3. Measured fluorescence vs. time from Ad5 with E1A-GFP fusion35
Figure 2.4a. Measured fluorescence spectrum for DMEM media at eGFP emission peak
Figure 2.4b. Measured fluorescence spectrum for DMEM media at YPet emission peak
Figure 2.5. The cleavage efficiency of the self-cleaving peptide sequence, P2A, is context dependent. The cleavage efficiency is approximately 50% early in the virus lifecycle (E1B-55k-P2A-YPet), but is essentially 100% for mRNAs expressed late in the virus lifecycle (Fiber-P2A-YPet)
Figure 2.6. Graphical representation of the fluorophore insertion locations within the Ad5 genome
Figure 2.7. Optical layout of TECAN plate readers
Figure 2.8. Measured fluorescence intensity for a dilution series of fluorescent beads suspended in agarose. 200 measurements made for each dilution. Plate reader type: a) M200Pro, b) M200Pro with fat fiber, c) M1000Pro
Figure 2.9. Normalized standard deviation of measured fluorescence intensity vs. square root of measured fluorescence for each instrument
Figure 2.10. Layout for FBVK assay. 11 different viruses can be monitored on a single 96 well plate. The 12 th column of wells is used for normalization constant, empty wells for later WST-1 cell viability assay, and mock infected wells for background subtraction

Figure 2.11a. Measured fluorescence signal vs. time for PCMN-421

(YPet-P2A-ADP) infecting A549 cells, plotted on a linear scale	2
Figure 2.11b. Measured fluorescence signal vs. time for PCMN-421 (YPet-P2A-ADP) infecting A549 cells, plotted on a semi-log graph. The dashed lines show the fits to the logarithmic growth portion of the curves with a resulting ln-slope of 2.20 days ⁻¹ (+0.20/-0.23)	2
Figure 2.12. Measured fluorescence signal vs. time for PCMN-871 (mCherry-P2A-ADP) infecting A540 cells. The lower signal levels and higher noise values are a result of the lower quantum efficiency of mCherry compared to YPet. The resulting ln-slope is 2.10 days ⁻¹ 43	3
Figure 2.13. Kinetics comparison of viruses with fluorophores expressed coincident with ADP	3
Figure 2.14. Kinetics comparison between wt Ad5 and ONYX-015, an Ad5 virus deleted for expression of E1B-55k44	4
Figure 2.15. Kinetics comparison between wt Ad5deleted for all E3 genes except ADP	4
Table 2.1. Common fluorophores and their properties 44	5
Table 2.2. Viruses with various fluorophore insertions infecting A549 cells. Expression levels are relative to CMBT-403 set to 10,000. The ln-slope value for viru kinetics is the exponential growth factor determined by fitting to a semi-log plot of fluorescence vs. time. Viruses labeled "failed" could not be produced in 293 cells40	ıs 6
Figure 3.1. Map of the ORFs for the E3 regions of the subgroups of human Ad. The ORF homologous to E3-14.7k is highlighted for each subgroup	9
Figure 3.2. Nomenclature used to describe Ad serotypes and chimeras. This example represents Ad5 virus with an Ad34 knob	9
Figure 3.3a. Kinetics curves for Ad 5/5/5 (wt), Ad3 3/3/3 (wt), Ad5 5/5/3, and Ad5 5/3/3 in A549 cells	0
Figure 3.3b. Kinetics curves for Ad 5/5/5 (wt), Ad9 9/9/9 (wt), Ad5 5/5/9, and Ad5 5/9/9 in A549 cells	0
Figure 3.3c. Kinetics curves for Ad 5/5/5 (wt), Ad34 34/34/34 (wt), Ad5 5/5/34, and Ad5 5/34/34 in A549 cells	1

Figure 3.3d. Kinetics curves for Ad 5/5/5 (wt), Ad3 3/3/3 (wt), Ad3 3/3/5, and

Ad3 3/5/5 in A549 cells61
Figure 3.3e. Kinetics curves for Ad 5/5/5 (wt), Ad9 9/9/9 (wt), Ad9 9/9/5, and Ad9 9/5/5 in A549 cells
Figure 3.3f. Kinetics curves for Ad 5/5/5 (wt), Ad34 34/34/34 (wt), Ad34 34/34/5, and Ad34 34/5/5 in A549 cells
Figure 3.4. The calculated ln-slopes for each serotype and chimera in A549 cells. Note the surprising result that wt Ad34 is slightly faster than wt Ad5 and the Ad34 34/5/5 chimera is significantly faster than wt Ad5, even though Ad5 has natural tropism for lung tissue and Ad34 tropism is for renal cells
Figure 3.5. The fibes for each of the Ad3, Ad5, Ad9, and Ad34 serotypes. Listed are the amino acid count for the tail, shaft, and knob portions of each fiber. The tails and knobs are all nearly identical in size, but the length of each shaft, as inferred by AA count, is significantly different
Figure 3.6. Kinetics curves for Ad5 wt (Ad5 5/5/5, PCMN-887) when infecting PC3 cells without any media exchange
Figure 3.7. Kinetics curves for Ad5 wt (Ad5 5/5/5, PCMN-887) when infecting PC3 cells with 50% volume media exchange every 24 hours. Note the stall in fluorescence growth near the end of each 24 period with rapid increase following media exchange (red and black curves)
Figure 3.8. Kinetics curves for Ad5 wt (Ad5 5/5/5, PCMN-887) when infecting PC3 cells with 50% volume media exchange every 12 hours. Note the lack of stall in fluorescence signal growth, as well as clear evidence of virus replication
Figure 3.9. Measured ln-slope values for all serotypes and chimeras when infecting PC3 cells with 50% volume exchange every 12 hours. Note the significant improvement in replication kinetics when the Ad5 core and shaft is paired with Ad34 knob (Ad5 5/5/34)
Figure 3.10a. Comparison of kinetics for wt Ad3, Ad5, Ad9, and Ad3467
Figure 3.10b. Comparison of kinetics for wt Ad5 and the knob-only chimeras with Ad5 core
Figure 3.10c. Comparison of kinetics for wt Ad5 and the knob-and-shaft chimeras with Ad5 core

Figure 3.10d. Comparison of kinetics for wt Ad5, wt Ad3, knob-only, and

knob-and-shaft chimeras with Ad3 core
Figure 3.10e. Comparison of kinetics for wt Ad5, wt Ad9, knob-only, and knob-and-shaft chimeras with Ad9 core
Figure 3.10f. Comparison of kinetics for wt Ad5, wt Ad34, knob-only, and knob-and-shaft chimeras with Ad34 core
Table 3.1. Human Ad serotypes ordered by subgroup A through G, listing known receptors and tropism. .70
Table 3.2. Knob-only chimeras. 71
Table 3.3. Shaft/Knob chimeras
Figure 4.1. Schematic representation of the TSTA system
Figure 4.2. Schematic representation of the Tet-On, Tet-Off, and TetR systems93
Figure 4.3. Measured replication kinetics of virus constructs with Tet-On gene placed in the E3B region of Ad5 genome
Figure 4.4. Measured replication kinetics comparison between wildtype, E3B deletion, and E3A and E3B deletions
Figure 4.5. Schematic representation of Tet-On gene placed in the E3 region. The E3B poly-A normally used for the deleted RID α , RID β , and 14.7k ORFs is retained and used for the Tet-On gene. The promoter driving the Tet-On ORF is either E2F1, CMV, or EF1 α
Figure 4.6a. Measured YPet fluorescence versus time for wildtype background95
Figure 4.6b. Measured YPet fluorescence versus time for construct with E2F1 promoter driving Tet-On ORF located in the E3B region
Figure 4.6c. Measured YPet fluorescence versus time for construct with CMV promoter driving Tet-On ORF located in the E3B region
Figure 4.7. Ad5 genome with MLT highlighted with a blue arrow. The E3A region falls within this transcript
Figure 4.8. The Ad5 transcripts shown with blue arrows and the three possible locations for placing an exogenous gene shown with red dash lines

Figure 4.9. Canonical poly-A sequence as described by reference 40 and the overlapping L5 poly-A and E4 poly-A sequences of wildtype Ad5
Figure 4.10. Schematic of additional SV40 poly-A sequence, creating location for addition of exogenous gene
Figure 4.11. Measured replication kinetics of virus constructs with Tet-On gene placed between the L5 and E4 regions
Figure 4.12. The Ad5 genome with all 9 known promoters highlighted in red99
Figure 4.13. Measured virus replication kinetics for wt Ad5 vs. a Ad5 construct with the E1A promoter replaced by the TRE3G promoter (Tet-On is driven by CMV)
Figure 4.14. Figure 4.14. Measured replication kinetics for constructs with the E2 early promoter replaced by TRE3G. The Tet-On transcription factor is driven by E2F1, CMV, or EF1 α
Figure 4.15. Measured replication kinetics for constructs with the E4 promoter replaced by TRE3G. The Tet-On transcription factor is driven by E2F1, CMV, or EF1 α
Figure 4.16. Cell viability assay results (upper left), schematic diagram (upper right), and kinetics curves +/-Dox (lower left and right) for virus with Endoprotease placed under direct control of the TRE3G promoter102
Figure 4.17. Cell viability assay results (upper left), schematic diagram (upper right), and kinetics curves +/-Dox (lower left and right) for virus with DBP placed under direct control of the TRE3G promoter
Figure 4.18. Measured YPet expression driven by PSES, PrMin, or CMV promoter upon infection with MOI=10 for cell lines LNCaP, PC3, A549, and A549p53KO. LNCaP and A549 are p53 ^{+/+} . PC3 and A539p53KO are p53 ^{-/-} 104
Table 4.1. Prostate-specific promoters and payloads for non-replicating Ad vectors
Table 4.2. Examples of TSTA system used for prostate-selective expression of target gene 105
Table 4.3. Prostate-specific promoters and Ad promoter replaced to impart prostate-only selectivity 106

Figure 5.1. Cell viability assay results (upper left), schematic diagram (upper right), and kinetics curves +/- Dox (lower left and right) for virus with DBP placed under direct control of CMV-Tet-O promoter. The TetR protein is driven by the CMV promoter
Figure 5.2. A side-by-side comparison of the Tet-On and TetR systems used to control Ad5 replication
Figure 5.3. Measured YPet fluorescence produced by PrMin::YPet plasmid transfected into A549 and A549p53KO cells. Also shown is the measured mCherry fluorescence produced by a co-transfected CMV::mCherry plasmid
Figure 5.4. Measured YPet fluorescence produced by sensor viruses infecting A549 and A549p53KO cell lines. The black lines represent data for virus with wt E1B-55k and red lines represent data for virus with Δ E1B-55k
Figure 5.5. Measured replication kinetics for sensor viruses with wt E1B-55k and Δ E1B-55k, when infecting A549 and A549p53Ko cell lines
Figure 5.6. Measured p53 transcriptional activity (YPet signal) vs. virus replication kinetics for sensor viruses when infecting A549 cells. Each virus has the following E1B-55k mutations: wt, full deletion, H260A, and R240A
Figure 5.7. Schematic for p53-selective, negative control of Ad5 replication. The E1B-55k protein is kept at wt, completed deleted, or contains an H260A or R240A mutation. Testing is done in TP53 ^{+/+} or TP53 ^{-/-} cell lines
Figure 5.8. Measured cell viability 8.3 days post infection in A540 and A540p53KO cells infected with p53-selective viruses containing various mutations in E1B-55k
Figure 5.9. Comparison of cell viability between [R240A] virus shown with solid lines and that of wt E1B-55k virus in p53KO cells and Δ E1B-55k virus in A549 cells shown with dashed lines. The collapse of the solid line compared to the dashed lines is the sacrifice made in the differential when using an imperfect version of E1B-55k125
Figure 6.1. Detail map of the Ad5 genome. The green bars along the axis are splice sites. The blue bars along the axis are miscellaneous features such as TAT boxes, Initiator Element sites, packaging sequences, and ITRS
Table 6.1. References used to annotate features in the Ad5 genome

ACKNOWLEDGEMENTS

I would like to thank Clodagh O'Shea for the fortune of joining her lab and having her as my thesis advisor. She has created an environment of scientific freedom and opportunity limited only by one's willingness to pursue a path of investigation. I am also thankful for the welcoming support of all the O'Shea lab members, with particular thanks to Colin Powers, Shigeki Miyaki-Stoner, and Horng Ou. Colin and Shigeki taught me all I know about cloning and virus work and Horng taught me how to get along with Clodagh.

Randy Hampton made this chosen path possible for me by providing sage advice when we first met and he heard of my crazy idea to switch from engineering to biology at such an advanced age. My friends and colleagues from Cymer Inc. have also facilitated this transition by providing tremendous encouragement. Most notably, Bob Akins, CEO of Cymer Inc., made my departure seem like a natural and expected transition.

And finally, I thank my wife, Rae Ann. She never once questioned my decision to work toward a PhD in biology. She has provided me with both the material and emotional support to pursue this goal. Without her by my side, this five year journey would not have been possible.

Chapter 2, in part is currently being prepared for submission for publication of the material. Partlo William; O'Shea Clodagh. The dissertation author was the primary investigator and author of this material.

xii

VITA

EDUCATION:

University of California San Diego, La Jolla, CA PhD in Biology. 2018.

University of California, Berkeley PhD in Electrical Engineering, January 1992.

University of California, Berkeley MS in Electrical Engineering, May 1989.

University of Wisconsin, Madison BS in Electrical Engineering, May 1987.

ABSTRACT OF THE DISSERTATION

Engineered Adenovirus for Selective Replication in Tumors and Druggable Control of

Virus Progression

by

William N. Partlo

Doctor of Philosophy in Biology University of California San Diego 2018

Professor Clodagh C. O'Shea, Chair

The oncolytic Adenovirus has shown promise as a cancer treatment and is under development in numerous laboratories. Two important requirements of an oncolytic Adenovirus are safety and effectivity. These requirements translate to selectivity against replication in normal cells and potent replication in tumor cells. Often, potency is sacrificed for selectivity, resulting in limited clinical effectivity. The work described in this dissertation attempts to engineer an oncolytic Adenovirus with selectivity based on an arbitrary transcription factor while maintaining wildtype or near-wildtype replication kinetics in the targeted cell type. The example transcription factor used in this work is p53. A significant percentage of all tumors have been found to be p53-null, while all normal cells are p53-positive. An oncolytic Adenovirus based on the p53 status would thus be a powerful clinical tool.

Development of a robust method for assessing Adenovirus replication kinetics is described. This method employs a genetic modification to the Adenovirus genome such that each infected cell is forced to express a fluorophore. This fluorophore expression is monitored over time to create an exponential growth curve as the virus passes through its initial lifecycle and produces secondary and tertiary infections. With this fluorescencebased viral kinetics assay, the replication kinetics of any Adenovirus type infecting any cell type can be quantified.

A selectively replicating Adenovirus was created by placing a single, critical Adenovirus ORF under control of the Two Step Transcriptional Activation (TSTA) system. For a positively regulated virus, the TSTA system is used with a selective, but weak promoter driving expression of the Tet-On transcriptional activation factor and the Tet-Response Element (TRE) promoter driving expression of the chosen Adenovirus ORF. For a negatively-regulated virus, Tet-On is replaced with the TetR transcriptional repressor while the TRE promoter is replaced with the CMV-Tet-O promoter, subject to repression by TetR.

Negative selectivity based on transcriptional activity of p53 is demonstrated with approximately 100X differential between $p53^{+/+}$ and $p53^{-/-}$ cell lines.

XV

CHAPTER ONE:

Historical Methods for Imparting Selectivity in Oncolytic Adenovirus Constructs

Introduction

As this thesis was being written, the latest cancer statistics for the US were published¹. This data is summarized in fig. 1.1a for females and fig. 1.1b for males, taken from reference 1. These curves engender many explanations for their trends. For example, lung cancer death rates peaked and began to fall coincident with the rate of smoking in males and females. Breast, colon, and prostate cancer death rates fell as a result of early screening. Even stomach cancer death rates fell early in the 20th century due to improved water and food purity. None of these trends were the result of any dramatic new cancer treatment.

So why the enormous effort currently expended on development of cancer treatments in thousands of laboratories around the world? Because it is expected that these trend lines will not all intersect zero, and even if they did the crossing point would occur more than 50 years from now if the present slopes remained constant. Additionally, there are many cancers shown in these figures that exhibit no decreasing trend at all and few with a troubling rise, however so slight.

Since cancer is a multifaceted disease², clinics need a large and varied set of tools to address the full spectrum of cancer types presented by their patients. The O'shea lab has chosen to develop oncolytic adenoviruses as a cancer treatment because the molecular program of the adenovirus has been found to closely match that of a broad spectrum of cancer types^{3,4}.

Like any other cancer treatment, success of oncolytic adenoviruses can be judged on two major features; safety and efficacy. The safety aspect of oncolytic adenoviruses is

addressed by engineering the adenovirus to be selective for tumor cells vs. normal cells. Efficacy can be addressed in several ways; greater potency via enhanced replication rate, greater cell killing via bystander effect, or improved activation of the immune system. Immune activation by oncolytic adenoviruses has become a hotly pursued goal just in the last few years. At the start of the work on this dissertation in 2013, there was little talk of activating the immune system via oncolytic viruses as a cancer treatment. But, now in 2018, there are few treatments that do not somehow include an immune activation component. This radical shift in approach is due to the success of anti-PD-1/PD-L1⁵ and anti-CTLA-4⁶ antibodies as well as the FDA approval of T-VEC⁷, an oncolytic cancer treatment based on the HSV-1 herpes virus with immune system activation as its proposed mechanism of action.

Oncolytic Adenovirus Selectivity

In the oncolytic adenovirus field, selectivity and safety are often considered the same. If a virus can be made selective for only tumor cells, then an enhanced safety profile is expected. The literature describes two general approaches for engineering selectivity into an oncolytic adenovirus; deletions or mutations of endogenous Ad genes, or replacing one or more endogenous Ad promoters with tumor selective promoters.

Adenovirus Deletions/Mutations to Achieve Tumor Selectivity

The E1B-55k protein, produced by the Ad during the early phase of its lifecycle, is known to mediate degradation of $p53^8$. It was thought that deletion of E1B-55k from the

Ad genome would render it selective for replication only in cells lacking a transcriptionally active p53 protein^{9,10}. Unfortunately, this predicted dependence was not born out^{11,12}.

The E1A protein, the earliest protein expressed during the Ad lifecycle, is responsible for binding to and degrading the retinoblastoma (Rb) protein, thus preventing Rb from performing its repressive function on E2F-activated genes¹³. This binding is mediated by two conserved regions, CR1 and CR2. Mutations or deletions to the CR2 region have been used to impart selectivity between actively dividing cells and quiescent cells^{14,15}. And combined mutations or deletions to both CR1 and CR2 have been employed¹⁶.

Once Rb repression is eliminated another Ad protein, E4-ORF6/7, performs the function of stabilizing the E2F/DP1 dimer responsible for driving expression of E2F-activated genes¹⁷. By combining the E1A CR2 deletion with complete deletion of E4-ORF6/7, greater differential between tumor and normal cells has been demonstrated¹⁸.

Rather than engineer mutations *a priori*, some researchers have used directed evolution to produce an oncolytic adenovirus with desired properties. The authors of reference 19 mixed multiple serotypes in a dish of colon cancer cells, allowing crossserotype genome mixing. After multiple passages on the colon cancer cells, candidate viruses were then screened for differential replication between colon cancer cells and normal epithelial cells. The candidate with highest potency in colon cancer cells and greatest differential for normal epithelial cells was sequenced and found to be a complex combination of Ad3 and Ad11 serotypes. No explanation is given for the reported selectivity.

Replacement of Endogenous Ad Promoters with Tumor-Specific Promoters

One disadvantage of the mutation/deletion method is that selectivity choices are limited to pathways involved in the Ad lifecycle. If a chosen cancer pathway is not part of the Ad lifecycle, then no amount of Ad genome mutations would render the Ad virus selective in replication based on this pathway. To address this limitation, many researchers have replaced endogenous Ad promoters with tumor specific promoters in an effort to impart selectivity between tumor cells and normal cells.

An early example of this type of oncolytic virus construct is described in reference 20. In this construct, the E1A promoter was replaced with the α -feto-protein gene promoter found to be highly expressed in 70-80% of hepatocellular carcinoma cancers, but not in normal adults. Other tumor-specific promoters have been used to replace the E1A promoter, such as the E2F promoter^{21, 22} selective for rapidly dividing cells, and the secretory leukoprotease inhibitor (SLPI) promoter²³ found to be highly expressed in a broad range of human carcinomas.

Dissatisfied with the level of selectivity afforded by replacing a single Ad promoter, researchers have also replaced two endogenous Ad promoters with a tumorspecific promoter. Reference 24 describes replacing both the E1A and E4 promoters with the E2F-1 promoter. The E1A and E1B promoters have also been replaced with tumorspecific promoters, as described in reference 25.

Modifications to Enhance Oncolytic Virus Potency

A general problem found in the literature referenced in the proceeding paragraphs is a loss of potency in exchange for selectivity. To address this decrease in virus potency, researchers have made additional changes to the Ad genome either to increase the viral replication rate or to increase the level of cell killing.

Researchers have found mutations that shorten the time between initial cellular entry and progeny virion release. One example mutation is a truncation in the E3-19K protein such that its endoplasmic reticulum retention signal is lost, leading to insertion into the plasma membrane, production of a viroporin-like function, and early virion release²⁶. Another example is loss of all E3 genes except the Adenovirus Death Protein (ADP), resulting in increased expression of ADP and early virion release¹⁶.

Viruses in the class of increased cell killing fall into two categories; those that produce a toxin directly and those that express an enzyme that converts a prodrug into a toxin. Examples of toxins directly expressed by an oncolytic Ad are hyaluronidase²⁷ and onconase²⁸. Examples of enzymes that convert a prodrug into a toxin are HSV-1 thymidine kinase²⁹ and cytosine deaminase³⁰. The produg for both of these examples is 5-fluorocytosine.

Immune Activation by Oncolytic Ad

As mentioned in the introduction, immune activation has become a hot topic in oncolytic virus development just in the last few years. The idea is simple, viral infection of a tumor strongly activates the immune system facilitating discovery of tumor neoantigens and expansion of T-cells specific to these neoantigens. By this mechanism

distant metastases are eliminated by activated T-cells rather than the administered oncolytic virus.

Though adenovirus infection is known to be highly immunogenic³¹, the region around a tumor is often in a state of immunological anergy³². Thus, arming the virus with an immune stimulating gene is thought to be necessary for achieving greatest effect. Examples of immune stimulating payloads described in the literature are; granulocyte macrophage-colony-stimulating factor (GM-CSF)³³⁻³⁹, IL-12³⁸, Bispecific T-cell Engager (BiTE)⁴⁰, OX40 ligand⁴¹, and anti-PD-1 antibody⁴².

The challenge with development of immune stimulating payloads placed in a human oncolytic adenovirus is testing in a non-human model. Human Ad does not replicate in mice⁴³, so the many murine models of cancer are ill-suited for testing human, replication-competent, oncolytic Ad.

Conclusions

Tremendous progress has been made in the development of oncolytic adenovirus agents. The negative cost in replication kinetics as a result of changes made for selectivity are now better understood and appreciated. Mechanisms for enhancing potency beyond improved replication kinetics have been developed and tested. And a multitude of immune stimulating payloads have been suggested, with some currently in human clinical trials^{34,39}. The remaining chapters of this dissertation will describe work toward an oncolytic adenovirus with selectivity based on the presence or absence of an arbitrary transcription

factor. Emphasis is placed on maintaining wildtype or near-wildtype replication kinetics while imparting selective replication control.

Figures

Figure 1.1a. Trends in cancer death rates for females in the US since 1930. Graph taken from reference 1.

Figure 1.1b. Trends in cancer death rates for males in the US since 1930. Graph taken from reference 1.

References

1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2018. Cancer J. for Clin. 2018; 68(1):7-30.

2. Friedman A. Cancer is a Multifaceted Disease. Math. Model. Nat. Phenom. 2012; 7(1):3-28.

3. O'Shea CC. Viruses: tools for tumor target discovery, and agents for oncolytic therapies – an introduction. Oncogene 2005; 24: 7636-7639.

4. O'shea CC. Viruses – seeking and destroying the tumor program. Oncogene 2005; 24:7640-7655.

5. Chen L and Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J. of Clin. Inv. 2015; 125(9):3384-3391.

6. Lipson EJ and Drake CG. Ipilimumab: An Anti-CTLA-4 Antibody for Metastatic Melanoma. Clin. Cancer Res. 2011; 17(22):6958-6962.

7. Rehman H, Silk AW, Kane MP, and Kaufman HL. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J. for Immunotheraphy of Cancer 2016; 4(53):1-8.

8. Yew PR and Berk AJ. Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 1992; 357:82-85.

9. Bischoff JR, Kim DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, and McCormick F. An Adenovirus Mutant That Replicates Selectively in p53-Deficient Human Tumor Cells. Science 1996; 274(5286):373-376.

10. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, and Kirn D. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat. Med. 1997; 3(6):639-645.

11. Goodrum FD and Ornelles DA. p53 Status Does Not Determine Outcome of E1B 55-Kilodalton Mutant Adenovirus Lytic Infection. J. Virol. 1998; 72(12):9479-9490.

12. O'Shea CC, Hohnson L, Bagus B, Choi S, Nicholas C, Shen A, Boyle L, Pandey K, Soria C, Junich J, Shen Y, Habets G, Ginzinger D, McCormick F. late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 2004; 6:611-623.

13. Knipe DN and Howley PM (2013). Fields Virology. Philadelphia, PA: Lippincott Williams and Wilkins.

14. Fueyo J, Gomez-Manzano C, Alemany R. Lee P, McDonell TJ, Mitlianga P, Shi YX, Yung WKA, and Kyritsis AP. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect *in vivo*. Oncogene 2000; 19:2-12.

15. Heise C, Hermiston T, Johnson L, Gabriel B, Sampson-Johnannesd , Williams A, Hawkins L, and Kirn D. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat. Med. 2000; 6(10):1134-1139

16. Doronin K, Toth K, Kuppuswy M, Ward P, Tollefson AE, and Wold WM. Tumor-Specific, Replication-Competent Adenovirus Vectors Overexpressing the Adenovirus Death Protein. J. Vir. 2000; 74(13):6147-6155.

17. Neill SD and Nevins JR. Genetic Analysis of the Adenovirus E4 6/7 *trans* Activator: Interaction with the E2F and Induction of a Stable DNA-Protein Complex Are Critical for Activity. J. Vir. 1991; 65(10):5364-5373.

18. Miyake-Stoner S. Engineering tumor-specific oncolytic adenoviruses with small molecule-controlled expanded tropisms. Dissertation, University of California, San Diego. 2017.

19. Kuhn I, Harden P, Bauzon M, Chartier C, Nye J, Thorne S, Reid T, Ni S, Lieber A, Fisher K, Seymour L, Rubanyi G, Harkins R, and Hermiston T. Directed Evolution Generates a Novel Oncolytic Virus for the Treatment of Colon Cancer. PLOS One 2008; 3(6):2409-2419.

20. Hallendbeck PL, Chang YN, Hay C, Golightly D, Stewart D, Lin J, Phipps S, and Chiang YL. A Novel Tumor-Specific Replication-Restricted Adenoviral Vector for Gene Therapy of Heptocellular Carcinmoa. Human Gene Ther. 1999; 10:1721-1733.

21. Johnson L, Shen A, Boyle L, Kunich J, Pandey K, Lemmon M, Hermiston T, Giedlin M, McCormick F, and Fattaey A. Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. Cancer Cell 2002; 1:325-337.

22. Jakubezak JL, Ryan P, Gorziglia M, Clarke L, Hawkins LK, Hay C, Huang Y, Kaloss M, Marinov A, Phipps S, Pinkstaff A, Shirley P, Skripchenko Y, Stewart D, Forry-Schaudiesd S, Hallenbeck PL. An Oncolytic Adenovirus Selective for Retinoblastoma Tumor Suppressor Protein Pathway-defective Tumors: Dependence on E1A, the E2F-1 Promoter, and Viral Replication for Selectivity and Efficacy. Cancer Res. 2003; 63:14909-1499.

23. Rein DT, Breidenbach M, Curiel DT. Current developments in adenovirus-based cancer gene therapy. Future Oncol. 2006; 2(1):137-143.

24. Hoffman D, Meyer B, and Wildner O. Improved glioblastoma treatment with Ad5/35 fiber chimeric conditionally replicating adenoviruses. J. of Gene Med. 2007; 9:764-778.

25. Yu DC, Chen Y, Seng M, Dilley J, Henderson DR. The Addition of Adenovirus Type 5 Region E3 Enables Calydon Virus 787 to Elimiate Distant Prostate Tunmoer Xenografts. Cancer Res. 1999; 59:4200-4203.

26. Gros A, Martinez-Quintanilla J, Puiq C, Guedan S, Mollevi DG, Alemany R, and Cascallo M. Bioselection of a Gain of Function Mutation that Enhances Adenovirus 5 Release and Improves Its Antitumoral Potency. Cancer Res. 2008; 68(21):8928-8937.

27. Rodriguez-Garcia A, Gimenez-Alejandre M, Rojas JJ, Moreno R, Bazan-Peregrio M, Cascallo M, and Alemany R. Safety and Efficacy of VCN-01, an Oncolytic Adenovirus Combining Fiber HSG-Binding Domain Replacement with RGD and Hyaluronidase Expression. Clin. Cacner Res. 2015; 21(6):1406-1418.

28. Fernandez-Ulibarri I, Hammer K, Arndt MAE, Kaufmann JK, Dorer D, Engelhardt S, Kontermann RE, Hess J, Allgayer H, Krauss J, and Nettelbeck DM. Genetic delivery of an immunoRNase by an oncolytic adenovirus enhances anticancer activity. Int. J. Cancer 2014; 126:2228-2240.

29. Fretag SO, Rogulski KR, Paielli DL, Gilbert JD, and Kim JH. A Novel Three-Pronged Approach to Kill Cancer Cells Selectively: Concomitant Viral, Double Suicide Gene, and Radiotherapy. Human Gene Ther. 1998; 9:1323-1333.

30. Furer C and Iggo R. 5-Fluorocytosine increases the toxicity of Wnt-targeting replicating adenoviruses that express cytosine deaminase as a late gene. Gene Ther. 2004; 11:142-151.

31. Bradley RR, Maxfield LF, Lynch DM, Lampietro MJ, Borducchi EN, and Barouch DH. Adenovirus Serotype 5-specific Neutralizing Antibodies Target Multiple Hexon Hypervariable Regions. J. Vir. 2012; 86(2): 1267-1272.

32. Crespo J, Sun H, Welling TH, Tian Z, and Zou W. T cell anergy, exhaustion, senescence and stemness in the tumor microenvironment. Curr. Opin. Immunol. 2013; 25(2):214-221.

33. Ogawa T, Kusumoto M, Mizumoto K, Sato N, Nagai E, Ikubo A, Aoki Y, and Tanaka M. GM-CSF Gene therapy using adenoviral vector in hamster pancreatic cancer. J. of Hepto-Biliary-Pacreatic Surgery 2000; 7(3):306-311.

34. Burke JM, Lamm DL, Meng MV, Nemunatis JJ, Stephenson JJ, Arseneau JC, Aimi J, Lerner S, Yeung AW, Kazarian T, Maslyar DJ, and McKieran JM. A First in Human Phase 1 Study of CG0070, a GM-CSF Expressing Oncolytic Adenovirus, for the Treatment of Nonmuscle Invasive Bladder Cancer. J. Urol. 2012; 188(6):2391-2397.

35. Brammante S, Koski A, Kipar A, Diaconu I, Llikanen I, Hemminki O, Vassilev L, Parviainen S, Cerullo V, Pesonen SK, Oksanen M, Heiskanen R, Rouvinen-Lagerstrom N, Merisalo-Soikkeli M, Hakonen T, Joensuu T, Kanerva A, Pessonen S, and Hemminki A. Serptype chimeric oncolytic adenovirus coding GM-CSF for treatment of sarcoma in rodents and humans. Int. J. of Cancer 2013; 135:720-730.

36. Brammante S. Oncolytic Adenovirus Coding for GM-CSF in Treatment of Cancer. Dissertation, University of Helsinki, Finland. 2015.

37. Xue Q, Li X, Yang C, Ji B, Li Y, and Yan Y. Efficacy of recombinant adenovirus expressing a fusion gene from GM-CSF and Epstein-Barr virus LMP2A in a mouse tumor model. Hum. Vac. and Immunother. 2017; 13(10):2260-2268.

38. Kim W, Seong J, OH HJ, Koom WS, Choi KJ, and Yun CO. A Novel Combination Treatment of Armed Oncolytic Adenovirus Expressing IL-12 and GM-CSF with Radiotherapy in Murine Hepatocarcinoma. J. Radiat. Res. 2011; 52:646-654.

39. Ranki T, Pesonen S, Hemminki A, Partanen K, Kairemo K, Alanko T, Lundin J, Linder N, Turkki R, Ristmaki A, Jager E, Karbach J, Wahle C, Kankainen M, Backman C, von Euler M, Haavisto E, Hakonen T, Heiskanen R, Jaderberg M, Juhila J, Priha P, Suoranta L, Vassilev, Vuolanto A, and Joensuu T. Phase I study of ONCOS-102 for the treatment of solid tumorsa – an evaluation of clinical response and exploratory analyses of immune markers. J. for Immunother. Of Cancer 2016; 4:17-35.

40.. Freedman JD, Hagel J, Scott EM, Psallidas I, Gupta A, Spiers L, Miller P, Kanellakis N, Ashfield R, Fisher KD, Duffy MR, and Seymour LW. Oncolytic adenovirus expressing bispecific antibody targets T-cell cytotoxicity in cancer biopsies. EMBO Mol. Med. 2017; 9(8):1067-1081.

41. Jiang H, Rivera-Molina Y, Gomez-Manzano C, Clise-Dwyer K, Bover L, Vence LM, Yuan Y, Lang FF, Toniatti C, Hossain MB, and Fueyo J. Oncolytic Adenovirus and Tumor-Targeting Immune Modulatory Therapy Improve Autologous Cancer Vaccination. Cancer Res. 2017 77(14):3894-3907.

42. Nolin WB, Ng SC, Dinges JR, and Chan GI. Oncolytic Virus Encoding PD-1 Binding Agents and uses of the same. U.S. Pat Appl. 2015/0250837 A1, filed Sept. 19, 2013.

43. Robinson M, Li B, Ge Y, Ko D, Yendluri S, Harding T, VanRoey M, Spindler KR, and Jooss K. Novel Immunocompetent Murine Tumor Model for Evaluation of Conditionally Replication-Competent (Oncolytic) Murine Adenoviral Vectors. J. Virol. 2009; 83(8):3450-3462.

CHAPTER TWO:

Fluorescence-Based Viral Kinetics Assay

Historical Methods for Measuring Adenovirus Replication Kinetics

Since the overarching goal of this thesis project is to engineer an Adenovirus that exhibits rapid replication in tumor cells but slow or no replication in normal cells, it is important to have an accurate assay for assessing virus replication kinetics.

Historically, the single step growth assay has been employed to compare virus kinetics under different conditions or to compare the kinetics of one virus to another. The single step growth assay was first described by Emory and Delbruck in 1939¹. Their biological model system was a bacteriophage infecting *Escherickia coli*. Though the bacteriophage model is different from that of Adenovirus, the basics of viral lifecycle remains the same: initial particle entry, co-opt host cellular machinery, new particle assembly, and escape via cellular lysis.

In their paper, Emory and Delbruck initially perform a multi-time point measurement of bacteriophage concentration vs. time after initial infection with a low Multiplicity of Infection (MOI). The graph of these results is reproduced in Fig 2.1 (the red text has been added for this dissertation). This dataset was painstaking to produce. Each time point on this graph represents the harvest of infected bacteria followed by a separate plaque assay to determine the concentration of infectious viral particles. Three separate virus lifecycles can be clearly observed, with each successive lifecycle producing approximately the same multiplication in number of virus progeny. After three lifecycles, there is sufficient dephasing such that the clearly observable steps between lifecycles is lost, but the slope of the log-phase growth remains the same.

Based on these results, measurement of a single viral lifecycle was proposed as a method to estimate the log-phase growth of virus under the reasonable assumption that each lifecycle exhibits constant duration and constant multiplication factor.

Single Step Virus Kinetics Assay

In practice, the single step kinetics assay requires that all host cells be infected during initial application of the virus to be tested. This requirement ensures that there are no remaining host cells to take up newly created virus after the first round of the virus life cycle. Upon infecting with a known MOI, and after a period of time equal to the virus life cycle, the host cells and supernatant are harvested and newly-created virions are quantified. The increase in virion count from initial infection to final harvest is considered a measure of virus kinetics.

There are two challenges with using the single step growth curve for assessing virus kinetics. The first challenge is that the full life cycle of the virus is not assayed and the second is the need for an accurate titer for the virus.

With respect to the virus life cycle, cell lysis and secondary infection are not measured in the single step growth assay. Exclusion of cell lysis and secondary infection are known defects in this assay and examples of viruses that perform well in the single step growth assay, but actually have poor kinetics have been described. The most notable example is Ad5 with a deletion of the Adenovirus Death Protein (ADP)². Such Δ ADP viruses exhibit no notable defect in their cell entry, co-option, and assembly steps, but are defective in the cell lysis step. Since the single step growth assay requires harvest of host

cells and artificial lysis to release all newly produced virions this defect is not observed, resulting in an incorrect assessment of replication kinetics close to that of wt virus for these Δ ADP mutants.

Accurate knowledge of the virus titer is critical for producing usable results with the single step growth assay. The titer of the virus to be tested is essential for calculating the conditions of initial infection while the final titer of the virus produced after one life cycle is also required to calculate the multiple of virus expansion. Techniques have been developed for measuring the titer for wt versions of commonly used Ad serotypes such as Ad5, but for engineered versions of Ad5 or for the less common Ad serotypes there are no available techniques that accurately reflect the true concentration of Plaque Forming Units (PFUs).

Commonly used surrogates to infer the PFU concentration are listed below.

- 260nm/280nm absorbance
- qPCR to quantify viral genomes
- ELISA against viral proteins
- Immuno-staining for viral proteins
- Cell viability assay

Each of these measurements have flaws which can lead to inaccurate assessment of viral PFU concentration. The 260nm/280nm absorbance measurement assumes that the sample is pure and has no non-viral proteins or DNA. It also assumes that all measured DNA (via 260nm absorbance) is part of a complete and packaged viral genome. The qPCR measurement also assumes that every DNA fragment detected by the chosen qPCR primers

is part of a complete and packaged viral genome. Neither of these assumptions is true in practice. Performing ELISA against one of more viral proteins requires a virus of known titer to produce a standard curve, as well as the assumption that the test virus produces the same number and type of vial proteins per PFU. Many viruses used within this dissertation are deleted for expression of one or more viral proteins and thus would be "under counted" against a wt standard by the ELISA method. Immuno-staining for viral proteins upon infection at low MOI accurately measures the number of Infectious Units (IU), but does not reflect the number of PFUs. And finally, the cell viability assay attempts to infer PFU concentration based on the virus ability to kill cells. Any virus engineered to exhibit a bystander effect would greatly exaggerate its PFU concentration.

Criteria for Ideal Viral Kinetics Assay

With these challenges and deficiencies in mind, the following is a set of criteria for an idealized viral kinetics assay.

- Applicable to all Ad serotypes
- Usable with any host cell line
- Non-destructive
- High throughput
- Insensitive to initial virus concentration
- Measure entire viral life cycle: initial entry, co-opt cellular machinery, viral particle assembly, cell lysis, and

secondary, and tertiary infections

The reasoning behind most of these criteria should be obvious except possibly for the high throughput requirement. The high throughput requirement is driven by the desire to match the high throughput assembly protocol recently developed in the O'Shea lab³ and described in the chapter 6. This protocol facilitates the rapid assembly of plasmids containing whole Ad genomes by combining four entry vector plasmids via multi-site Gateway cloning⁴, Sequence and Ligation-Independent Cloning (SLIC)⁵ or Gibson cloning⁶. Depending on the choice of cloning method, this protocol is called Adsembly or AdSLIC.

The primary reasoning behind the requirement for insensitivity to an accurately known virus titer is the difficulty of determining the titer for all Ad serotypes, as described in previous paragraphs. A second reason behind the desire for a kinetics assay that is insensitive to initial titer is the desire to skip the entire virus production, purification, and titering steps and simply transfect the whole Ad genome plasmid produced by the Adsembly or AdSLIC protocol directly into the cell type of interest. A typical work-flow for constructing, producing, and testing an engineer Ad virus is shown in fig. 2.2. These steps can be both time consuming and expensive. The initial step of producing the whole Ad genome plasmid is amenable to high throughput techniques, but the production, purification, and testing steps do no scale well when the number of different engineered viruses is large. If, instead, one could simply transfect the whole Ad genome plasmid directly into the cell type of interest and measure the virus kinetics, high throughput screens of randomly or systematically modified Ad viruses would be possible and practical.
Fluorescence-Based Virus Kinetics (FBVK) Assay

One method to determine the kinetics of a virus without knowledge of its initial titer would be to infect the cell type of interest with a low MOI and monitor the number of infected cells over a period of several virus lifecycles, similar to the work of Emory and Delbruck. A semi-log plot of the exponential growth in number of infected cells versus time would yield a straight line proportional to the exponential growth rate. This method essentially reduces viral kinetics measurement to that similar to yeast and bacteria where turbidity of the media is used to infer the number of yeast or bacteria in the culture.

How best to infer the number of virally infected cells? We chose to engineer the virus to force expression of a fluorophore upon infection. Under the assumption that each infected cell produces the same number of fluorophores on average, a simple measurement of fluorescence intensity provides a reading proportional to the number of infected cells. One could also image the cells and count those that are positive for the fluorophore, thus providing an infected cell count, but such a method is not high throughput since we need to make multiple cell count measurements per each Ad life cycle of approximately 48 hours and we wish to simultaneously monitor a large number of virus/cell type conditions.

There are many examples of Ad viruses engineered to express a fluorophore⁷⁻¹¹. A frequently used construct for fluorophore expression within the Ad genome is in fusion with the E1A gene (e.g. E1A-GFP)¹²⁻¹⁷. Based on this body of literature, an Ad5 virus expressing the E1A-GFP fusion was constructed and tested. Fig 2.3 shows the measured fluorescence, both raw and background subtracted, over an 8 day period. These results

were disappointing because the signal-to-background was approximately 1:2 and the signal to noise of about 2. Deriving a reliable exponential growth parameter from this measured data would be problematic.

Though the E1A-GFP fusion has been frequently used in the literature, it has only been used as a marker for individual infected cells during microscopy, not as a means to form an aggregate signal from a mixture of infected and uninfected cells. When imaging, spatial discrimination plays are role in reducing the perceived background level. That is, cells that are GFP-, and the media itself, may still exhibit a low level of auto fluorescence, but since these cells, and media, are spatially removed from the GFP+ cells, so their fluorescence is easily ignored. When using a plate reader to record the total fluorescence from the entire well, no such spatial discrimination is available. Thus, if only a few cells are GFP+ in a large field of GFP- cells, the background fluorescence can exceed that of the signal from the few GFP+ cells. Such is the case for the measurement shown in fig 2.3.

Optimized Conditions for Fluorescence Readout

Faced with the challenge of low signal-to-background when using a plate reader, there are several potential improvements;

- Chose the highest quantum efficiency fluorescent protein
- Optimize the location within the Ad genome for maximum expression
- Modify the media for minimum background fluorescence
- Chose a fluorescent protein with excitation and emission

wavelengths located within a "dark" spectral region of the media

The field of biology has developed a very wide range of fluorescent proteins, covering essentially the full visible spectrum and extending into the UV and IR regions. Table 2.1 lists many of the common fluorescent proteins available along with their spectral properties¹⁸. The fluorescent protein YPet has two advantages over eGFP. The first advantage is higher brightness compared to eGFP by a factor of 2.4X. The second advantage is a shift in the excitation and emission wavelengths into a region of greatly reduced fluorescence from the media. Fig 2.4 shows the measured fluorescence for DMEM media, with and without phenol red, with emission measured at the peak for eGFP (fig 2.4a) and for YPet (fig 2.4b). Switching from eGFP with phenol red-containing media to YPet with phenol red-free media results in a reduction in background of approximately 10X and a signal-to-background improvement of 24X.

Besides optimizing the choice of fluorescent protein, its expression level and stability are also critical for maximizing measured signal. In the E1A-GFP fusion, the expression level of GFP follows that of the Ad E1A gene. In addition, because it is expressed as a fusion product the GFP experiences the same degradation fate as that of E1A. It has been shown that the major splice-forms of E1A are rapidly degraded¹⁹, and thus so too is GFP when in fusion with E1A. In order to separate the fate of the fluorescent protein from that of the co-expressed endogenous Ad protein, we made use of the self-cleaving peptide sequence, P2A, taken from the porcine teschovirus-1^{20,21}. This peptide sequence, when augmented with a leading GSG sequence, can approach a cleavage

efficiency of 90%. Since the cleavage efficiency has been shown to be context dependent, we constructed several viruses to determine the P2A cleavage efficiency at different points in the Ad5 lifecycle. The following virus constructs were made and tested:

CMBT-352: YPet-E1A CMBT-379: YPet-P2A-E1A CMBT-456: E1B-55k-P2A-YPet CMBT-403: YPet-P2A-ADP CMBT-445: Fiber-P2A-YPet CMBT-446: Fiber-GS-P2A-YPet

Note that the GS linker in CMBT-446 contains an additional GSGSGSGSGSGS added to the GSG leading sequence of the P2A sequence.

293-E4 cells were infected with an MOI of 10 and harvested 36 hours post infection. The resulting proteins were probed with antibodies against E1A, E1B-55k, Fiber, and GFP with the results shown in fig 2.5. Fortunately, common antibodies to GFP cross-react to YPet. Little or no E1A is expected at this point in the virus lifecycle, but the E1A-YPet fusion product can be found in both in α -E1A blot and the α -GFP blot. We infer from this result that the E1A-YPet fusion product is more stable than endogenous E1A. A much stronger signal can be found in the α -GFP blot for the YPet-P2A-E1A construct, demonstrating that the P2A cleavage allows the YPet protein to avoid the degradation fate of E1A. Note also the band shift due to the 21 amino acid residue from P2A fused to YPet. When co-expressed with E1B-55k, an early protein, the cleaved fragment (E1-55K-P2A) and the uncleaved fragment (E1B-P2A-YPet) are found in equal abundance on the α-E1B-55K blot, implying a 50% cleavage efficiency. ADP is expressed at both intermediate and late times with an aggregate cleavage efficiency of approximately 70%. Fiber is the last ORF to be expressed during the late period of the virus lifecycle and shows essentially 100% cleavage efficiency. Note the small band shifts in the α-Fiber blot for the Fiber-P2A-YPet and Fiber-GS-P2A-YPet constructs, due to the presence of the 22AA residue for P2A or the 32AA residue for GSGSGSGSGS-P2A.

Comparisons of Fluorophore Placement within the Ad Genome

With the function of P2A demonstrated in the context of Ad infection, the remaining optimization is the choice of genome location for the YPet insertion. Table 2.2 lists the viruses made and tested during this optimization. Two important criteria were assessed; fluorescent protein expression and virus kinetics. The expression levels were measured for an MOI of 15 and each was measured simultaneously with CMBT-403 (YPet-P2A-ADP) as a reference. The virus kinetics were determined by plotting fluorescence vs. time on a semi-log plot and fitting to the logarithmic growth portion of the curve. Fig 2.6 shows the location of these insertions within the Ad5 genome.

The first notable finding from this optimization is that nearly all constructs produce a higher level of fluorescence than that of the E1A-YPet construct. The second finding is that fusion products always lead to reduced kinetics, if not outright failure. All of the fusion products listed on this table exhibit replication kinetics significantly slower than the

fastest of the cleavage products. A virus is considered failed when it does not produce plaques within 10 days after transfection of its genome into HEK293 cells. The transfection is attempted two additional times to avoid a false declaration of failure.

An interesting failure is the ADP-YPet construct. In this case, even adding the selfcleaving P2A sequence, ADP-P2A-YPet, did not rescue this virus. Yet completely deleting the ADP ORF and replacing it with the YPet ORF yields a successful virus, though with reduced kinetics. The ADP is a single transmembrane protein spanning the nuclear membrane with a 41 amino acid c-terminal tail located in the cytoplasm²². The YPet protein contains 239 amino acids, thus we speculate that YPet causes steric interference when fused to the c-terminal of ADP. For the ADP-P2A-YPet construct, a successful cleavage event leaves a 21 amino acid residue on the c-terminal of ADP, yet this much smaller fusion product still causes failure.

Another interesting comparison can be made between viruses of the same design, but assembled in two different ways; Adsembly vs. AdSLIC. As described in reference 3, the Adsembly process constructs a virus from four plasmids using multi-site gateway cloning. This cloning technique is quick, but leaves basepair residues from the recombination sequences at three locations within the Ad genome. The AdSLIC process employs SLIC or Gibson cloning to combine the same four plasmids, and thus does not introduce any extraneous basepairs into the Ad genome. It has been shown that the residues within the Ad genome introduced by the Adsembly process result in reduced virus kinetics²³. All viruses listed on this table, and described elsewhere in this thesis, with a prefix "CMBT" were constructed using the Adsembly process. All viruses with the

"PCMN" prefix were constructed using the AdSLIC process. The following viruses were built using both methods:

> E1A-P2A-YPet (CMBT-432 vs. PCMN950) DBP-P2A-YPet (CMBT-886 vs. PCMN-968) YPet-P2A-ADP (CMBT-403 vs. PCMN-421) E3-14.7k-P2A-YPet (CMBT-890 vs. PCMN-887)

The AdSLIC version of each of these viruses exhibits higher kinetics than its corresponding Adsembly version.

Because of the high fluorescence level and fast kinetics of the YPet-P2A-ADP construct, this readout was chosen for use in the majority of the viruses described in the remaining chapters of this thesis. One exception is the work described in chapter 3. The goal of chapter 3 is to compare the kinetics of several different Ad serotypes and fiber chimeras across a range of different cell types. Because the ADP does not exist in serotypes other than Ad2 and Ad5, we were forced to choose a different readout location.

Plate Reader Instrumentation Optimization

With an optimized virus design chosen, improvements in the instrumentation were then investigated. Three plate readers were characterized, all supplied by TECAN; M200Pro, M200Pro with fat fiber, and M1000Pro. The optical layout of all three models is the same and is shown in Fig 2.7. The difference between these units is mainly in the brightness of the flashlamp and the optical efficiency of the monochrometers and fibers. The M200Pro and M200Pro with fat fiber, differ only in the diameter of the fiber used to transmit light between the monochrometers and the multiwell plate plate.

To compare the noise performance of these tools, a dilution series of fluorescent beads suspended in 0.25% agarose and plated in a 96 well plate was used to produce a range of fluorescence levels. For each dilution, the fluorescence intensity was measured 200 times and the resulting normalized standard deviation calculated. The raw readings for each plate reader is shown in figs 2.8a through 2.8c. At very low fluorescence levels, it is expected that the plate readers will be shot noise limited and thus the standard deviation will scale as inverse square root of the fluorescence signal. This expectation is born out when plotting instrument noise vs. inverse square root of signal level as shown in Fig 2.9. For all fluorescence levels except for the highest values, the instrument noise increases linearly with inverse of square root of signal level, as expected for a shot noise limited system.

Figs 2.8 and 2.9 show that the noise performance of the M1000Pro is superior to that of the M200s, and the fat fiber version of the M200 is superior to that of the standard M200. All three instruments provide temperature control, but only the M200s provide CO₂ and O₂ control. Since one goal of this thesis project is to show differential replication between tumor cells and normal cells, we need O₂ control to maintain the health of the Small Airway Epithelial Cells (SAECs) used as a model for normal cells. This requirement disqualifies the M1000Pro as a choice, so the M200Pro with fat fiber was chosen as the instrument to be used for all remaining measurements described in this thesis.

With the M200Pro gas control, a plate can be left in the plate reader for an extended period allowing multiple reads and thus greater data density than shown in the original experiment of Fig 2.3. Media evaporation over the period of several days is an issue and was addressed by applying a gas permeable moisture barrier seal. Product number 4ti-0516/96, manufactured by 4titude[®], is designed for 96 well plates and is specified to have the following gas permeabilities:

O_2	$150 \text{ cm}^3/(\text{m}^2 \cdot \text{day} \cdot \text{bar})$
N_2	$38 \text{ cm}^3/(\text{m}^2 \cdot \text{day} \cdot \text{bar})$
CO_2	$400 \text{ cm}^3/(\text{m}^2 \cdot \text{day} \cdot \text{bar})$
H ₂ O	1 gm/(m ² ·day)

This low permeability for water vapor results in no measurable fluid loss even after 10 continuous days in the plate reader.

Detailed Assay Description

A typical assay setup is shown in Fig 2.10. A 96 well plate is seeded with the cell type of interest in all wells except for the upper right four wells. The two upper right most wells are filled with fluorescent beads suspended in 0.25% agarose and are used as a normalization constant in case of plater reader sensitivity drift. The next two wells in the same row are left empty to be used for background subtraction in a terminal WST-1 cell viability assay performed at the end of the FBVK assay. The lowest four wells in this last column are seeded with cells but given only a mock infection, and used for background subtraction.

The remaining 11 columns of wells are infected with virus using a dilution series starting with an MOI of 15 and decreasing in steps of 3X. The use of this dilution series has several advantages. To calculate an accurate ln-slope of the virus kinetics, the initial infection of a well must be limited to allow virus exponential expansion. Depending on the virus and cell type combination, different levels of MOI achieve the desired level of initial infection. Several MOIs of this dilution series almost always result in the desired level of initial infection, producing kinetics curves amenable to fitting. A second feature of this dilution series is that the higher MOI values, principally the MOI=15, lead to infection of all cells during the initial infection. Under this condition we can measure the resulting single step kinetics curve described earlier in this chapter. And finally, the lowest MOI values lead to essentially single viral particle infections. Using a cell count of 50,000 cells per well, and assuming Poison statistics for virus uptake per well, the three lowest MOI values lead to the following cells with 0, 1, or 2 virions:

MOI	0 Virions	<u>1 virion</u>	2 virions
0.062	47,090	2,825	85
0.021	49,015	975	10
0.0069	46,666	333	1

Figs 2.11a and 2.11b show the measured results when applying all of the improvements described in the preceding paragraphs. The signal-to-background is now 50:1 and the signal-to-noise is approximately 2000:1.

To demonstrate that these exponential growth values are not specific to the choice of fluorescent protein, PCMN-871 was constructed to express mCherry-P2A-ADP instead of YPet-P2A-ADP. The measured fluorescence vs. time for this virus is shown in Fig 2.12. The difference in the ln-slope values between PCMN-421 of 2.20 (+0.20/-0.23) and PCMN-871 of 2.10 (+0.08/-0.06) are not considered significant. The major reason for lower signal level for PCMN-871 is the reduced quantum efficiency of mCherry compared to YPet. The quantum efficiency of mCherry is only 20% of that for YPet. A second reason for the reduced signal level is lower responsivity of the plate reader's photocathode to the red-shifted fluorescence of mCherry.

Example Results

An excellent example of a potential false result produced by the single step viral kinetics assay is a comparison of viruses with deleted or mutated ADP. Fig 2.13 shows the measured fluorescence curves for the following viruses: YPet-P2A-ADP, Δ ADP[YPet], and YPet-GS-ADP. Two additional viruses were constructed but could not be produced: ADP-GS-YPet and ADP-P2A-YPet. The kinetic slopes for these two failures is declared as zero.

Based on the curves shown in Fig 2.13, if a 48 hour single step kinetics assay were used to compare YPet-P2A-ADP against Δ ADP[YPet], one would conclude that the Δ ADP virus exhibits equal or better replication kinetics compared to that of wt virus. This conclusion is based on the higher late protein expression levels for Δ ADP at 48 hours post infection compared to that of wt virus. But, a fit to the log-phase growth portion of the curves clearly shows a dramatic defect in virus kinetics for the Δ ADP virus. These results fit well with what is known about the biology of the ADP protein²⁴. The ADP protein is

expressed during the late stage of viral infection and is required for efficient cell lysis and release of viral progeny. A defect in this protein, or its absence would not impact the expression levels of late proteins, but would negatively impact the ability of the virus to produce secondary and tertiary infections, thus slowing its kinetics.

A clinical example of kinetics comparison is shown in Fig 2.14, wt Ad5 virus vs. ONYX-015. ONYX-015²⁵ is an Ad5 virus with a deletion in E1B-55k expression. Deletion of E1B-55k is an attempt to render this virus selective for tumor cells lacking p53 transcriptional activity based on the knowledge that E1B-55k was responsible for degrading p53. This virus is an approved treatment for head and neck cancers in China, but shows limited effectivity. The dramatically reduced kinetics of this virus, as compared to wt, could explain the poor clinical results obtained with this virus

As a final example, Fig 2.15 shows a comparison between wt Ad5 and an Ad5 virus deleted for expression of all of the E3 genes except ADP (Δ E3-12.5k, Δ E3-6.7k, Δ E3-19k, Δ E3-RID α , Δ E3-RID β , Δ E3-14.7k). The explanation for the significantly faster kinetics of the E3-deleted virus is unknown at this time. This result is included as an example of a virus engineered to be faster than wildtype and may have clinical applications as a more potent oncolytic.

Conclusions

The development of the FBVK assay allows us to compare the kinetics between different viruses and across a variety of conditions and cell types. For much of the work described in following chapters, the ln-slope produced by the FBVK assay will be used to

determine if an engineered virus exhibits its intended design characteristic. Where it be differential replication between normal and tumor cells, improved replication within a targeted cell type, or replication controlled by the application of a drug, the FBVK can give insight into the successes and failures of these virus designs.

Chapter 2, in part is currently being prepared for submission for publication of the material. Partlo, William; O'Shea Clodagh. The dissertation author was the primary investigator and author of this material.

Figures and Tables

A diluted phage preparation was mixed with a suspension of bacteria containing 2×10^8 organisms per cc., and diluted after 3 minutes 1 to 50 in broth. At this time about 70 per cent of the phage had become attached to bacteria. The total number of infective centers was determined at intervals on samples of this growth mixture. Three such experiments, done on different days, are plotted in this figure. The same curve was easily reproducible with all phage preparations stored under proper conditions.

Figure 2.1. Plot of bacteriophage concentration vs. time at initial infection with low MOI. Plot reproduced from reference 1.

Figure 2.2. Typical workflow for construction, production, and testing of an engineered Adenovirus

Figure 2.3. Measured Fluorescence vs. time from Ad5 with E1A-GFP fusion.

Figure 2.4a. Measured fluorescence spectrum for DMEM media at eGFP emission peak.

Figure 2.4b. Measured fluorescence spectrum for DMEM media at YPet emission peak.

Figure 2.5. The cleavage efficiency of the self-cleaving peptide sequence, P2A, is context dependent. The cleavage efficiency is approximately 50% early in the virus lifecycle (E1B-55k-P2A-YPet), but is essentially 100% for mRNAs expressed late in the virus lifecycle (Fiber-P2A-YPet).

Figure 2.6. Graphical representation of the fluorophore insertion locations within the Ad5 genome.

Figure 2.7. Optical layout of TECAN plate readers (figure taken from Infinite M1000Pro users manual).

Figure 2.8. Measured fluorescence intensity for a dilution series of fluorescent beads suspended in agarose. 200 measurements made for each fluorescent bead dilution. Plate reader type: a) M200Pro, b) M200Pro with fat fiber, C) M1000Pro.

Figure 2.9. Normalized standard deviation of measured fluorescence intensity vs. square root of measured fluorescence for each instrument.

Figure 2.10. Layout for FVBK assay. 11 different viruses can be monitored on a single 96 well plate. The 12th column of wells is used for normalization constant, empty wells for later WST-1 cell viability assay, and Mock infected wells for background subtraction.

Figure 2.11a. Measured fluorescence signal vs. time for PMCN-421 (YPet-P2A-ADP) infecting A549 cells, plotted on a linear scale.

Figure 2.11b. Same data as shown in Fig 2.10a, but plotted on a semi-log graph for PCMNA-421 (YPet-P2A-ADP). The dashed lines show the fits to the logarithmic growth portion of the curves with a resulting ln-slope of 2.20 days⁻¹ (+0.20/-0.23)

Figure 2.12. Measured fluorescence signal vs. time for PMCN-871 (mCherry-P2A-ADP) infecting A549 cells. The lower signal levels and higher noise values are a result of the lower quantum efficiency of mCherry compared to YPet. The resulting ln-slope is 2.10 days⁻¹ (+0.08/-0.06).

Figure 2.13. Kinetics comparison of viruses with fluorophores expressed coincident with ADP.

Figure 2.14. Kinetics comparison between wt Ad5 and ONYX-015, an Ad5 virus deleted for expression of E1B-55.

Figure 2.15 Kinetics comparison between wt Ad5 and Ad5 deleted for all E3 genes except ADP.

Protein (Acronym)	Ex (nm)	Em (nm)	EC x 10 ⁻³	QY	<i>in vivo</i> Structure	Relative Brightness (% of EGFP)	References
Blue Fluorescent Proteins							
EBFP	383	445	29.0	0.31	Monomer*	27	Patterson, et al., 1997
Sapphire	399	511	29.0	0.64	Monomer*	55	Zapata-Hommer, et al., 2003
T-Sapphire	399	511	44.0	0.60	Monomer*	79	Zapata-Hommer, et al., 2003
Cyan Fluorescent Pro	teins						
ECFP	439	476	32.5	0.40	Monomer*	39	Cubitt, et al., 1995
mCFP	433	475	32.5	0.40	Monomer	39	Zacharias, et al., 2002
Cerulean	433	475	43.0	0.62	Monomer*	79	Rizzo, et al., 2004
CyPet	435	477	35.0	0.51	Monomer*	53	Nguyen and Daugherty, 2005
AmCyan1	458	489	44.0	0.24	Tetramer	31	Matz, et al., 1999
Midoriishi Cyan	472	495	27.3	0.90	Dimer	73	Karasawa, et al., 2004
Green Fluorescent Pr	oteins						
EGFP	484	507	56.0	0.60	Monomer*	100	Heim, et al., 1995
aceGFP	480	505	50.0	0.55	Monomer*	82	Gurskaya, et al., 2003
TurboGFP	482	502	70.0	0.53	Monomer*	110	Shagin, et al., 2004
Emerald	487	509	57.5	0.68	Monomer*	116	Cubitt, et al., 1999
Azami Green	492	505	55.0	0.74	Monomer	121	Karasawa, et al., 2003
ZsGreen	493	505	43.0	0.91	Tetramer	117	Matz, <i>et al</i> , 1999
Yellow Fluorescent P	rotein	s					
EYFP	514	527	83.4	0.61	Monomer*	151	Miyawaki, <i>et al.</i> , 1999
Topaz	514	527	94.5	0.60	Monomer*	169	Tsien, 1998
Venus	515	528	92.2	0.57	Monomer*	156	Nagai, et al., 2002
mCitrine	516	529	77.0	0.76	Monomer	174	Griesbeck, et al., 2001
YPet	517	530	104	0.77	Monomer*	238	Nguyen and Daugherty, 2005
PhiYFP	525	537	124	0.39	Monomer*	144	Shagin, et al., 2004
ZsYellow1	529	539	20.2	0.42	Tetramer	25	Matz. <i>et al.</i> , 1999
mBanana	540	553	6.00	0.70	Monomer	13	Shaner, et al., 2004
Orange and Red Fluo	rescer	nt Pro	teins				
Kusabira Orange	548	559	51.6	0.60	Monomer	92	Karasawa <i>et al</i> 2004
mOrange	548	562	71.0	0.69	Monomer	146	Shaper <i>et al</i> 2004
dTomato	554	581	69.0	0.69	Dimer	142	Shaner, et al. 2004
dTomato-Tandem	554	581	138	0.69	Monomer	283	Shaner, et al. 2004
DsRed	558	583	75.0	0.79	Tetramer	176	Matz <i>et al</i> 1999
DsRed?	563	582	43.8	0.55	Tetramer	72	Bevis and Glick 2002
DsRed-Express (T1)	555	584	38.0	0.55	Tetramer	58	Bevis and Glick, 2002
DsRed-Monomer	556	586	35.0	0.10	Monomer	10	Clontech 2005
tangerine	568	585	38.0	0.30	Monomer	34	Shaper <i>et al.</i> 2004
mStrawberry	574	596	90.0	0.29	Monomer	78	Shaner, et al. 2004
AsRed?	576	592	56.2	0.05	Tetramer	8	Matz at al 1999
mREP1	584	607	50.2	0.05	Monomer	37	Campbell <i>et al</i> 2002
IRed	584	610	44.0	0.20	Dimer	26	Shagin <i>et al</i> 2004
mCherry	587	610	72.0	0.20	Monomer	47	Shaper et al 2004
HcRed1	588	618	20.0	0.015	Dimer	/	Gurskava et al 2001
mRaspherry	500	625	20.0	0.015	Monomor	1 20	Wang at $al = 2004$
HcRed-Tandam	590	627	160	0.15	Monomer	10	Fradkov <i>et al.</i> 2002
mDhum	590	640	41.0	0.04	Monomor	19	Wang at z^{1} 2004
	590	655	41.0	0.10	Totromor	12	Shkrab <i>et al.</i> , 2004
AQ143	595	622	90.0	0.04	Tetramer	11	Shkrob, et al., 2005

Table 2.1. Common fluorophores and their properties (taken from ref. 18)

Table 2.2. Viruses with various fluorophore inserts infecting A549 cells. Expression levels are relative to CMBT-403 set to 10,000. The ln-slope value for virus kinetics is the exponential growth factor determined by fitting to a semi-log plot of fluorescence vs. time. Viruses labeled as "failed" could not be produced in 293 cells.

Virus		Expression	
Number	Insertion	Level	Ln-slope (days ⁻¹)
CMBT-352	YPet-E1A	100	0.67 (+0.13/-0.13)
CMBT-379	YPet-P2A-E1A	1000	1.30 (+0.24/-0.23)
CMBT-1058	E1A-YPet	100	1.46 (+0.23/-0.30)
CMBT-432	E1A-P2A-YPet	600	1.82 (+0.18/-0.18)
PCMN-950	E1A-P2A-YPet	500	2.12 (+0.12/-0.15)
CMBT-456	E1B-55k-P2A-YPet	400	1.72 (+0.22/-0.11)
CMBT-590	YPet-DNA Polymerase	Failed	
CMBT-530	YPet-P2A-DNA Polymerase	350	1.82 (+0.39/-0.37)
CMBT-886	DBP-P2A-YPet	4,000	1.54 (+0.09/-0.10)
PCMN-968	DBP-P2A-YPet	4,000	1.68 (+0.30/-0.21)
CMBT-934	YPet-ADP	7,000	0.36 (+0.25/-0.13)
CMBT-403	YPet-P2A-ADP	10,000	1.75 (+0.11/-0.12)
PCMN-421	YPet-P2A-ADP	10,000	2.20 (+0.20/-0.25)
CMBT-1190	ADP-YPet	Failed	
CMBT-429	ADP-P2A-YPet	Failed	
CMBT-930	$\Delta ADP[YPet]$	90,000	0.64 (+0.10/-0.09)
CMBT-890	E3-14.7k-P2A-YPet	150,000	0.97 (+0.08/-0.08)
PCMN-887	E3-14.7k-P2A-YPet	150,000	1.27 (+0.12/-0.06)
CMBT-457	YPet-P2A-E4-ORF2	Failed	
CMBT-900	E4-ORF3-P2A-YPet	1,200	0.63 (+09/-0.05)
CMBT-899	YPet-pVII	Failed	
CMBT-893	pVII-YPet	100	No Replication in A549
CMBT-847	Hexon-P2A-YPet	Failed	
CMBT-863	YPet-P2A-Hexon	Failed	
CMBT-534	pVIII-P2A-YPet	800	2.00 (+0.40/-0.32)
CMBT-873	YPet-P2A-pVIII	Failed	
CMBT-407	YPet-P2A-Fiber	Failed	
CMBT-938	Fiber-YPet	Failed	
CMBT-445	Fiber-P2A-YPet	50,000	0.34 (+0.05/-0.04)

References

1. Emory LL and Delbruck M. The Growth of Bacteriophage. J. Gen. Physiol. 1939; 22(3): 365-384.

2. Tollefson AE, Scaria A, Hermiston TW, Ryserse JS, Wold LJ, and Wold WS. The Adenovirus Death Protein (E3-11.6k) Is Required at Very Late Stages of Infection for Efficient Cell Lysis and Release of Adenovirus from Infected Cells. J. Virol. 1996; 70(4): 2296-2306.

3. O'Shea C and Powers C. Adenoviral Assembly Method. U.S. Pat 9,217,160 B2, filed Feb. 15, 2013, and issued Dec. 22, 2015.

4. Hartley JL, Temple GF, and Brasch MA. DNA Cloning Using In Vitro Site-Specific Recombination. Genome Res. 2000; 10:1788-1795.

5. Li MZ and Elledge SJ. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods 2007; 4(3): 251-256.

6. Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA, and Smith HO. Complete Cheical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome. Science 2008; 319(5897):1215-1210.

7. Hidetaka AO, Le LP, Davydova JG, Gavrikova T, and Yamamoto M. Noninvasive Visualization of Adenovirus Replication with a Fluorescent Report in the E3 Region. Cancer Res. 2005; 65(22): 10154-10158.

8. Chaudhuri TR, Mountz JM, Rogers BE, Partridge EE, Zinn KR. Light-based Imaging of Green Fluorescent Protein-Positive Ovarian Cancer Xenografts during Therapy. Gynecol. Oncol. 2001; 82; 581-589.

9. Meulenbroek RA, Sargent KL, Lunde J, Jasmon BJ, and Parks RJ. Use of adenovirus protein IX 9PIX) to display large polypepetides on the virion – generation of fluorescent virus through the incorporation of pIX-GFP. Mol. Ther. 2004; 9(4): 617-624.

10. Le LP, Le HN, Nelson AR, Matthews DA, Yamamoto M, and Curiel DT. Core labeling of adenovirus with EGFP. Virology 2006; 351(2): 291-302.

11. Kahraman S, Dirice E, Sanlioglu AD, Yoldas B, Bagci H, Erkilic M, Griffith TS, Sanlioglu S. *In Vivo* Fluorescence Imaging is Well-Suited for the Monitoring of

Adenovirus Directed Transgene Expression in Living Organisms. Mol. Imaging Biol. 2009; 12: 279-285.

12. Pelka P, Miller MS, Cecchinit M, Yousef AF, Bowdish DM, Dick F, Whyte P, Mymruk JS. Adenovirus E1A Directly Targets the E2F/DP-1 Complex. J. Virol. 2011; 85(17): 8841-8851.

13. Miller MS, Pelka P, Fonseca GJ, Cohen MJ, Kelly JN, Barr SD, Grand RJ, Turnell AS, Whyte P, Mymryk JS. Characterization of the 55-Residue Prtoein Encoded by the 9S E1A mRNA of Species C Adenovirus. J. Virol. 2012; 86(8): 4222-4233.

14. McNees AL, Mahr JA, Ornelles D, Gooding LR. Postinternalization Inhibition of Adenovirus Gene Expression and Infectious Virus Production in Human T-Cell Lines. J. Virol. 2004; 78(13); 6955-6966.

15. Davis JJ, Wang L, Dong F, Zhang L, Guo W, Teraishi F, Xu K, Ji L, and Fang B. Oncolysis and Suppression of Tumor Growth by a GFP-Expressing Oncolytic Adenovirus Controlled by an hTERT and CMV Hvbrid Promoter. Cancer Gene Ther. 2006; 13(7): 720-723.

16. James KM. The Interaction of the Human Adenovirus E1A Protein with the Human DREF Transcription Factor. Dissertation, The University of Western Ontario. 2013.

17. Mei YpF, Wu H, Hultenby K, Silver J. Complete replication-competent adenovirus 11p vectors with E1 or E3 insertions show improved heat stability. Virology. 2016; 497:198-210.

18. Olenych SG, Claxton NS, Ottenberg GK, Davidson MW. The Fluorescent Protein Color Palette. Curr. Protoc. Cell Biol. 2007; 21:21.5.

19. Isobe T, Uchiba C, Hattori T, Kitagawa K, Oda T, and Kitagawa M. Ubiquitindependent degradation of adenovirus E1A protein is inhibited by BS69. Biochem Biophys Res Comm. 2006; 339:357-374.

20. Kim JH, Lee SR, Li LH, park HJ, Park JH, Lee KY, Kim MK, Shin BA, and Choi SY. High Cleavage Efficiency of a 2A Peptide Derived from the Porcine Teschovirus-1 in Human Cell Lines, Zebrafish and Mice. PLOS One. 2011; 6(4):1-8.

21. Funston GM, Kallioinen SE, Felipe P, Ryan MD, and Iggo RD. Expression of heterologous genes in oncolytic adenoviruses using picornaviral 2A sequences that trigger ribosome skipping. J. Gen. Virol. 2008; 89:389-396.

22. Hausmann J, Ortmann D, Witt E, Veir M, and Seidel W. Adenovirus Death Protein, a Transmembrane Protein Encoded in the E3 Region, Is Palmitoylated at the Cytoplasmic Tail. Virol. 1998; 244:343-351.

23. Powers C. Unpublished data. 2013.

24. Tollefson AE, Scaria A, Hermiston TW, Ryserse JS, Wold LJ, and Wold WS. The Adenovirus Death Protein (E3-11.6k) Is Required at Very Late Stages of Infection for Efficient Cell Lysis and Release of Adenovirus from Infected Cells. J. Virol. 1996; 20(4):2296-2306.

25. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, and Kirn D. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat. Med. 1997; 3(6):639-645.

CHAPTER THREE:

Kinetics Comparison Between Ad3, Ad5, Ad9, and Ad34 Serotypes and their Fiber

and Shaft Chimeras

Adenovirus Tropism

An important condition for a potent oncolytic Ad is to match the tropism of the virus to that of the cell type or tissue of interest. For example, an oncolytic based on the human Ad9 serotype, with ocular tropism, would not be expected to exhibit fast replication in a prostate tumor. Each serotype for the human adenovirus has evolved molecular characteristics that make it best suited for replication in a subset of tissue types. These characteristics include initial binding affinity, cell entry, and coopting host cellular machinery. There is an extensive body of literature describing genetic modifications to the Ad fiber in order to change or broaden the range of cell types with which the fiber knob binds with high initial binding affinity¹⁻²⁴. Much modifications include replacement of the fiber knob, and/or shaft and knob, with one from an alternate serotype, insertion of a heterologous peptide sequence to a capsid protein. All of these genetic modifications lead to a fully assembled virion that presents a binding surface with different, and hopefully, higher affinity for a targeted cellular receptor.

The motivations behind the extensive pervious work on modifying Ad tropism are two-fold. The first is to engineer a virus with highly specific tropism for a selected tissue type or tumor type. Such selectivity should increase the safety profile of any treatment using this virus since off-target viral entry would be minimized. The second motivation for modifying Ad tropism is to achieve pan-tropic properties of an Ad virus. Such a virus could then be used to treat a variety of tumor or tissue types without the need for genetic

re-engineering. It is the search for pan-tropic performance that leads us to investigate Ad serotypes beyond just Ad5.

The 57 known serotypes of Adenovirus provide us with a rich and diverse set of components from which to choose. Table 3.1 shows these serotypes arranged into 8 subgroups, along with the proposed tropism for each subgroup²⁵.

Replication Competent Virus vs. Vector

The majority of the work cited in references 1-24 involve Ad vectors rather than replication competent viruses. Due to the lack of replication in the target cell for a vector, there is no method, nor any need, to measure the replication kinetics of such modified viruses. One can imagine a modification that leads to highly efficient target cell entry, but causes very slow new virion assembly. Such a virus would work fine as a vector, but not as a replicating oncolytic virus. Because this thesis project is focused on replicating viruses, rather than on vectors, impacts to the full lifecycle of the virus must be assessed when judging the performance of a modified virus inside a target cell type. The Fluorescence-Based Viral Kinetics (FBVK) assay described in chapter 2 was developed to address the need for comparing kinetics across a range of Ad serotypes and within a variety of cell types.

Kinetics Testing Across Serotypes and Chimeras

Table 3.1 lists the human Ads collected by subgroup, showing their known receptors and tropism. We made the assumption that Ad serotypes within a subgroup have

similar characteristics and thus we chose a sample from four major subgroups as representative examples for study.

Subgroup	<u>Serotype</u>
B1	Ad3
B2	Ad34
С	Ad5
D	Ad9

We also constructed fiber and fiber/shaft chimeric viruses as listed in tables 3.2 and 3.3. The nomenclature used to describe these serotypes and chimeras is detailed in Fig 3.2. For example, Ad5 5/5/5 represents wildtype Ad5 and Ad5 5/5/34 represents Ad5 with an Ad34 knob.

With these serotypes and chimeras in mind, the challenge is to choose a location for the fluorophore that can be common to all constructs. As shown in chapter 2, the YPet-P2A-ADP construct exhibits high signal level and fast virus replication when inserted into the Ad5 genome. Unfortunately, serotypes other than Ad2 and Ad5 do not possess an equivalent ORF to ADP. It has been shown that the E3 genes of all serotypes are dispensable in tissue culture²⁶, so we restricted our choices of fluorophore location to the E3 ORFs. Fig 3.1 shows maps of the ORFs for each Ad subgroup²⁷. Homology analysis shows that only one ORF is common to all of the subgroups, E3-14.7k. This ORF is highlighted in red. Besides its existence in all subgroups, E3-14.7k has the advantage that it is located at the very end of the E3 region and nearly at the end of the Major Late Transcript. Fusing a fluorophore to the c-terminus of this ORF is expected to be least likely to impact the splicing program for all ORFs upstream. All of the serotypes and chimeras listed in tables 3.2 and 3.3 include an E3-14.7k-P2A-YPet readout (or equivalent for Ad3, Ad9, and Ad34 cores).

Each of these constructs was initially tested in A549 cells (lung adenocarcinoma), with the kinetics curves shown in Figs 3.3a-3.3f. Dashed lines on each graph show the best fits to the ln-phase growth portion of each curve. The resulting ln-slope values are summarized in Fig 3.4. It was surprising to find that wt Ad34 exhibits equivalent, or slightly better, kinetics compared to wt Ad5. Ad5 is thought to have natural tropism for lung tissue, while renal tissue is the proposed natural host for Ad34. But, the even greater surprise was the significantly faster kinetics for the Ad34 34/5/5 chimera, but not the Ad34 34/34/5 chimera. The difference between these two chimeric viruses is the choice of shaft. Use of the Ad5 shaft in this chimeric virus leads to a significant enhancement in replication kinetics.

To help understand possible reasons for this shaft-dependent improvement, Fig 3.5 schematically shows the fibers for each of the four serotypes used in this study. Though the tail and knob portions of each fiber are nearly identical in size, based on amino acid count, each shaft differs considerably in length. The Ad5 shaft is approximately 4 times longer than that of the Ad34 shaft. Our results corroborate findings already in the literature. For example, Wu et. al.²⁸ studied the transduction efficiency of chimeric viruses based on Ad5 and Ad37 in A549 cells. Their results show that the transduction efficiency with (Ad5 shaft + Ad5 knob) was almost 7 times higher than that of (Ad37 shaft + Ad5

knob). The Ad37 shaft consists of 138 AAs, and thus is slightly longer than the Ad34 shaft with 88 AAs, but still significantly shorter than the Ad5 shaft with 354 AAs.

Virus Replication Kinetics in PC3 Cells

As noted in the introduction of this chapter, these serotypes and chimeras where constructed in order to test their kinetics in cell types to be used in the development of the positively-regulated virus described in chapter 4. Because the chosen target organ for the positively-regulated virus is the prostate, we measured the kinetics of all serotypes and chimeras when infecting PC3 cells. The PC3 cell line is a canonical prostrate cell line used in prostate cancer research. PC3 cells do not require androgen signaling to initiate cell growth and multiplication. We will use this cell line as a negative control for viruses engineered to replicate in the presence of prostate-specific antigen promoter activation.

Upon infecting with the matrix of serotypes and chimeras, we found no evidence of replication for any of the viruses. Fig 3.6 shows an example of the kinetics curves for ad5 wt (Ad5 5/5/5, PCMN-887) using the same conditions as those for the A549 infections. Each dilution reached a maximum fluorescence signal after 2-3 days and remained constant for rest for the assay. These curves look just like those for a replication-defective virus. These results do not match those from the literature showing replication of Ad5 wt, and its chimeras, in PC3 cells²⁹⁻³¹. In previous work we found that periodic media exchange was required to maintain the host cells in a state able to support virus replication. To test if periodic media exchange was required for PC3 cells, we repeated the infections but this time performed a 50% volume media exchange every 24 hours, with the results

shown in Fig 3.7. We found that with this rate of media exchange, the fluorescence growth stalled near the end of each 24 hour period and rapidly increased upon media exchange. Under these media exchange conditions, there is some evidence of virus replication, but at a very slow rate.

The stall in fluorescence growth near the end of each 24 period gave us a hint that something within the media was becoming exhausted or saturated, and each media exchange returned conditions back to those supportive of virus replication. Based on these curves, we hypothesized that a more frequent media exchange rate would ameliorate the media exhaustion. To that end, we repeated the infections again, but this time with 50% volume media exchange every 12 hours, with the results shown in Fig 3.8. The curves now show no stall in fluorescence signal growth and there is clear evidence of virus replication.

With the media exchange conditions addressed, a comparison between all the serotypes and chimeras was made, as shown in Fig 3.9. The chimeric virus, Ad5 5/5/34, shows significantly better kinetics than wt Ad5 and would be the logical choice for a starting baseline for a prostate-specific positively-controlled oncolytic virus.

Virus Replication Kinetics in a Variety of Tissue Types

We can apply this matrix of serotypes and chimeras to any cell time amendable to standard tissue culture techniques. Figs 3.10a-3.10f show the measured ln-slops for all the serotypes and chimeras when infecting cell lines representing seven different tumor types. Among the wt viruses, Ad5 shows the greatest consistency in replication kinetics across
this varied list of cell types, with Ad34 a close second. We were surprised to find that the wt versions of Ad3 and Ad9 do not exhibit notably high kinetics in any of the cell types tested. The tropism for Ad3 listed in table 3.1 includes respiratory, yet Ad3 performs poorly in A549 cells (lung adenocarcinoma). Ocular tropism is listed for both Ad3 and Ad9, so testing a cell type taken from the eye might lead to better performance.

When the Ad5 core is used in a knob-only chimera (Fig 3.10b), it can be made essentially pan-tropic when paired with the Ad34 knob. The Ad34 knob is thought to bind to the CD46 receptor and CD46 is expressed on all nucleated cells³². Besides its nearubiquitous expression, the CD46 receptor has been found to be upregulated in certain cancers as a means to avoid the complement system³³. These aspects of CD46 and the Ad34 knob, when combined with the Ad5 core, make it a promising choice as an oncolytic virus.

Except for the anomalously fast kinetics of Ad34 34/5/5 in A549 cells (Fig 3.10f), none of the other serotype cores, alone, or when combined with the Ad5 knob or Ad5 shaft and knob show improvement over wt Ad5 in any of the seven cell lines tested. This high effectivity of the Ad5 core may explain its dominant seroprevalence (table 3.1).

Conclusion

As a starting point for development of a pan-tropic oncolytic virus, the Ad5 5/5/34 chimera exhibits the desired properties. This demonstrates highly efficient entry in a broad range of tumor cell types and replicates well after initial entry.

It is interesting that several of the serotypes tested never show best kinetics in any of the example cell lines tested. One would have thought that superior performance of each serotype would follow each of their published tropism. The fallacy with this assumption is that the published tropisms for many of the Ad serotypes are simply the first organ from which an isolate is obtained. First discovery of a serotype in an organ, possibly under unusual circumstances, does not necessarily dictate that the discovered serotype is optimized for said organ and is superior to all other known serotypes.

Figures and Tables

Figure 3.1. Maps of the ORFs for the E3 regions of the subgroups of human Ad, taken from reference 27. The ORF homologous to E3-14.7k is highlighted for each subgroup.

Figure 3.2. Nomenclature used to describe Ad serotypes and chimeras. This example represents an Ad5 virus with an Ad34 knob.

Figure 3.3a. Kinetics curves for Ad5 5/5/5 (wt), Ad3 3/3/3 (wt), Ad5 5/5/3, and Ad5 5/3/3 in A549 cells.

Figure 3.3b. Kinetics curves for Ad5 5/5/5 (wt), Ad9 9/9/9 (wt), Ad5 5/5/9, and Ad5 5/9/9 in A549 cells.

Figure 3.3c. Kinetics curves for Ad5 5/5/5 (wt), Ad34 34/34/34 (wt), Ad5/5/34, and Ad5 5/34/34 in A549 cells.

Figure 3.3d. Kinetics curves for Ad5 5/5/5 (wt), Ad3 3/3/3 (wt), Ad3 3/3/5, and Ad3 3/5/5 (data not available) in A549 cells.

Figure 3.3e. Kinetics curves for Ad5 5/5/5 (wt), Ad9 9/9/9 (wt), Ad9 9/9/5 (data not available), and Ad9 9/5/5 (data not available) in A549 cells.

Figure 3.3f. Kinetics curves for Ad5 5/5/5 (wt), Ad34 34/34/34 (wt), Ad34 34/34/5, and Ad34 34/34/5 in A549 cells. Note the significantly faster kinetics for Ad34 34/5/5 compared to all others.

Figure 3.4. The calculated ln-slopes for each serotype and chimera in A549 cells. Note the surprising result that wt Ad34 is slightly faster than wt Ad5 and the Ad34 34/5/5 chimera is significantly faster than wt Ad5, even though Ad5 has natural tropism for lung tissue and Ad34 has tropism for renal cells.

Figure 3.5. The fibers for each of the Ad3, Ad5, Ad9, and Ad34 serotypes. Listed are the amino acid count for the tail, shaft, and knob portions of each fiber. The tails and knobs are all nearly identical in size, but the length of each shaft, as inferred by AA count, is significantly different. The shaft length ratios are as follows: Ad5/Ad3 = 4.1X, Ad5/Ad9 = 2.6X, and Ad5/Ad34 = 4.0X.

Figure 3.6. Kinetics curves for Ad5 wt (Ad5 5/5/5, PCMN-887) when infecting PC3 cells without any media exchange.

Figure 3.7. Kinetics curves for Ad5 wt (Ad5 5/5/5, PCMN-887) when infecting PC3 cells with 50% volume media exchange every 24 hours. Note the stall in fluorescence growth near the end of each 24 hour period with rapid increase following media exchange (red and black curves).

Figure 3.8. Kinetics curves for Ad5 wt (Ad5 5/5/5, PCMN-887) when infecting PC3 cells with 50% volume media exchange every 12 hours. Note the lack of stall in fluorescence signal growth, as well as clear evidence of virus replication.

Figure 3.9. Measured ln-slope values for all serotypes and chimeras when infecting PC3 cells with 50% volume media exchange every 12 hours. Note the significant improvement in replication kinetics when the Ad5 core and shaft is paired with the Ad34 knob (Ad5 5/5/34).

Figure 3.10a. Comparison of kinetics for wt Ad3, Ad5, Ad9, and Ad34.

Figure 3.10b. Comparison of kinetics for wt Ad5 and the knob-only chimeras with Ad5 core.

Figure 3.10c. Comparison of kinetics for wt Ad5 and the knob-and-shaft chimeras with Ad5 core.

Figure 3.10d. Comparison of kinetics for wt Ad5, wt Ad3, knob-only, and knob-and-shaft chimeras with Ad3 core.

Figure 3.10e. Comparison of kinetics for wt Ad5, wt Ad9, knob-only, and knob-and-shaft chimeras with Ad9 core.

Figure 3.10f. Comparison of kinetics for wt Ad5, wt Ad34, knob-only, and knob-and-shaft chimeras with Ad34 core.

Species	Serotype	Receptor(s)	Tropism:	Seroprevalence (%)	Fibre shaft repeats
A	12, 18, 31	CAR, fIX, fX	Cryptic (enteric, respiratory)	35–70	23
B1	3, 7, 16, 21, 50	CD46, 'X', fX CD80, CD86	Respiratory, ocular	2–15 (Ad16, 21, 50) 35–70 (Ad3, 7)	6
B2	11, 14, 34, 35	CD46, 'X', fX CD80, CD86	Renal, ocular, respiratory	1–3 (Ad11, 34, 35) 18 (Ad14)	6
С	1, 2, 5, 6	CAR, fIX, fX, Lf, DPPC, VCAM-1, HS, MHC1-α2	Respiratory, ocular lymphoid	40-80	22
D	8-10, 13, 15, 17 19, 20, 22-30, 32, 33, 36-39, 42-49, 51	SA, CD46, CAR fx	Ocular (enteric)	3-44	8
E	4	CAR	Ocular, respiratory	45	12
F	40, 41	CAR	Enteric	41 (together)*	12 (short fibre) and 21/22 (long fibre)
G	52	ND	Enteric	ND	9 or 17

Table 3.1. Human Ad serotypes ordered by subgroup A through G, listing knownreceptors and tropism. Reproduced from reference 25.

ND: not determined.

*Serotypes 40 and 41 are very closely related antigenically.

		Knob Donor					
		Ad5	Ad3	Ad9	Ad34		
Core Donor	Ad5	PCMN-887 Core: Ad5 Fiber Tail: Ad5 Fiber Shaft: Ad5 Fiber Knob: Ad5 Ad5 5/5/5	PCMN-962 Core: Ad5 Fiber Tail: Ad5 Fiber Shaft: Ad5 Fiber Knob: Ad3 Ad5 5/5/3	PCMN-963 Core: Ad5 Fiber Tail: Ad5 Fiber Shaft: Ad5 Fiber Knob: Ad9 Ad5 5/5/9	PCMN-964 Core: Ad5 Fiber Tail: Ad5 Fiber Shaft: Ad5 Fiber Knob: Ad34 Ad5 5/5/34		
	Ad3	PCMN-965 Core: Ad3 Fiber Tail: Ad3 Fiber Shaft: Ad3 Fiber Knob: Ad5 Ad3 3/3/5	PCMN-946 Core: Ad3 Fiber Tail: Ad3 Fiber Shaft: Ad3 Fiber Knob: Ad3 Ad3 3/3/3				
	Ad9	PCMN-966 Core: Ad9 Fiber Tail: Ad9 Fiber Shaft: Ad9 Fiber Knob: Ad5 Ad9 9/9/5		PCMN-888 Core: Ad9 Fiber Tail: Ad9 Fiber Shaft: Ad9 Fiber Knob: Ad9 Ad9 9/9/9			
	Ad34	PCMN-967 Core: Ad34 Fiber Tail: Ad34 Fiber Shaft: Ad34 Fiber Knob: Ad5 Ad34 34/34/5			PCMN-889 Core: Ad34 Fiber Tail: Ad34 Fiber Shaft: Ad34 Fiber Knob: Ad34 Ad34 34/34/34		

Table 3.2. Knob-only chimeras

Table 3.3. Shaft/Knob chimeras.

		Shaft/Knob Donor				
		Ad5	Ad3	Ad9	Ad34	
Core Donor	Ad5	PCMN-887 Core: Ad5 Fiber Tail: Ad5 Fiber Shaft: Ad5 Fiber Knob: Ad5 Ad5 5/5/5	PCMN-949 Core: Ad5 Fiber Tail: Ad5 Fiber Shaft: Ad3 Fiber Knob: Ad3 Ad5 5/3/3	PCMN-920 Core: Ad5 Fiber Tail: Ad5 Fiber Shaft: Ad9 Fiber Knob: Ad9 Ad5 5/9/9	PCMN-921 Core: Ad5 Fiber Tail: Ad5 Fiber Shaft: Ad34 Fiber Knob: Ad34 Ad5 5/34/34	
	Ad3	PCMN-951 Core: Ad3 Fiber Tail: Ad3 Fiber Shaft: Ad5 Fiber Knob: Ad5 Ad3 3/5/5	PCMN-946 Core: Ad3 Fiber Tail: Ad3 Fiber Shaft: Ad3 Fiber Knob: Ad3 Ad3 3/3/3			
	Ad9	PCMN-952 Core: Ad9 Fiber Tail: Ad9 Fiber Shaft: Ad5 Fiber Knob: Ad5 Ad9 9/5/5		PCMN-888 Core: Ad9 Fiber Tail: Ad9 Fiber Shaft: Ad9 Fiber Knob: Ad9 Ad9 9/9/9		
	Ad34	PCMN-953 Core: Ad34 Fiber Tail: Ad34 Fiber Shaft: Ad5 Fiber Knob: Ad5 Ad34 34/5/5			PCMN-889 Core: Ad34 Fiber Tail: Ad34 Fiber Shaft: Ad34 Fiber Knob: Ad34 Ad34 34/34/34	

References

1. Bayo-Puxan N, Gimenez-Alejandre M, Lavilla-Alonso S, Gros A, Cascallo M, Hemminki A, and Alemany R. Replacement of Adenovirus Type 5 Fiber Shaft Heparan Sulfate Proteoglycan-Binding Domain with RGD for Improved Tumor Infectivity and Targeting. Hum. Gene Ther. 2009; 20:1214-1221.

2. Belousova N, Krendelchtchikova V, Curiel DT, and Krasnykh V. Modulation of Adenovirus Vector Tropism via Incorporation of Polypeptide Ligands into the Fiber Protein. J. Virol. 2002; 76(17):8621-8631.

3. Denby L, Work LM, Graham D, Hsu C, Von Seggern DJ, Nicklin SA, and Baker AH. Adenoviral Serotype 5 Vectors Pseudotyped with Fibers from Subgroup D Show Modified Tropism *In Vitro* and *In Vivo*. Hum. Gene Ther. 2004; 15:1054-1064.

4. Diaconu L, Denby L, Pesonen S, Cerullo V, Bauerschmitz GJ, Guse K, Rajecki M, Dias JD, Taari K, Kanerva A, Baker AH, and Hemminki A. Serotype Chimeric and Fiber-Mutated Adenovirus Ad5/19p-HIT for Targeting Renal Cancer and Untargeting the Liver. Hum. Gene Ther. 2009; 20:611-620.

5. Dmitriev I, Kashentsenva E, Rogers BE, Krasnykh V, and Curiel DT. Ectodomain of Coxsackievirus and Adenovirus Receptor Genetically Fused to Epidermal Growth Factor Mediates Adenovirus Targeting to Epidermal Growth Factor Receptor-Positive Cells. J. Virol. 2000; 74(15):6875-6884.

6. Dmitriev IP, Kashentseva EA, and Curiel DT. Engineering of Adenovirus Vectors Containing Heterologous Peptide Sequences int the C Terminus of Capsid Protein IX. J. Virol. 2002; 76(14):6893-6899.

7. Drouin M, Cayer MP, and Jung D. Adenovirus 5 chimeric adenovirus 5/F35 employ distinct B-lymphocyte intracellular trafficking routes that are independent of their cognate cell surface receptor. Virology 2010; 401:305-313.

8. Harden P, Hermiston T, and Kuhn I. Chimeric Adenoviruses for use in Cancer Treatment. U.S. Pat 9,234,185 B2, filed Aug. 20, 2014, and issued Jan. 12, 2016.

9. Havenga MJE, Lemckert AAC, Ophorst OJAE, van Meijer M, Germeraad WTV, Grimbergen J, van den Doel MA, Vogels R, van Deutekom J, Janson AAM, de Bruijn JD, Uytdehaag F, Quax PHA, Logtenberg T, Mehtali M, and Bout A. Exploiting the Natural Diversity in Adenovirus Tropism for Therapy and Prevention of Disease. J. Virol. 2002; 76(9):4612-4620.

10. Hoffman D, Meyer B, and Wildner O. Improved glioblastoma treatment with Ad5/35 fiber chimeric conditionally replicating adenoviruses. J. Gene Med. 2007; 9:764-778.

11. Illingworth S, Di Y, Bauzon M, Lei J, Duffy MR, Alvis S, Champion B, Lieber A, Hermiston T, Seymour LW, Beadle J, and Fisher K. Preclinical Safety Studies of Enadenotucirev, a Chimeric Group B Human-Specific Oncolytic Adenovirus. Mol. Ther. 2017; :62-74.

12. Legrand V, Leissner P, Winter A, Mehtali M, and Lucky M. Transductional Targeting with Recombination Adenovirus Vectors. Curr. Gene Ther. 2002; 2:323-339.

13. Mercier G, Campbell JA, Chappell JD, Stehle T, Dermody TS, and Barry MA. A chimeric adenovirus vector encoding reovirus attachment protein σ 1 targets cells expressing junctional adhesion molecule 1. PNAS 2004; 101(16):6188-6193.

14. Miyazawa N, Leopold PL, Hackett NR, Ferris B, Worgall S, Falck-Pedersen E, and Crystal RG. Fiber swap between Adenovirus Subgroups B and C Alters Intracellular Trafficking of Adenovirus Gene Transfer Vectors. J. Virol. 1999; 73(7):6056-6065.

15. Mizuguchi H, Koizumi N, Hosono T, Utoguchi N, Watanabe Y, Kay MA, and Hayakawa T. A simplified system for constructing recombinant adenoviral vectors containing heterologous peptides in the HI loop of their fiber knob. Gene Ther. 2001; 8:730-735.

16. Nicklin SA, Wu E, Nemerow GR, Baker AH. The Influence of Adenovirus Fiber Structure and Function on Vector Development for Gene Therapy. Mol. Ther. 2005; 12(3):384-393.

17. Pereboeva L, Komarova S, Mahasreshti PJ, and Curiel DT. Fiber-mosaic adenovirus as a novel approach to design genetically modified adenoviral vectors. Virus Res. 2004; 105:35-46.

18. Reynolds PN, Dmitriev I, and Curiel DT. Insertion of an RGD motif into the HI loop of adenovirus fiber protein alters the distribution of transgene expression of the systemically administered vector. Gene Ther. 1999; 6:1336-1339.

19. Schagen FHE, Graat HCA, Carette JE, Vellinga J, van Geer MA, Hoeben RC, Dermody TS, and van Beusechem VW. Replacement of Native Adenovirus Receptor-Binsing Sites with a New Attachment Moiety Diminishes Hepatic Tropism and Enhances Bioavailability in Mice. Human Gene Ther. 2008; 19:784-794. 20. Shayakhmetov DM, Papyannopoulou T, Stamatoyannopoulos G. and Lieber A. Efficient Gene Transfer into Human CD34⁺ Cells by a Retargeted Adenovirus Vector. J. Virol. 2000; 74(6):2567-2583.

21. Stevenson SC, Rollence M, Marshall-Neff J, and McCleland A. Selective Targeting of Human Cells by a Chimeric Adenovirus Vector Containing a Modified Fiber Protein. J. Virol. 1997; 71(6):4782-4790.

22. Vigne E, Mahfouz I, Dedieu JF, Brie A, Perricaudet M, and Yeh P. RGD Inclusion in the Hexon Monomor Provides Adenovirus Typ 5-Based Vectors with a Fibe Knob-Independent Pathway for Infection. J. Virol. 1999; 73(6):5156-5161.

23. Wickman TJ, Tzeng E, Shears LL, Roelvink PW, Li Y, Lee GM, Brough DE, Lizonova A, and Kovesdi I. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J. Virol. 1997; 71(11):8221-8229.

24. Xia H, Anderson B, Meo Q, and Davidson B. Recombinant Human Adenovirus Targeting to the Human Transferrin Receptor Improves Gene Transfer to Brain Microcapillary Endothelium. J. Virol. 2000; 74(23):11359-11366.

25. Arnberg N. Adenovirus receptors: implications for tropism, treatment and targeting. Rev. Med. Virol. 2009; 19:165-178.

26. Suzuki K, Alemany R, Yamamoto M, and Curiel DT. The Presence of the Adenovirus E3 Region Improves the Oncolytic Potency of Conditionally Replicative Adenoviruses. Clin. Cancer Res. 2002; 8:3348-3359.

27. Burgert H-S and Blusch JH. Immunomodulatory Functions Encoded by the E3 Transcription Unit of Adenoviruses. Virus Genes 2000; 21(1/2):13-25.

28. Wu E, Pache L, Von Seggern DJ, Mullen T-M, Mikyas Y, Stewart PL, and Nemerow GR. Flexibility of the Adenovirus Fiber is Required for Efficient Receptor Interaction. J. Virol. 2003; 77(13):7225-7235.

29. Li X, Zhang Y-P, Kim H-S, Bae KH, Stantz KM, Lee S-J, Jung C, Jimenez JA, Gardner TA, Jeng M-H, and Kao C. Gene Therapy for Prostate Cancer by Controlling Adenovirus E1A and E4 Gene Expression with PSES Enhancer. Cancer Res. 2005; 65(6):1941-1951.

30. Lee S-J, Zhang Y, Lee SD, Jung Chaeying, Li X, Kim H-S, Bae K-H, Jeng M-H, Kao C, and Gardner T. Targeting Prostate Cancer with Conditionally Replicataive Adenovirus Using PSMA Enhancer. Mol. Ther. 2004 10(6):1051-1058.

31. Dash R, Dmitriev I, Su Z, Bhutia SK, Azab B, Vozhilla N, Yacoub A, Dent P, Curiel DT, Sarkar D, Fisher PB. Enhanced delivery of mda-7/IL-24 using a seroptype chimeric adenovirus (Ad.5/3) improves therapeutic efficacy in low CAR prostate cancer cells. Cancer Gene Ther. 2010 17:447-456.

32. Cardone J, Le Friec G, and Kmper C. CD46 in innate and adaptve immunity: an update. Clin. & Exp. Immun. 2001; 164:301-311.

33. Kesselring R, Thiel A, Pries R, Fichner-Feigl S, Brunner Stefan, Seidel P, Bruchhage K-L, and Wolenberg B. The complement receptors Cd46, CD55, and CD59 are regulated by the tumor microenvironment of head and neck cancer to facilitate escape of complement attack. Euro. J. Cancer 2014; 50:2152-2161.

CHAPTER FOUR:

Selective Oncolytic Virus

Introduction

As an example case for demonstrating a positively regulated selective oncolytic virus, we have chosen to engineer selectivity for prostate cells. This choice was based on several factors. First, there is an existing body of literature describing efforts to engineer Ad for selective replication exclusive to prostate cells. Second, the prostate is an organ that can be targeted for complete removal, both cancerous and noncancerous cells, and maintain patent survival. Such is not the case for most other organs, such as pancreas, liver, brain, etc. And third, the present standard of care is a prostatectomy, which necessitates the cutting of nerve fibers responsible for erectile function. Eradicating the prostate via selective Ad infection has the potential for leaving these nerves intact and functional.

Ad-based treatment of prostate cancer falls into two general categories, nonreplicating Ad vectors with selective expression of a toxin gene and replication-competent Ad with selective replication in prostate cells. Multiple clinical trials are underway or have been completed employing both non-replicating Ad vectors and replication-selective Ad¹.

Prostate-Specific Expression from Ad Vector

Non-replicating Ad vectors have been used for two purposes in the treatment of prostate cancer; force prostate cells to selectively express a toxin or force prostate cells to selectively express an imaging molecule. Table 4.1 provides a list of examples taken from the literature. Of particular note is the payload HSV-tk. This is the Herpes Simplex Virus-1 Thymidine Kinase and can be used both as a suicide gene or an imaging gene². With

HSV-tk selectively expressed in the target cells, administration of a purine analog (acyclovir, ganciclovir, buciclovir, or penciclovir) leads to phosphorylation and retention in target cells. These analogs are competitive inhibitors of deoxyguanosine triphosphate (dGTP) leading to cell death. For imaging, administration of a radioactive analog 9-(4-¹⁸F-fluoro-3-[hydroxymethyl]butyl)guanine ([¹⁸F]FHBG) leads to phosphorylation and accumulation in target cells, creating a localized positron emission source for use in Positron Emission Tomography (PET) imaging.

Though selective expression is demonstrated in each of the references listed in table 4.1, most authors comment on the need for higher expression levels than those achieved using the selective promoters chosen to drive prostate-specific expression.

Two-Step Transcriptional Activation (TSTA)

In response to the need for higher expression levels while maintaining selectivity, the TSTA system was developed³. This system is shown in Fig 4.1. In the TSTA system a weak promoter drives a strong transcription factor and the strong transcription factor in turn drives expression of the target gene to high levels. In this example, the strong transcription factor is the GAL4-VP16 fusion and the target gene is driven by a promoter consisting of 5 copies of the GAL4 binding sequence combined with a minimal promoter. A weak, but selective, promoter may produce only a low level of the GAL4-V16 transcription factor, but this low level is sufficient to drive high level expression of the target gene.

The TSTA system has been used by multiple authors in the prostate cancer space, with table 4.2 showing a list of examples. These authors report increased expression levels of 100-fold over that produced by the initial, weak promoter. All of the examples found in the literature using the TSTA system apply to non-replicating Ad.

Replacing Endogenous Ad Promoter with Prostate-Specific Promoter

Considerable work has been done to develop a replicating Ad virus that is selective to the prostate. A survey of the literature shows a common theme among these efforts. All examples found in the literature replace one or more of the endogenous Ad promoters with a prostate-specific promoter. Table 4.3 provides a list of prostate-specific promoters and Ad promoter replacements that have been described in the literature. Though each of these examples demonstrated some level of selectivity for prostate cells, none showed the same replication kinetics as wt Ad when infecting prostate cells. Researchers working with Ad selectivity in tissues or cancer types other than prostate have faced the same problem; selectivity comes at a cost of potency.

TSTA Applied to a Replicating Ad

The disappointing kinetics obtained with direct replacement of one or more Ad promoters with a prostate-specific promoter is not surprising when comparing the promoters of table 4.1 and table 4.3. The promoters that provided insufficient prostate-specific expression inside a non-replicating Ad vector (table 4.1) are the same as those used for direct replacement of one or more Ad promoters in the replication-selective Ad

viruses of table 4.3. Viral promoters in general, and Ad promoters specifically, are known to produce high expression levels²⁸. Thus, if an Ad promoter is to be replaced while maintaining fast replication kinetics, the replacement promoter must also produce high expression levels.

The the dual requirements for this replacement promoter of tight specificity and high expression might be met with the TSTA system. Rather than use the TSTA system to produce high expression of a target gene, as described in the references of table 4.2, instead we propose use of the TSTA system to replace an Ad promoter. For example, in the TSTA system shown in fig 4.1, instead of driving a target gene with the 5XGAL4 promoter, replace an Ad promoter with the 5XGAL4 promoter. In this example, the weak, prostatespecific promoter forces some low level expression of the GAL4-VP16 fusion transcription factor and this transcription factor goes on to produce a high level of expression of the gene or genes normally activated by the replaced Ad promoter.

For the work described in this dissertation, we chose to use the Tet-On system²⁹ rather than the GAL4-VP16 system. Our choice was based on the fact that the Tet-On system allows an additional level of control due to its requirement for doxycycline to generate the proper conformational change in the Tet-On protein leading to high affinity binding to the target DNA binding site. The Tet-On, Tet-Off, and TetR systems are shown schematically in fig 4.2. For highest on-state expression and lowest off-state leakage, the 3rd generation Tet-On system³⁰ with the so called Tet-Response Element 3G (TRE3G) has been employed.

Safe Location in Ad Genome for Exogenous Gene Placement

Use of the TSTA system to control Ad replication faces a challenge in virus design that does not exist with the non-replicating vectors of tables 4.1 and 4.2 nor with the direct promoter replacement viruses of table 4.3. This new challenge is where in the genome to place the genes associated with the TSTA system without negatively impacting the replication kinetics of the virus. For the non-replicating vectors that employ the TSTA system, the choice of location is clear since all of these vectors are E1-region deleted. It is standard practice to place exogenous genes immediately after the left hand Inverted Terminal Repeat Sequence (ITRS) located in the now-vacant E1 region. Since these are non-replicating viruses, the only concern with regard to replication kinetics is during virus production and not during its application in the patient. It is the experience in the O'Shea lab that non-replicating viruses built in this way can be produced to high titer using HEK293 cells³¹ to rescue the E1 region deletion, as is standard practice in the literature.

There are many examples of adding exogenous genes to a replication-competent Ad genome. Because of the limited genome capacity of the Ad virion³², most often endogenous Ad genes are deleted in order to free up genome space. The immunomodulatory E3 genes are dispensable in tissue culture, so these are most often the genes removed³³. Consequently, the E3 region is often the location for the added exogenous genes³⁴⁻³⁸. Following this historic precedent, we deleted the E3B ORFs, RIDα, RIDβ, and 14.7k, and placed the Tet-On gene in the location of these deletions. We retained the E3B poly-A for use with the Tet-On gene. We cloned three different promoters to drive expression of the Tet-On ORF; E2F1, CMV, and EF1α. We chose

these three promoters because they are considered constitutive and represent three different levels of promoter strength with $EF1\alpha > CMV > E2F1$. A schematic of these changes to the Ad5 genome is shown in fig 4.3. In addition to these E3 deletions and the insertion of the Tet-On gene, we included the YPet-P2A-ADP modification as a kinetics readout.

The kinetics of these three constructs are shown in fig 4.4 along with a wildtype background for comparison. The construct with the EF1 α promoter has a declared ln-slope of zero because it could not be produced. This data suggests that as the promoter strength is increased, the kinetics of the virus is negatively impacted. Also note the slight increase in ln-slope for the virus with E2F1 promoter relative to the wildtype background. This increase has been repeatedly observed and has been attributed to an increase in kinetics caused by the E3B ORF deletion, as shown in fig 4.5.

To better understand the cause of this kinetic defect as the Tet-On gene promoter strength is increased, figs 4.6a through 4.6c show the measured YPet fluorescence for each of the viruses of fig 4.4. Since the ADP is essentially a late protein³⁹, we can use the YPet fluorescence level produced by the YPet-P2A-ADP as a surrogate for late protein expression. One can see that the fluorescence level for the CMV::Tet-On construct shown in fig 4.6c is significantly lower than the wildtype and the EF1::Tet-On construct. Based on these results, we surmised that placement of the Tet-On gene in the E3B region leads to reduced late protein expression and thus slower viral kinetics. The cause for the lower late protein expression is thought to be transcriptional interference between the Tet-On gene and the Major Late Transcript (MLT). The MLT encodes all of the structural proteins and runs nearly the full length of the upper strand of the Ad5 genome as shown by the blue

arrow in fig 4.7. Our finding of reduced kinetics due to location of an exogenous gene within the Ad5 genome has recently been corroborated by other researchers⁴⁰. Suzuki et. al tested placement of an exogenous gene in various locations of a non-replicating Ad5 vector. They used virus titer yield from HEK293-E4 cells as a measure of optimum placement. They found that an exogenous gene, employing the EF1 α promoter, placed in the E3 region led to greatly reduced virus particle yield. Their results and ours lead to the following design rule: Do not place a gene within a gene. That is, do not place an exogenous promoter-ORF-poly-A sequence inside any of the Ad5 endogenous transcripts.

Because the work by Suzuki et. al. was done in a non-replicating Ad5 vector with the E1 and E4 regions deleted, they had the option of placing an exogenous gene in the vacated E1 or E4 regions. For our case, we are attempting to retain the kinetics of a replication competent Ad5 and thus both the E1 and E4 regions are still part of the genome. This gene-within-a-gene design rule is highly constraining, with only 3 possible locations available, as shown in fig 4.8. The three locations are; between the E1A and E1B transcripts, between the E1B transcript and the U gene transcript, and between the MLT and the E4 transcript. For ease of cloning, we chose to work in the region between the MLT and E4 transcript.

A closer look at the sequence data of this region reveals that the full length L5 poly-A of the MLT and the full length E4 poly-A overlap, as shown in fig 4.9. Also shown in this figure is the canonical poly-A sequence as described in reference 41. It is unknown if this overlap has some particular function or is just a clever way to save genome space by using the AATAA sequence of one poly-A as the G/T rich region of another. It is

noteworthy that the E1B poly-A and the U gene poly-A located on the left hand side of the genome also overlap in a similar way.

Given this overlap in poly-A sequences, inserting an exogenous gene between the AATAAA signals of the L5 poly-A and the E4 poly-A would destroy the full length poly-A sequences of both. A solution to this problem is to add a new poly-A sequence to the right or left of the overlapping L5 and E4 poly-As. Use of the minimal SV40 poly-A sequence has a genome cost of only 45 base pairs so we cloned this poly-A to the left of the overlapping poly-As and inserted the Tet-On gene into the space between. This arrangement is shown schematically in fig 4.10 and the resulting measured replication kinetics are shown in fig 4.11. There is no significant loss of kinetics when using the CMV promoter relative to the E2F1 promoter and even the virus using the EF1 α promoter could be produced, though it does exhibit a small kinetics defect.

TSTA Control of an Ad Promoter

With a "safe" place in the Ad5 genome to insert the Tet-On gene now available, we can move on to applying the actuator function of the Tet-On system. That is, use the TRE3G activated by the Tet-On transcription factor to impact the kinetics of the virus. Since the TSTA system is meant to allow use of a weak, but selective, promoter as if it were a strong promoter, we chose to replace various Ad promoters with the TRE3G promoter in a fashion similar to the work described in the references of table 4.3. Our expectation was to achieve similar selectivity as described by these researchers, but with better virus kinetics in the selected cell type.

There are 9 known promoters within the Ad5 genome, as shown in fig 4.12. Which to replace with the TRE3G promoter can be down-selected based on several criteria. The first criteria is that the genes driven by the promoter must not be dispensable in tissue culture. This criteria is based on the fact that we wish to show selectivity *in vitro*. Viruses with the E3 and UXP genes deleted can still replicate *in vitro*, so their promoters are eliminated by this first criteria. The second criteria is that the basepairs of the chosen promoter can not also be used on the opposite strand. If we replace such a promoter with the TRE3G promoter, we will also disrupt the base pairs used by another gene running along the opposite strand. This criteria eliminates the E2 early, pIVa2, and Major Late promoters. Applying these two criteria, there are 4 remaining promoters amenable to replacement by the TRE3SG promoter; E1A, E1B, E2 Early, and E4. Constructs replacing three of these four promoters were constructed and tested.

Controlling E1A expression with the TRE3G promoter is appealing because in the off-state there would be no expression of E1A and no initiation of the remainder of the Ad5 lifecycle. Unfortunately, replacing the E1A promoter with TRE3G led to no significant control over virus replication, as shown in fig 4.13. This failure in control is likely due to the numerous transcription factor binding sites located in the ITRS and packing regions located just to the left of the E1A promoter (see appendix A for details). These ITRS and packaging features can not be eliminated while maintaining replication competence.

Though there are no literature examples of replacing the E2 early promoter with a prostate-specific promoter listed in table 4.3, there is president from work in other tissue

types⁴². Controlling E2 early expression is not as appealing as controlling E1A since an infected cell will likely die upon infection due to initial E1A activation. But, because the E2 early promoter controls expression of the Ad5 DNA polymerase, the off-state would not exhibit DNA replication and thus the Ad5 lifecycle would not progress to late gene expression⁴³. Fig 4.14 shows the measured replication kinetics for viruses with the E2 early promoter replaced with TRE3G in the presence and absence of doxycycline. To our complete surprise, the control authority is opposite to that of our expectations. The virus kinetics are reduced in the +Dox case and increased in the -Dox case, opposite to what we expected. And this suppression effect in the +Dox condition is exaggerated as the promoter strength is increased; $E2F1 < CMV < EF1\alpha$. We have no solid explanation for these results. One possibility is based on the fact that the Ad5 virus has to E2 promoters, the E2 early and the E2 late. The E2 early promoter is only activated during the early phase of the Ad5 lifecycle, and the E2 late promoter is only activated during the Ad5 late lifecycle²⁸. It is possible that continued activation from the E2 early promoter position by the TRE3G promoter during the late lifecycle causes a kinetic defect.

Replacing the E4 promoter with the TRE3G promoter is the least appealing choice because an infected cell will likely die due to E1A activation and large numbers of copies of the Ad5 genome will be produced due to E2 activation. The measured replication kinetics for constructs with the E4 promoter replaced with the TRE3G promoter are shown in fig 4.15. There is some control authority and the increase/decrease in kinetics vs. +/-Doxycycline is as expected, but there are several problems with these results. First, the onstate using the weak promoter, E2F1, is relatively slow. And second, the off-state for all

three promoters is not as low as desired. And finally, only the CMV promoter case exhibits nearly wildtype kinetics. It seems that this virus design is exquisitely sensitive to the choice of promoter strength. Such a sensitivity makes this design of little practical use since the goal is a virus that is regulated by an arbitrary tissue-specific promoter.

TSTA Control of a Single Ad Gene

Replacement of an Ad promoter with the TRE3G promoter led to mixed and disappointing results. We took a step back and thought again about how one might control the replication kinetics of the Ad5 using an arbitrary promoter. The intent of directly replacing an Ad promoter with the TRE3G promoter was to control the expression of one or more Ad protein(s) and thus control replication by the presence or absence of these proteins. This same effect could be achieved by deleting a single chosen ORF from the Ad genome and placing it under direct control of the TRE3G promoter.

There are 37 known proteins expressed by the Ad5 virus during various stages of its lifecycle (see Appendix A for details). A simple selection criteria was used to down-select to a more manageable number.

Criteria #1: Viral replication must be critically dependent on this protein. If we are to control virus replication through this single protein, it must be critical to the virus life-cycle. This criteria eliminates all of the E3 proteins, E4 proteins, E1B-19k and E1B-55k.

Criteria #2: The ORF for this protein must not interfere with base pairs of an ORF on the opposite strand. We will need to delete the base pairs associated with this protein's endogenous ORF in order to free up genome space and thus if these base pairs are used on

both top and bottom strands we would disrupt other functions when deleting these base pairs.

Criteria #3: This protein must not be a structural protein. The expression levels of the structural proteins during the late time portion of the Ad lifecycle is extremely high. We have little confidence that TRE3G-driven expression of these proteins will produce the appropriate timing and levels required for good virus kinetics.

Criteria #4: Avoid the E1A protein. Since the E1A protein is the first to be expressed, any delay in its expression would lead to a reduction in virus kinetics. There is a time lag associated with the Tet-On system due to the need for initial accumulation of the Tet-On transcription factor prior to high expression from the TRE3G promoter and this time delay if applied to E1A expression would be detrimental to virus kinetics.

Applying these criteria reduces the list of possibilities from 37 to just 3 proteins: L1 52kDa protein, L3 Endoprotease, and DNA Binding Protein (DBP). We chose to clone viruses with the L3 Endoprotease and DBP placed under direct control of the TRE3G promoter. The results for these constructs are shown in figs 4.16 and 4.17. There is limited control when using L3 Endoprotease (fig. 4.16), but excellent control when using DBP (fig. 4.17). Besides the wide control authority found when using DBP, an additional attractive feature of using DBP as the control protein is that its absence prevents efficient genome replication since this protein is responsible for protecting the single-stranded Ad genomes generated by the Ad DNA polymerase⁴⁴ during the genome replication cycle.

Prostate-Specific Promoter Testing

With the Ad replication control actuator in hand, we began testing a prostatespecific promoter to be used in combination with TSTA to impart prostate-specific Ad replication. The PSES promoter, first described in reference 7, showed the best performance based on a reading of the literature. This promoter was reconstituted from descriptions in the journal and patent literature⁴⁵ and placed in the Ad5 genome located between the separated L5 and E4 poly-A's (see Fig 4.10). The PSES promoter was cloned to drive expression of YPet so that we can compare the expression levels when infecting various cell types. In addition to the PSES promoter, the CMV promoter, and a p53depedent promoter called PrMinRGC (see chapter 5), were also cloned in the the same location, but in separate Ad5 viruses.

The androgen receptor positive, androgen dependent prostate cell line LNCaP was used as the positive control for the PSES promoter. This cell line is described in the literature as providing the highest activation of the PSES promoter. The androgen receptor negative, androgen independent prostate cell line PC3 was used as a negative control. Additionally, the A549 (TP53^{+/+}) cell line and the A549p53KO (TP53^{-/-}) cell lines were also included. The resulting expression levels for the three promoters in these four cell lines are shown in Fig 4.18.

The first observation is that the YPet expression levels, when driven by the CMV promoter are all approximately equal between the four cell lines. Equal expression for the CMV construct is taken as evidence that entry and activation by this virus in these four cells lines is approximately equivalent, allowing us to make direct comparisons between the PSES promoter and PrMinRGC promoter results.

To my great disappointment, the PSES promoter shows only a 3.4X differential between LNCap and PCs cells (55 units for LNCaP vs. 16 units for PC3). As a further disappointment, the differential between LNCaP and A549 cell lines is only 2.3X (55 units for LNCaP vs. 24 units for A549). And if this disappointing differential wasn't enough, the strength of the PSES promoter is 73X less than that of the CMV promoter when infecting LNCaP cells (4000 units for CMV vs. 55 units for PSES).

In contrast to the PSES promoter, the PrMinRGC promoter shows both a promising level of differential (100X between A549 and A549p53KO cells) and excellent promoter strength, essentially equal to that of CMV.

Based on these results, I did not pursue the positively-regulated virus based on the PSES promoter. Instead, development of a negatively-regulated virus based on the PrMinRGC promoter was pursued and described in detail in chapter 5.

Conclusions and Future Work

Even though the viruses described in this chapter have not been integrated with a tissue-specific promoter to produce a positively-regulated virus, these viruses with a constitutive promoter have potential in clinical applications. For example, the Dox control of the virus shown in Fig 4.17 could be used as a "safety switch" when treating a patient. This virus has limited replication kinetics in the absence of Dox, thus removal of Dox administration should greatly attenuated the replication of this virus in a patient. Such a safety switch might allow more aggressive treatment, either with administration of higher initial particle count, or by arming the virus with a potent anti-tumor payload or immune-

stimulatory payload. In the event that adverse effects are detected in a patient, Dox administration can be terminated and virus replication brought to a halt.

A further improvement in the safety of this class of virus is to create an even better "off" state. Since the E4-promoter replacement and the DBP replacement viruses both make use of the Tet-On protein driven by the CMV promoter, one can imagine combining the two control circuits as follows. The CMV promoter drives constitutive expression of Tet-On. Expression of the DBP ORF is driven by the TRE3G promoter and the E4 promoter is also replaced by the TRE3G promoter. Administration of Dox would then control both DBP expression and E4 gene expression. In the absence of Dox, the very slow virus of Fig 4.17 would be further handicapped by the slow kinetics of the virus shown in Fig 4.15. The multiplicative negative effects on kinetics from both of these "off states" is expected to result in zero replication.

Figures and Tables

Figure 4.1. Schematic representation of the TSTA system (taken from reference 3).

Figure 4.2. Schematic representation of the Tet-On, Tet-Off, and TetR systems.

Figure 4.3. Schematic representation of Tet-On gene placed in the E3 region. The E3B poly-A normally used for the deleted RID α , RID β , and 14.7k ORFs is retained and used for the Tet-On gene. The promoter driving the Tet-On ORF is either E2F1, CMV, or EF1 α .

Figure 4.4. Measured replication kinetics of virus constructs with Tet-On gene placed in the E3B region of Ad5 genome.

Figure 4.5. Measured replication kinetics comparison between wildtype, E3B deletion, and E3A and E3B deletions.

Figure 4.6a. Measured YPet fluorescence versus time for wildtype background.

Figure 4.6b. Measured YPet fluorescence versus time for construct with E2F1 promoter driving Tet-On ORF located in the E3B region.

Figure 4.6c. Measured YPet fluorescence versus time for construct with CMV promoter driving Tet-On ORF located in the E3B region.

Figure 4.7. Ad5 genome with MLT highlighted with a blue arrow. The E3A region falls within this transcript.

Figure 4.8. The Ad5 transcripts shown with blue arrows and the three possible locations for placing an exogenous gene shown with red dash lines.

Nick J. Proudfoot Genes Dev. 2011;25:1770-1782

Figure 4.9. Canonical poly-A sequence as described by reference 40 and the overlapping L5 poly-A and E4 poly-A sequences of wildtype Ad5.

Figure 4.10. Schematic of additional SV40 poly-A sequence, creating location for addition of exogenous gene.

Figure 4.11. Measured replication kinetics of virus constructs with Tet-On gene placed between the L5 and E4 regions.

Figure 4.12. The Ad5 genome with all 9 known promoters highlighted in red.

Figure 4.13. Measured virus replication kinetics for wt Ad5 vs. a Ad5 construct with the E1A promoter replaced by the TRE3G promoter (Tet-On is driven by CMV).

Figure 4.14. Measured replication kinetics for constructs with the E2 early promoter replaced by TRE3G. The Tet-On transcription factor is driven by E2F1, CMV, or EF1 α .

Figure 4.15. Measured replication kinetics for constructs with the E4 promoter replaced by TRE3G. The Tet-On transcription factor is driven by E2F1, CMV, or EF1 α .

Figure 4.16. Cell viability assay results (upper left), schematic diagram (upper right), and kinetics curves +/-Dox (lower left and right) for virus with Endoprotease placed under direct control of the TRE3G promoter.

Figure 4.17. Cell viability assay results (upper left), schematic diagram (upper right), and kinetics curves +/-Dox (lower left and right) for virus with DBP placed under direct control of the TRE3G promoter.

Figure 4.18 Measured YPet expression driven by PSES, PrMin, or CMV promoter upon infection with MOI=10 for cell lines LNCaP, PC3, A549, and A549p53KO. LNCaP and A549 are p53^{+/+}. PC3 and A539p53KO are p53^{-/-}.

Table 4.1. Prostate-specific promoters and payloads for non-replicating Ad vectors. PSAe = Prostate-Specific Antigen enhancer, PSAp = Prostate-Specific Antigen promoter, PSE-BA = Prostate-Specific Enhancer + androgen receptor binding site, PSES = Prostate-Specific Antigen enhancer + Prostate-Specific Membrane Antigen enhancer, rPB = rat Probasin promoter, PSAe = Prostate-Specific Antigen enhancer, PSMAe = Prostate-Specific Membrane Antigen enhancer, TARPp = T-cell receptor γ-chain Alternate Reading frame Protein promoter, CMV = Cytomegalovirus promoter

Prostate-Specific Promoter	Payload	Reference
PSAe/PSAp	nitroreductase	4
PSE-BA	Luciferase	5
PSAp	Diphtheria Toxin	6
PSES	Luciferase	7
rPB	HSV-tk	8
PSAe/PSMAe/TARPp	Luciferase	9
CMV	mda-7/IL-24	10

Table 4.2. Examples of the TSTA system used for prostate-selective expression of a target gene. $PSE = Prostate-Specific Antigen Promoter, PSMA = Protate-Specific membrain Antigen Promoter, PSMAe = Prostate-Specific Membrane Antigen enhancer, TARPp = T-cell receptor <math>\gamma$ -chain Alternate Reading frame Protein promoter, PSE-BC = Enhanced Prostate-Specific Antigen Promoter, PSES = Prostate-Specific Antigen enhancer + Prostate-Specific Membrane Antigen enhancer

Prostate-Specific Promoter	Payload	Reference
PSE	Expanded Polyglutamine	3
PSE	Luciferase-HSV1-sr39tk	11
PSE	Luciferase	12
PSE	HSV-tk	13
PSE	Luciferase	14
PSMA	HSV-tk	15
PSMAe/TARPp	Luciferase	16
PSE-BC	Luciferase-HSV1-sr39tk	17
PSES	HSV-tk	18

Table 4.3. Prostate-specific promoters and Ad promoter replaced to impart prostate-only selectivity. PSE = Prostate-Specific Enhancer, rPB = rat Probasin promoter, PSAe = Prostate-Specific Antigen enhancer, PSAp = Prostate-Specific Antigen promoter, PSME = Prostate-Specific Membrane protein Enhancer, PSES = Prostate-Specific Antigen enhancer + Prostate-Specific Membrane Antigen enhancer, PSMAe = Prostate-Specific Membrane Antigen enhancer, PSMAe = Prostate-Specific Membrane protein Enhancer, PSMAe = Prostate-Specific Membrane Antigen enhancer, PSMAe = Prostate-Specific Membrane Antigen enhancer, PSMAe = Prostate-Specific Membrane Protein Enhancer, PSMAe = Prostate-Specific Membrane Antigen enhancer, PSMAe = Prostate-Specific Membrane Antigen enhancer, PSMAe = Prostate-Specific Membrane Protein Enhancer, PSMAe = Prostate-Specific Membrane Antigen enhancer, PSES(M6) = PSES with AP-3 binding site

Prostate-Specific Promoter	Replaced Ad Promoter	Reference
PSE	E1A	19
rPB	E1A	20
PSAe/PSAp	E1B	
PSME	E1A	Lee_2004
PSES	E1A and E4	Li_2005
PSES	E1A and E4	Li_2008
PSAe/PSMAe/TARPp	E1A	Cheng_Cacner_Gene_2006
PSAe/PSMAe/TARPp	E1A	Danielson_2008
PSES(M6)	E1A and E4	Ahn_2009
PSES	E1A and E4	Kim_2013

References

1. Freytag SO, Stricker H, Movsas B, and Kim JH. Prostate Cancer Gene Therapy Clinical Trials. Mol. Ther. 2007; 15(6):1042-1052.

2. Dey D and. Evans GRD (2011). Suicide Gene Therapy by Herpes Simplex Virus-1 Thymidine Kinase (HSV-TK), Targets in Gene Therapy, Prof. Yongping You (Ed.), InTech, DOI: 10.5772/18544.

3. Segawa T, Takebayashi H, Kakehi Y, Yoshida O, Narumiya S, and Kakizuka A. Prostate-specific Amplication of Expanded Polygultamine Expression: A novel Approach for Cancer Gene Therapy. Cancer Res. 1998; 58:2282-2287.

4. Latham JPF, Searle PF, Mautner V, and James ND. Prostate-specific Antigen Promoter/Enhancer Driven Gene Therapy for Prostate Cancer: Construction and Testing of a Tissue-specific Adenovirus Vector. Cancer Res. 2000; 60:334-341.

5. Wu L, Matherly J, Smallwood A, Adams JY, Billick E, Belldegrum A, and Carey M. Chimeric PSA enhancers exhibit augmented activity in prostate cancer gene therapy vectors. Gene Ther. 2001; 8:1416-1426.

6. Li Y, McCadden J, Derrer F, Kruszewski M, Carducci M, Simons J, and Rodriguez R. Prostate-specific Expression of the Diphtheria Toxin A Chain (DT-a): Studies of Inducibility and and Specificity of Expression of Prostate-specific Antigen Promoterdriven DT-A Adenoviral-mediated Gene Transfer. Cancer Res. 2002; 62:2576-2582.

7. Lee SJ, Kim HS, Yu R, Lee KR, Gardner TA, Jung C, Jeng MH, Yeung F, Cheng L, and Kao C. Novel Prostate-Specific Promoter Derived from PSA and PSMA Enhancers. Mol. Ther. 2002; 6(3):415-421.

8. Furuhata S, Ide H, Miura Y, Yoshida T, and Aoki K. Development of a Prostate-Specific Promoter for Gene Therapy against Androgen-Independent Prostate Cancer. Mol. Ther. 2001; 7(3):366-374.

9. Cheng WS, Kraaij R, Nilsson B, van der Weel L, de Ridder CMA, Totterman TH, and Essand M. A Novel TARP-Promoter_Based Adenovirus against Hormone-Dependent and Hormone-Refractory Prostate Cancer. Mol. Ther. 2004; 10(2):355-364.

10. Dash R, Dmitriev I, Su Z, Bhutia SK, Azab B, Vozhilla N, Yacoub A, Dent P, Curiel DT, Sarkar D, and Fisher PB. Enhanced delivery of mda-7/IL-24 using a serotype chimeric adenovirus (Ad.5/3) improves therapeutic efficacy in low CAR prostate cancer cells. Cancer Gene Ther. 2010; 17:447-456.

11. Lyer W, Wu L, Carey M, Wang Y, Smallwood A, and Gambhir SS. Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. PNAS 2001; 98(25):14595-14600.

12. Zhang L, Adams JY, Billick E, Ilagan R, Lyer M, Le K, Smallwood A, Gambhir SS, Carey M, and Wu L. Molecular Engineering of a Two-Step Transcription Amplification (TSTA) System for Transgene Delivery in Prostate Cancer. Mol Ther. 2002; 5(3):223-232.

13. Johnson M, Sato M, Burton J, Gambhir SS, Carey M, and Wu L. Micro-PET/CT Monitoring of Herpes Thymidine Kinase Suicide Gene Therapy in a Prostate Cancer Xenograft: The Advantage of a Cell-specific Transcriptional Targeting Approach. Mol. Imaging 2005; 4(4):463-472.

14. Ilagan R, Pottratz J, Le K, Zhang L, Wong SG, Ayala R, Lyer M, Wu L, Gambhir SS, and Carey M. Imaging Mitogen-Activated Protein Kinase Function in Xenograft Models of Prostate Cancer. Cancer Res. 2006; 66(232):10778-10785.

15. Hattori Y and Maitani Y. Two-step tanscriptional amplification-lipid-based nanoparticles using PSMA or midkine promoter for suicide gene therapy in prostate cancer. Cancer Sci. 2006; 97(8):787-798.

16. Dzojic H, Cheeng W-S, Essand M. Two-step amplification of the human PPT sequence provides specific gene expression in an immunocompetent murine prostate cancer model. Cancer Gene Ther. 2007; 14:233-240.

17. Burton JB, Johnso M, Sato M, Joh SBS, Mulholland DJ, Stout D, Chatziionannou AF, Phelps ME, Wu H, and Wu L. Adenovirus-mediated gene expression imaging to directly detect sentinel lymph node metastasis of prostate cancer. Nat. Med. 2008; 8:882-888.

18. Jiang ZK, Sato M, Wie LH, kao C, and Wu L. Androgen-Independent Molecular Imaging Vectors to Detect Castration-Resistant and Metastatic Prostate Cancer. Cancer Res. 2011; 71(19)6250-6260.

19. Rodriquez R, Schuur ER, Lim HY, Henderson GA, Simons JW, and Henderson DR. Prostate Attenuated Replication Competent Adenovirus (ARCA) CN706: A Selective Cytotoxic for Prostate-specific Antigen-positive Prostate Cancer Cells. Cancer Res. 1997; 57:2559-2563.

20. Yu DC, Chen Y, Seng M, Dilley J, and Henderson DR. The Addition of Adenobvirus Type 5 Region E3 Enables Claydon Virus 787 to Eliminate Distant Prostate Tumor Xenographs. Cancer Res. 1999; 59:4200-4203.

21. Lee SJ, Zhang Y, Lee SD, Jung C, Li, Kim HS, Bae KH, Jeng MH, Kao C, and Gardner T. Targeting Prostate Cancer with Conditionally Replicative Adenovirus Using PSMA Enhancer. Mol Ther. 2004; 10(6):1051-1058.

22. Li X, Zhang YP, Kim HS, Bae KH, Stantz KM, Lee SJ, Jung C, Jimenez JA, Gardner TA, Jeng MH, and Kao C. Gene Therapy for Prostate Cancer by Controlling Adenovirus E1a and E4 Gene Expression with PSES Enhancer. Cancer Res. 2005; 65(5):1941-1951.

23. Li X, Liu YH, Lee SJ, Gardner TA, Jeng MH, and Kao C. Prostate-Restricted Replicative Adenovirus Expressing Human Endostatin-Angiostatin Fusion Gene Exhibiting Dramatic Antitumor Efficacy. Clin. Cancer Res. 2008; 14(1):291-299.

24. Cheng WS, Dzojic H, Nilsson B, Totterman TH, and Essand M. An oncolytic conditionally replicating adenovirus for hormone-dependent and hormone-independent prostate cancer. Cancer Gene Ther. 2006; 13:13-20.

25. Danielsson A, Dzojic H, Nilsson B, and Essand M. Increased therapeutic efficacy of the prostate-specific oncolytic adenovirus Ad[I/PPT-E1A] by reduction of the insulator size and introduction of the full-length E3 region. Cancer Gene Ther. 2008; 15:203-213.

26. Ahn M, Lee SJ, Li X, Jimenz JA, Zhang YP, Bae KH, Mohammadi Y, Kao C, and Gardner TA. Enhanced combined tumor-specific oncolysis and suicide gene therapy for prostate cancer using M6 promoter. Cancer Gen Ther. 2009; 16:73-82.

27. Kim JS, Lee SD, Lee SJ, and Chung MK. Development of an immunotherapeutic adenovirus targeting hormone-independent prostate cancer. OncoTargets and Ther. 2013; 6:1635-1642.

28. Knipe DN and Howley PM (2013). Fields Virology. Philadelphia, PA: Lippincott Williams and Wilkins.

29. Gossen M and Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. PNAS 1992; 89:5547-5551.

30. Zhou X, Vink M, Klaver B, Berkhout B, and Das AT. Optimization of the Tet-On system for regulated gene expression through viral evolution. Gene Ther. 2006; 13:1382-1390.

31. Graham FL and Smiley J. Characteristics of a Human Cell Line Transformed by DNA from Human Adenovirus Type 5. J. Gen. Virol. 1977; 6:59-74.

32. Bett AJ, Prevec L, and Graham FL. Packaging capacity and stability of human adenovirus type 5 vectors. J. Virol. 1993; 67(10):5911-5921.

33. Bortolanza S, Bunuales M, Alzuguren P, Lamas O, Aldabe R, Prieto J, and Hernadez-Alcoceba R. Deletion of the E3-6.7K/gp19K region reduces the persistence of wild-type adenovirus in a permissive tumor model in Syrian hamsters. Cancer Gene Ther. 2009; 16:703-712.

34. Graham FL, Bett A, Prevec L, and Haddara WM. Adenovirus Vectors for Gene Therapy. US Pat. 6,140,087, filed May 31, 1994 and issued Oct. 31, 2000.

35. Hawkins LK, Johnson L, Bauzon M, Nye JA, Castro D, Kitzes GA, Young MD, Holt JK, Trown P, and Herminston TW. Gene delivery from the E3 region of replicating human adenovirus: evaluation of the 6.7 K/gp19 K region. Gene Ther. 2001; 8:1123-1131.

36. Gantzer M, Spitz E, Accard N, and Rooke R. Constitutive Expression of the Adenovirus E3-14.7k Protein Does Not Prolong Adenovirus Vector DNA Persistence by Protects Mice Against Lipopolysaccharide-Induced Acute Hepatitis. Human Gen Ther. 2002; 13:921-933.

37. Lai MC, Lai YKY, and Rakoczy PE. Adenovirus and Adeno-Associated Virus Vectors. DNA and Cell Biol. 2002 21(12):895-913.

38. Mailly L, Boulade-Ladame C, Orfenoudakis G, and Deryckere F. A novel adenovirus vector for easy cloning in the E3 region downstream of the CMV promoter. Virol. J. 2008; 5(73).

39. Murali VK, Omelles DA, Goodling LR, Wilms HT, Huang W, Tollefson AE, Wold WS, and Gamett-Benson C. Adenovirus Death Protein (ADP) Is Required for Lytic Infection of Human Lymphocytes. J. Virol. 2014; 88(2):903-912.

40. Suzuki M, Kondo S, Pei Z, Maekaa A, Saito I, and Kanagae Y. Preferable sitres and orientations of transgene inserted in the adenovirus vector genome: The E3 site may be unfavorable for transgene position. Gene Ther. 2015 22:421-429.

41. Proudfoot NJ. Ending the message: poly(A) signals then and now. Genes & Dev. 2011. 25:1770-1782.

42. Brunori M, Malerba M, Kashiwazaki H, and Iggo R. Replicating Adenoviruses That Target Tumors with Constitutive Activation of the wnt Signaling Pathway. J. Virol. 2001; 75(6):2857-2865.

43. Thomas GP and Mathews MB. DNA Replication and the Early to Late Transition in Adenovirus Infection. Cell 1980; 22:523-533.

44. Caravokyri C and Leppard KN. Human Adenovirus Type 5 Variants with Sequence Alterations Flanking the E2A Gene: Effects on E2 Expression and DNA Replication. Virus Genes 1996; 12(1):65-75.

45. Kao C, Lee SJ, Kim HS, Lee KR. Prostate-Specific Chimeric Enhancers and Methods of use Thereof. US Pat. Sub. 2003/0235874 A1, filed May 8, 2003 and published Dec. 25, 2003.

CHAPTER FIVE:

Negatively Regulated Selective Oncolytic Virus

Introduction

The use-case for a positively regulated selective oncolytic virus, as described in chapter 4, is straightforward. A positively regulated virus can be targeted to a particular tissue type based on a tissue-specific transcription factor, the prostate for example. The use-case for a negatively regulated virus is not so obvious. What feature of a tumor is missing in tumor cells, but found in all normal cells such that a negatively regulated virus would replicate in a tumor cell by not normal cells? The quintessential example is p53. All normal cells contain transcriptionally active p53, while a large fraction of tumor cells are either deleted for p53 entirely or express mutant forms that are no longer transcriptionally active. An oncolytic virus that replicates only in the absence of transcriptionally active p53 would be a useful clinical tool against nearly all cancer types.

Previous work Toward p53-Selective Oncolytic Viruses

Because of the tremendous promise of a p53-selective oncolytic virus, considerable work by a number of researchers has gone into its development. The earliest work involved deletion of the E1B-55k gene from the Ad5 genome^{1,2} because it has been shown that E1B-55k mediates degradation of p53³. It was thought that deletion of E1B-55k would make Ad5 replication dependent on the status of p53 in the infected cell. This predicted p53-dependence was not borne out^{4,5}. Work continues to this day toward a set of mutations within the Ad5 genome that would render it p53-selective.

As an alternate approach, researchers have added exogenous p53-dependent repressive control to the Ad in an effort to impart p53-selective replication. One such example is expressing an E2F antagonist driven by a p53-dependent promoter⁶. Since both the E1A and E2 promoters are activated by the E2F transcription factor, it was thought that expressing an E2F antagonist in a p53-dependent fashion would render the Ad5 replication dependent on the absence of p53 in the infected cell. Another, similar, example is to express an shRNA against one of the endogenous Ad proteins and drive expression of this shRNA with a p53-dependent promoter⁷. A final example in this space is to express the I-secI meganuclease driven by a p53-dependent promoter plus adding the 18-base pair I-secI target sequence into the Ad genome^{8.9}. Since the I-secI target sequence is not found in the human genome¹⁰, this meganuclease should not cut any DNA except for the Ad genome and do so in a p53-dependent manner. If the Ad genome is cleaved by I-secI in a p53-dependent fashion, then Ad replication would become dependent on the absence of transcriptionally active p53.

Another general strategy found in the literature is similar to the TSTA system described in chapter 4, except in repressor mode rather than activating mode. In this scheme, a p53-sensitive promoter drives expression of a factor that represses another promoter within the Ad genome. One example of this scheme is a p53-dependent promoter driving a gal4-KRAB fusion which represses the CMV-gal4 promoter inserted into the Ad5 genome in place of the E1A promoter¹¹. A similar example employs the same repression mechanism, but in this case applied to a promoter consisting of gal4 binding sites surrounding the hTERT promoter, again replacing the E1A promoter¹².

All of these examples exhibit the same problem as the positively regulated virus examples described in chapter 4, potency is sacrificed for selectivity. Some of the viruses

in the examples above exhibit nearly wildtype replication kinetics, but show limited or no selectivity. And some viruses show strong selectivity, but are considerably slower than wild type when infecting p53^{-/-} target cells. The question is, can we develop a virus with negatively regulated selectivity based on p53 while maintaining near wild type kinetics?

Virus Regulated by the TetR System

As a starting point, we used the Tet-On system demonstrated in chapter 4. When controlling the Ad DBP with the Tet-On system, an approximate 1000X difference in TCID50 (Tissue Culture Infective Dose, 50%) between +doxycycline and –doxycycline is observed (see Fig. 4.17 of chapter 4). To test what level of control is possible with the TetR system, we replaced the Tet-On gene with TetR and replaced the TRE3G promoter with the CMV-Tet-O promoter. This promoter was optimized for high expression in the absence of TetR and maximum repression by the TetR protein¹³. A schematic of this circuit and the resulting control authority is shown in Fig 5.1.

Comparing the TetR system performance to that of the Tet-On system, as shown in Fig 5.2, highlights two differences. The off-state of the TetR system is not as good as that of the Tet-On system, and the on-state of the Tet-On system is not as good as that of the TetR system. Both of these observations make sense in light of the control mechanisms of the Tet-On and TetR systems. To generate the off-state in the TetR system, the TetR protein must fist be transcribed, translated, and accumulate in the cell, causing an initial delay in suppression of the CMV-Tet-O promoter. During this delay, some amount of DBP mRNA is transcribed. Conversely, the Tet-O system begins in the off-state and there is a time delay associated with the transcription, translation, and accumulation of the Tet-On protein required for activating the TRE3G promoter, thus the on-state of the Tet-On system is slower than that of the TetR system.

p53-Sensitive Promoter

To render the TetR-controlled virus into a p53-selective virus, we must replace the CMV promoter driving TetR expression with a p53-sensitive promoter. The literature describes an artificial p53-sensitive promoter, called PrMin-RGC¹⁴. This promoter consists of 13 p53-binding sites in combination with a minimal CMV promoter. We have reconstituted this promoter on a plasmid driving YPet expression. Transfecting this plasmid into A549 and A549p53KO cell lines demonstrates the p53-selective nature of this promoter, as shown in Fig 5.3. The A549p53KO cell line is a p53^{-/-} version of the A549 cell line generated by Jingwen Yin using CRISPR. The PrMin-RGC promoter exhibits a dynamic range of approximately 200X between p53^{+/+} and p53^{-/-} cell lines.

To measure the performance of this promoter in the context of an Ad infection, we cloned PrMin::YPet into the region between L5 poly-A and E4 poly-A, as described in chapter 4. Two so-called "sensor viruses" were produced, one with wt E1B-55k and another with Δ E1B-55k. When infecting A549 cells, a large YPet signal is produced only with the Δ E1B-55k version, as shown in Fig 5.4. When infecting A549p53KO cells, neither version of the sensor virus produces significant YPet signal. With Δ E1B-55k, the PrMin promoter exhibits a dynamic range of about 80X. This data shows how efficiently the wt E1B-55k protein of Ad5 degrades p53. No significant signal is produced by the

sensor virus containing wt E1B-55k. With this result in hand, the limited success in this space described in the cited references is better understood. Many of the p53-selective viruses described in the literature were constructed with wt E1B55k. Because of the efficient degradation of p53 by wt E1B-55k, one should not expect high expression of any Ad5 gene using a p53-sensitive promoter and thus the repressive effects of these p53-driven gene products would be minimal.

There is a high cost in replication kinetics when deleting E1B-55k from Ad5. Each of the sensor viruses described in the previous paragraph also contain mCherry-P2A-ADP as a kinetics readout. Fig 5.5 shows the measured replication kinetics for the sensor viruses when infecting A549 and A549p53KO. This data confirms that a significant kinetic defect occurs with deletion of E1B-55k.

Degradation of p53 by E1B-55k must be mitigated in order achieve activation of a p53-sensitive promoter placed within the Ad5 genome, but wholesale deletion of E1B-55k incurs an unacceptably high cost in kinetics. The literature describes point mutations in E1B-55k that abrogate to some extent the interaction between E1B-55k and p53 while mostly maintaining the other functions of E1B-55k¹⁵. The two most promising mutations described are: E1B-55k[H260A] and E1B-55k[R240A]. These mutations were cloned into sensor viruses and the resulting p53 transcriptional activity vs. virus kinetics was measured, as shown in Fig 5.6. These point mutations represent a compromise between p53 transcriptional activity and virus kinetics. The ideal mutation would produce a data point located in the upper right corner of the graph of Fig. 5.6 with maximum p53 transcriptional activity simultaneous with maximum virus kinetics.

p53-Selective, Negatively-Regulated Ad

The sensor virus results do not highlight a clear choice in E1B-55k mutation. As the p53-transcriptional activity is increased, the virus kinetics is decreased. This trade-off is unavoidable with the E1B-55k mutations available to us at this time. It is unknown what level of TetR expression is required to fully suppress the CMV-Tet-O promoter driving DBP in the negatively-regulated virus. Because there is no clear choice, all four versions of E1B-55k were cloned into the p53-selective virus shown schematically in Fig 5.7. The p53 selectivity of these viruses is shown in Fig 5.8 using a cell viability assay to determine cell killing versus initial MOI when infecting A549 and A549p53KO cells. The virus with wt E1-55k shows no selectivity, as expected, because wt E1B-55k is so effective at degrading p53. The virus with Δ E1B-55k shows some differential between A549 and A549p53KO. The virus with Δ E1B-55k exhibits an excellent off state, but a very weak on state, as expected due to the kinetics hit caused by deletion of E1B-55k. The virus with E1B-55k[H260A] shows an improved on state compared to the Δ E1B-55k virus, but a slightly worse off state. The best results were obtained with the E1B-55k[R240A] virus. Though the off state for this virus is slightly worse that the H260A mutation, the on state is greatly improved. The TCID50 for this virus is about 100X different between $p53^{+/+}$ and p53^{-/-} cell lines.

Ultimate Performance of a p53-selective Ad

The 100X differential exhibited by the E1B-55k[R240A] virus is highly promising, but still has room for improvement. Fig 5.9 shows the performance of this virus in both A549p53KO and A549 cells overlaid with that of the wt E1B-55k virus in A549p53KO cells and Δ E1B-55k virus in A549 cells. These two extremes show the potential of this selective virus if the "unicorn" mutation in E1B-55k can be found. Such a mutation would exhibit kinetics equal to a virus with wt E1B-55k <u>and</u> p53 transcriptional activity of a virus with Δ E1B-55k.

Conclusions

An oncolytic virus with selectivity based on the status of p53 in tumor cells has been a goal of the field for nearly three decades. Many clever approaches toward such a virus have been attempted. Few researchers appreciated the efficiency at which E1B-55k degrades p53 and prevents transcriptional activation by p53 in Ad5 infected cells. The sensor viruses described in this chapter, in combination with a TP53-knock out version of A549, provided us with the key insight that any p53-dependent Ad must first address p53 degradation by E1B-55k. In addition, the viral kinetics assay developed as part of this dissertation allows accurate measurement of the kinetics cost associated with modifications made to E1B-55k. With these tools in hand, the "unicorn" version of E1B-55k could be found and its positive impact on both the safety and efficacy of the p53-selective virus described in this chapter will be dramatic.

Figures

Figure 5.1. Cell viability assay results (upper left), schematic diagram (upper right), and kinetics curves +/- Dox (lower left and right) for virus with DBP placed under direct control of CMV-Tet-O promoter. The TetR protein is driven by the CMV promoter.

Figure 5.2. A side-by-side comparison of the Tet-On and TetR systems used to control Ad5 replication.

Figure 5.3. Measured YPet fluorescence produced by PrMin::YPet plasmid transfected into A549 and A549p53KO cells. Also shown is measured mCherry fluorescence produced by a co-transfected CMV::mCherry plasmid.

Figure 5.4. Measured YPet fluorescence produced by sensor viruses infecting A549 and A549p53KO cell lines. The black lines represent data for virus with wt E1B-55k and red lines represent data for virus with ΔE1B-55k.

Figure 5.5. Measured replication kinetics for sensor viruses with wt E1B-55k and Δ E1B-55k, when infecting A549 and A549p53KO cell lines.

Figure 5.6. Measured p53 transcriptional activity (YPet signal) vs. virus replication kinetics for sensor viruses when infecting A549 cells. Each sensor virus has the following E1B-55k mutations: wt, full deletion, H260A, and R240A.

Figure 5.7. Schematic of p53-selective, negative control of Ad5 replication. The E1B-55k protein is kept as wt, completely deleted, or contains An H260A or R240A point mutation. Testing is done in $p53^{+/+}$ or $p53^{-/-}$ cell lines.

Figure 5.8. Measured cell viability 9 days post infection in A549 and A549p53KO cells infected with p53-selective viruses containing various mutations in E1B-55k.

Approximate MOI

Figure 5.9 Comparison of cell viability between E1B-55k[R240A] virus shown with solid lines and that of wt E1B-55k virus in A549p53KO cells and Δ E1B-55k virus in A549 cells shown with dashed lines. The collapse of the solid line TCID50 compared to the dashed lines is the sacrifice made in the differential when using an imperfect version of mutated E1B-55k.

1. Bischoff JR, Kim DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, and McCormick F. An Adenovirus Mutant That Replicates Selectively in p53-Deficient Human Tumor Cells. Science 1996; 274(5286):373-376.

2. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, and Kirn D. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat. Med. 1997; 3(6):639-645.

3. Yew PR and Berk AJ. Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 1992; 357:82-85.

4. Goodrum FD and Ornelles DA. p53 Status Does Not Determine Outcome of E1B 55-Kilodalton Mutant Adenovirus Lytic Infection. J. Virol. 1998; 72(12):9479-9490.

5. O'Shea CC, Hohnson L, Bagus B, Choi S, Nicholas C, Shen A, Boyle L, Pandey K, Soria C, Junich J, Shen Y, Habets G, Ginzinger D, McCormick F. late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Caner Cell 2004; 6:611-623.

6. Ramachandra M, Rahman A, Zou A, Vaillancourt, Howe JA, Antelman D, Sugarman B, Demers GW, Engler H, Johnson D, and Shabram P. Re-engineering adenovirus regulatory pathways to enhance oncolytic speicificity and efficacy. Nat. Biotech. 2001; 19:1035-1041.

7. Gurlevik E, Woller N, Scahache P, Malek NP, Wirth TC, Zender L, Manns MP, Kubicka S, and Kuhnel F. p53-dependent antiviral RNA-interference facilitates tumor-selectve viral replication. Nucleic Acids Res. 2009; 37(12).

8. Goez G. Generating an oncolytic adenovirus with optimized p53-dependent replication. Dissertation, Hannover Medical School. 2012

9. Gurlevik E, Schache P, Goez A, Kloos A, Woller N, Armbrecht N, Manns MP, Kubricka S, and Kuhnel F. Meganuclease-mediated Virus Self-cleavage Facilitates Tumor-specific Virus Replciation. Mol. Ther. 2013; 21(9):1738-1748.

10. Belfort M and Roberts RJ. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 1997; 25(17):3379-3388.

11. Targeting of p53-Transcriptional Dysfunction by Conditionally Replicating Adenovirus Is Not Limited by p53-Homologues. Mol. Ther. 2010; 18(5):936-946.

12. Gurlevik E, Woller N, Struver N, Schache P, Kloos A, Manns MP, Zender L, Kuhnel F, and Kubicka S. Selectivity of Oncolytic Viral Replication Prevents Antiviral Immune Response and Toxicity, but Does Not Improve Antitumoral Immunity. Mol. Ther. 2010; 18(11):1972-1982.

13. Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, and Hillen W. Exploring the sequence space for tetracycline-dependent transcriptional activators: Novel mutations yield expanded range and sensitivity. PNAS 2000; 97(14):7963-7968.

14. Kuhnel F, Zender L, Wirth T, Schulte B, Trautwein C, Manns M, and Kubicka S. Tumor-specific adenoviral gene therapy: transcriptional repression of gene expression by utilizing p53-signal transduction pathways. Cancer Gene Ther. 2004; 11:28-40.

15. Shen Y, Kitzes G, Nye JA, Fattaey A, and Herminston T. Analysis of a Single-Amino-Acid Substitution Mutants of Adenovirus Type 5 E1B-55K Protein. J. Virol. 2001; 75(9):4297-4307.

CHAPTER SIX:

Experimental Procedures
Cell Culture

HEK293, 293-E4, and A549 cells were cultured in DMEM + 10% Fetal Bovine Serum (FBS). The FBS is heat inactivated at 55C for one hour, passed through a $0.22 \mu m$ filter, then aliquoted into 50ml volumes for freezing. Cell passage was performed as follows:

Prepare Trypsin

• Mix 1 part Trypsin/TD with 4 parts VE (EDTA at 0.02%)

Release and Collect Cells

- Aspirate media
- Wash cells with PBS -/- (10ml for 10cm plate, 20ml for 15cm plate)
- Add Trypsin (3ml for 10cm plate, 5ml for 15cm plate)
- Incubate at 37C for 5 min
- Use fresh media to wash cells from plate surface (5-10ml for 10cm plate, 10-20ml for 15cm plate)

Spread cells on fresh plates

- Spread media/cells onto fresh plates
 - 1 confluent 10cm plate splits to 4X10cm plates
 - 1 confluent 10cm plate splits to 2x15cm plates
 - 1 confluent 15cm plate splits to 4X15cm plates

Virus Expansion

Virus production and expansion is done with HEK293 cells or 293-E4 cells + dexamethasone, depending on the need to rescue deletions in the E4 region of the Ad genome. The expansion steps typically used are: 2X6 well, 1X10cm, 2X15cm, 15X15cm. The steps for expansion to 15X15cm are show below. All other expansion steps are similar, but scaled appropriately:

- 24 hours prior to infection:
 - Replace media on all plates with MEM + 10% FBS + Dex
 - Dex is supplied at 10,000X
 - Add sufficient 10,000X Dex to reach 1X Dex concentration in media prior to application
- Return plates to 37C incubator
- On day of infection:
- Prepare freezing medium by placing dry ice in insulated bucket and adding 95%

EtOH

- 95% EtOH is located in cabinet in Hunter lab (cabinet just opposite the tissue culture room)
- Dry ice located in the Shaw lab
- As an alternate, may use liquid nitrogen
- Perform freeze/thaw 3 times total
 - If taking virus from -80C, count this as the first freeze step
 - Thaw in the 37C water bath
- Spin virus solution at 3200RPM for 10 minutes

- Replace media on 15X15cm plates with 16ml of fresh MEM + 2%FBS + Dex
 - Dex is supplied at 10,000X
 - Add sufficient 10,000X Dex to reach 1X Dex concentration in media prior to application
- Distribute supernatant from spin evenly among the 15X15cm plates
 - Take care to avoid the cell debris pellet

Virus harvest

Harvest of virus are the last expansion stage, 15X15cm plates, attempts to capture the cells prior to viral lysis, so called cell-associated. The following steps describe the harvest protocol:

Harvest Cells

- Cells are ready for harvest when they exhibit full cytopathic effect (CPE) and are rounded up, but not yet completely detached from the plate
 - Typically takes 48-72 hours if infected with a multiplicity of infection (MOI) of 5-10
- Repeatedly wash the plate with 10ml pipette and collect supernatant
- Pool supernatant from all plates into a new, sterile 250ml conical centrifuge tube
- Pellet the cells at 2,500RPM 4C for 5 minutes
- Aspirate supernatant
- Re-suspend pellet in 10ml of 1X TMN (Cracking Buffer)
- Transfer to a 15ml centrifuge tube

- Can store this suspension at -80C for later processing
- <u>10X TMN (Cracking Buffer)</u>
 - 100mM Tris pH 7.5
 - 1.5M NaCl
 - 10mM MgCl₂
- Recipe for 1 liter of 10X TMN
 - 100ml 1M Tris pH 7.5
 - 300ml 5M NaCl
 - 10ml 1M MgCl₂
 - Bring to 1 liter total volume with ddH₂O
 - Autoclave using cycle 1 (liquid for 40 minutes)

Virus Purification

All purified virus used in the experiments described in this dissertation were two

stage CsCl purified. The details of this purification protocol are as follows:

Release Viral Particles

- If freeze/thaw protocol has already been applied to virus, skip to CsCl loading section
- Prepare freezing medium by placing dry ice inside insulated bucket and adding 95% EtOH
 - 95% EtOH is located in cabinet in Hunter lab (cabinet just opposite the tissue culture room)

- Dry ice located in the Shaw lab
- As an alternate, use a thermos filled with liquid nitrogen
- Freeze solution in dry ice/95% EtOH bath or liquid nitrogen
- Thaw in the 37C water bath
- Perform freeze/thaw 3 times total
 - Mix well between each freeze/thaw cycle

Viral Solution Preparation

- Pellet cellular debris at 3,200RPM for 10 minutes
- Transfer supernatant to clean 15ml centrifuge tube
 - Supernatant will still be cloudy
- Pellet any remaining cellular debris at 3,600RPM for 10 minutes
- Transfer supernatant to a new 50ml tube
 - Supernatant may still be cloudy
- Dilute the volume to 18ml with 10mM Tris pH8

Set up Gradient #1

- To an SW32 tube (Beckman #344058) add 10ml of light CsCl solution
 - Tubes are located on shelf across from high speed centrifuge
 - Buckets and SW32 rotor are located in Shaw lab 4C, below east side bench
 - Use Styrofoam tube holder for more secure mounting
- Underlay with 10ml of heavy CsCl solution
 - Insert pipet tip along the wall of the tube
 - Avoid air bubbles

- You should be able to see the interface between CsCl layers
- Carefully and slowly layer the 18ml of virus solution on top of the CaCl
 - Top off the tube with 10mM Tris pH8 if necessary. Stop 2-3mm from lip of tube.
 - Hold pipet tip against tube wall, immersed in meniscus of top CsCl layer
- Load tubes into buckets
 - Bucket cover release is 1/4 turn
 - Check that cone-shaped adapter is removed from bucket (do not discard)
 - Wipe debris and excess moisture from bucket
 - Ease tube into bucket while holding very top of tube. Tube falls quickly in this bucket type.

<u>Spin #1</u>

- Spin the gradient at 20k RPM for at least 3 hours at 4C
 - This spin can go overnight if needed
 - Release vacuum to allow opening of centrifuge lid
 - Install all buckets in appropriate numbered locations
 - Install rotor by removing from rotor stand in a vertical motion and placing on centrifuge spindle in a vertical motion. There is no mechanical detent.
 - Close lid
 - Engage vacuum
 - Set temperature to 4C
 - Set time to "hold" (press "other options" button located below screen)

- Set acceleration to "max"
- Set deceleration to "max"
- Enter rotor number from list shown on display
 - The SW32 rotor is number 15 and is called "other1"
- Wait under pressure drops below 500 microns before starting spin
- Make appropriate entries to sign-in sheet

Pull Virus Band after Spin #1

- Setup apparatus in TC hood
 - Place large tube clamp in TC hood (tube clamp located on floor next to north-east TC hood)
 - Fill beaker with 100ml of 1X Rocadyne and place below tube clamp
 - Mount black paper behind tube holder for better viewing (paper located in drawer next to north-east TC hood)
- Wear double gloves
- Transfer tube from centrifuge bucket to tube holder. Use forceps to lift out.
 - The infectious virus will be the lowest band formed on the gradient (see example figures below)
- Using an 18 gauge needle and 5ml syringe, puncture the tube about 1cm below the band
- Pull the band out, trying to avoid any bands sitting above the infectious band.
- The volume should be about 2ml
- Squirt the virus into a labeled 15ml conical tube

- Dilute the virus to 4ml total volume with 10mM Tris pH8
- Clean all surfaces with SDS and dry with paper towel
- When returning centrifuge buckets, make sure to include conical adapters

Set up Gradient #2

- To an SW41 tube (Beckman #344059) add 4ml of light CsCl solution
 - Tubes are located in drawer next to north-east TC hood
 - Buckets and SW41 rotor are located in Shaw lab 4C, below east side bench
 - Use metal tube rack to hold tubes (located in drawer next to north-east TC hood)
- Underlay with 4ml of heavy CsCl solution
 - Insert pipet tip along the wall of the tube
 - Avoid air bubbles
 - You should be able to see the interface between CsCl layers
- Carefully and slowly layer the 4ml of virus solution on top of the CaCl
 - Top off the tube with 10mM Tris pH8 if necessary. Stop 2-3mm from lip of tube.
 - Hold pipet tip against tube wall, immersed in meniscus of top CsCl layer
- Load tubes into buckets
 - Bucket cover release is requires special screwdriver located in drawer next to north-east TC hood
 - Wipe debris and excess moisture from bucket

 Ease tube into bucket while holding very top of tube. Tube falls slowly in this bucket type.

<u>Spin #2</u>

- Spin the gradient at 20k RPM for at least 3 hours at 4C
 - This spin can go overnight if needed
 - Release vacuum to allow opening of centrifuge lid
 - Install all buckets in appropriate numbered locations
 - Install rotor by removing from rotor stand in a vertical motion and placing on centrifuge spindle in a vertical motion. There is no mechanical detent.
 - Close lid
 - Engage vacuum
 - Set temperature to 4C
 - Set time to "hold"
 - Set acceleration to "max"
 - Set deceleration to "max"
 - Enter rotor number from list shown on display
 - Wait under pressure drops below 500 microns before starting spin

Prepare Dialysis Buffer

- Measure out 300ml of 100% glycerol in a graduated cylinder and pour into a 3 liter beaker (glycerol located on floor across from lab sink)
- Wash remaining glycerol from the graduated cylinder using ddH₂O as part of the 2400ml required for final solution

- Do not exceed 2500ml total volume at this point
- Add 300ml of 10X TMN
- Bring to 3000ml total volume with ddH₂O
- Add stir bar
 - Sterilize with 70% EtOH
- Mix on stir station to ensure homogeneity
- Store in 4C cold room
- Equilibrate dialysis cassette by placing in dialysis buffer (only ~5-20 minutes

before use)

- Label each cassette for each viral purification
- Use floating cassette buoys to float the cassette in buffer (buoys are located on table across from Jason). Sterilize with 70% EtOH.
- Use Pierce brand 10,000 MW cutoff cassette #66380 with 0.5-3ml capacity

(Cassette located on shelf across from Jason)

Prepare for viral band extraction

- Assemble small tube holder and background inside TC hood
- All components are located in drawer next to north east TC hood
- Preposition one 5ml syringe and one 18Ga x 25.4mm needle for each virus inside the TC hood
- Syringes located in general stock cabinets and needles located on shelf across from Jason

• Fill a 1 liter beaker with 100ml of 1X Rocadyne and place under tube holder (Rocadyne located at sink near TC room)

Extract Viral Band

- Wear double gloves
- Load ultra-centrifuge tube into tube holder
 - If virus band is located high in tube, clamp below band
 - If virus band is located low in tube, clamp above band
- Pull 2ml volume of air into the 18G needle/syringe
- Orient needle with beveled opening pointed down and puncture side of tube at a position slightly below the virus band
 - To puncture the tube requires considerable force
 - Support the tube with your free hand
 - Be sure to position your hand to avoid accidental puncture
- Rotate the beveled opening up, toward the virus band
- Draw solution from the tube while moving the needle tip left to right and in and out to extract all of the virus band
 - Avoid extracting any of the higher bands
- Pull needle from tube while supporting with your freed hand
 - Avoid fluid that will drip from the punctured tube

Load Dialysis Cassette

• Insert the needle into the cassette with the beveled opening rotated in-plane with the cassette frame

- Insert slowly and to a distance just sufficient to penetrate the inner volume
- Rotate cassette/needle/syringe so that syringe is positioned above the cassette
- Slowly insert plunger to transfer all fluid from syringe to cassette
- Once fluid transfer is complete, slowly draw back syringe to extract all remaining air from cassette volume
- Either mark the puncture position or remember its orientation relative to cassette label to avoid its reuse
- Each of the four corners allows a single puncture

<u>Dialyze</u>

- Place the cassette/buoy assembly in the dialysis buffer and place beaker in 4C cold room on a stir plate
- Dialyze overnight

Removal from Dialysis Cassette

- Place the dialysis cassette in the TC hood
- Assemble a 5ml syringe with a 18Ga needle
- Draw 3ml of air into the syringe
- Carefully insert the needle in to the cassette, stopping just as the needle extends

past the frame of the cassette

- Be sure to use a different puncture hole from the one used to load the viral solution
- Rotate cassette/needle/syringe so that syringe is positioned above the cassette

- Inject sufficient air to spread the cassette membranes and allow free flow of the viral fluid
- Gently shake the cassette to ensure all viral particles are in solution
 - During dialysis, the viral particles may form a precipitate
- Rotate cassette/needle/syringe so that syringe is positioned below the cassette
- Slowly draw the viral fluid from the cassette while adjusting its tilt to force all fluid in to the corner of the cassette
- Extract the syringe/needle and transfer all fluid into a 1.5ml centrifuge tube

Aliquot Viral Solution

- Load the white centrifuge tube rack (with bottom basin) with dry ice and 90% EtoH
 - Place in the TC hood
 - White/basin tube rack is located on shelf across from Aaron's desk
- Aliquot 150µl volumes into separate tubes until all viral solution is distributed
- Place in chilled centrifuge tube rack
- Label each tube with viral identifier and lot#
- Make appropriate entries in the CERF database "AA Pure Virus Stocks" on the "Large Stocks" sheet of the workbook
- Place all tubes in their appropriate box and positions in the horizontal -80C freezer located one floor above the lab

Clean up

- Dump dialysis buffer solution in sink
- Rinse the 4 liter breaker with deionized water

• Autoclave the 4 liter beaker on cycle 3 with aluminum foil as cover

10X TMN (Cracking Buffer)

100mM Tris pH 7.5

1.5M NaCl

10mM MgCl₂

Recipe for 1 liter of 10X TMN

100ml 1M Tris pH 7.5

300ml 5M NaCl

10ml 1M MgCl₂

Bring to 1 liter total volume with ddH₂O

Autoclave using cycle 1 (liquid for 40 minutes)

Large Aliquot of Heavy CsCl Solution

•	CsCl	423.3g
---	------	--------

• 10mM Tris pH8 577.7ml

Large Aliquot of Light CsCl Solution

- CsCl 223.9g
- 10mM Tris pH8 776.1ml

Virus Titration

The FBVK assay is tolerant to inaccurate knowledge of the viral titer, thus much of the work described in this dissertation was done without a carefully measured titer. In some cases, a well measured titer was desired and these cases the Limiting Dilution Assay (LDA) with 293 cells was used to obtain a titer. The protocol for LDA titer is as follows:

- ~24 hours prior, seed 96 well plate with 25,000 cells per well using 100ul of media per well.
- After ~24 hours inspect wells to ensure that cells are achieved at least 85% confluency.
- Add 100ul of fresh media to all wells of cell-containing 96 well plate
- Dilute small aliquot virus are 1E+06 in a 1.5ml Eppendorf tube. Likely will require
 2-3 steps of serial dilution to achieve this value.
- Place 250ul of diluted virus in all wells of column number 1 of a fresh (no cells) 96 well plate.
- Place 160ul of fresh media in all other wells of same 96 well plate.
- Transfer 80ul of virus/media from all wells of column 1 to all wells of column 2.
- Exchange pipet tips and repeat transfer from column 2 to column 3.
- Repeat dilution transfer across the 96 well plate, changing tips between columns.
 DO NOT TRANSFER VIRUS/MEDIA TO COLUMN 12. These wells will be used for blanking during the fluorescence scan after 9-10 days.
- Once dilution plate is complete, transfer 100ul of virus/media from each well of the dilution plate to the corresponding well of the cell-containing plate.
- Place cell-containing plate in incubator at 37C, 5% CO2 for 9-10 days.
- After 9-10 days, read fluorescence of each well using a plate reader with settings appropriate for the fluorophore expressed by the given virus.

- Score each well as positive if the fluorescence level is 3 standard deviations above the average of all the uninfected wells (column 12).
- Apply the Spearman & Karber algorithm for calculating titer as described in reference #1.

Virus Whole Genome Assembly: Adsembly Protocol

The following protocol for producing whole genome plasmids using the multisite gateway Adsembly process is taken from unpublished work by Colin Powers:

For standard Adsembly reactions, combine 20fmol of dual-DEST core plasmid, 50fmol of E1 module plasmid, 10fmol of E3 module plasmid, and 10fmol of E4 module plasmid in 8µl total volume. Add 2µl of LR clonase II enzyme mix (Life Technologies) and incubate 8-16hrs at room temp. The reaction can then be transformed into bacteria for genome screening or directly transfected into mammalian cells to reconstitute virus.

Virus Whole Genome Assembly: AdSLIC Protocol

The following protocol for producing whole genome plasmids using the AdSLIC protocol is taken from unpublished work by Colin Powers:

To complete AdSLIC from a core module, $5\mu g$ of a core module is linearized by restriction digest on either end in a 20µl reaction. After digesting for >2hrs, the enzyme is heat inactivated according to manufacturers instructions. 4µl (1µg total) is then treated for SLIC in a 20µl volume using our standard SLIC method. At the same time, the module(s) for insertion (E1, E3, E4, or E3+E4) are PCR amplified (see AdSLIC primers list) and gel purified. 400ng is typically treated for SLIC in a 20µl volume using our standard SLIC method, however amounts down to 100ng have been successful. 10µl of SLIC-ready vector and 10µl of each insert is then mixed together and annealed using our standard SLIC method. After annealing, 5µl is transformed into NEB10 β competent cells and screened by restriction digest and sequencing.

The successful joining of a core module with either an E1, E3, or E4 module or any combination of two of those creates a "macro-module" that must be subsequently linearized by digest again and joined with the absent modules in the same fashion as the first. Macro-modules are useful when making frequent manipulations within a single part of the genome.

References

1. Hierholzer and Killington (1996). Virology Methods Manual. San Diego CA: Harcourt Brace & Company.

APPENDIX A:

Detailed Map of the Adenovirus Serotype 5 (Ad5) Genome

Need for a Detailed Genomic Map

During development of the engineered virus genomes described in the previous chapters, the greatest concern was producing a false negative result caused by placement of exogenous DNA in locations that disrupted the Ad lifecycle. Because the Ad genome is so compact and employs both positive and negative strands for encoding multiple genes, the addition of exogenous DNA is fraught with risk. A few examples of mistakes one could make are the following; Interruption of a critical ORF or promoter located on the opposite strand. Introduction of a cryptic splice site. Disruption of a full length poly-A sequence.

Detailed Map of the Ad5 Genome

In order to best avoid mistakes during genome design, a detailed map of the Ad5 genome was assembled from a variety of sources. The complete Ad5 genome was first published by Chroboczek, Bieber, and Jacrot¹ in 1992. As a starting point for this detailed map, we used the Ad5 genome available from GenBank with Ascension #AY339865.1. This sequence was created and submitted by Sugarman et. al² in 2003. The annotation available with #AY339865.1 includes all of the ORFs and promoters, but only some of the poly-A sites and none of the splice sites. The references listed in table 6.1 were used to verify and enhance the annotation provided by #AY339865.1. The resulting map is shown graphically in Fig 6.1. This map was made using Vector NTI Advance[®] version 11.5.2.

The following text, starting on the next page, is the detailed Ad5 genome map exported as a GenBank file:

LOCUS DEFINITION ACCESSION	AD5\Genom TPA: Huma BK000408	e\Annotated\171130aa 35938 bp DNA linear VRL 30-NOV-2017 n adenovirus type 5, complete genome.
VERSION KEYWORDS SOURCE ORGANISM	BK000408. Third Par Human ade Human ade	1 GI:33694637 ty Annotation; TPA. novirus type 5. novirus type 5
REFERENCE AUTHORS TITLE	Viruses; 1 (bases Davison,A Genetic c	dsDNA viruses, no RNA stage; Adenoviridae; Mastadenovirus. 1 to 35938) J., Benko,M. and Harrach,B. .ontent and evolution of adenoviruses (card, 04 (ch 41), 2005 (2002)
	J. Gen. V 2 (hases	1rol. 84 (Pt 11), 2895-2908 (2003)
AUTHORS	Davison,A	
JOURNAL	Submitted G11 5JR.	(03-MAY-2002) MRC Virology Unit, Church Street, Glasgow U.K.
COMMENT	This file http://ww	is created by Vector NTI w.invitrogen.com/
COMMENT	ORIGDB Ge	nBank
COMMENT	VNTDATE -	12050614
COMMENT	VNTDBDATE	-12050614
COMMENT	LSOWNER	
		DS Genome Annotated 1/1130aa
COMMENT	VNTOAUTHO	IRNAME UNKNOWN
FEATURES	IN OACTIO	Location/Oualifiers
source		135938
		/organism="Human adenovirus type 5" /mol_type="genomic DNA"
		/serotype="Human adenovirus type 5" /db_xref="taxon:28285"
		/vntifkey="98" /note-"Human adenovirus ("
repeat	region	1103
		/rpt_type=inverted
		/vntifkey="34"
		/label=inverted\lerminal\Repeat\l\(llR1)
CDS		ioin(5601112.12291545)
		/codon_start=1
		/product="E1A"
		/protein_id="DAA00639.1" /db_vpef="GT:33604638"
		/un
		/label=E1A\(13S)
		<pre>/note="other spliced forms exist with larger introns"</pre>
CDS		17142244
		/COGON_START=1 /nroduct="FIB_19K"
		/protein id="DAA00640.1"
		/db_xref="GI:33694639"
		/vntifkey="4"
CDS		/label=E1B-19K
CDS		20195009 /codon_start=1
		/product="E1B 55K"
		/protein_id="DAA00641.1"
		/db_xref="GI:33694640"
		/vntifkey="4"
CDS		/1aDE1=E1B-55K
605		/codon start=1
		/product="IX"
		/protein_id="DAA00642.1"
		/db_xref="GI:33694641"
		/VNTITKEy= 4 /label-Protein\TX\(nTX)
CDS		complement(ioin(40915427.57065718))
205		/codon_start=1
		/product="IVa2"
		/protein_id="DAA00643.1"
		/db_xref="GI:33694642"
		/VNT1TKEY="4" /labal=Protein\TV22\(nTV22)\evon\#2
		12001-1101011111402/(PIA02)/CV01/#2

CDS	<pre>complement(join(51978784,1411114119)) /codon_start=1 /product="pol" /protein_id="DAA00644.1" /db xref="GI:33694643"</pre>
CDS	/vntifkey="4" /label=E2B\DNA\Polymerase\Exon 11050.12297 /coden_ctart=1
	/product="524" /protein_id="DAA00646.1" /db_xref="GI:33694645" /untifkev="4"
CDS	/label=L1\52kDa\Protein 1231814075
	/codon_start=1 /product="pIIIa" /protein_id="DAA00647.1" /db_xref="GI:33694646" /vntifkev="4"
CDS	/label=L1\Capsid\Vertex\Protein\IIIa\(pIIIa) 14156.15871 /codon start=1
	/product="III" /protein_id="DAA00648.1" /db_xref="GI:33694647" /vntifkev="4"
CDS	/label=L2\Penton\Base\(pIII) 1587816474
	/codon_start=1 /product="pVII" /protein_id="DAA00649.1" /db_xref="GI:33694648" /vntifkey="4"
CDS	/label=L2/Major/Core/Protein/(pVI1) 1654417650 /codon_start=1 /product="V"
	<pre>/protein_id="DAA00650.1" /db_xref="GI:33694649" /vntifkey="4" /labal=12Minor\Core\Protein\V\(nV)</pre>
CDS	<pre>/Idel-L2 (initial (c) c (i recent (c) (p)) 17678.17920 /codon_start=1 /product="pX" /protein_id="DAA00651.1" /db_xref="GI:33694650"</pre>
CDS	/vntifkey="4" /label=L2\Core\Protein\Precursor\X\(pX,\mu) 1800318755 /coden_ctart=1
	/cool_start=1 /product="pVI" /protein_id="DAA00652.1" /db_xref="GI:33694651" /vntifkey="4"
CDS	<pre>/label=L3\Protease\Cofactor;\Capsid\Protein\Precursor\VI\(pVI) 1884221700 /codon_start=1 /product="hexon" /orotein id="DAA00653.1"</pre>
	/db_xref="GI:33694652" /vntifkey="4" /label=L3\Hexon
CDS	2173322347 /codon_start=1 /product="protease" /protein_id="DAA00654.1"
	/db_xref="GI:33694653" /vntifkey="4" /label=L3\Endoprotease\23KDa
CDS	<pre>complement(2244324032) /codon_start=1 /product="DBP" /protein_id="DAA00655.1" /db_xref="GI:33694654"</pre>

	/vntifkov-"1"
	$/label=E2\Delta\DNA\Binding\72kDa\Protein$
CDS	2406126484
	/codon start=1
	/product="100K"
	/protein_id="DAA00656.1"
	/db_xref="GI:33694655"
	/vntifkey="4"
CDC	/label=L4\Hexon-assembly\Associated\100kDa\Protein
CDS	J01n(2619526510, 26/132/086)
	/couol_Stdrt=1
	/protein_id="DAA00657_1"
	/db_xref="GI:33694656"
	/vntifkey="4"
	/label=L4\Splicing\Factor\33KDa\Protein\Exon\#1
CDS	2619526785
	/codon_start=1
	/product="22K"
	/protein_id="DAA00658.1"
	/db_xret="GI:33694657"
	/VNTITKEY= 4 /label-14/Dackaging/22kDa/Dnotein
CDS	2717/ 27857
605	/codon_start=1
	/product="pVIII"
	/protein id="DAA00659.1"
	/db_xref="GI:33694658"
	/vntifkey="4"
	<pre>/label=L4\Hexon\Linking\Protein;\Caspid\Protein\Precursor\(pVIII)</pre>
CDS	2785828181
	/codon_start=1
	/product="E3 12.5K" /protoin_id_"DAAGGCG_1"
	/protein_id= DAA00660.1 /db_ypof="CT:33604650"
	/ut_ifkev="4"
	/label=Early\E3A\Immune\Modulating\12.5kDa\Protein
CDS	2854728738
	/codon_start=1
	/product="E3 CR1-alpha0"
	/protein_id="DAA00661.1"
	/db_xret="GI:33694660"
	/vntitkey="4" /label_F24/CB1_almba/Membrane/6_7kDa/Dmetein
CDS	/ Iabel=ESA \CK1-alpha \membrane \0.7Kba \Protein
605	/codon_start=1
	/product="E3 gp19K"
	/protein id="DAA00662.1"
	/db_xref="GI:33694661"
	/vntifkey="4"
	/label=E3A\Inhibitor\of\MHC;\Membrane\Glycoprotein\19kDa
CDS	2941329772
	/codon_start=1
	/product= E3 CRI-Deta0
	/db_vraf="GT.33694662"
	/ut_ifkev="4"
	/label=ADP
CDS	2978430059
	/codon_start=1
	/product="E3 RID-alpha"
	/protein_id="DAA00664.1"
	/db_xref="GI:33694663"
	/vnti+key="4"
CDS	/ Tabe1=E3B \ K1D \ a1pna
05	/codon_start=1
	/product="E3 RID-beta"
	/protein_id="DAA00665.1"
	/db_xref="GI:33694664"
	/vntifkey="4"
	/label=E3B\RiD-Beta
CDS	3045330839
	/ COUDI_SLAPT=1 /ppoduct="E3 14 7K"
	/product= 25 17./K

	/protein id="DAA00666 1"
	/db xref="GI:33694665"
	/vntifkey="4"
	/label=E3B\14.7kDa
CDS	3104232787
	/codon_start=1
	/product="fiber"
	/protein_id="DAA00668.1"
	/u0_xref= G1:3509406/
	/VNLITKEy= 4 /lahel-L5\Fiher
CDS	complement(ioin(3291433192.3390434077))
	/codon start=1
	/product="E4_ORF6/7"
	/protein_id="DAA00669.1"
	/db_xref="GI:33694668"
	/vntifkey="4"
CDC	/label=E4\lransactivator\of\Host\E2F\(E4-ORF6//)
CDS	<pre>complement(33193340//) /codop_stant=1</pre>
	/protein id="DAA00670.1"
	/db_xref="GI:33694669"
	/vntifkey="4"
	/label=EarlyE4\Inhibitor\of\Nuclear\Immunity\2\(E4-ORF6)
CDS	complement(3399834342)
	/codon_start=1
	/product="E4 UKF4" /protoin_id="DAA@GC71_1"
	/protein_iu= DAA000/1.1 /db_xpaf="GT-3369/670"
	/vntifkey="4"
	/label=E4-ORF4
CDS	complement(3435334703)
	/codon_start=1
	/product="E4 ORF3"
	/protein_id="DAA00672.1"
	/ 0D_XTET= GI: 356946/1 ~ () () () () () () () () () () () () ()
	/VNTITKEY= 4 /label-E4_OPE3
CDS	complement(34700 35092)
000	/codon start=1
	/product="E4 ORFB"
	/protein_id="DAA00673.1"
	/db_xref="GI:33694672"
	/vntifkey="4"
	/label=E4-ORF2
variation	34935^34936
	/experiment= experimental evidence, no additional details
	/citation=[1]
	/replace="t"
	/vntifkey="96"
	/label=Variation_2
	/note="compared to sequence presented in GenBank Accession Number M73260"
CDS	complement(3514035526)
	/codon_start=1
	/product="E4 ORF1"
	/protein_iu= DAA01370.1 /db_xpaf="GT+3369/673"
	/ub_x1e1= 01.55054075 /vntifkev="4"
	/label=E4-ORF1
repeat_region	3583635938
	/rpt_type=inverted
	/vntifkey="34"
	/label=Inverted\Terminal\Repeat\2\(ITR2)
onhancer	/NOTE="11K"
ennancer	195520 //mtifkov_"0"
	/VILLINGY= 7 /lahel=F1A\Enhancer
	/note="http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=209889"
misc RNA	1062010779
-	/vntifkey="53"
	/label=Virus\Associated\RNA\I
	/note="VA RNAI"
misc_RNA	1087611036

	/vntifkey="53"
	/label=Virus\Associated\RNA\II
	/note="VA RNAII"
misc_marker	2949129772 //////////////////////////////////
	/VILLITKEY= 22 /label-E30\Adenovirus\Death\Protein\(ADP)
CDS	ioin(560 974 1229 1545)
605	/vntifkev="4"
	/label=E1A\(12S)
CDS	join(560637,12291318)
	/vntifkey="4"
	/label=E1A\(9S)
CDS	join(79788391,96449667)
	/vntifkey="4"
	/label=i-leader\Protein
promoter	59866049
	/vntifkey="29"
	/label=Major\Late\Promoter
IAIA_signal	60186024
	/Vnt1+Key="41" (lebel Meier)Lete)Dremeter)TATA
misc mankon	/label=Major\Late\Promoter\latA
misc_marker	/vptifkev-"22"
	/label-Major\late\Transcription\Start\Site
nolvA site	14097 14102
polyn_site	/vntifkev="26"
	/label=L1\Polv-A
polvA site	1795117956
pj	/vntifkey="26"
	/label=L2\Poly-A
polyA_site	2237222377
	/vntifkey="26"
	/label=L3\Poly-A
polyA_site	2816428169
	/vntifkey="26"
	/label=L4\Poly-A
polyA_site	3278332788
	/vnti+key="26"
	/label=L5\Poly-A
polyA_site	16111616 (mtifler: "26"
	/Vntitkey= 26 /label=E1A) Poly A
nolvA site	/10001-013-A
polyA_sice	40384045 /vntifkev="26"
	/label=E1B\Polv-A
polvA site	2977229777
	/vntifkey="26"
	/label=E3A\Poly-A
polyA_site	complement(3281632821)
	/vntifkey="26"
	/label=E4\Poly-A
misc_feature	60496089
	/vntifkey="21"
	/label=Tripartite\Leader\Element\#1
misc_feature	71117181
	/vnti+key="21"
mice footune	/label=lripartite\Leader\Element\#2
misc_reature	90449751 ///ntifkov/"21"
	/VICLINEY= ZI /label-Trinantite\Leader\Element\#3
misc feature	194 358
mise_reacare	/vntifkev="21"
	/label=Packaging-Enhancer\Sequence
misc marker	499499
	/vntifkey="22"
	<pre>/label=E1A\Transcription\Start\Site</pre>
misc_marker	17021702
	/vntifkey="22"
	/label=E1B\Transcription\Start\Site
promoter	16371702
	/vntifkey="29"
	/label=E1B\Promoter
IAIA_signal	16/416/8
	/vntitkey="41" /labal_51D\December\TATA
	/ TADGT=ETR / LLOWOLGL / LALA

TATA_signal	2753927543
	/vntifkev="41"
	/label=E3\Promoter\TATA
promoter	2748627568
	/vntifkev="29"
	/lahel=E3\Promoter
misc marker	27568 27568
	/vntifkev="22"
	/label-E3\Transcription\Start\Site
TATA signal	complement(35634 35641)
TATA_SIgnal	(untiflene="41"
	$/\sqrt{1}$
misc_marker	3560835608
	/vntifkey="22"
	/label=E4\lrascription\Start\Site
promoter	complement(3560835915)
	/vntifkey="29"
	/label=E4\Promoter
TATA_signal	472475
	/vntifkey="41"
	/label=E1A\TATA
promoter	199499
	/vntifkey="29"
	/label=E1A\Promoter
exon	complement(3086831031)
	/vntifkev="61"
	/label=UXP\Exon\#1
nolvA site	3083830843
poryA_sice	/vntifkev="26"
	/label=E3B\Polv_A
nromoter	complement(27051 27132)
promoter	(untifleou-"20")
	/VIILIIKEy= 29
	/ IdDe1=E2 (Edrify (Promoter)
misc_marker	complement(2705127051)
	/vntifkey="22"
	/label=E2\Early\Transcription\Start\Site
TATA_signal	complement(2707427079)
	/vntifkey="41"
	/label=E2\Early\TATA\#1
TATA_signal	complement(2710327110)
	/vntifkey="41"
	/label=E2\Early\TATA\#2
misc_marker	complement(58355835)
	/vntifkey="22"
	<pre>/label=pIVa2\Trascription\Initiation\Site</pre>
promoter	complement(58355985)
•	/vntifkev="29"
	/label=pIVa2\Promoter
promoter	complement(2593226005)
promoter	/vntifkev="29"
	/lahel=E2\Late\Promoter
misc marker	complement(31062 - 31062)
	/untifkov-"22"
	/labol_UVD Transcription Start Site
nnomoton	$/10001=0.000 \times (11001001) \times (110010000)$
promoter	(untification land)
	/vntifkey="29"
	/label=UXP\Promoter
IAIA_signal	35513554
	/vntitkey="41"
	/label=Protein\IX\(pIX)\TATA
misc_marker	complement(2591125911)
	/vntifkey="22"
	/label=E2\Late\Transcription\Start\Site
polyA_site	complement(2238822393)
	/vntifkey="26"
	/label=E2A\Poly-A
polvA site	complement(40904095)
	/vntifkey="26"
	/label=E2B\Poly-A
CDS	ioin(560637.854>1112.12291545)
	/vntifkev="4"
	/label=E1A (11S)
CDS	ioin(560637.854>974 1229 1545)
	/vntifkav="""
	$/ \sqrt{1 - 1} = 1 $
	/ IADEI=EIA ((IOS)

splicing_signal 632..644 /vntifkey="38" /label=Splice\Donor\Site\(9S) splicing_signal 969..981 /vntifkey="38" /label=Splice\Donor\Site\(12S) splicing_signal 1107..1119 /vntifkey="38" /label=Splice\Donor\Site\(13S) splicing_signal 1222..1234 /vntifkey="38" /label=Splice\Acceptor\Site\(9S,\12S,\13S) splicing_signal 2250..2262 /vntifkey="38" /label=Splice\Donor\Site\(19K,\14.5S,\14S) splicing_signal 3211..3223 /vntifkey="38" /label=Splice\Acceptor\Site\(14.5S) splicing_signal 3505..3517 /vntifkey="38" /label=Splice\Donor\(55K,\14.5S,\14S) splicing_signal 3588..3600 /vntifkey="38" /label=Splice\Acceptor\Site\(19k,\55k,\14.5S,\14S) splicing_signal 6084..6096 /vntifkey="38" /label=Splice\Donor\Site\(Tripartite\Leader\Element\#1) splicing_signal 7177..7189 /vntifkey="38" /label=Splice\Donor\Site\(Tripartite\Leader\Element\#2) splicing_signal 7104..7116 /vntifkey="38" /label=Splice\Acceptor\Site\(Tripartite\Leader\Element\#2) splicing_signal 7945..7957 /vntifkey="38" /label=Splice\Acceptor\Site\(I-leader\Protein) splicing_signal 8386..8398 /vntifkey="38" /label=Splice\Donor\Site\(I-Leader\Protein) splicing_signal 9728..9740 /vntifkey="38" /label=Splice\Donor\Site\(Tripartite\Leader\Element\#3) splicing_signal 9637..9649 /vntifkey="38" /label=Splice\Acceptor\Site\(Tripartite\Leader\Element\#3) splicing_signal 11043..11055 /vntifkey="38" /label=Splice\Acceptor\Site\(52K,\55K) splicing_signal 12311..12323 /vntifkey="38" /label=Splice\Acceptor\Site\(pIIIa) splicing_signal 14148..14160 /vntifkey="38" /label=Splice\Acceptor\Site\(Penton\Base) splicing_signal 15722..15734 /vntifkey="38" /label=Splice\Acceptor\Site\(pVII) splicing_signal 16514..16526 /vntifkey="38" /label=Splice\Acceptor\Site\(pV) splicing_signal 17995..18007 /vntifkey="38" /label=Splice\Acceptor\Site\(pVI) splicing_signal 18799..18811 /vntifkey="38" /label=Splice\Acceptor\Site\(Hexon) splicing_signal 21599..21611 /vntifkey="38" /label=Splice\Acceptor\Site\(23KDa) splicing_signal 24041..24053 /vntifkey="38" /label=Splice\Acceptor\Site\(100kDa) splicing_signal 26505..26517 /vntifkey="38" /label=Splice\Donor\Site\(33KDa)

```
splicing_signal 26706..26718
                /vntifkey="38"
                /label=Splice\Acceptor\Site\(33KDa,\pVIII)
splicing_signal 31035..31046
                /vntifkey="38"
                /label=Splice\Acceptor\Site\(Fiber)
splicing_signal complement(35535..35547)
                /vntifkey="38"
                /label=Splice\Donor\Site\(ORF2,\ORF3,\ORF4,\ORF6,\ORF6/7)
splicing_signal complement(35099..35111)
                /vntifkey="38"
                /label=Splice\Acceptor\Site\(ORF2)
splicing_signal complement(34727..34739)
                /vntifkey="38"
                /label=Splice\Acceptor\Site\(ORF3)
splicing_signal complement(34596..34608)
                /vntifkey="38"
                /label=Splice\Donor\Site\(ORF1,\ORF3/4)
splicing_signal complement(34425..34437)
                /vntifkey="38"
                /label=Splice\Acceptor\Site\(ORF4)
splicing_signal complement(34324..34336)
                /vntifkey="38"
                /label=Splice\Acceptor\Site\(ORF6)
splicing_signal complement(34282..34294)
                /vntifkey="38"
                /label=Splice\Donor\Site\(ORF6)
splicing_signal complement(34077..34089)
                /vntifkey="38"
                /label=Splice\Acceptor\Site\(ORF1,\ORF3/4,\ORF6/7)
splicing_signal complement(33897..33909)
                /vntifkey="38"
                /label=Splice\Donor\Site\(ORF1,\ORF3,\ORF3/4,\ORF4,\ORF6/7)
splicing_signal complement(33187..33199)
                /vntifkey="38"
                /label=Splice\Acceptor\Site\(ORF1,\ORF3,\ORF3/4,\ORF4,\ORF6/7)
splicing_signal complement(26977..26989)
                /vntifkey="38"
                /label=Splice\Donor\Site\(1st\Leader\of\E2A\DNA\Binding\72kDa\Protein)
splicing_signal complement(25832..25844)
                /vntifkey="38"
                /label=Splice\Donor\Site\(1st\Leader\of\DNA\Binding\72kDa\Protein\from\late\promoter)
splicing_signal complement(24661..24673)
                /vntifkey="38"
                /label=Splice\Donor\Site\(2nd\Leader\of\DNA\Binding\72kDa\Protein)
splicing_signal complement(24739..24751)
                /vntifkey="38"
                /label=Splice\Aceptor\Site\(2nd\Leader\of\DNA\Binding\72kDa\Protein)
splicing_signal complement(24036..24048)
                /vntifkey="38"
/label=Splice\Acceptor\Site\(DNA\Binding\72kDa\Protein)
splicing_signal complement(14104..14116)
                /vntifkey="38"
                /label=Splice\Donor\Site\(E2B)
splicing_signal complement(14292..14304)
                /vntifkey="38"
                /label=Splice\Acceptor\Site\(E2B)
splicing_signal complement(8779..8791)
                /vntifkey="38"
                /label=Splice\Acceptor\Site\(DNA\Ploymerase\140kDa\Protein)
splicing_signal complement(10584..10596)
                /vntifkey="38"
                /label=Splice\Acceptor\Site\(E2B\Terminal\Protein\(pTP)\87kDa)
splicing_signal complement(5699..5711)
                /vntifkey="38"
                /label=Splice\Donor\Site\(pIVa2)
splicing_signal complement(5422..5434)
                /vntifkey="38"
                /label=Splcie\Acceptor\Site\(pIVa2)
CDS
                complement(32914..33192,34603..34703)
                /vntifkey="4"
                /label=E4-ORF3/4
CAAT_signal
                complement(31148..31152)
                /vntifkey="3"
                /label=I-CCAAT\box
```

	exon		complement /vntifkey=	(246682474 "61"	14)		
	exon		/label=UXP complement /vntifkey=	\exon\#2 (236292404 "61"	41)		
	misc_	feature	<pre>/label=UXP complement /vntifkey=</pre>	\exon\#3 (141111412 "21"	19)		
	misc_	feature	/label=DNA complement /vntifkey=	\Poly\and\p (858310589 "21"	FP\Exon 9)		
	misc_	feature	/label=pTP 26713270 /vntifkey=	\Exon 86 "21"			1.12
	misc_	feature	/label=L4\ complement /vntifkey=	Splicing\Fac (57065718) "21"	ctor\33kDa\)	Protein\Exor	n∖#2
	splic	ing_signal	/label=Pro 32693282 /vntifkey=	tein\IVa2\(µ "38"	oIVa2)\exon	\#1	
	misc_	_feature	/label=Spl: 40704071 /vntifkey=	ice\Accepto "21"	r\Site?\(14	5)	
	misc_	feature	/label=CA 40904096 /vntifkey=	"21"			
	misc_	_feature	<pre>/label=G/T complement /vntifkey=</pre>	\Rich (40654066) "21")		
	misc_	feature	/label=CA complement /vntifkey=	(40414046) "21")		
	misc_	feature	/1abe1=G/1 32809328 /vntifkey=	(KICH 10 "21"			
	misc_	feature	/label=CA 328163282 /vntifkey=	24 "21"			
	misc_	feature	/label=G/l complement /vntifkey=	(327973279 "21"	98)		
	misc_	feature	/Indel=CA complement /vntifkey=	(327813278 "21"	38)		
	misc_	feature	/label=G/l 106321064 /vntifkey=	\R1Ch 43 "21"			
	misc_	feature	/label=Box 10675106 /vntifkey=	\A 89 "21"			
BASE ORIGI	COUNT EN	8370 a	/label=Box a 10075	\B c 976:	Lg 77	32 t	
	1	catcatcaat	aatatacctt	attttggatt	gaagccaata	tgataatgag	ggggtggagt
	61	ttgtgacgtg	gcgcggggcg	tgggaacggg	gcgggtgacg	tagtagtgtg	gcggaagtgt
	121	gatgttgcaa	gtgtggcgga	acacatgtaa	gcgacggatg	tggcaaaagt	gacgtttttg
	181	gtgtgcgccg	gtgtacacag	gaagtgacaa	ttttcgcgcg	gttttaggcg	gatgttgtag
	241	addalliggg	daataattat	atattactca	tagegegtaa	tatttatcta	aacaagagga
	361	gactttgacc	gtttargtgg	agactogcoc	aggtgttttt	ctcaggtgtt	555005055555 ttrrgrgttr
	421	cgggtcaaag	ttggcgtttt	attattatag	tcagctgacg	tgtagtgtat	ttatacccgg
	481	tgagttcctc	aagaggccac	tcttgagtgc	cagcgagtag	agttttctcc	tccgagccgc
	541	tccgacaccg	ggactgaaaa	tgagacatat	tatctgccac	ggaggtgtta	ttaccgaaga
	601	aatggccgcc	agtcttttgg	accagctgat	cgaagaggta	ctggctgata	atcttccacc
	661	tcctagccat	tttgaaccac	ctacccttca	cgaactgtat	gatttagacg	tgacggcccc
	721	cgaagatccc	aacgaggagg	cggtttcgca	gatttttccc	gactctgtaa	tgttggcggt
	781	gcaggaaggg	attgacttac	tcacttttcc	gccggcgccc	ggttctccgg	agccgcctca
	841	cctttcccgg	cagcccgagc	agccggagca	gagagccttg	ggtccggttt	ctatgccaaa
	901	ccttgtaccg	gaggtgatcg	atcttacctg	ccacgaggct	ggctttccac	ccagtgacga
	961	cgaggatgaa	gagggtgagg	agtttgtgtt	agattatgtg	gagcaccccg	ggcacggttg
	1021	caggtcttgt	cattatcacc	ggaggaatac	gggggaccca	gatattatgt	gttcgctttg
	11/1	tagage and	accigtggCa	agt ast +++++	the second secon	addildtggg	ataatttaa
	1201	gaattttata	sguugt	BBLAALLLUT		aacctgagec	frageceran
	1261	CCagaaccee	agcctgcaag	acctacccer	cgtcctaaaa	tggcgcctgr	tatcctgaga
		0	0		0	00-004	

1321	cgcccgacat	cacctgtgtc	tagagaatgc	aatagtagta	cggatagctg	tgactccggt
1381	cottotaaca	carctertoa	gatacaccog	ataatcccac	tatacccat	tasaccagtt
1.01	·		Bucucucce	Bree core		cuuuccugee
1441	gccgtgagag	ττggτgggcg	τcgccaggcτ	gtggaatgta	τcgaggacττ	gcttaacgag
1501	cctgggcaac	ctttggactt	gagctgtaaa	cgccccaggc	cataaggtgt	aaacctgtga
1561	ttacatatat	aattaacacc	+++a+++ac+	apptagatta	2+a+22a+++	2272220007
1001		Sectorect		Sunchagere	acgraageee	uu cuuuggg c
1621	gagataatgt	ttaacttgca	tggcgtgtta	aatggggcgg	ggcttaaagg	gtatataatg
1681	cgccgtgggc	taatcttggt	tacatctgac	ctcatggagg	cttgggagtg	tttggaagat
17/1	++++	tacataactt	actagoocog	agetetaaca	atacctctta	atttaa2aa
1/41	LLLLLgLLg	igigiaacii	guuggaalag	agetteaata	gracere	gullegagg
1801	tttctgtggg	gctcatccca	ggcaaagtta	gtctgcagaa	ttaaggagga	ttacaagtgg
1861	gaatttgaag	agcttttgaa	atcctgtggt	gagctgtttg	attctttgaa	tctgggtcac
1021	coggegettt	+	aatcatcaaa	actttagatt	+++	agagggggt
1921	Caggegeeee	lllaagagaa	ggilallaag	acciggaci	llllalall	gggguguguu
1981	gcggctgctg	ttgctttttt	gagttttata	aaggataaat	ggagcgaaga	aacccatctg
2041	agcggggggt	acctgctgga	ttttctggcc	atgcatctgt	ggagagcggt	tgtgagacac
2101	-8-888888	+	atetteeate		**********	-8-8-8
2101	aagaallgil	igciacigii	gicilicgic	cgcccggcga	Laalactgac	ggaggagcag
2161	cagcagcagc	aggaggaagc	caggcggcgg	cggcaggagc	agagcccatg	gaacccgaga
2221	gccggcctgg	accctcggga	atgaatgttg	tacaggtggc	tgaactgtat	ccagaactga
2281	acacat+++	accettere	agaggtagac	200,000	agagataaag	2000200000
2201	Bacgcatter	Sacaaccaca	545546556	и <u>в</u> в <u>в</u> вссиии	55555	⁴⁶⁶⁶⁴⁶⁴⁶⁶⁶⁶
2341	gggcttgtga	ggctacagag	gaggctagga	atctagcttt	tagcttaatg	accagacacc
2401	gtcctgagtg	tattactttt	caacagatca	aggataattg	cgctaatgag	cttgatctgc
2461	taararaaaa	atattecata	agargartag	ccacttactg	actacaacca	aaaataatt
2401	CEECECUEUU	gracecata	Bugcugcigu	ccacccaccg	Bergeugeeu	5555015011
2521	ττgaggaggc	tattagggta	τaτgcaaagg	tggcacttag	gccagattgc	aagtacaaga
2581	tcagcaaact	tgtaaatatc	aggaattgtt	gctacatttc	tgggaacggg	gccgaggtgg
2641	agatagatac	ggaggatagg	gtggccttta	gatgtagcat	gataaatato	tggccppppp
2701	tacttaacat	00-00 00	attattat	atataaaa++	tactorces	-0000000
2101	rguingguat	EEarEEEEE	gilailaiga	argradggit	Laciggeeee	aallidgug
2761	gtacggtttt	cctggccaat	accaacctta	tcctacacgg	tgtaagcttc	tatgggttta
2821	acaatacctg	tgtggaagcc	tggaccgatg	taaggettce	gggctgtgcc	ttttactgct
2001	actagoogg	aataatatatat	0006	000	22442222	+acc+c+++~
2001	gciggaaggg	ggrggrgrgr	Cglllaaaa	gragggriii	aallaagaaa	iguilling
2941	aaaggtgtac	cttgggtatc	ctgtctgagg	gtaactccag	ggtgcgccac	aatgtggcct
3001	ccgactgtgg	ttgcttcatg	ctagtgaaaa	gcgtggctgt	gattaagcat	aacatggtat
3061	ataacaacta	casaascaaa	acctctcaga	tactaccta	ctcaacaac	aactatcacc
2001	5 CEE CUUCCE	CEUEEUCUEE	Scereaga			aucegeeuee
3121	τgcτgaagac	cattcacgta	gccagccact	ctcgcaaggc	ctggccagtg	τττgagcaτa
3181	acatactgac	ccgctgttcc	ttgcatttgg	gtaacaggag	gggggtgttc	ctaccttacc
3241	aatgcaattt	gagtracart	aagatattgc	ttgagcccga	gagcatgtcc	aaggtgaacc
2241	Lucgeddeee	Sugcenere	uugututtge	ccgageeega	Bugeuegeee	uubbebuuee
3301	tgaacggggt	gtttgacatg	accatgaaga	tctggaaggt	gctgaggtac	gatgagaccc
3361	gcaccaggtg	cagaccctgc	gagtgtggcg	gtaaacatat	taggaaccag	cctgtgatgc
3421	tggatgtgac	cgaggagetg	aggcccgatc	actteetect	ppcctpcacc	cgcgctgagt
2/01	++aac+c+aa	-8-88-88	2629211829	atactaaaat	atatagacat	agett22000
5401	Liggilliag	cgacgaagac	acagacigag	glallgaaal	Brereerer	ggullaaggg
3541	tgggaaagaa	tatataaggt	gggggtctta	tgtagttttg	tatctgtttt	gcagcagccg
3601	ccgccgccat	gagcaccaac	tcgtttgatg	gaagcattgt	gagctcatat	ttgacaacgc
3661	acatacccc	2+00000000	atacatcaaa	2+0+02+000	ctccagcatt	astaatcacc
2724	geuegeeeee	0066600666	Brecercueu	acgegaeggg	ccccagcacc	Bucgeceec
3721	ccgtcctgcc	cgcaaactct	астассттда	cctacgagac	cgtgtctgga	acgccgttgg
3781	agactgcagc	ctccgccgcc	gcttcagccg	ctgcagccac	cgcccgcggg	attgtgactg
3841	actttøcttt	cctgagcccg	cttgcaagca	gtgcagette	contrator	grrrgrgatg
2001	acconstance	aactettta	acacacattaa	attetttaa	cogeccucee	a at at a at t
2901	acaagiigac	ggcicilig	gcacaallgg	alleligae	CCgggaacti	aalgitgill
3961	ctcagcagct	gttggatctg	cgccagcagg	tttctgccct	gaaggcttcc	tcccctccca
4021	atgcggttta	aaacataaat	aaaaaaccag	actctgtttg	gatttggatc	aagcaagtgt
1001	cttactatct	++>++>	atttacaca	cacaataaac	6	caatctcaat
4001	Luguguu	llallaggg	guiugugug	cgcggcaggc	ccgggaccag	uggilluggi
4141	cgttgagggt	cctgtgtatt	ttttccagga	cgtggtaaag	gtgactctgg	atgttcagat
4201	acatgggcat	aagcccgtct	ctggggtgga	ggtagcacca	ctgcagagct	tcatgctgcg
4261	agatgatatt	gtagatgatc	cagtogtago	aggagrortg	ggratggtgr	ctaaaatgt
1221	000-00-0-	Case + case		-00-0-0-0-6	00-0-00-0-	20222000050
4521	CILLCAGLAG	Caageigali	gccaggggca	ggcccciggi	glaagigiii	acaaagegge
4381	τaagctggga	τgggtgcata	cgtggggata	τgagatgcat	cttggactgt	atttttaggt
4441	tggctatgtt	cccagccata	tccctccggg	gattcatgtt	gtgcagaacc	accagcacag
4501	tgtatccggt	gracttogga	aatttotcat	gtagettaga	aggaaatgra	topaagaac+
4201	tana	Scucicgggd	auccgudi	Brugerraga	assuuargeg	-Seungaart
4561	tggagacgcc	cttgtgacct	ccaagatttt	ccatgcattc	gtccataatg	atggcaatgg
4621	gcccacgggc	ggcggcctgg	gcgaagatat	ttctgggatc	actaacgtca	tagttgtgtt
4681	ccaggatgag	atcgtcatag	gccatttta	caaagcgcgg	ecegageete	ccagactece
1711			0		0-00-000-0	
+/41	atataataat	treaterage	ccagggggggt	agttacctc	acaga+++gc	atttcccaca
4801	gtataatggt	tccatccggc	ccaggggcgt	agttaccctc	acagatttgc	atttcccacg
40	gtataatggt ctttgagttc	tccatccggc agatgggggg	ccaggggcgt atcatgtcta	agttaccctc cctgcggggc	acagatttgc gatgaagaaa	acttcccacg
4861	gtataatggt ctttgagttc gggtagggga	tccatccggc agatgggggg gatcagctgg	ccaggggcgt atcatgtcta gaagaaagca	agttaccctc cctgcggggc ggttcctgag	acagatttgc gatgaagaaa cagctgcgac	atttcccacg acggtttccg ttaccgcagc
4861 4921	gtataatggt ctttgagttc gggtagggga	tccatccggc agatgggggg gatcagctgg gtaaatcaca	ccaggggcgt atcatgtcta gaagaaagca	agttaccctc cctgcggggc ggttcctgag	acagatttgc gatgaagaaa cagctgcgac gtagttaaga	atttcccacg acggtttccg ttaccgcagc
4861 4921	gtataatggt ctttgagttc gggtagggga cggtgggccc	tccatccggc agatgggggg gatcagctgg gtaaatcaca	ccaggggcgt atcatgtcta gaagaaagca cctattaccg	agttaccctc cctgcggggc ggttcctgag ggtgcaactg	acagatttgc gatgaagaaa cagctgcgac gtagttaaga	acticccacg acggtttccg ttaccgcagc gagctgcagc
4861 4921 4981	gtataatggt ctttgagttc gggtagggga cggtgggccc tgccgtcatc	tccatccggc agatgggggg gatcagctgg gtaaatcaca cctgagcagg	ccaggggcgt atcatgtcta gaagaaagca cctattaccg ggggccactt	agttaccctc cctgcggggc ggttcctgag ggtgcaactg cgttaagcat	acagatttgc gatgaagaaa cagctgcgac gtagttaaga gtccctgact	atttcccacg acggtttccg ttaccgcagc gagctgcagc cgcatgtttt
4861 4921 4981 5041	gtataatggt ctttgagttc gggtagggga cggtgggccc tgccgtcatc ccctgaccaa	tccatccggc agatgggggg gatcagctgg gtaaatcaca cctgagcagg atccgccaga	ccaggggcgt atcatgtcta gaagaaagca cctattaccg ggggccactt aggcgctcgc	agttaccctc cctgcggggc ggttcctgag ggtgcaactg cgttaagcat cgcccagcga	acagatttgc gatgaagaaa cagctgcgac gtagttaaga gtccctgact tagcagttct	atttcccacg acggtttccg ttaccgcagc gagctgcagc cgcatgtttt tgcaaggaag
4861 4921 4981 5041 5101	gtataatggt ctttgagttc gggtagggga cggtgggccc tgccgtcatc ccctgaccaa caaagttttt	tccatccggc agatgggggg gatcagctgg gtaaatcaca cctgagcagg atccgccaga caacgettte	ccaggggcgt atcatgtcta gaagaaagca cctattaccg ggggccactt aggcgctcgc agaccetcce	agttaccctc cctgcggggc ggttcctgag ggtgcaactg cgttaagcat cgcccagcga ccgtaggcat	acagatttgc gatgaagaaa cagctgcgac gtagttaaga gtccctgact tagcagttct gcttttgagc	atttcccacg acggtttccg ttaccgcagc gagctgcagc cgcatgtttt tgcaaggaag gtttgaccaa
4861 4921 4981 5041 5101	gtataatggt ctttgagttc gggtagggga cggtgggccc tgccgtcatc ccctgaccaa caaagttttt	tccatccggc agatgggggg gatcagctgg gtaaatcaca cctgagcagg atccgccaga caacggtttg	ccaggggcgt atcatgtcta gaagaaagca cctattaccg ggggccactt aggcgctcgc agaccgtcgc	agttaccctc cctgcggggc ggttcctgag ggtgcaactg cgttaagcat cgcccagcga ccgtaggcat	acagatttgc gatgaagaaa cagctgcgac gtagttaaga gtccctgact tagcagttct gcttttgagc	atttcccacg acggtttccg ttaccgcagc gagctgcagc cgcatgtttt tgcaaggaag gtttgaccaa
4861 4921 4981 5041 5101 5161	gtataatggt ctttgagttc gggtagggga cggtgggccc tgccgtcatc ccctgaccaa caaagttttt gcagttccag	tccatccggc agatgggggg gatcagctgg gtaaatcaca cctgagcagg atccgccaga caacggtttg gcggtcccac	ccaggggcgt atcatgtcta gaagaaagca cctattaccg ggggccactt aggcgctcgc agaccgtccg agctcggtca	agttaccctc cctgcggggc ggttcctgag ggtgcaactg cgttaagcat cgcccagcga ccgtaggcat cctgctctac	acagatttgc gatgaagaaa cagctgcgac gtagttaaga gtccctgact tagcagttct gcttttgagc ggcatctcga	atttcccacg acggtttccg ttaccgcagc gagctgcagc cgcatgtttt tgcaaggaag gtttgaccaa tccagcatat
4861 4921 4981 5041 5101 5161 5221	gtataatggt ctttgagttc gggtagggga cggtgggccc tgccgtcatc ccctgaccaa caaagttttt gcagttccag ctcctcgtt	tccatccggc agatgggggg gatcagctgg gtaaatcaca cctgagcagg atccgccaga cacggtttg gcggtcccac cgcgggttgg	ccaggggcgt atcatgtcta gaagaaagca cctattaccg ggggccactt aggccgctcgc agaccgtccg ggcggctttc	agttaccctc cctgcggggc ggttcctgag ggtgcaactg cgttaagcat cgccagcga ccgtaggcat cctgctctac gctgtacggc	acagatttgc gatgaagaaa cagctgcgac gtagttaaga gtccctgact tagcagttct gcttttgagc ggcatctcga agtagtcggt	atttcccacg acggtttccg gagctgcagc cgcatgtttt tgcaaggaag gtttgaccaa tccagcatat gctcgtccag
4861 4921 4981 5041 5101 5161 5221 5281	gtataatggt ctttgagttc gggtagggga cggtgggccc tgccgtcatc ccctgaccaa caaagttttt gcagttccag ctcctcgttt acgggccagg	tccatccggc agatgggggg gatcagctgg gtaaatcaca cctgagcagg atccgccaga caacggtttg gcggtcccac cgcgggttgg gtcatettt	ccaggggcgt atcatgtcta gaagaaagca cctattaccg ggggccactt aggcgctcgc agaccgtccg agctcggtca ggcggcttc	agttaccctc cctgcggggc ggttcctgag ggtgcaactg cgttaagcat cgcccagcga ccgtaggcat cctgctctac gctgtacggc cagggtcctc	acagatttgc gatgaagaaa cagctgcgac gtagttaaga gtccctgact tagcagttct ggcattctgag ggcatctcga agtagtcggt gtcaggcgtag	atttcccacg acggtttccg ttaccgcagc gagctgcagc cgcatgttt tgcaaggaag gtttgaccaa tccagcatat gctcgtccag tctgggtcac
4861 4921 4981 5041 5101 5161 5221 5281 5341	gtataatggt ctttgagttc gggtagggg cggtgggccc tgccgtcatc ccctgaccaa caaagttttt gcagttccag ctcctcgttt acgggccagg	tccatccggc agatgggggg gtcagctgg gtaaatcaca cctgagcagg atccgccaga caccggttg gcggtcccac cgcgggttgg gtcatgtctt	ccaggggcgt atcatgtcta gaggaagga cctattaccg ggggccactt aggcgctcgc agaccgtcg ggcggctttc tccacgggcg	agttaccctc cctgcggggc ggttcctgag ggtgcaactg cgttaagcat cgcccagcga cctgatgcat cctgctctac gcctgtacggc cagggtcct	acagatttgc gatgaagaaa cagctgcgac gtagttaaga gtccttgact tagcagttct gcttttgagc ggcatctcga agtagtcggt gtcagcgta	atttcccacg acggttccg gagctgcagc cgcatgtttt tgcaaggaag gtttgaccaa tccagcatat gctcgtccag tctgggtcag
4861 4921 4981 5041 5101 5161 5221 5281 5341	gtataatggt ctttgagttc gggtaggggc cggtgggccc tgccgtcatc ccctgaccaa caagttttt gcagttccag ctcctcgttt acgggccagg ggtgaagggg	tccatccggc agatgggggg gatcagctgg gtaaatcaca cctgagcagg atccgccaga gccgtcccac gcgggtcccac gtcatgtctt tgcgctcccg	ccaggggcgt atcatgtcta gaagaaagca cctattaccg ggggccactt aggcgctcgc agaccgtcg ggcgcttc ggcggctttc tccacgggcg gctgcgcgct	agttaccctc cctgcggggc ggttcctgag ggtgcaactg cgttaagcat cgcccagcga cctgtagcgc cctgctctac gcctgtacggc cagggtcctc ggccagggtg	acagatttgc gatgaagaaa cagctgcgac gtagttaaga gtccctgact tagcagttct ggcatctcga ggcatctcga agtagtcggt gtcagcgtag cgcttgaggc	atttcccacg acggttccg ttaccgcagc gagctgcagc cgcatgtttt tgcaaggaag gtttgaccaa tccagcatat gctcgtccag tctgggtcac tggtcctgct
4861 4921 4981 5041 5101 5161 5221 5281 5341 5401	gtataatggt ctttgagttc gggtagggga cggtgggccc tgccgtcatc ccctgaccaa caaagttttt gcagttccag ctcctcgtt acgggccagg ggtgaagggg ggtgctgaag	tccatccggc agatgggggg gtaaatcaca cctgagcagg atccgccaga cacggttg gcggtcccac cgcgggttg gtcatgtctt tgcgtccgg cgctggtccgg	ccaggggcgt atcatgtcta gaggaagca cctattacg ggggccactt aggcgctcg agaccgtcg ggcggcttc tccacggcg gctgcgct ctcacggcg gctgcgct	agttaccctc cctgcggggg ggtgcaactg cgttaagcat cgccagcga ccgtaggcat cctgctctac gccgtaggcct cagggtcctc ggccagggtg cgggtcggcc	acagatttgc gatgaagaaa cagctgcgaa gtagttaaga gtccttgact tagcagttct gcttttgagc ggcatctcga agtagtcgg gtcagcgtag gcgcttgaggc aggtagcatt	atttcccacg acggttccag ttaccgcag gagctgcagc cgcatgttt tgcaaggaag gtttgaccaa tccagcatat gctcgtccag tctgggtcac tggtcctgct tgaccatggt
4861 4921 4981 5041 5101 5161 5221 5281 5341 5401 5461	gtataatggt ctttgagttc gggtagggg cggtgggccc tgccgtcatc ccctgaccaa caaagttttt gcagttccag ctcctcgttt acgggccagg ggtgaagggg ggtcataagtcc	tccatccggc agatgggggg gtaatcactgg gtaatcactg atccgcagg atccgccaga caacggttg gcggtcccac cgcgggttg gtaatgtctt tgcgctccgg acacgttg gcgstcccac	ccaggggcgt atcatgtcta gaggaaagca cctattaccg ggggccactt aggcgctcgc agaccgtcg ggcggctttc tccacgggcg gctgcgcgct cttcgccctg cggcgtggcc	agttaccctc cctgcggggc ggttcctgag ggtgcaactg cgttaagcat ccgcagcga ccgtaggcat cctgtacggc cagggtcctc ggccgggtc cgcgtcggc cctgggcggc cctggcgcgc	acagatttgc gatgaagaaa cagctgcgac gtagttaaga gtccttgact tagcagttct gcttttgagc ggcatctcga agtagtcggt gtcagcgtag cgcttgaggc aggtagcatt agctgcct	atttcccacg acggtttccg ttaccgcagc gagctgcagc cgcatgtttt tgcaaggaag gtttgaccaa tccagcatat gctcgtccag tctgggtcac tggtcctgct tgaccatggt
4861 4921 4981 5041 5101 5221 5281 5281 5341 5401 5521	gtataatggt ctttgagttc gggtagggga cggtgggccc tgccgtcatc ccctgaccaa caaagttttt gcagttccag ctcctcgttt acgggccagg ggtgaagggg ggtgcaggg ggtgctgaag	tccatccggc agatgggggg gatcagctgg gtaaatcaca cctgagcagg atccgccaga caacggttg gcggtcccac cgcgggttgg gtcatgtctt tgcgctccgg cgctgccggt agcccctccg	ccaggggcgt atcatgtcta gaagaagac cctattaccg ggggccactt aggcgctcgc agaccgtcg ggcggcttc tccacgggg gctgcgcgt ctcgccgg gctgcgcgt cttcgcctg gacttta	agttaccctc cctgcggggg ggtcctgag ggtgcaactg cgttaagcat ccgccagcga ccgtaggcat cctgctctac gctgtacggc cagggtcctc ggccagggtg cgctcggcc cttggcgcgc	acagatttgc gatgaagaaa cagctgcgaa gtagttaaga gtccttgact tagcagttct ggcattctg agtagtcgg ggcatctcga ggcatctcga gtcagcgtag cgcttgaggc aggtagcatt agctgccgc	atttcccacg acggttccag ttaccgcagc gagctgcagc cgcatgtttt tgcaaggaag gtttgaccaa tccagcatat gctcgtccag tctgggtcac tggtcctgct tggacgaggc
4861 4921 4981 5041 5101 5221 5281 5281 5341 5401 5521	gtataatggt ctttgagttc gggtagggga cggtgggccc tgccgtcatc ccctgaccaa caaagttttt gcagttccag ctcctcgttt acgggccag ggtgaaggg ggtgctgaag gtcatagtcc gccgcacgag	tccatccggc agatgggggg gtaaatcaca cctgagcagg atccgccaga caacggtttg gcggtcccac gcgggttgg gtcatgtctt tgcgtccgg agccctccg gggcagtgcagt	ccaggggcgt atcatgtcta gaggaagac cctattaccg ggggccactt aggcggctcg agaccgtccg agaccggtca ggcggctttc tccacgggcg gctgcgcttc ctccgcctg cggcgtggcc gacttttgag	agttaccctc cctgcggggg ggtgcaactg cgttaagcat cgccagcga ccgtaggcat cctgatcggc cagggtcctc ggccagggtg cgcgtcggc cttggccgc ggcgtagac	acagatttgc gatgaagaaa cagctgcgac gtagttaaga gtccttgact tagcagttct gcttttgagc ggcatctcga gtcagcgtag cgcttgaggc aggtagcagt agctgcctag cgcttgccct ttgggcgcga	atttcccacg acggttccg ttaccgcag gagctgcagc cgcatgtttt tgcaaggaag gtttgaccaa tccagcatat gctcgtccag tctggtcac tggtcctgct tggacgaggc gaaataccga
4861 4921 5041 5101 5161 5221 5281 5341 5401 5521 5521	gtataatggt ctttgagttc gggtaggggc cggtgggccc tgccgtcatc ccctgaccaa caagttttt gcagttccag ctcctcgttt acgggccagg ggtgaagggg ggtgctgaag gtcatagtcc gccgcacgag ttccggggag	tccatccggc agatgggggg gatcagctgg gtaaatcaca cctgagcagg atccgccaga cacggttg gcggtcccac cgcgggttg gtcatgtctt tgcgctcgg cgctgcggt agccctccg gggcagtgca taggcatcc	ccaggggcgt atcatgtcta gaagaaagca cctattaccg ggggccactt aggcgctcgc agaccgtcg gcgcgttc gctgcgcgc gctgcgcgc cgccgtggc gactttcgag cggcgtggc gactttcgag cgccgcaggc	agttaccctc cctgcggggg ggtcctgag ggtgcaactg cgttaagcat ccgccagcga ccgtaggcat cctgctctac gcctgtacggc cagggtcctc ggccgtcggc cttggcgcg ggcgtagagc cccgcagagg	acagatttgc gatgaagaaa cagctgcgaa gtagttaaga gtccctgact tagcagttct ggcatctgag ggcatctga ggcatctga gtcagcgtag cgcttgaggc aggtagcatt agctgccgta gcttgccg ggcattgaggc	atttcccacg acggtttccg ttaccgcagc gagctgcagc cgcatgtttt tgcaaggaag gtttgaccaa tccagcatat gctcgtccag tctgggtcac tggtcctgct tggacatggt tggaggaggc gaaataccga ccacgagcca
4861 4921 5041 5101 5221 5281 5341 5401 5521 5581 5581	gtataatggt ctttgagttc gggtagggga cggtgggccc tgccgtcatc ccctgaccaa caaagttttt gcagttccag ctcctcgttt acgggccagg ggtgctgaag ggtgatggaggg gtcatagtcc gccgcacgag ggtgctgaag gtcatagtcc	tccatccggc agatgggggg gtaaatcaca cctgagcagg atccgccaga caacggttg gcggtcccac cgcgggtcg gtcatgtctt tgcgctccgg cgctgccggt agcccctccg gggcagtcca taggcatccg ggcgatgcg ggcagtcca	ccaggggcgt atcatgtcta gaagaagca cctattaccg ggggccactt aggcgctcgc agaccgtcg agctggtca ggcggctttc tccacgggcg gctgcgcgt cttcgcctg cggcgtggcc gacttttg cggcgtggc ggctcaaaaac	agttaccctc cctgcggggg ggttcctgag ggtgcaactg cgttaagcat ccgccagcga ccgtaggcat cctgctctac gctgtacggc cgcgtagggt cgctcggcc cttggcgcgg ggcgtagggc cccgcgagagg caggttccc	acagatttgc gatgaagaaa cagctgcgaa gtagttaaga gtccttgact tagcagttct gcttttgagc ggcatctcga agtagtcggt gtcagcgtag cgcttgaggc aggtagcatt agctgccct ttgggcgccg gtctcgcatt ccgcttgagt ccatctcg	atttcccacg acggttccag ttaccgcagc gagctgcagc cgcatgtttt tgcaaggaag gtttgaccaa tccagcatat gctcgtccag tctgggtcac tggtcctgct tgacatggt gaagagggg gaaataccgg ccacgagcca tgatgcttt
4861 4921 4981 5041 5101 5221 5281 5341 5401 5521 5581 5581 5641 5701	gtataatggt ctttgagttc gggtagggga cggtgggccc tgccgtcatc ccctgaccaa caaagttttt gcagttccag ctcctcgttt acgggccagg ggtgagggg ggtgctgaag ggtcatagtcc gccgcacgag ttccgggag ggtgagctct cttacctcp	tccatccggc agatgggggg gtaaatcaca cctgagcagg atccgccaga caacggtttg gcggtcccag gtcatgtctt tgcgtccgg agccgtccgg agccctccg gggcagtgca taggcatccg ggccgttcgg ggccgttcgg	ccaggggcgt atcatgtcta gaagaaagca cctattaccg ggggccactt aggcggctcg agaccgtcg agctcggtca ggcggctttc tccacgggcg gctgcgcct cttcgccctg cggcgtggcc gacttttgag cggccgaggc ggtcaaaac gccggtgtcc	agttaccctc cctgcggggc ggttcctgag ggtgcaactg cgttaagcat ccgcagcga ccgtaggcat cctgtacggc cagggtcctc ggccgggc ccggcgcg ggcgtagagc ccttggcgcg ggcgtagagc cccgcagacg caggttccc	acagatttgc gatgaagaaa cagctgcgac gtagttaaga gtccttgact tagcagttct gcttttgagc ggcatctcga agtagtcggt gtcagcgtag cgcttgaggc aggtagcatt tgggcgcga gtctgcctt ttgggcgcga gtctgcctt ttgggcgcaa	atttcccacg acggtttccg ttaccgcagc gagctgcagc cgcatgtttt tgcaaggaag gtttgaccaa tccagcatat gctcgtccag tctgggtcac tggacgagggg gaaataccga ccacgagcaa tgatggtcttgt
4861 4921 4981 5041 5101 5221 5281 5341 5401 5521 5581 5581 5641 5701 5761	gtataatggt ctttgagttc gggtagggga cggtgggccc tgccgtcatc ccctgaccaa caaagttttt gcagttccag ctcctcgttt acgggccagg ggtgaaggg ggtgaaggg gtcatagtc gccgcacgag gttccgggag ggtgagctt cccgggag ggtgactt	tccatccggc agatgggggg gatcagctgg gtaaatcaca cctgagcagg atccgccaga caacggttg gtcatgtcctc cgcgggttg ggccatgtctt tgcgctccgg cgctgccggt agccctccg gggcagtca taggcatccg gggcagtcag gggcagtcag gggcagtcag ggccgttcgg gtcttcatga	ccaggggcgt atcatgtcta gaagaaagc cctattaccg ggggccactt aggcgctcgc agacgtcg gctcggtca gctgcgcgcg gctgcgcgc gcgccggcg gcgccggcg gctcaaaac gcggcggtca ggtcaaaaac	agttaccctc cctgcggggc ggttcctgag ggtgcaactg cgttaagcat ccgccagcga ccgtaggcat cctgctctac gcctgacggc cagggtcctc ggcgtaggcg cttggcgcg ggcgtagagc cccgcagagg caggtttccc aggctcagec caggtttccc	acagatttgc gatgaagaaa cagctgcgaa gtagttaaga gtccctgact tagcagttct gcttttgagc ggcatctcga agtagtcggt gtcagcgtag cgcttgaggc aggtagcatt agctgccga gtctgccga gtctgccat ccatgctttt accagaaaggc	atttcccacg acggtttccg ttaccgcagc cgcatgtttt tgcaaggaag gttgaccaa tccagcatat gctcgtccag tctgggtcac tggtcctgct tggaggaggc gaaataccga ccacgagcca tgatcgttt tgcaggtc

5	821	aaactcggac	cactctgaga	caaaggctcg	cgtccaggcc	agcacgaagg	aggctaagtg
5	881	ggaggggtag	ceetcettet	ccactagggg	etccactcec	tccagggtgt	gaagacacat
5	0/1	atcacctct	+ c a a c o t c o o	aaaaaataat	+aatttataa	atatagacca	cataccaaa
2	941	gicgicici	llgglallaa	ggaaggigai	iggiligiag	gigiaggica	cgrgaccggg
6	001	tgttcctgaa	ggggggctat	aaaagggggt	ggggggcgcgt	tcgtcctcac	tctcttccgc
6	061	atcgctgtct	acaaaaacca	ectetteeee	tgagtactcc	ctctgaaaag	cgggcatgac
6	121	ttctgcgcta	agattgtcag		rgaggaggat	ttgatattca	cctggcccgc
0.	121	cccgcgccu	agaregreag	cccccaaaaa	сбаббаббас	cegacactea	CCC66CCC6C
6.	181	ggtgatgcct	ττgagggτgg	ccgcatccat	ctggtcagaa	aagacaatct	ττττgττgτc
6	241	aagcttggtg	gcaaacgacc	cgtagagggc	gttggacagc	aacttggcga	tggagcgcag
6	301	ggtttggttt	ttgtcgcgat	cggcgcgctc	cttggccgcg	atgtttagct	gcacgtattc
6	261	acacacaca	caccaccatt	cadassasc	aataatacac	tcatcaaaca	ccanatacac
0.	101	grgrgraarg	cacegulati	Cgggaaagac	gergererer	icgicgggca	ccaggigiac
6	421	gcgccaaccg	cggttgtgca	gggtgacaag	gtcaacgctg	gtggctacct	ctccgcgtag
64	481	gcgctcgttg	gtccagcaga	ggcggccgcc	cttgcgcgag	cagaatggcg	gtagggggtc
6	541	tagctgcgtc	tcgtccgggg	ggtctgcgtc	cacggtaaag	accccgggca	acaaacacac
6	601	atcasatsa		atcottacaa	atctagcacc	tactaccata	Cacaaacaac
0	001	gilgaagiag	lulating	accelgeaa	giciagigi	iguigulaig	CECEEECEEC
6	661	aagcgcgcgc	τcgτaτgggτ	τgagτggggg	accccatggc	atggggtggg	τgagcgcgga
6	721	ggcgtacatg	ccgcaaatgt	cgtaaacgta	gaggggctct	ctgagtattc	caagatatgt
6	781	agggtagcat	cttccaccgc	ggatgctggc	gcgcacgtaa	tcgtatagtt	cgtgcgaggg
6	Q/1	2000200200	tegggaeega	aattactaca	aacaaactac	tetacteara	agactatota
0	041	agegaggagg	LEgggallga	ggilgelacg	BECEBECCEC		agactattig
6	901	cctgaagatg	gcatgtgagt	tggatgatat	ggttggacgc	tggaagacgt	tgaagctggc
6	961	gtctgtgaga	cctaccgcgt	cacgcacgaa	ggaggcgtag	gagtcgcgca	gcttgttgac
7	021	cageteggeg	gtgacctgca	cetctagegc	gcagtagtcc	aggetttcct	tgatgatgtc
7	021			++++	ctcacaatta	200202222	cttcacaatc
	001		lgtttttt	LLLLLLacag	LUGUEGEUE	aggacaaact	cicgeggie
7	141	tttccagtac	tcttggatcg	gaaacccgtc	ggcctccgaa	cggtaagagc	ctagcatgta
7.	201	gaactggttg	acggcctggt	aggcgcagca	tcccttttct	acgggtagcg	cgtatgcctg
7	261	cgcggccttc	cggagcgagg	teteegteag	cgcaaaggtg	tccctgacca	tgactttgag
7	221	atactantat	ttgaartcag	tatcatcacc	tracetar	transaca	22220+000
	221	glaciggiai	ligaagilag	igitgitgia	illgilligi		aaaagiligi
1.	381	gcgctttttg	gaacgcggat	ttggcagggc	gaaggtgaca	tcgttgaaga	gtatctttcc
74	441	cgcgcgaggc	ataaagttgc	gtgtgatgcg	gaagggtccc	ggcacctcgg	aacggttgtt
7	501	aattacctgg	gcggcgagca	cgatctcgtc	aaagccgttg	atgttgtggc	ccacaatgta
7	561	aadtteesaa	9-99-9-9-9-5	taccettast	aasaaacsat	+++++>>a++	cctcatagat
	501	aagttttaag	aaguguggga	iguiligai	ggaaggcaac		
/	621	gagctcttca	ggggagctga	gcccgtgctc	tgaaagggcc	cagtctgcaa	gatgagggtt
7	681	ggaagcgacg	aatgagctcc	acaggtcacg	ggccattagc	atttgcaggt	ggtcgcgaaa
7	741	ggtcctaaac	tggcgaccta	tggccatttt	ttctggggtg	atgcagtaga	aggtaagcgg
7	001	atettattee	concentros	atcoagett	cacaactoga	+ + + + + + + + + + + + + + + + + + + +	controctor
	001	gittigitte	Lageggeeee	allaaggil		LULUGUGUGG	
/	861	aggctcatct	ccgccgaact	tcatgaccag	catgaagggc	acgagctgct	tcccaaaggc
7	921	ccccatccaa	gtataggtct	ctacatcgta	ggtgacaaag	agacgctcgg	tgcgaggatg
7	981	cgagccgatc	gggaagaact	ggatctcccg	ccaccaattg	gaggagtggc	tattgatgtg
8	Q/1	0 0 0 0	aagteetae	gargagerga	acactegtac	+aac++++a+	2222200000
0	4.04	gugaaaguag	aagteetge	gauggguuga	acactegige	uggettege	aaaaacgigi
8	101	gcagtactgg	cagcggtgca	cgggctgtac	atcctgcacg	aggttgacct	gacgaccgcg
8:	161	cacaaggaag	cagagtggga	atttgagccc	ctcgcctggc	gggtttggct	ggtggtcttc
8	221	tacttcggct	gcttgtcctt	gaccgtctgg	ctgctcgagg	ggagttacgg	tggatcggac
8	281	caccacocco	Cacasacces	aagteragat	atcracacac	agragtraga	acttastasc
0.	201	caccacgeeg	cgcgageeea	augeeeugue	Breegegege	5505500550	Sereaugue
8.	341	aacatcgcgc	agatgggagc	τgτccaτggτ	ctggagctcc	cgcggcgtca	ggtcaggcgg
84	401	gagctcctgc	aggtttacct	cgcatagacg	ggtcagggcg	cgggctagat	ccaggtgata
84	461	cctaatttcc	aggggctggt	tggtggcggc	gtcgatggct	tgcaagaggc	cgcatccccg
8	521	rggrgrgart	acggtaccgc		atagarrara	ggggtgtct	togatgatg
0	F01		actoccec	5-55-555-5	5-5555-5-5	5555555555	CEBuceucec
0	201	alliadagi	ggrgargrgg	gcgagccccc	ggaggraggg	ggggctccgg	accegceggg
8	641	agagggggca	ggggcacgtc	ggcgccgcgc	gcgggcagga	gctggtgctg	cgcgcgtagg
8	701	ttgctggcga	acgcgacgac	gcggcggttg	atctcctgaa	tctggcgcct	ctgcgtgaag
8	761	acgacgaggcc	ceeteaectt	gageetgaaa	gagagttcga	cagaatcaat	ttcpgtgtcg
8	221	++a>caacaa	cctaacacaa	aatctcctac	acateteeta	anttatetta	atagagata
0	021	LIGALGELEE	ccegegeaa	aattettetge	acgletter	agitgittg	acaggegate
8	881	tcggccatga	actgctcgat	CTCTTCCTCC	tggagattt	cgcgtccggc	tcgctccacg
8	941	gtggcggcga	ggtcgttgga	aatgcgggcc	atgagctgcg	agaaggcgtt	gaggcctccc
9	001	tcgttccaga	cgcggctgta	gaccacgccc	ccttcggcat	cgcgggcgcg	catgaccacc
9	061	tgcgcgagat	tgagetceac	gtgccpppcp	aagacggcgt	agtttrørag	gcgctgaaag
0.	1 7 1	-gebegegege	agataataac	5-5-5555-5	augueggege	agtocobcug	Segeestaas
9	171	agglagttga	EREIERIERC	ggigigttet	gccacgaaga	agracataac	ccagegrege
9:	181	aacgtggatt	cgttgatatc	ccccaaggcc	tcaaggcgct	ccatggcctc	gtagaagtcc
9	241	acggcgaagt	tgaaaaactg	ggagttgcgc	gccgacacgg	ttaactcctc	ctccagaaga
9	301	cggatgagct	cggcgacagt	gtcgcgcacc	tcgcgctcaa	aggetacagg	ggcctcttct
0	261	+ c++ c++ c > >	+ c+ c c+ c++ c	68-8	+++++++++++++++++++++++++++++++++++++++	c++c++c+aa	caacaataaa
	101	lllllaa		Calaagggee			CEECEECEEE
9,	421	ggaggggga	cacggcggcg	acgacggcgc	accgggaggc	ggtcgacaaa	gcgctcgatc
94	481	atctccccgc	ggcgacggcg	catggtctcg	gtgacggcgc	ggccgttctc	gcgggggcgc
9	541	agttggaaga	cgccgcccgt	catgtcccgg	ttatgggttg	gcgggggggt	gccatgcggc
0	601	agggatargg	rgrtaargat	grateteer	aattottoto	taggtactor	g((g((g))))
0	661	~bbburdeg	agtocacat	acconnet	and the second s	Cananana	ototoccease
9	100	Raccigaged	agicigcate	gaccggatcg	gaaaacctct	cgagaaaggC	Brcraaccag
9	/21	tcacagtcgc	aaggtaggct	gagcaccgtg	gcgggcggca	gcgggcggcg	gtcggggttg
9	781	tttctggcgg	aggtgctgct	gatgatgtaa	ttaaagtagg	cggtcttgag	acggcggatg
9	841	gtcgacagaa	gcaccatgtr	cttgggtccg	gcctgctgaa	tgcgcappcp	gtcggccatg
	0.01	o	catt+++coord	+	+++++++	-0-0-00000	0.00000000
- 9	JUL	cccaggeet	cguilgada	regergeagg	lucitized	agicigudt	gaguillet
9	961	accggcactt	cttcttctcc	ttcctcttgt	cctgcatctc	ttgcatctat	cgctgcggcg
10	021	gcggcggagt	ttggccgtag	gtggcgccct	cttcctccca	tgcgtgtgac	cccgaagccc
10	081	ctcatcggc+	gaagcagge	taggtcggcg	acaacgcgct	cggctaatat	ggcctgctgr
10	1/1	acctacatas	agatagacta	asatcstcc	atatocacaa	20000000000	tacaccosta
10	14T	accigigid	Seguagatig	Baagilail	argereadd	ugugguggud	LECELLE
10	201	ττgaτggtgt	aagtgcagtt	ggccataacg	gaccagttaa	cggtctggtg	acccggctgc
10	261	gagagctcgg	tgtacctgag	acgcgagtaa	gccctcgagt	caaatacgta	gtcgttgcaa
-0.							

10321	gtccgcacca	ggtactggta	tcccaccaaa	aagtgcggcg	gcggctggcg	gtagaggggc
10381	cagcgtaggg	tggccggggc	tccgggggcg	agatcttcca	acataaggcg	atgatatccg
10441	tagatgtacc	tggacatcca	ggtgatgccg	eceeceetee	tggaggcgcg	cggaaagtcg
10501	ceeaceceet	tccagatgtt	acacyacaac	aaaaagtgct		gacgctctgg
10561	creatrager	grgrgraatr	gttgargete	tagaccetec	222200202020	cctgtaagcg
10621	agcactette	cataatctaa	+002+222++	cacaaaaata		casccaageb
10621		+ > + c c a a c c a	tecaceataa	tccatacaat	taccacccac	atatcasscc
10741	coggetataca	cattoggeeg	licigicgiga	actoctttta	acttocttoc	gigilgaall
10001	Caggigigig	togetttttt	acgggggggg	gettettig	gtillettet	agguguggug
10001	geigeigege	tagettette	ggccactggc	cgcgcgcagc	glaaglggll	aggeiggaaa
10801	gcgaaagcat	taagtggctc	gctccctgta	gccggagggt	ταττττττταα	gggttgagtc
10921	gcgggacccc	cggttcgagt	ctcggaccgg	ccggactgcg	gcgaacgggg	gtttgcctcc
10981	ccgtcatgca	agaccccgct	tgcaaattcc	tccggaaaca	gggacgagcc	ccttttttgc
11041	ttttcccaga	tgcatccggt	gctgcggcag	atgcgccccc	ctcctcagca	gcggcaagag
11101	caagagcagc	ggcagacatg	cagggcaccc	tcccctcctc	ctaccgcgtc	aggaggggcg
11161	acatccgcgg	ttgacgcggc	agcagatggt	gattacgaac	ccccgcggcg	ccgggcccgg
11221	cactacctgg	acttggagga	gggcgagggc	ctggcgcggc	taggagcgcc	ctctcctgag
11281	cggtacccaa	gggtgcagct	gaagcgtgat	acgcgtgagg	cgtacgtgcc	gcggcagaac
11341	ctgtttcgcg	accgcgaggg	agaggagccc	gaggagatgc	gggatcgaaa	gttccacgca
11401	gggcgcgagc	tgcggcatgg	cctgaatcgc	gagcggttgc	tgcgcgagga	ggactttgag
11461	cccgacgcgc	gaaccgggat	tagtcccgcg	cgcgcacacg	tggcggccgc	cgacctggta
11521	accgcatacg	agcagacggt	gaaccaggag	attaactttc	aaaaaagctt	taacaaccac
11581	gtgcgtacgc	ttgtggcgcg	cgaggaggtg	gctataggac	tgatgcatct	gtgggacttt
11641	gtaagcgcgc	tggagcaaaa	cccaaatagc	aagccgctca	tggcgcagct	gttccttata
11701	gtgcagcaca	gcagggacaa	cgaggcattc	agggatgcgc	tgctaaacat	agtagagccc
11761	gagggcrørt	ggctgctrga	tttgataaac	atcctgraga	gcatagtøøt	acaaaaacac
11821	agetteager	tggctgaraa	ggtggrover	atcaactatt	ccatecttag	cctgggcaag
11881	ttttarører	graagatata	ccataccct	tacettecca	tagacaagga	ggtaaagatr
119/1	gaggggttr+	acatorocat	ggrgrtgaag	gtgcttacct	tagaragrag	cctgggcgt+
12001	505555 LLLL	agracatora	Caaggerete	agratagar	age garacas	geteageget
12001	cacagactag	tacacaacct	caaggeegeg	ctaactaaca	SECEECECEC	castagagag
12121	accasatect	actttaacac	gaacactaac	ctacactaga	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	cgacagagag
12121	geegageeeta	accogace	tagactaga	ataacacca	cacacactag	acgegeeeeg
12201	gagglaglig	gggctggatt	igggilggig	giggiaccig	cgcgcgccgg	caacgicggi
12241	ggcgcgggagg	aalalgacga	ggacgacgag	Lacgagecag	aggacggcga	glaciaageg
12201	gigalgilli	igaliagalg	algeadgaeg	Caacggaccc	ggcggrgcgg	gcggcgctgc
12301	agagecagec	glugglui	aactccacgg	acgaciggig	ccaggicalg	gaccgcatca
12421	igicgicgac	lgcgcgcaat	ctigacgigi	liciggiagia	guiguaggui	aaccggctct
12401	contratice	ggaaguggug	gittiggtgt	guguaacuu	cacgcacgag	aaggigigg
12041	lgallglada		gaaaacaggg		cgacgaggcc	ggcciggtci
12001	acgacgcgct	gullagugu	giggiligil	taacagegg	taacgigiag	accaaccigg
12001	accggctggt	ggggggalgig	cgcgaggccg	lggcgcagcg	tgagegegeg	Cagcagcagg
12721	gcaacciggg	ciccalggii	gcaccaadcg	tagagagaga	lacacagete	gccaacgigc
12/01	CECEEEE	ggaggactac	accaacting	igagigiati	guggulaaug	gigacigaga
12041	CaccgCaaag	igaggigiac	cagicigggi		CLLCCagaCC	aglagacaag
12901	gcccgcagac	lglaadlig	agccaggccc		graggggrig	
12901	gggctcccac	aggegacege	gcgaccgcgl		gacgcccaac	LUGUGUUUGU
13021	tgctgctgct	aatagcgccc	ttcacggaca	gtggcagcgt	gtcccgggac	acatacctag
13081	gtcacttgct	gacactgtac	cgcgaggcca	taggtcaggc	gcatgtggac	gagcatactt
13141	tccaggagat	tacaagtgtc	agccgcgcgc	tggggcagga	ggacacgggc	agcctggagg
13201	саассстааа	стасствств	accaaccggc	ggcagaagat	cccctcgttg	cacagtttaa
13261	acagcgagga	ggagcgcatt	ttgcgctacg	tgcagcagag	cgtgagcctt	aacctgatgc
13321	gcgacggggt	aacgcccagc	gtggcgctgg	acatgaccgc	gcgcaacatg	gaaccgggca
13381	tgtatgcctc	aaaccggccg	tttatcaacc	gcctaatgga	ctacttgcat	cgcgcggccg
13441	ccgtgaaccc	cgagtatttc	accaatgcca	tcttgaaccc	gcactggcta	ccgcccctg
13501	gtttctacac	cgggggattc	gaggtgcccg	agggtaacga	τggattcctc	τgggacgaca
13561	tagacgacag	cgtgttttcc	ccgcaaccgc	agaccctgct	agagttgcaa	cagcgcgagc
13621	aggcagaggc	ggcgctgcga	aaggaaagct	tccgcaggcc	aagcagcttg	tccgatctag
13681	gcgctgcggc	cccgcggtca	gatgctagta	gcccatttcc	aagcttgata	gggtctctta
13741	ccagcactcg	caccacccgc	ccgcgcctgc	tgggcgagga	ggagtaccta	aacaactcgc
13801	tgctgcagcc	gcagcgcgaa	aaaaacctgc	ctccggcatt	tcccaacaac	gggatagaga
13861	gcctagtgga	caagatgagt	agatggaaga	cgtacgcgca	ggagcacagg	gacgtgccag
13921	gcccgcgccc	gcccacccgt	cgtcaaaggc	acgaccgtca	gcggggtctg	gtgtgggagg
13981	acgatgactc	ggcagacgac	agcagcgtcc	tggatttggg	agggagtggc	aacccgtttg
14041	cgcaccttcg	ccccaggctg	gggagaatgt	tttaaaaaaa	aaaaagcatg	atgcaaaata
14101	aaaaactcac	caaggccatg	gcaccgagcg	ttggttttct	tgtattcccc	ttagtatgcg
14161	gcgcgcggcg	atgtatgagg	aaggtcctcc	tccctcctac	gagagtgtgg	tgagcgcggc
14221	gccagtggcg	gcggcgctgg	gttctccctt	cgatgctccc	ctggacccgc	cgtttgtgcc
14281	tccgcggtac	ctgcggccta	ccggggggag	aaacagcatc	cgttactctg	agttggcacc
14341	cctattcgac	accacccgtg	tgtacctggt	ggacaacaag	tcaacggatg	tggcatccct
14401	gaactaccag	aacgaccaca	gcaactttct	gaccacggtc	attcaaaaca	atgactacag
14461	cccgggggag	gcaagcacac	agaccatcaa	tcttgacgac	cggtcgcact	ggggcggcga
14521	cctgaaaacc	atcctgcata	ccaacatgcc	aaatgtgaac	gagttcatgt	ttaccaataa
14581	gtttaaggcg	cgggtgatgg	tgtcgcgctt	gcctactaag	gacaatcagg	tggagctgaa
14641	atacgagtgg	gtggagttca	cgctgcccga	gggcaactac	tccgagacca	tgaccataga
14701	ccttatgaac	aacgcgatcg	tggagcacta	cttgaaagtg	ggcagacaga	acggggttct
14761	ggaaagcgac	atcggggtaa	agtttgacac	ccgcaacttc	agactggggt	ttgaccccgt

14821	cactggtctt	gtcatgcctg	gggtatatac	aaacgaagcc	ttccatccag	acatcatttt
14881	gctgccagga	tgcggggtgg	acttcaccca	cagccgcctg	agcaacttgt	tgggcatccg
14941	caagcggcaa	cccttccagg	agggctttag	gatcacctac	gatgatctgg	agggtggtaa
15001	cattcccgca	ctgttggatg	tggacgccta	ccaggcgagc	ttgaaagatg	acaccgaaca
15061	gggcgggggt	ggcgcaggcg	gcagcaacag	cagtggcagc	ggcgcggaag	agaactccaa
15121	cgcggcagcc	gcggcaatgc	agccggtgga	ggacatgaac	gatcatgcca	ttcgcggcga
15181	cacctttgcc	acacgggctg	aggagaagcg	cgctgaggcc	gaagcagcgg	ccgaagctgc
15241	cgcccccgct	acacaaccca	aggtcgagaa	gcctcagaag	aaacceetea	tcaaacccct
15301	gacagaggac	agcaagaaac	gcagttacaa	cctaataagc	aatgacagca	ccttcaccca
15361	gtaccgcagc	tggtaccttg	catacaacta	cggcgaccct	cagaccggaa	tccgctcatg
15421	gaccctgctt	tgcactcctg	acgtaacctg	cggctcggag	caggtctact	ggtcgttgcc
15481	agacatgatg	caagaccccg	tgaccttccg	ctccacgcg	cagatcagca	actttccppt
15541	abtabacacc	gagetgttge	ccgtgcactc		tacaacgacc	aggcogtota
15601	ctcccaactc	atcorcart	ttacctctct	gacccacgtg	ttcaatcect	ttcccgagaa
15661	ccagattttg	accececcec	cagcccccac	catcaccacc	gtcagtgaaa	acgttcctgc
15721	tctcacagat	Cacabaacac	taccectece	caacagcatc	ggaggagtcc	agcgagtgac
15781	cattactgac	accasacacc	gracetecc	ctacgtttac	aaggccctgg	gcatagtctc
15841	accacaca		gcactttt	agcaagcatg	tccatcctta	tatcgcccag
15901	caataacaca	gartagagee	taracttor	aagcaagatg	+++0000000	ccaagaageg
15961	ctccgaccaa		aratararaa	gractarror	acaccetaga	acacacacac
16021	acacaaccac	actogococa	ccaccotcoa	tgacgccatc	gargrogtgg	togaggagg
16021	grgcaartar	acecesececa	coccaccagt	gtccacagtg	Baceceecee	
16141	gotororoga	accograce	atgetaaaat	gaagagacgg	PacPeppeca	tagcacgtcg
16201	CC9CLALLAL		ctgcrgcrca	905000000000000000000000000000000000000	-00~00~0~6	ttaarrørør
16261	acategeege	cenceseca	caaccataca	accactca	agactageeg	caaatattat
16321	cactatacco	66cc6ac666	ceeccaceee	Beccercea	aceaccacaa	ccattagtgc
16381	tatgactcag	aatcacaaaa	acaacatata	ttagatacac	gactcoatta	acaacctaca
16//1	catacccata	Seccesse	ccccacacaca		accegera	acttagactc
16501	atactattat	atatata	caacaacaac	gracaardaa	agaaaaaacc	accuagacic
16561	60000000000	atgractcrag		ggagatctat	gacccccaa	2022002202
16621	acaggattac	220000000000000000000000000000000000000	agetagage	agtcasasa	2222202220	2502550250
16681	tassettase	aageeeegaa	agetaaageg	cactaccaca	aaaaagaaag	argargarga
16741	assagetcas	gacgaggegg	atatttaca	acconness		ttacaccag
16901	tagacactee		acaaacacat	atotastastasa	atatacaaca	
16861	acttagacca	accescaeac	acategege	gtatgatgag	ggaaaggggg	atgaggacct
16001	gcttgagtag	gccaacgagc	gcccgggga	giligilia	ggaaaguggu	taaggacac
160921	geiggegeig	cccacactta	agggcaacce	adcattiagt	agestages	acazatetaa
170/1		cccaccatac	actester	agaaaagege	carcaactaa	agatatett
171041	agaaaaaata		ctagactaga	acccaagege	cacatacaac	
17161	ggaaaaaacg	accgcggaac	tacaaaccat	gazattoa		ccagtagea
17221	cagtattacc	ggactgggcg	agggcataga	gacacacaca		cctcagcagcac
17221	agragatar	accectacae	castcactac	gaccacatc		cagagetaca
17201	Secesare	5055050055	acattterac	Secence	concorrectu	casaassats
17/01	caacaccacc	aggargette	tacccasata	taccetacat		cacetacccc
17461	caactatcat	agegegetae	accacccaa		actacconac	accassocce
17521	cactagaaaco	caccaccacc	atcaccatca	aagacgagca	ctacccgac	tttccataca
17501	caragetaact	cacassaasa	gragacet	agtactacco		
17641		cgcgaaggag	ttataattet	tacaaatata	acagegeget	accacctccag
177041	tttcccaata		agaggggtttt	acaccatag	aggggggggg	connecticut
17761	cctaccagac	agestacate	gaggaagaat	ccaacaacaa	aggggggggg	
17821	acacaacaat	atectacec	teettattee		acaacaatta	accelegeat
17881	606066666	tccataacct		gagacactga	5055050005	attacatata
179/1	0222221	2272222007	ctagactete	acactcactt	ggtcctgtaa	ctatttata
18001	gaatgaaaga	catcaacttt	acatetetaa	acgetegete	caactcacac	ccattcataa
18061	gaaactaaca	agatatogg	5050002373	tagacagtag	caccttcaac	tagaactcac
18121	tataasacaa	cattacasa	ttcagttcca	ccatt22022	ctatagcagc	220000000
18181		aggecagatg	ctagaagata	201102200	gcapapette	005500550
182/1	tagtagtag	cctagactet	agaittaga	agetgaaaga	cctagccaac	caggcagtg
18301	2222722027	+22/201220	cttgatcccc	555 55 55 55 C	agaggagget	casecasesc
18361	tagagagagat	atctccagaa	agacatagca	aaaagratro	agaggageee	2000220222
18/21	ctctggtggt	graaatagar	555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	catacaaaaa	gacactaaaa	caagacctac
18/81	cracescence	trecategoe	cccatggcta	ccaasatact	eecceacacac	
185/11	cactagacct	actoccc	accascacco	20/202222/	tatactacca	accordecta
18601	contrattor	Beccontrot	Bergaracet	contacacca	Caccaccacc	Berreards
18661	rattaraarr	rgtagrragt	age age to a	aaagrarar+	gaacagcate	ofgggtetgal
18721	oggtgraatr	cotgaage age	obconcept	totgastage	taacototco	5-55555 tatgtgtgtgtc
18781	555 5 Caall	ccatgtogc	occapacect	ctactasacc	accacacac	care received
188/1	gatggetace	cetterator	taccacaata	gtottacato	cacateter	greaggarge
180041	ctropagtar	ctgageeeeg	agetgatace	otttorrar	greaces	cotacttoa
18061		aagtttagaa	Percenter	agracetaca	Preactage	cracegoord
19071	atresarat	ttgacactac	ggttcatco	totooccat	gaggatacto	cotactorta
19021	Caagacacac	ttraccetar	ctgtgggtga	taaccototo	ctggarator	cttocaceta
191/1	ctttgacate	raraaratar	+002C20000	ccctactttt	aagreetart	ctggcactgc
19201	ctacaacocc	-8-88-8-8	-00~~~6666 appptprrrr	aaatcettee	gaatgggatg	aagetgetae
19261	tectettess	ataaacctag	222222222222	reateacaac	92292292929	tagacgagca
	-bereitena	acuauceug	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-purpurade	Parparenag	Bucgugra

19321	agetgageag	casasascto	acatatttaa	acaggracet	tattctggta	taaatattac
10201	ageegageag		atataaaaa	teasseseet		
19201	aaaggagggu	allcadalag	grgrrgaagg	LCadaCaCCL	aaalalgeeg	alaaddall
19441	tcaacctgaa	cctcaaatag	gagaatctca	gtggtacgaa	actgaaatta	atcatgcagc
19501	tgggagagtc	cttaaaaaga	ctaccccaat	gaaaccatgt	tacggttcat	atgcaaaacc
19561	cacaaatgaa	aatggagggc	aaggcattct	tgtaaagcaa	caaaatggaa	agctagaaag
19621	tcaagtggaa	atgcaatttt	tctcaactac	tgaggrgacc	gcaggcaatg	gtgataactt
10691	actectasa	ataatattat	2020402202	+ + + + + + + + + + + + + + + + + + + +	8008800008	acactcatat
10741	ttettaaa	giggiailgi	acagigaaga	cteseasasa	gaaaccccag	acacicatat
19741	ttcttacatg	cccactatta	aggaaggtaa	ctcacgagaa	ctaatgggcc	aacaatctat
19801	gcccaacagg	cctaattaca	ttgcttttag	ggacaatttt	attggtctaa	tgtattacaa
19861	cagcacgggt	aatatgggtg	ttctggcggg	ccaagcatcg	cagttgaatg	ctgttgtaga
19921	tttgcaagac	agaaacacag	agctttcata	ccagcttttg	cttgattcca	ttggtgatag
19981	aaccaggtac	ttttctatet	ggaatcaggc	tetteacaec	tatgatccag	atettagaat
200/1	tattgaaaat	catogaacto	2202t022ct		tactttccac	+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20041	cattgaaaac	caceguaceg	auguegaace			
20101	gattaataca	gagactetta	ссааддтааа	асстааааса	ggtcaggaaa	atggatggga
20161	aaaagatgct	acagaatttt	cagataaaaa	tgaaataaga	gttggaaata	attttgccat
20221	ggaaatcaat	ctaaatgcca	acctgtggag	aaatttcctg	tactccaaca	tagcgctgta
20281	tttgcccgac	aagctaaagt	acagtccttc	caacgtaaaa	atttctgata	acccaaacac
20341	ctacgactac	atgaacaagc	gagtggtggc	tcccgggtta	gtggactgct	acattaacct
20/01	tagagrargr	taatcotta	actatatoga	caacotcaac	ccatttaacc	2002000022
20401	tastaasta	castacast	contattact	aaaaataat	castatata	accuccgcaa
20401	rgerggeerg	cgctaccgct	Caalgilgil	gggcaatggt	cgctatgtgt	CCCCCacac
20521	ccaggtgcct	cagaagttct	ttgccattaa	aaacctcctt	ctcctgccgg	gctcatacac
20581	ctacgagtgg	aacttcagga	aggatgttaa	catggttctg	cagagctccc	taggaaatga
20641	cctaagggtt	gacggagcca	gcattaagtt	tgatagcatt	tgcctttacg	ccaccttctt
20701	ccccatggcc	cacaacaccg	cctccacgct	tgaggccatg	cttagaaacg	acaccaacga
20761	ccagtcottt	aacgactato	tetecaccac	caacatocto	taccetatac	ccaccaacac
20701	taccascata	accototoco	teccetece	cooctagaca	actttccaca	actagaactt
20021	Laccadege		ittettette	Laactggggg	guillugug	guiggguuu
20881	cacgcgcctt	aagactaagg	aaaccccatc	actgggctcg	ggctacgacc	cttattacac
20941	ctactctggc	tctataccct	acctagatgg	aaccttttac	ctcaaccaca	cctttaagaa
21001	ggtggccatt	acctttgact	cttctgtcag	ctggcctggc	aatgaccgcc	tgcttacccc
21061	caacgagttt	gaaattaagc	gctcagttga	cggggagggt	tacaacgttg	cccagtgtaa
21121	catgaccaaa	gactggttcc	tggtacaaat	gctagctaac	tacaacattg	gctaccaggg
21101	cttctatatc	ccagagaget	2022002000	catatactee	ttctttagaa	acttocagoo
21101		ccagagagee	acaaggaccg		teesee	terester
21241	catgageegt	caggtggtgg	atgatactaa	atacaaggac	taccaacagg	tgggcatcct
21301	acaccaacac	aacaactctg	gatttgttgg	ctaccttgcc	cccaccatgc	gcgaaggaca
21361	ggcctaccct	gctaacttcc	cctatccgct	tataggcaag	accgcagttg	acagcattac
21421	ccagaaaaaag	tttctttgcg	atcgcaccct	ttggcgcatc	ccattctcca	gtaactttat
21481	gtccatgggc	gcactcacag	acctgggcca	aaaccttctc	tacgccaact	ccgcccacgc
215/1	actagacatg	20000000	tagateccat	adacdadccc	accettettt	2+0++++0++
21041	tapagtettt	accelegage	atatacacac	Seaceaseeee	accetecte	augutugut
21001	igaagiciii	gacgiggicc	grgrgraceg	guiguacigu	ggcgccaccg	aaaccgigia
21661	cctgcgcacg	cccttctcgg	ccggcaacgc	сасаасатаа	agaagcaagc	аасатсааса
21721	acagctgccg	ccatgggctc	cagtgagcag	gaactgaaag	ccattgtcaa	agatcttggt
21781	tgtgggccat	atttttggg	cacctatgac	aagcgctttc	caggctttgt	ttctccacac
21841	aagctcgcct	gcgccatagt	caatacggcc	ggtcgcgaga	ctgggggcgt	acactggatg
21901	gcctttgcct	ggaaccogca	ctcaaaaaca	tgctacctct	ttgagccctt	tggcttttct
21061	geccegeee	tessacsaat	ttaccagttt	agatacagat	costsstara	contracacc
21901	gallaglgal	llaaglaggi	llaccagili	gagiaigagi	cacticities	cuguagugu
22021	attgcttctt	cccccgaccg	ctgtataacg	ctggaaaagt	ccacccaaag	cgtacagggg
22081	cccaactcgg	ccgcctgtgg	actattctgc	tgcatgtttc	tccacgcctt	tgccaactgg
22141	ccccaaactc	ccatggatca	caaccccacc	atgaacctta	ttaccggggt	acccaactcc
22201	atgctcaaca	gtccccaggt	acagcccacc	ctgcgtcgca	accaggaaca	gctctacagc
22261	ttcctggage	greactegee	ctacttccgc	agccacagtg	cgcagattag	gagegeract
22321		acttgaaaaa	catotaaaaa		gagagacttt	castasagar
22321	appendix	atttatacac	tetegaataa	ttatttaccc	gagacacttac	catctacacc
22201	aaaugulll	accigidede	ct cc ggg gg		conctructing	CELLELELE
22441	gtttaaaaat	caaaggggtt	cτgccgcgca	tcgctatgcg	ccactggcag	ggacacgttg
22501	cgatactggt	gtttagtgct	ccacttaaac	tcaggcacaa	ccatccgcgg	cagctcggtg
22561	aagttttcac	tccacaggct	gcgcaccatc	accaacgcgt	ttagcaggtc	gggcgccgat
22621	atcttgaagt	cgcagttggg	gcctccgccc	tgcgcgcgcg	agttgcgata	cacagggttg
22681	cagcactgga	acactatcag	cecceetee	tgcacgctgg	ccagcacgct	cttgtcggag
22741	atcagatccg	cotccapotc	ctccgcgttg	ctcagggcga	acggagtcaa	ctttggtagc
22741	tacettecco	2222000000	atacccoaac	tttagattac	actorecord	tagtagcate
22001	iguillu	aaaagggugu	gigiliaggi	lligagilgi	actiguateg	Lagiggiaii
22861	aaaaggtgac	cgtgcccggt	ctgggcgtta	ggatacagcg	сстдсатааа	agccttgatc
22921	tgcttaaaag	ccacctgagc	ctttgcgcct	tcagagaaga	acatgccgca	agacttgccg
22981	gaaaactgat	tggccggaca	ggccgcgtcg	tgcacgcagc	accttgcgtc	ggtgttggag
23041	atctgcacca	catttcggcc	ccaccggttc	ttcacgatct	tggccttgct	agactgctcc
23101	ttcagcgcgc	gctgcrcgtt	ttcgctcgtc	acatccattt	caatcacete	ctccttattt
23161	atrataater	ttrratatea	acacttaage	tracettra	tetcageges	gragtaraar
22224	accurated		acacidage	ttatatat	ccccagcgcd	Pregracage
23221	cacaacgcgC	agecegegg	cicgigatge	rigiaggica	ccccgcaaa	cgactgcagg
23281	tacgcctgca	ggaatcgccc	catcatcgtc	acaaaggtct	tgttgctggt	gaaggtcagc
23341	tgcaacccgc	ggtgctcctc	gttcagccag	gtcttgcata	cggccgccag	agcttccact
23401	tggtcaggca	gtagtttgaa	gttcgccttt	agatcgttat	ccacgtggta	cttgtccatc
23461	agcacacaca	cagoctocat	gcccttctcc	cacgcagaca	cgatcggcar	actcagcggg
23521	ttratracco	taatttcact	ttccocttca	ctpppc+c++	cctcttcctc	ttgratrrar
23521	ataccacac	cractagate	atettestte	2000000000	ctatacact+	acctoctta
20001	acatatt	ttacigggil	BUCULALL	ugueguegu		accilling
20041	ccatgettga	Lagcaccgg	LEEBLTECTE	aaacccacca	lingragege	CACALCTTCT
23/01	ctttcttcct	cgctgtccac	gattacctct	ggtgatggcg	ggcgctcggg	cttgggagaa
23761	gggcgcttct	ttttcttctt	gggcgcaatg	gccaaatccg	ccgccgaggt	cgatggccgc

23821	pppctppptp	terereerar	cagegegtet	teteateaet	cttcctcgtc	ctregartre
23881	212000000	tratroactt	++++aaaaaa	acccaaaaaa	acaacaacaa	caaaacaaa
22001	acaceceset	cetecotaat	+44444	Seccesses as	SCEECEECEU	ctcagagata
23941	gacgacacgi	ccccalggi	lgggggalgi	cgcgccgcac	cgcgcccgcg	cicggggggig
24001	gtttcgcgct	gctcctcttc	ccgactggcc	ατττςςττςτ	cctataggca	gaaaaagatc
24061	atggagtcag	tcgagaagaa	ggacagccta	accgcccct	ctgagttcgc	caccaccgcc
24121	tccaccgatg	ccgccaacgc	gcctaccacc	ttccccgtcg	aggcaccccc	gcttgaggag
24181	gaggaagtga	ttatcgagca	ggacccaggt	tttgtaagcg	aagacgacga	ggaccgctca
24241	gtaccaacag	aggataaaaa	gcaagaccag	gacaacgcag	aggcaaacga	ggaacaagtc
24301	gagragagag		tggcgactac	ctagatgtgg	gagargargt	gctgttgaag
24301	666°666666	accoatacac	cottotctac	acacattac	Sagacacac	castatacco
24501	Callgrage	gccagigigi	callallge	gauguguugu	aagaguguag	cgatgtgttt
24421	ctcgccatag	cggatgtcag	ccttgcctac	gaacgccacc	ταττςτςαςς	gcgcgtaccc
24481	cccaaacgcc	aagaaaacgg	cacatgcgag	cccaacccgc	gcctcaactt	ctaccccgta
24541	tttgccgtgc	cagaggtgct	tgccacctat	cacatctttt	tccaaaactg	caagataccc
24601	ctatcctgcc	gtgccaaccg	cagccgagcg	gacaagcagc	tggccttgcg	gcagggcgct
24661	gtcatacctg	atatcgcctc	gctcaacgaa	gtgccaaaaa	tctttgaggg	tcttggacgc
24721	gargagaagr	prorppraaa		caggaaaaca	grgaaaatga	aagtcactct
2/781	aasatattaa	+442326+6444	agatascasc	acacacctea	contactaga	acacaacato
24/01	ggagtgttgg	lggaactega	ggglgalaal	gegegeelag	cuguactaaa	acgeageate
24841	gaggtcaccc	астттдсста	cccggcactt	аасстасссс	ccaaggtcat	gagcacagtc
24901	atgagtgagc	tgatcgtgcg	ccgtgcgcag	cccctggaga	gggatgcaaa	tttgcaagaa
24961	caaacagagg	agggcctacc	cgcagttggc	gacgagcagc	tagcgcgctg	gcttcaaacg
25021	cgcgagcctg	ccgacttgga	ggagcgacgc	aaactaatga	tggccgcagt	gctcgttacc
25081	gtggagcttg	agtgcatgca	gcggttcttt	gctgacccgg	agatgcagcg	caagctagag
25141	gaaacattgo	actacacctt		tacgtacgcc	aggeetgeaa	gatetecaac
25201	gtggagetet	gcaacc+gg+	ctcctacct+	ggaattttor	200222000	cettagageaa
25201	suggest	staccesst	coordination	geacere	acguauaccg	ccccgggcuu
25261	aacgigette	accodect	caagggggag	Regegeegeg	actacgtccg	cgacigcgtt
25321	τacttatttc	τatgctacac	ctggcagacg	gccatgggcg	τttggcagca	gtgcttggag
25381	gagtgcaacc	tcaaggagct	gcagaaactg	ctaaagcaaa	acttgaagga	cctatggacg
25441	gccttcaacg	agcgctccgt	ggccgcgcac	ctggcggaca	tcattttccc	cgaacgcctg
25501	cttaaaaccc	tgcaacaggg	tctgccagac	ttcaccagtc	aaagcatgtt	gcagaacttt
25561	aggaacttta	tcctagagcg	ctcaggaatc	ttgcccgcca	cctgctgtgc	acttcctage
25621	gartttgtgr	ccattaagta	crorgaator	crtcraccac	tttggggcca	ctoctacctt
25021	stactactor	construct	tacctaccac	tetacetac	tagaagaacat	aggeggtacce
25001	LIGCAGELAG	CLAACLACCE	lgcclaccac	lligalalaa	lggaagalgi	gaguggugau
25/41	ggtctactgg	agtgtcactg	tcgctgcaac	ctatgcaccc	cgcaccgctc	cctggtttgc
25801	aattcgcagc	tgcttaacga	aagtcaaatt	atcggtacct	ttgagctgca	gggtccctcg
25861	cctgacgaaa	agtccgcggc	tccggggttg	aaactcactc	cggggctgtg	gacgtcggct
25921	taccttcgca	aatttgtacc	tgaggactac	cacgcccacg	agattaggtt	ctacgaagac
25981	caatcccgcc	cgccaaatgc	ggagcttacc	gcctgcgtca	ttacccaggg	ccacattctt
26041	ggccaattgc	aagccatcaa	caaagcccgc	caagagtttc	tgctacgaaa	aaaycaaaaa
26101	atttacttaa	accorcagto	caacasaasa	ctcaacccaa		accaceaccc
20101	totoogoogo	acceccagee	cesterestere	coccateccaa	ccccccgcc	actacact
20101	Lattagtagt	ageegegge	CCCCgCCCC	caggarggca	CCCaaaaaga	ageigeagei
26221	gccgccgcca	cccacggacg	aggaggaata	ctgggacagt	caggcagagg	aggttttgga
26281	cgaggaggag	gaggacatga	tggaagactg	ggagagccta	gacgaggaag	cttccgaggt
26341	cgaagaggtg	tcagacgaaa	caccgtcacc	ctcggtcgca	ttcccctcgc	cggcgcccca
26401	gaaatcggca	accggttcca	gcatggctac	aacctccgct	cctcaggcgc	cgccggcact
26461	gcccgttcgc	cgacccaacc	gtagatggga	caccactgga	accagggccg	gtaagtccaa
26521	acsaccacca	crettaeccc	aagagcaaca	acagogocaa	ggctaccgct	catogrand
26581	BenBeebeeb	accatagetta	cttacttaca	agactataga	ggccaccatct	ccttcaccca
20001	gcacaagaac	gualague	cigcigca	agacigiggg	ggcaacattt	
26641	ccgctttctt	ctctaccatc	acggcgtggc	cttccccgt	aacatcctgc	attactaccg
26701	tcatctctac	agcccatact	gcaccggcgg	cagcggcagc	ggcagcaaca	gcagcggcca
26761	cacagaagca	aaggcgaccg	gatagcaaga	ctctgacaaa	gcccaagaaa	tccacagcgg
26821	cggcagcagc	aggaggagga	gcgctgcgtc	tggcgcccaa	cgaacccgta	tcgacccgcg
26881	agcttagaaa	caggattttt	cccactctgt	atgctatatt	tcaacagagc	aggggccaag
26941	aacaagagct	gaaaataaaa	aacaggtctc	tgcgatccct	caccegcage	tgcctgtatc
27001	2022220002	agatcagett	caacacacac	+002202000	agaggetete	ttcagtaaat
27001	actacacact	apartageet	asctsattt	cesuugarge	55055CLCLC	acacacacac
27001	actgcgcgct	gaciciaag	gaciagilic	gcgccccic	lladallad	gcgcgaaaac
2/121	tacgtcatct	ccagcggcca	cacccggcgc	cagcacctgt	cgtcagcgcc	attatgagca
27181	aggaaattcc	cacgccctac	atgtggagtt	accagccaca	aatgggactt	gcggctggag
27241	ctgcccaaga	ctactcaacc	cgaataaact	acatgagcgc	gggaccccac	atgatatccc
27301	gggtcaacgg	aatccgcgcc	caccgaaacc	gaattctctt	ggaacaggcg	gctattacca
27361	ccacacctcg	taataacctt	aatccccgta	gttggcccgc	tgccctggtg	taccaggaaa
27421	gtcccgctcc	caccactete	gtacttocca	gagargrocca	ggccgaagtt	cagatgacta
27/81	acteagagag	acaacttaca	gacaactttc	atcacagaat	acaatcaccc	agacagata
27401	acccaggggc	gcagctigcg	gguggullu	gicacagggi	geggeegee	gggcagggca
2/541	Laactcacct	gacaatcaga	вевсвавата	LTCagCTCaa	cgacgagtcg	gcgagctcct
27601	cgcttggtct	ccgtccggac	gggacatttc	agatcggcgg	cgccggccgt	ccttcattca
27661	cgcctcgtca	ggcaatccta	actctgcaga	cctcgtcctc	tgagccgcgc	tctggaggca
27721	ttggaactct	gcaatttatt	gaggagtttg	tgccatcggt	ctactttaac	cccttctcgg
27781	gacctcccgg	ccactatccg	gatcaattta	ttcctaactt	tgacgcggta	aaggactcgg
27841	cggacggcta	cgactgaatg	ttaagtggag	aggcagagca	actgcgcctg	aaacacctgg
27901	treactotro	(Caccacasa	tecttteccc	preactore	tpapttttpr	tactttgaat
27061	tacconsects	tratatora	-Berregere	acaacatees	-BABCCCE	Caggaagaaga
20021	ttacctgaggd	ccacaccgdg	BRUUERURU	acggcgcccg	BULLALLEL	Cagegagage
28021	LLBCCCBLAG	cctgattcgg	gagtttaccc	agegeecet	gctagttgag	cgggacaggg
28081	gaccctgtgt	tctcactgtg	atttgcaact	gtcctaacct	τggattacat	caagatcttt
28141	gttgccatct	ctgtgctgag	tataataaat	acagaaatta	aaatatactg	gggctcctat
28201	cgccatcctg	taaacgccac	cgtcttcacc	cgcccaagca	aaccaaggcg	aaccttacct
				tacaacaatt	+	caapatapat

28321	ctacgagaga	acctctccga	geteagetac	tccatcagaa	aaaacaccac	cctccttacc
20201	taccagagaga	atacatac	gtcoccaacc	actaccagaa	acctaccacc	+
20301	rgrrgggaar	glacgagigi	gicaccggic	guiguatiat	acciacigii	igaligidad
28441	ccagactttt	tccggacaga	cctcaataac	tctgtttacc	agaacaggag	gtgagcttag
28501	aaaaccctta	gggtattagg	ccaaaggcgc	agctactgtg	gggtttatga	acaattcaag
28561	caactctacg	ggctattcta	attcaggttt	ctctagaatc	ggggttgggg	ttattctctg
28621	tettatatt	ctctttattc	++ >+ > < + > > <	acttototac	ctaagetcg	ccacctacta
20021	liligigati		lacactaac	gettetetge	claaggeleg	cuguuguug
28681	tgtgcacatt	tgcatttatt	gtcagctttt	taaacgctgg	ggtcgccacc	caagatgatt
28741	aggtacataa	tcctaggttt	actcaccctt	gcgtcagccc	acggtaccac	ccaaaaggtg
28801	gattttaagg	agccagcctg	taatgttaca	ttcgcagctg	aagctaatga	gtgcaccact
28861	cttataaaat	gcaccacaga	acatgaaaag	ctecttattc	gccacaaaaa	
20001	agetatacta	+++actat	ttaacaacca	agtaccosto	cogogtatataa	tattacagtt
20921	aagtatgttg	llalgelat	Liggiagica	ggugacacia	Cagagialaa	igilacagii
28981	ττccagggτa	aaagtcataa	aacttttatg	ταταςτττς	cattttatga	aatgtgcgac
29041	attaccatgt	acatgagcaa	acagtataag	ttgtggcccc	cacaaaattg	tgtggaaaac
29101	actggcactt	tctgctgcac	tgctatgcta	attacagtgc	tcgctttggt	ctgtacccta
29161	ctctatatta	aatacaaaag	cagacgcagc	tttattgagg	aaaagaaaat	geettaattt
20101	actoogttoc	aaaataata	tancastan	ct cct c b b b b b b b b b b b b b b b b	castacttac	geeccaactt
29221	actaagttat	aaagutaatg			Lguiguigu	aaaacaaacc
29281	caaaaagtta	gcattataat	tagaatagga	tttaaacccc	ccggtcattt	cctgctcaat
29341	accattcccc	tgaacaattg	actctatgtg	ggatatgctc	cagcgctaca	accttgaagt
29401	caggcttcct	ggatgtcagc	atctgacttt	ggccagcacc	tgtcccgcgg	atttgttcca
29/61	atcoactac	adraacce	cctaacagag	atgaccaaca	Caaccaacoc	aaccaccact
20401	giccaaciac	agegacecae	cccaacagag	acgaccaaca	caaccaacge	gguuguugu
29521	accggactta	catctaccac	ааатасассс	caagtttctg	cctttgtcaa	τaactgggat
29581	aacttgggca	tgtggtggtt	ctccatagcg	cttatgtttg	tatgccttat	tattatgtgg
29641	ctcatctgct	gcctaaagcg	caaacgcgcc	cgaccaccca	tctatagtcc	catcattgtg
29701	ctacacccaa	acaatgatgg	aatccataga	ttggacggac	tgaaacacat	gttcttttct
20761	cttacaetat	acttootac	accetactega	ctcgagetttt	tatattacta	accettatta
29701		gallaaalga	gacalgall	LLEAGLELL	lalallallg	according
29821	cgcttttttg	τgcgtgctcc	acattggctg	cggtttctca	catcgaagta	gactgcattc
29881	cagccttcac	agtctatttg	ctttacggat	ttgtcaccct	cacgctcatc	tgcagcctca
29941	tcactgtggt	catcgcctt+	atccagtgca	ttgactgggt	ctgtgtgcgc	tttgcatato
30001		treccagtar	2000262002	ctatagctga	acttettaga	attettaat
20001	teteestt	cccccagcac	4555464554	tettteres	statatast	********
30001	tatgaaattt	actgtgactt	ttctgctgat	tatttgcacc	ctatctgcgt	τττgττεεεε
30121	gacctccaag	cctcaaagac	atatatcatg	cagattcact	cgtatatgga	atattccaag
30181	ttgctacaat	gaaaaaagcg	atctttccga	agcctggtta	tatgcaatca	tctctgttat
30241	pptpttctpc	agtaccatct	tagccctagc	tatatatccc	taccttgaca	ttggctggaa
30301	200222202	accatasacc			actatactto	cactacaaca
20201	acgaalagal	gccatgaacc	accedacte	Luceguguu	getatgette	cacegcaaca
30361	agttgttgcc	ggcggctttg	τcccagccaa	τcagccτcgc	cccacttctc	ccaccccac
30421	tgaaatcagc	tactttaatc	taacaggagg	agatgactga	caccctagat	ctagaaatgg
30481	acggaattat	tacagagcag	cgcctgctag	aaagacgcag	ggcagcggcc	gagcaacagc
30541	gcatgaatca	agagetecaa	gacatggtta	acttgcacca	gtgcaaaagg	ggtatctttt
20601	atctaataaa	acagaccaaa	atcacchaca	accegeacea	6060000066	caccttoact
20001	giliggiaaa	gcaggccaaa	gicacciacg	acagiaacac	caccggacac	cgcccagcc
30661	acaagttgcc	aaccaagcgt	cagaaattgg	tggtcatggt	gggagaaaag	сссаттасса
30721	taactcagca	ctcggtagaa	accgaaggct	gcattcactc	accttgtcaa	ggacctgagg
30781	atctctgcac	ccttattaag	accctgtgcg	gtctcaaaga	tcttattccc	tttaactaat
30841	aaaaaaaaat	aataaagcat	cacttactta	aaatcaøtta	graaatttrt	øtccaøttta
20001	++ < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < > a < >	cctccttacc	ctcctcccca	ctctaatatt	geogetteet	cctaactaca
20001	llageagea	celectigee	Lucillag	ciciggiaci	gcagcttttt	cciggcigca
30961	aactttctcc	acaatctaaa	tggaatgtca	gtttcctcct	gttcctgtcc	atccgcaccc
31021	actatcttca	tgttgttgca	gatgaagcgc	gcaagaccgt	ctgaagatac	cttcaacccc
31081	gtgtatccat	atgacacgga	aaccggtcct	ccaactgtgc	cttttcttac	tcctcccttt
31141	gtatcccca	atgggtttca	agagagtrcc	cctggggtac	tetettaca	cctatccgaa
21 201	setetastta	actornation	agagageeee	ctcbbbbcuc	accordent	ctctctcguu
51201	ccccagica		Largerigeg	Cluadalgg	graarggrrr	ciciciggac
31261	gaggccggca	accttacctc	ccaaaatgta	accactgtga	gcccacctct	caaaaaaacc
31321	aagtcaaaca	taaacctgga	aatatctgca	cccctcacag	ttacctcaga	agccctaact
31381	gtggctgccg	ccgcacctct	aatggtcgcg	ggcaacacac	tcaccatgca	atcacaggcc
31441	crectaarce	tgcacgactc	caaacttage	atteccacco	aaggacccct	cacagtetca
31501	a220022200		aacatcage	contracco	craccastag	cagtaccet+
21224	Baaggaaage	caguilgud	acaccagge	contracted	ccaccgacdg	tagratice
31201	actatcactg	CCTCaCCCCC	ιcτaactact	gccactggta	gcttgggcat	tgacttgaaa
31621	gagcccattt	atacacaaaa	tggaaaacta	ggactaaagt	acggggctcc	tttgcatgta
31681	acagacgacc	taaacacttt	gaccgtagca	actggtccag	gtgtgactat	taataatact
31741	teettgeaaa	ctaaagttac	tegagectte	ggttttgatt	cacaaggcaa	tatgcaactt
21001	225050000	anaanstana		6800008400	accttatact	tastattsat
21001	aalglaglag	gaggactaag	gallgalll	Ladadagac	gullatall	igalgilagi
31861	tatccgtttg	atgctcaaaa	ccaactaaat	ctaagactag	gacagggccc	τctttttata
31921	aactcagccc	acaacttgga	tattaactac	aacaaaggcc	tttacttgtt	tacagcttca
31981	aacaattcca	aaaagcttga	ggttaaccta	agcactgcca	aggggttgat	gtttgacgc+
320/1	acagocatag	contractor	2002024000	cttgaatttg	attractar	tacaccaaac
22041	acagecardg	teneral	-66-6a cggg	anot	bricallidd	caccade
32101	асааатсссс	ccaaaacaaa	aarrggccat	ggcctagaat	стваттсааа	caaggctatg
32161	gttcctaaac	taggaactgg	ccttagtttt	gacagcacag	gtgccattac	agtaggaaac
32221	aaaaataatg	ataagctaac	tttgtggacc	acaccagctc	catctcctaa	ctgtagacta
32281	aatgcagaga	aagatectaa	actcac+++ø	gtcttaacaa	aatgtggcag	tcaaatac++
222/1	actacaet++		tattacare	adtttaacta		220200000000000000000000000000000000000
JZJ41	BULALABLIT	cagillege	LELLAAdggC	ageregete	caacaccegg	uacagiiida
32401	agtgctcatc	ιτατταtaag	atttgacgaa	aatggagtgc	тастааасаа	ttccttcctg
32461	gacccagaat	attggaactt	tagaaatgga	gatcttactg	aaggcacagc	ctatacaaac
32521	gctgttggat	ttatgcctaa	cctatcagct	tatccaaaat	ctcacggtaa	aactgccaaa
32581	agtaacattø	tcagtcaagt	ttacttaaac	ggagacaaaa	ctaaacctgt	aacactaacc
37641		acantacacc		00000000000	caadtacata	ctctatatat
22041	allaldldd	acggiacaca	Reageragge	gacacddill	caagiguaia	cicialgica
32/01	ττττcatggg	actggtctgg	ccacaactac	attaatgaaa	tatttgccac	atcctcttac
32761	actttttcat	acattgccca	agaataaaga	atcgtttgtg	ttatgtttca	acgtgtttat
32821	ttttcaattg	cagaaaattt	caagtcattt	ttcattcagt	agtatagccc	caccaccaca
-------	------------	------------	-------------	------------	------------	------------
32881	tagcttatac	agatcaccgt	accttaatca	aactcacaga	accctagtat	tcaacctgcc
32941	acctccctcc	caacacacag	agtacacagt	cctttctccc	cggctggcct	taaaaagcat
33001	catatcatgg	gtaacagaca	tattcttagg	tgttatattc	cacacggttt	cctgtcgagc
33061	caaacgctca	tcagtgatat	taataaactc	cccgggcagc	tcacttaagt	tcatgtcgct
33121	gtccagctgc	tgagccacag	gctgctgtcc	aacttgcggt	tgcttaacgg	gcggcgaagg
33181	agaagtccac	gcctacatgg	gggtagagtc	ataatcgtgc	atcaggatag	ggcggtggtg
33241	ctgcagcagc	gcgcgaataa	actgctgccg	ccgccgctcc	gtcctgcagg	aatacaacat
33301	ggcagtggtc	tcctcagcga	tgattcgcac	cgcccgcagc	ataaggcgcc	ttgtcctccg
33361	ggcacagcag	cgcaccctga	tctcacttaa	atcagcacag	taactgcagc	acagcaccac
33421	aatattgttc	aaaatcccac	agtgcaaggc	gctgtatcca	aagctcatgg	cggggaccac
33481	agaacccacg	tggccatcat	accacaagcg	caggtagatt	aagtggcgac	ccctcataaa
33541	cacgctggac	ataaacatta	cctcttttgg	catgttgtaa	ttcaccacct	cccggtacca
33601	tataaacctc	tgattaaaca	tggcgccatc	caccaccatc	ctaaaccagc	tggccaaaac
33661	ctgcccgccg	gctatacact	gcagggaacc	gggactggaa	caatgacagt	ggagagccca
33721	ggactcgtaa	ccatggatca	tcatgctcgt	catgatatca	atgttggcac	aacacaggca
33781	cacgtgcata	cacttcctca	ggattacaag	ctcctcccgc	gttagaacca	tatcccaggg
33841	aacaacccat	tcctgaatca	gcgtaaatcc	cacactgcag	ggaagacctc	gcacgtaact
33901	cacgttgtgc	attetcaaag	tettacattc	aaacaacaac	ggatgatcct	ccagtatggt
33961	agcgcgggtt	tctgtctcaa	aaggaggtag	acgatcccta	ctgtacggag	tgcgccgaga
34021	caaccgagat	cetetteetc	gtagtgtcat	gccaaatgga	acaccaaca	tagtcatatt
34081	tcctgaagca	aaaccaggtg	cgggcgtgac	aaacagatct	gcgtctccgg	tctcgccgct
34141	tagatcgctc	tgtgtagtag	ttgtagtata	tccactctct	caaagcatcc	aggcgccccc
34201	tggcttcggg	ttctatgtaa	actccttcat	gcgccgctgc	cctgataaca	tccaccaccg
34261	cagaataagc	cacacccagc	caacctacac	attcgttctg	cgagtcacac	acgggaggag
34321	cgggaagagc	tggaagaacc	atgtttttt	ttttattcca	aaagattatc	caaaacctca
34381	aaatgaagat	ctattaagtg	aacgcgctcc	cctccggtgg	cgtggtcaaa	ctctacagcc
34441	aaagaacaga	taatggcatt	tgtaagatgt	tgcacaatgg	cttccaaaag	gcaaacggcc
34501	ctcacgtcca	agtggacgta	aaggctaaac	ccttcagggt	gaatctcctc	tataaacatt
34561	ccagcacctt	caaccatgcc	caaataattc	tcatctcgcc	accttctcaa	tatatctcta
34621	agcaaatccc	gaatattaag	tccggccatt	gtaaaaatct	gctccagagc	gccctccacc
34681	ttcagcctca	agcagcgaat	catgattgca	aaaattcagg	ttcctcacag	acctgtataa
34741	gattcaaaag	cggaacatta	acaaaaatac	cgcgatcccg	taggtccctt	cgcagggcca
34801	gctgaacata	atcgtgcagg	tctgcacgga	ccagcgcggc	cacttccccg	ccaggaacca
34861	tgacaaaaga	acccacactg	attatgacac	gcatactcgg	agctatgcta	accagcgtag
34921	ccccgatgta	agcttgttgc	atgggcggcg	atataaaatg	caaggtgctg	ctcaaaaaat
34981	caggcaaagc	ctcgcgcaaa	aaagaaagca	catcgtagtc	atgctcatgc	agataaaggc
35041	aggtaagctc	cggaaccacc	acagaaaaaag	acaccatttt	tctctcaaac	atgtctgcgg
35101	gtttctgcat	aaacacaaaa	taaaataaca	aaaaaacatt	taaacattag	aagcctgtct
35161	tacaacagga	aaaacaaccc	ttataagcat	aagacggact	acggccatgc	cggcgtgacc
35221	gtaaaaaaaa	tggtcaccgt	gattaaaaag	caccaccgac	agctcctcgg	tcatgtccgg
35281	agtcataatg	taagactcgg	taaacacatc	aggttgattc	acatcggtca	gtgctaaaaa
35341	gcgaccgaaa	tagcccgggg	gaatacatac	ccgcaggcgt	agagacaaca	ttacagcccc
35401	cataggaggt	ataacaaaat	taataggaga	gaaaaacaca	taaacacctg	aaaaaccctc
35461	ctgcctaggc	aaaatagcac	cctcccgctc	cagaacaaca	tacagcgctt	ccacagcggc
35521	agccataaca	gtcagcctta	ccagtaaaaa	agaaaaccta	ttaaaaaaaa	accactcgac
35581	acggcaccag	ctcaatcagt	cacagtgtaa	aaaagggcca	agtgcagagc	gagtatatat
35641	aggactaaaa	aatgacgtaa	cggttaaagt	ccacaaaaaa	cacccagaaa	accgcacgcg
35701	aacctacgcc	cagaaacgaa	agccaaaaaa	cccacaactt	cctcaaatcg	tcacttccgt
35761	tttcccacgt	tacgtaactt	cccattttaa	gaaaactaca	attcccaaca	catacaagtt
35821	actccgccct	aaaacctacg	tcacccgccc	cgttcccacg	ccccgcgcca	cgtcacaaac
35881	tccacccct	cattatcata	ttggcttcaa	tccaaaataa	ggtatattat	tgatgatg

//

Figures and Tables

Figure 6.1. Detail map of the Ad5 genome. The green bars along the axis are splice sites. The Blue bars along the axis are miscellaneous features such as TATA boxes, Initiator element sites, packaging sequences, and ITRS.

Genomic Feature	Reference(s)
Inverted Terminal Repeat Sequence (ITRS)	14
Packaging Domain	12
E1A Promoter	4, 22
E1A Splice Sites	20, 26
E1A ORFs	8, 11, 22
E1A Poly-A Site	26
E1B Promoter	4
E1B Splice Sites	20, 26
E1B ORFs	8, 11, 23
E1B Poly-A Site	26
Protein IX Promoter	4
Protein IX ORF	11
VA RNA Genes	13
Major Late Promoter	4, 21
Major Late Transcript Splice Sites	20, 26
Major Late ORFs	11
Major Late Transcript Poly-A Sites	26
E3 Promoter	4
E3 Splice Sites	9, 26
E3 ORFs	6, 9, 11
E3 Poly-A Sites	3, 26
Protein IVa2 Promoter	4
Protein IVa2 Splice Sites	20, 26
Protein IVa2 Poly-A Site	26
E2 Early Promoter	4, 15
E2 Late Promoter	4,5
E2 Splice Sites	20, 26
E2 ORFs	7, 11
E2 Poly-A Sites	19, 26
U exon Promoter	17
U exon ORF	16
E4 Promoter	4, 18
E4 Splice Sites	20, 26
E4 ORFs	10, 11, 24, 25
E4 Poly-A Site	26

Table 6.1. References used to annotate features in the Ad5 genome.

References

1. Chroboczek J, Bieber F, and Jacrot B. The Sequece of the Genome of Adenovirus Type 5 and Its Comparison with the Genome of Adenovirus Type 2. Virology 1992; 186:280-285.

2. Sugarman BJ, Hutchins BM, McAllister DL, Lu F, and Thomas KB. The Complete Nucleic Acid Sequence of the Adenovirus Type 5 Reference Material (ARM) Genome. BioProcess. J. 2003; 2(5):27-33.

3. Adami G and Nevins JR Splice Site selection dominates over poly(A) site choice in RNA production from complex adenovirus transcription units. EMBO 1988; 7(7):2107-21116.

4. Berk AJ. Adenovirus Promoters and E1A Transctivation. Ann. Rev. Genet. 1986; 20:45-79.

5. Bhat G, Sivaraman L, Shridhara M, Domer P, and Thimmappaya B. *In Vivo* identification of multiple promoter domains of adenovirus EIIA-late promoter. EMBO 1987; 6(7):2045-2052.

6. Bhat BM and Wold WSM. Adenovirus Mutants with Splice-Enhancing Mutations in the E3 Complex Transcription Units Are Also Defective in E3A RNA 3'-End Formation. J. Virol. 1986; 57(3):1155-1158.

7. Caravokyri C and Leppard KN. Human Adenovirus Type 5 Variants with Sequence Alterations Flanking the E2A Gene: Effects on E2 Expression and DNA Replication. Virus Genes 1996; 12(1):65-75.

8. Chow LT, Broker TR, and Lewis JB. Complex Splciing Patterns of RNAs from the Early Regions of Adenovirus-2. J. Mol. Biol. 1979; 134:265-303.

9. Cladaras C, Bhat B, and Wold WSM. Mapping the 5' Ends, 3' Ends, and Splice Sites of mRNAs from the Early E3 Transcription Unit of Adenovirus 5. Virol. 1985; 140:44-54.

10. Dix I and Leppard KN. Regulated splicing of adenovirus type 5 E4 transcripts and regulated cytoplasmic accumulation of E4 mRNA. J. Virol. 1993 67(6):3226-3231.

11. Mei YF, Skog J, Lindman K, Wadell G. Comparative analysis of the genome organization of human adenovirus 11, a member of the human adenovirus species B, and the commonly used human adenovirus 5 vector, and member of species C. J. Gen. Virol. 2003; B4:2061-2071.

12. Grable M and Hearing P. Adenovirus Type 5 Packaging Domain Is Composed of a Repeated Element That Is Functionally Redundant. J. Virol. 1990; 64(5):2047-2056.

13. Guilfoyle R and Weinmann R. Control region for adenovirus VA RNA transcription. PNAS 1981; 78(6):3378-3382.

14. Hatfield L and Hearing P. Redundant Elements in the Adenovirus Type 5 Inverted Terminal Repeat Promote Bidirectional Transcription *In Vitro* and Are Important for Virus Growth *In Vivo*. Virology 1991; 184:265-276.

15. Imperiale MJ and Nevins JR. Adenovirus 5 E2 Transcription Unit: an E1A-Inducable Promoter with an Essential Element That Functions Independently of Position or Orientation. Mol. and Cell. Biol. 1984; 4(5):875-882.

16. Tollefson AE, Ying B, Doronin K, Sidor PD, and Wold WSM. Identification of a New Human Adenovirus Protein Encoded by a Novel I-Strand Transcription Unit. J. Virol. 2007; 81(23):12918-12926.

17. Ying B, Tollefson AE, and Wold WSM. Identification of a Previously Unrecognized Promoter That Drives Expression of the UXP Transcription Unit in the Human Adenovirus Type 5 Genome. J. Virol. 2010; 84(21):11470-11478.

18. Jones C and Lee KAW. E1A-Mediated Activation of the Adenovirus E4 Promoter Can Occur Independently of the Cellular Transcription Factor E4F. Mol. and Cell. Biol. 1991; 11(9):4297-4305.

19. hart RP, McDevitt MA, Ali H, and Nevins JR. Definition of Essential Sequences and Functional Equivalence of Elements Downstream of the Adenovirus E2A and the Early Simian Virus 40 Polyadenylation Sites. Mol. and Cell. Biol. 1985; 5(11):2975-2983.

20. Molin M. Adenovirus Vector Systems Permitting Regulated Protein Expression and Their Use for *in vivo* Splicing Studies. Dissertation, Uppsala University. 2001.

21. parks CL and Shenk T. Activation of the Adenovirus Major Late Promoter by Transcription Factors MAZ and Sp1. J. Virol. 1997; 71(12):9600-9607.

22. Shenk T and Flint J. Transcriptional and Transforming Activities of the Adenovirus E1A Proteins. Adv. in Cancer Res. 1991; 57:47-85.

23. Sieber T and Dobner T. Adenovirus Type 5 Early Region 1B 156R Protein Promotes Cell Transformation Independently of Repression of p53-Stimulated Transcriptino. J. Virol. 2007; 81(1):95-105. 24. Tauber B and Dobner T. Adenovirus early E4 genes in viral oncogenesis. Oncogene 2001; 20:7847-7854.

25. Virtanen A, Gilardi P, Naslund A, LeMoullec JM, Pettersson U, and Perricaudet M. mRNAs from Human Adenovirus 2 Early Region 4. J. Virol. 1984; 51(3):822-831.

26. Zhao H, Chen M, and Pettersson U. A new look at adenovirus splicing. Virology 2014; 456:329-341.

Appendix B:

Table of Adenovirus Whole Genome Plasmids

<u>Plasmid</u>		
<u>Name</u>	<u>Serotype</u>	Description
CMBT-		GFP-E1A, Fiber-GS-EGFRVHH but with incorrect poly-A tail on the
324	Ad5	Fiber-GS-EGFRVHH ORF
CMBT-		GFP-E1A, Fiber-GS-EGFRVHH but with correct poly-A tail on the
325	Ad5	Fiber-GS-EGFRVHH ORF
CMBT-		GFP-E1A, ΔRID α , ΔRID β , Δ14.7k, FRB-Fiber, EGFRVHH-GS-
326	Ad5	EGFRVHH-GS-FKBP
CMBT-		GFP-E1A, ΔRID α , ΔRID β , Δ14.7k, FRB-Fiber, EGFRVHH-GS-FKBP-
327	Ad5	GS-EGFRVHH
CMBT-		
341	Ad5	GFP-E1A, everything else wt
CMBT-		
342	Ad5	GFP-E1A, mCherry-ADP
CMBT-		
343	Ad5	GFP-E1A, $\Delta RID\alpha$, $\Delta RID\beta$, $\Delta 14.7k$, FRB-Fiber, mCherry-GS-FKBP
211 CIVIB1-	Ad5	GED-E1A APIDG APIDG A14.7k EPR-Eiber totomate-GS-EKRP
CMBT-	Aus	$G(F^{-}LIA, \Delta KDA, \Delta KDB, \Delta I4.7K, TKB^{-}LDB^{-}, through the theory in the transformation of the transform$
345	Ad5	GFP-E1A. Fiber-GS-mCherry
CMBT-		
346	Ad5	GFP-E1A, Fiber-GS-tdTomato
CMBT-		GFP-E1A, mCherry-ADP, Fiber-GS-EGFRVHH but with incorrect
347	Ad5	poly-A tail
CMBT-		GFP-E1A, mcherry-ADP, Fiber-GS-EGFRVHH but with correct
348	Ad5	version of poly-A tail
CMBT-		GFP-E1A, mCherry-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, EGFRVHH-GS-
349	Ad5	EGFRVHH-GS-FKBP, FRB-Fiber
CMBT-		GFP-E1A, mCherry-ADP, ΔRIDα, ΔRIDβ, Δ14,7k, EGFRVHH-GS-
350	Ad5	FKBP-GS-EGFRVHH, FRB-Fiber
CMBT-		
351	Ad5	GFP-E1A, mCherry-ADP, FRB-Fiber
CMBT-		
352	Ad5	YPet-E1A, everything else wt
CMBT-		
353	Ad5	YPet-E1A, mCherry-ADP
254 254	Ad5	VPat-E1A mCharny-ADD EPB-Eiber
CMBT-		וו פרביה, וווכופוו איאטר, וווטרווטפו
355	Ad5	YPet-E1A. mCherry-ADP. Fiber-GS-FGFRVHH (Incorrect Poly-A)
CMBT-		
356	Ad5	YPet-E1A, mCherry-ADP, Fiber-GS-EGFRVHH

CMBT- 357	Ad5	YPet-E1A, mCherry-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, EGFRVHH-GS- EGERVHH-GS-EKBP, ERB-Eiber
358	Ad5	FGERVHH-GS-EKRP-GS-FGERVHH
CMBT-	Aus	
360	Ad5	mCherry-ADP everything else wt
CMBT-	7100	
366	Ad5	Δ RID α , Δ RID β , Δ 14.7k, FRB-Fiber, mCherry-GS-FKBP
CMBT-		
367	Ad5	Δ RID α , Δ RID β , Δ 14.7k, FRB-Fiber, tdTomato-GS-FKBP
CMBT-		
368	Ad5	Fiber-GS-mCherry
CMBT-		
369	Ad5	Fiber-GS-tdTomato
CMBT-		
370	Ad5	YPet-E1A, Fiber-GS-EGFRVHH (Incorrect Poly-A)
CMBT-		
371	Ad5	YPet-E1A, Fiber-GS-EGFRVHH
CMBT-		YPet-E1A, Δ RIDα, Δ RIDβ, Δ 14.7k, FRB-Fiber, EGFRVHH-GS-
372	Ad5	EGFRVHH-GS-FKBP
CMBT-		YPet-E1A, Δ RID α , Δ RID β , Δ 14.7k, FRB-Fiber, EGFRVHH-GS-FKBP-
373	Ad5	GS-EGFRVHH
CMBT-		
374	Ad5	Ypet-E1A, mCherry, ∆ADP
CMBT-		
375	Ad5	YPet-E1A, Δ RIDα, Δ RIDβ, Δ 14.7k, FRB-Fiber, EGFRVHH-GS-FKBP
CMBT-		
376	Ad5	YPet-E1A, FRB-Fiber
CMBT-		
377	Ad5	Ypet-E1A, △ADP[M1I, S15(stop)]
CMBT-		
378	Ad5	YPet-E1A, mCherry-P2A-ADP
CMBT-		
379	Ad5	YPet-P2A-E1A
CMBT-		
385	Ad5	YPet-E1A, FRB*-Fiber
CMBT-		
386	Ad5	YPet-E1A, ΔRID α , ΔRID β , Δ14.7k, FRB*-Fiber, EGFRVHH-GS-FKBP
CMBT-		VPet-E1A, Δ RID α , Δ RID β , Δ 14.7k, FRB*-Fiber, EGFRVHH-GS-
387	Ad5	EGFRVHH-GS-FKBP
CMBT-		YPet-E1A, Δ RIDα, Δ RIDβ, Δ 14.7k, FRB*-Fiber, EGFRVHH-GS-FKBP-
388	Ad5	GS-EGFRVHH

PCMN-		
389	Ad5	YPet-E1A
PCMN-		
390	Ad5	Ypet-E1A, FRB-Fiber
PCMN-		
391	Ad5	Ypet-E1A, ΔRIDα/β/14.7K, FRB-Fiber, EGFRVHH-GS-FKBP
PCMN-		Ypet-E1A, ΔRIDα/β/14.7K, FRB-Fiber, EGFRVHH-GS-EGFRVHH-GS-
392	Ad5	FKBP
PCMN-		Ypet-E1A, ΔRIDα/β/14.7K, FRB-Fiber, EGFRVHH-GS-FKBP-GS-
393	Ad5	EGFRVHH
PCMN-		
394	Ad5	Ypet-E1A, FRB*-Fiber
PCMN-		
395	Ad5	Ypet-E1A, ΔRIDα/β/14.7K, FRB*-Fiber, EGFRVHH-GS-FKBP
PCMN-		Ypet-E1A, Δ RID α / β /14.7K, FRB*-Fiber, EGFRVHH-GS-EGFRVHH-GS-
396	Ad5	FKBP
PCMN-		Ypet-E1A, ΔRIDα/β/14.7K, FRB*-Fiber, EGFRVHH-GS-FKBP-GS-
397	Ad5	EGFRVHH
CMBT-		
401	Ad5	Ypet-E1A, "attB Linker"-ADP
CMBT-		
402	Ad5	YPet-E1A, mCherry-GS-ADP
CMBT-		
403	Ad5	YPet-P2A-ADP
CMBT-		
404	Ad5	mCherry-ADP. YPet-P2A-Fiber
CMBT-		
405	Ad5	mCherry-P2A-ADP. Ypet-P2A-Fiber
PA-406	Ad34	Ynet-P2A-Fiber
CMBT-	/////	
407	Ad5	Vnet-P2A-Fiber
CMBT-	7.03	
408	Ad5	Ynet-P2A-ADP AF1B-55K[M1V 190ston]
CMBT-	7.000	
409	Ad5	Ynet-P2A-ADP_F1B-55K[H260A]
CMBT-	7.000	
410	Ad5	Ynet-P2A-ADP F4-ORF3[F521 F531]
CMBT-	7.03	
411	Ad5	Ypet-P2A-ADP, F4-ORF3[F52P F53P]
CMBT-		
412	Ad5	Ypet-P2A-ADP_F1B-A55k[M1V_190ston]_F4-ORF3[F521_F531]
CMRT-	/ 00	
<u>413</u>	Ad5	Vnet-P2A-ADP F1B-A55k[M1V 190ston] F4-ORF3[F52P F52P]
	Aug	· μετ · 2Λ Αυτ, Ετυ-Δοσκινιτν, Ιουστομί, Ε4-ΟΝΙ σ[Εσ27,Εσσ7]
	Ad5	
414	AUS	TPET-FZA-AUF, EID-JON(NZOVAJ, E4-UKF3(E52L,E53L)

CMBT-		
415	Ad5	Ypet-P2A-ADP, E1B-55K[H260A], E4-ORF3[E52P,E53P]
CMBT-		
416	Ad5	Ypet-P2A-ADP, E1B-55K[R240A]
CMBT-		
417	Ad5	Ypet-P2A-ADP, E1B-55K[R240A], E4-ORF3[E52L,E53L]
CMBT-		
418	Ad5	Ypet-P2A-ADP, E1B-55K[R240A], E4-ORF3[E52P,E53P]
PA-420	Ad34	wt
PCMN-		
421	Ad5	Ypet-P2A-ADP, all else wt
PCMN-		
422	Ad5	YPet-P2A-E1A, all else wt
PCMN-		
423	Ad5	Ypet-P2A-E1A, Δ RID α / β /14.7K, FRB-Fiber, EGFRVHH-GS-FKBP
CMBT-		
424	Ad5	YPet-P2A-E1A, Fiber-P2A (incorrect poly-A)
CMBT-		
425	Ad5	Ypet-P2A-E1A, Fiber-GS-P2A (incorrect poly-A)
CMBT-		
426	Ad5	Fiber-P2A-YPet (incorrect poly-A)
CMBT-		
427	Ad5	Fiber-GS-P2A-YPet (incorrect poly-A)
CMBT-		
428	Ad5	YPet-P2A-E1A, ADP-P2A
CMBT-		
429	Ad5	ADP-P2A-YPet
CMBT-		YPet-P2A-E1A, Δ RID α / β /14.7K, ADP-P2A-mCherry-GS-FKBP, FRB-
430	Ad5	Fiber
CMBT-		
431	Ad5	YPet-P2A-E1A, Δ RID α / β /14.7K, mCherry-GS-FKBP, FRB-Fiber
CMBT-		
432	Ad5	E1A-P2A-YPet, all else wt
CMBT-		
433	Ad5	YPet-E1A, mCherry-P2A-ADP-GS-Flag
PCMN-		
434	Ad5	YPet-P2A-ADP, E1B-55K[H260A]
PCMN-		
435	Ad5	YPet-P2A-ADP, E1B-Δ55k[M1V, I90stop]
CMBT-		
436	Ad5	YPet-E1A, ADP-GS-Flag
CMBT-		
437	Ad5	YPet-E1A, Flag-GS-ADP
PCMN-		
438	Ad5	E1B-55K-P2A-YPet, Δ RID α , Δ RID β , Δ 14.7k, FRB-Fiber

PCMN- 439	Ad5	E1B-55K-P2A-YPet, Δ RID α , Δ RID β , Δ 14.7k, E3::EGFRVHH-GS-FKBP, FRB-Fiber
PCMN- 440	Ad5	E1B-55K-P2A-YPet, Δ RID α , Δ RID β , Δ 14.7k, EGFRVHH-GS-FKBP-P2A-ADP, FRB-Fiber
CMBT-		
443	Ad5	YPet-P2A-E1A, Fiber-P2A (correct poly-A)
CMBT-		
444	Ad5	YPet-P2A-E1A, Fiber-GS-P2A (correct poly-A)
CMBT-		
445	Ad5	Fiber-P2A-YPet (correct poly-A)
CMBT-		
446	Ad5	Fiber-GS-P2A-YPet (correct poly-A)
CMBT-		
447	Ad5	Δ RID α , Δ RID β , Δ 14.7k, ADP-P2A-YPet-GS-FKBP, FRB-Fiber
CMBT-		
448	Ad5	Δ RID α , Δ RID β , Δ 14.7k, E3::YPet-GS-FKBP, FRB-Fiber
CMBT-		
449	Ad5	Δ RID α , Δ RID β , Δ 14.7k, FRB-Fiber-GS-P2A-YPet-GS-FKBP
CMBT-		
450	Ad5	Δ RID α , Δ RID β , Δ 14.7k, YPet-GS-FKBP-P2A-ADP, FRB-Fiber
CMBT-		YPet-P2A-E1A, Δ RID α , Δ RID β , Δ 14.7k, EGFRVHH-GS-FKBP-P2A-
451	Ad5	ADP, FRB-Fiber
CMBT-		
455	Ad5	E1A-P2A-mCherry, all else wt
CMBT-		
456	Ad5	E1B-55k-P2A-YPet, all else wt
CMBT-		
457	Ad5	YPet-P2A-E4-ORF2, all else wt
CMBT-		E1A-P2A-mCherry, $\Delta RID\alpha$, $\Delta RID\beta$, $\Delta 14.7k$, ADP-P2A-YPet-GS-FKBP,
458	Ad5	FRB-Fiber
CMBT-		F1A-P2A-mCherry ARIDG ARIDG A14.7k FRB-Fiber-GS-P2A-YPet-
459	Ad5	GS-FKBP
CNADT	7.000	
	Ade	EIA-PZA-MCNEITY, $\Delta RID\alpha$, $\Delta RIDp$, $\Delta I4.7K$, YPEI-GS-FKBP-PZA-ADP,
	AUS	
		EIA-PZA-MCNEITY, Δ RID α , Δ RID p , Δ I4.7K, E3::YPEI-GS-FKBP, FRB-
401	AUS	
CMBT-		YPet-P2A-E1A, Δ RIDα, Δ RIDβ, Δ 14.7k, E3::EGFRVHH-GS-FKBP, FRB-
462	Ad5	Fiber
CMBT-		YPet-P2A-E1A, Δ RID α , Δ RID β , Δ 14.7k, FRB-Fiber-GS-P2A-
464	Ad5	EGFRVHH-GS-FKBP
CMBT-		
465	Ad5	YPet-P2A-E1A, FRB-Fiber

CMBT-		
466	Ad5	YPet-P2A-E1A, Δ RID α , Δ RID β , Δ 14.7k
CMBT-		
467	Ad5	YPet-P2A-E1A, Δ RIDα, Δ RIDβ, Δ 14.7k, FRB-Fiber
CMBT-		YPet-P2A-E1A, Δ RID α , Δ RID β , Δ 14.7k, E3::EGFRVHH-GS-FKBP, FRB-
468	Ad5	Fiber
CMBT-		
477	Ad5	E1A-P2A-mCherry, Δ RID α , Δ RID β , Δ 14.7k, E3::YPet
CMBT-		
478	Ad5	E1A-P2A-mCherry, YPet-P2A-ADP
CMBT-		
479	Ad5	E1A-P2A-mCherry, Fiber-GS-P2A-YPet
CMBT-		
480	Ad5	Partial duplication of E1A poly-A and E1B promoter, YPet-P2A-ADP
CMBT-		F1A-P2A-mCherry, ADP-P2A-YPet
481	Ad5	
CMBT-		
482	Ad5	E1A(wt), EF1alpa::Tet-on,E1B(wt), YPet-P2A-ADP
CMBT-		E1A(wt),E1B-promoter(partial), EF1alpha::Tet-on, E1A-ploy-
483	Ad5	A(Partial), E1B(wt), YPet-P2A-ADP
CMBT-		TRE3G::E1A (with cloning remnant), EF1alpha::Tet-On, E1B(wt),
484	Ad5	YPet-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k
СМРТ		TREG2C::E1A E1P promotor/partial) EE1alpha::Tat On E1A pol
185	Ad5	A(partial) F1B(wt) VDet_D2A_ADD
CMBT-	703	
486	Ad5	YPet-P2A-E1A, Δ RID α /RID β /14.7k, E3::EGFRVHH-GS-FKBP
PCMN-		
487	Ad5	Fiber-P2A-YPet (correct poly-A)
PCMN-		
488	Ad5	Fiber-GS-P2A-YPet (correct poly-A)
CMBT-		E1A(wt), EF1alpa::Tet-on.E1B(wt), YPet-P2A-ADP, Δ RID α , Δ RID β ,
489	Ad5	Δ14.7k
PCMN-		
490	Ad5	E1B-55K-P2A-YPet, ΔRIDα/β/14.7K, E3::EGFRVHH-GS-FKBP
PCMN-		
491	Ad5	E1B-55k-P2A-YPet, all else wt
CMBT-		E1A(wt), EF1alpa::Tet-on,E1B(wt), YPet-P2A-ADP, Δ 12.5k, Δ RID α ,
492	Ad5	$\Delta RID\beta$, $\Delta 14.7k$
CMBT-	1	
499	Ad5	E1B-55K-P2A-mCherry
CMBT-		
500	Ad5	E1B-55K-P2A-mCherry, PVIII-P2A-YPet

CMBT-		
501	Ad5	E1B-55K-P2A-mCherry, YPet-P2A-ADP
CMBT-		
502	Ad5	E1B-55K-P2A-mCherry, E3::YPet, $\Delta RID\alpha$, $\Delta RID\beta$, $\Delta 14.7k$
CMBT-		
503	Ad5	E1B-55K-P2A-mCherry, Fiber-P2A-YPet
CMBT-		TRE3G::E1A (with cloning remnant), YPet-P2A-ADP, Δ RID α , Δ RID β ,
504	Ad5	Δ 14.7k, EF1 α ::Tet-On 3G
CMBT-		TRE3G::E1A (with cloning remnant), YPet-P2A-ADP, Δ RID α , Δ RID β ,
505	Ad5	∆14.7k, E2F1::Tet-On 3G
CMBT-		TRE3G::E1A (with cloning remnant), YPet-P2A-ADP, ∆12.5k,
506	Ad5	Δ RID α , Δ RID β , Δ 14.7k, EF1 α ::Tet-On 3G
PCMN-		
513	Ad5	YPet-P2A-ADP readout with Δ E4ORF6/7
PCMN-		
514	Ad5	E1A[Δ LXCXE], YPet-P2A-ADP, Δ E4ORF6/7
PCMN-		
515	Ad5	YPet-P2A-ADP readout with E1A[C124G] and Δ E4ORF6/7
PCMN-		
516	Ad5	YPet-P2A-ADP readout with E1A[Δ 2-11] and Δ E4ORF6/7
PCMN-		
517	Ad5	YPet-P2A-ADP readout with E1A[Y47H, C124G] and \triangle E4ORF6/7
PCMN-		YPet-P2A-ADP readout with E1A[Δ 2-11, Y47H, C124G] and
518	Ad5	ΔE40RF6/7
CMBT-		TRE3G::E1A (with cloning remnant), EF1alpa::Tet-On, E1B(wt),
519	Ad5	YPet-P2A-ADP, Δ12.5k, ΔRID α , ΔRID β , Δ14.7k
CMBT-		
520	Ad5	Pret-P2A-ADP, Δ12.5k, ΔRID α , ΔRID β , Δ14.7k
CMBT-		E1B-55k-P2A-mCherry, YPet-P2A-ADP, Δ 12.5k, Δ RID α , Δ RID β ,
521	Ad5	Δ14.7κ
CMBT-		TRE3G::E1A (with cloning remnant), CMV::Tet-On, E1B(wt), YPet-
522	Ad5	P2A-ADP, ΔRIDα, ΔRIDβ, Δ14.7k
CMBT-		TRE3G::E1A (with cloning remnant), E2F1::Tet-On, E1B(wt), YPet-
523	Ad5	P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
CMBT-		TRE3G::E1A (with cloning remnant), YPet-P2A-ADP, Δ RID α , Δ RID β ,
524	Ad5	Δ 14.7k, CMV::Tet-On 3G
CMBT-		TRE3G::E1A (with cloning remnant), YPet-P2A-ADP, Δ 12.5k,
525	Ad5	Δ RID α , Δ RID β , Δ 14.7k, CMV::Tet-On 3G
CMBT-		TRE3G::E1A (with cloning remnant), YPet-P2A-ADP, ∆12.5k,
526	Ad5	Δ RID α , Δ RID β , Δ 14.7k, E2F1::Tet-On 3G
CMBT-	1	TRE3G::E1A (with cloning remnant). CMV::Tet-On. F1B(wt). YPet-
527	Ad5	P2A-ADP, Δ 12.5k, Δ RIDα, Δ RIDβ, Δ 14.7k

CMBT-		TRE3G::E1A (with cloning remnant), E2F1::Tet-On, E1B(wt), YPet-
528	A05	PZA-ADP, Δ12.5K, ΔRID α , ΔRID β , Δ14.7K
529	A05	EIA-ERTZ, YPET-PZA-ADP, ΔRID α , ΔRID β , Δ14.7K
CIVIB1-		
530	Ad5	YPet-P2A-DNA Polymerase
CMB1-		
534	Ad5	PVIII-P2A-YPet
CMB1-		
535	Ad5	YPet-P2A-ADP, ΔRID α , ΔRID β , Δ14.7k
PCMN-		E1B-55K-P2A-YPet, Δ RID α , Δ RID β , Δ 14.7k, E3::EGFRVHH-GS-
536	Ad5	EGFRVHH-GS-FKBP, FRB-Fiber
PCMN-		E1B-55K-P2A-YPet, Δ RID α , Δ RID β , Δ 14.7k, E3::EGFRVHH-GS-FKBP-
537	Ad5	GS-EGFRVHH, FRB-Fiber
CMBT-		TRE3G::YPet-P2A-E1A (with cloning remnant), Λ 12.k, mCherry-
541	Ad5	P2A-ADP ARIDA ARIDA Λ 14 7k FE1 α : Tet-On 3G
01407	7105	TRE2C::VDat D2A E1A (with claning rompant) A12 k mCharny
CMB1-		
542	A05	PZA-ADP, ΔRIDA, ΔRIDO, Δ14.7k, CIVIV.: Tet-OII 3G
CMBT-		TRE3G::YPet-P2A-E1A (with cloning remnant), Δ 12.k, mCherry-
543	Ad5	P2A-ADP, ΔRIDa, ΔRIDb, Δ14.7k, E2F1::Tet-On 3G
CMBT-		TRE3G::YPet-P2A-E1A (with cloning remnant), EF1 α ::Tet-on,
544	Ad5	E1B(wt)
CMBT-		TRE3G::YPet-P2A-E1A (with cloning remnant), E2F1::Tet-on,
545	Ad5	E1B(wt)
CMBT-		TRE3G::YPety-P2A-E1A (with cloning remnant), CMV::Tet-on,
546	Ad5	E1B(wt)
PCMN-		
547	Ad5	YPet-P2A-ADP, ∆E4-ORF3[M1V, M19stop, M44stop, M50stop]
PCMN-		YPet-P2A-ADP, Δ E1B-55K[M1V,I90stop], Δ E4-ORF3[M1V,
548	Ad5	M19stop, M44stop, M50stop]
CMBT-		
549	Ad5	YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, EF1 α ::Tet-on, TRE3G:E4
CMBT-		·
550	Ad5	YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, CMV::Tet-on, TRE3G:E4
CMBT-		
551	Ad5	YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, E2F1::Tet-on, TRE3G:E4
CMBT-		
552	Ad5	E1B-55K-P2A*-mCherry
CMBT-		
553	Ad5	E1B-55K-P2A*-mCherry, PVIII-P2A-YPet
CMBT-		
554	Ad5	E1B-55K-P2A*-mCherry, YPet-P2A-ADP

CMBT-		
555	Ad5	E1B-55K-P2A*-mCherry, E3::YPet, $\Delta RID\alpha$, $\Delta RID\beta$, $\Delta 14.7k$
CMBT-		
556	Ad5	E1B-55K-P2A*-mCherry, Fiber-P2A-YPet
CMBT-		
557	Ad5	TRE3G::E1B, YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, EF1 α ::Tet-On
CMBT-		
558	Ad5	TRE3G::E1B, YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, CMV::Tet-On
CMBT-		
559	Ad5	TRE3G::E1B, YPet-P2A-ADP, $\Delta RID\alpha$, $\Delta RID\beta$, $\Delta 14.7k$, E2F1::Tet-On
CMBT-		
560	Ad5	mCherry-P2A-ADP, all else wt
CMBT-		
561	Ad5	E1B-55K-P2A-YPet, ∆ADP[M1I, S15stop]
PCMN-		
562	Ad5	YPet-P2A-ADP, E1B-55K[H260A], E4-ORF3[E52P,E53P]
PCMN-		
563	Ad5	YPet-P2A-ADP, E1B-55K[R240A]
PCMN-		
564	Ad5	YPet-P2A-ADP, E1B-55K[R240A], E4-ORF3[E52P,E53P]
CMBT-		
566	Ad5	YPet-P2A-ADP, Δ RID α [M1K]
CMBT-		
567	Ad5	YPet-P2A-ADP, Δ RID β [M1K, C30G, M60stop]
CMBT-		
568	Ad5	YPet-P2A-ADP, ∆14.7k[M1K, M9stop, M31stop, M39stop]
CMBT-		
569	Ad5	
CMBT-		E1A-P2A-YPet-PEST, ∆ADP[mCherry]
570	Ad5	
CMRT		
592	Ad5	$EE1_{C} = 55 \times [M1V, 1505(0P], TFECFZA-ADF, \Delta MDG, \Delta MDP, 114.7K,$
303	Aus	
CMBT-		Δ E1B-55K[M1V,I90stop], YPet-P2A-ADP, Δ RID α , Δ RID β , 114.7k,
584	Ad5	CMV::Tet-On, TRE3G::E4
CMBT-		Δ E1B-55K[M1V,I90stop], YPet-P2A-ADP, Δ RID α , Δ RID β , 114.7k,
585	Ad5	E2F1::Tet-On, TRE3G::E4
CMBT-		TRE3G::E1B. YPet-P2A-ADP. ARIDa. ARIDB. 114.7k. FF1a::Tet-On
586	Ad5	E4orf3[E52P/E53P]
CNADT		
	Ade	IRESULETB, TPET-PZA-ADP, Δ KID α , Δ KID β , 114.7K, CMIV.:Tet-ON,
100/	AUS	[E4UII3[E32P/E33P]

CMBT- 588	Ad5	TRE3G::E1B, YPet-P2A-ADP, Δ RID α , Δ RID β , 114.7k, E2F1::Tet-On, E4orf3[E52P/E53P]
CMBT- 590	Ad5	YPet-GS-(DNA Polymerase)
CMBT- 593	Ad5	4X G-to-C mutations in the ITRS to elliminate transcription binding sites. Includes YPet-P2A-ADP readout.
CMBT- 594	Ad5	4X G-to-C mutations in the ITRS to elliminate transcription binding sites. Includes YPet-P2A-ADP readout. Replace E4 promoter with TRE3G promoter and express Tet-On from EF1a promoter located in E3 region.
CMBT- 595	Ad5	4X G-to-C mutations in the ITRS to elliminate transcription binding sites. Includes YPet-P2A-ADP readout. Replace E4 promoter with TRE3G promoter and express Tet-On from CMV promoter located in E3 region.
CMBT- 596	Ad5	4X G-to-C mutations in the ITRS to elliminate transcription binding sites. Includes YPet-P2A-ADP readout. Replace E4 promoter with TRE3G promoter and express Tet-On from E2F1 promoter located in E3 region.
CMBT- 598	Ad5	mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
CMBT- 599	Ad5	ΔADP[mCherry]
CMBT- 600	Ad5	Δ E1B-55k[M1V, I90 stop], mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
CMBT- 601	Ad5	Δ E1B-55k[M1V, I90 stop], Δ ADP[mCherry], Δ RID α , Δ RID β , Δ 14.7k
CMBT- 602	Ad5	E1A-P2A-YPet-PEST , Fiber-mCherry
CMBT- 603	Ad5	Δ ADP[mCherry], Δ RID α , Δ RID β , and Δ 14.7k
CMBT- 604	Ad5	mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A
CMBT- 605	Ad5	Δ E1B-55k[M1V, I90stop], mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, SV40 Poly-A
CMBT- 606	Ad5	Δ ADP[mCherry], Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A
CMBT- 607	Ad5	Δ E1B-55k[M1V, I90stop], Δ ADP[mCherry], Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A
CMBT- 608	Ad5	mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A, PrMin::YPet

CMBT- 609	Ad5	Δ E1B-55k[M1V, I90stop], mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A, PrMin::YPet
CMBT-		
610	Ad5	Δ ADP[mCherry], Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A, PrMin::YPet
CMBT-		Δ E1B-55k[M1V, I90stop], Δ ADP[mCherry], Δ RID α , Δ RID β , Δ 14.7k,
611	Ad5	SV40 Poly-A, PrMin::YPet
CMBT-		
612	Ad5	DBP-GS-BFP
CMBT-		
614	Ad5	YPet-P2A-ADP, ∆E4[E4::mCherry]
CMBT-		YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, EF1 α ::Tet-on,
615	Ad5	Δ E4[TRE3G::mCherry]
CMBT-		YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, E2F1::Tet-on,
616	Ad5	Δ E4[TRE3G:mCherry]
CMBT-		YPet-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, CMV::Tet-on,
617	Ad5	Δ E4[TRE3G:mCherry]
CMBT-		4X G-to-C mutations in ITRS, YPet-P2A-ADP, $\Delta RID\alpha$, $\Delta RID\beta$,
618	Ad5	Δ 14.7k, EF1 α ::Tet-on, Δ E4[TRE3G::mCherry]
CMBT-		4X G-to-C mutations in ITRS, YPet-P2A-ADP, $\Delta RID\alpha$, $\Delta RID\beta$,
619	Ad5	Δ 14.7k, E2F1::Tet-on, Δ E4[TRE3G:mCherry]
CMBT-		4X G-to-C mutations in ITRS, YPet-P2A-ADP, $\Delta RID\alpha$, $\Delta RID\beta$,
620	Ad5	Δ 14.7k, CMV::Tet-on, Δ E4[TRE3G:mCherry]
CMBT-		
621	Ad5	YPet-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, EF1α::Tet-On
CMBT-		
622	Ad5	YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, CMV::Tet-on
CMBT-		
623 CMPT	A05	YPet-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7K, E2F1::Tet-On
624	Ad5	YPet-P2A-ADP ARIDG ARIDG A14 7k FF1gTet-Off TRF3GF4
CMBT-	7.03	
625	Ad5	YPet-P2A-ADP, ΔRIDα,ΔRIDβ, Δ14.7k, CMV::Tet-off, TRE3G::E4
CMBT-		
626	Ad5	YPet-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, E2F1::Tet-Off, TRE3G::E4
CMBT-		E1A(wt), EF1 α ::Tet-On, E1B(wt), YPet-P2A-ADP, Δ RID α , Δ RID β ,
629	Ad5	Δ14.7k, TRE3G::E4
CMBT-		
630	Ad5	E1A-P2A-YPet-PEST, Fiber-T2A-mCherry
CMBT-		
631	Ad5	Fiber-GS-BFP

CMBT-		
632	Ad5	Fiber-P2A-BFP
CMBT-	A.15	
633 CNART	Ad5	mCherry-P2A-E4-ORF2
CIVIB1-	Ade	
CMRT-	AUS	TPEL-PZA-ADP, TRESGE4
640	Ad5	YPet-P2A-ADP. Λ RIDα. Λ RIDβ. Λ 14.7k. TRE3G::E4
CMBT-		F1A(wt) $FE1a$. Tet-On $F1B(wt)$ YPet-P2A-ADP A12 5k ARIDa
641	Ad5	ARIDB. A14.7k. TRE3G::E4
CMBT-		$F1\Delta(wt)$ CMV···Tet-On F1B(wt) YPet-P2A-ADP A12.5k ABIDQ
642	Ad5	$\Delta RIDB \Lambda 14.7k$, TRF3G::F4
	7.00	$E1A(wt) = E2E1:Tet_Op = E1B(wt) \times Pet_P2A_ADP = A12.5k APIDg$
643	Ad5	ARIDB A14.7k TRE3G::E4
CMBT-	7.05	
644	Ad5	YPet-P2A-ADP, Δ 12.5k, Δ RID α , Δ RID β , Δ 14.7k, EF1a::Tet-On
CMBT-		
645	Ad5	YPet-P2A-ADP, Δ 12.5k, Δ RID α , Δ RID β , Δ 14.7k, CMV::Tet-On
CMBT-		
646	Ad5	YPet-P2A-ADP, Δ 12.5k, Δ RID α , Δ RID β , Δ 14.7k , E2F1::Tet-On
CMBT-		E1A(wt), EF1 α ::Tet-On, E1B(wt), YPet-P2A-ADP, Δ 12.5k, Δ RID α ,
647	Ads	$\Delta \text{RID}\beta, \Delta 14.7 \text{k}$
CMBT-		E1A(wt), CMV::Tet-On, E1B(wt), YPet-P2A-ADP, Δ 12.5k, Δ RID α ,
648	Ad5	$\Delta RID\beta, \Delta 14.7k$
CMBT-		E1A(wt), E2F1::Tet-On, E1B(wt), YPet-P2A-ADP, Δ 12.5k, Δ RID α ,
649	Ad5	$\Delta RID\beta, \Delta 14.7k$
CMBT-		YPet-P2A-ADP, Δ 12.5k, Δ RID α , Δ RID β , Δ 14.7k, EF1a::Tet-On,
650	Ad5	TRE3G::E4
CMBT-		YPet-P2A-ADP, Δ 12.5k, Δ RID α , Δ RID β , Δ 14.7k, CMV::Tet-On,
651	Ad5	TRE3G::E4
CMBT-		YPet-P2A-ADP, Δ 12.5k, Δ RID α , Δ RID β , Δ 14.7k, E2F1::Tet-On,
652	Ad5	TRE3G::E4
CMBT-		E1A(wt), EF1α:Tet-On, minimal SV40 Poly-A, E1B(wt), YPet-P2A-
653	Ad5	ADP, $\Delta 12.5$ k, $\Delta RID\alpha$, $\Delta RID\beta$, $\Delta 14.7$ k
CMBT-		E1A(wt), CMV:Tet-On, Mimimal SV40 Poly-A, E1B(wt), YPet-P2A-
654	Ad5	ADP, $\Delta 12.5k$, $\Delta RID\alpha$, $\Delta RID\beta$, $\Delta 14.7k$
CMBT-		E1A(wt), E2F1:Tet-On, Minimal SV40 Poly-A, E1B(wt), YPet-P2A-
655	Ad5	ADP, $\Delta 12.5k$, $\Delta RID\alpha$, $\Delta RID\beta$, $\Delta 14.7k$
CMBT-		E1A(wt), EF1α:Tet-On, minimal SV40 Poly-A, E1B(wt), YPet-P2A-
656	Ad5	ADP, $\Delta 12.5k$, $\Delta RID\alpha$, $\Delta RID\beta$, $\Delta 14.7k$, TRE3G::E4
CMBT-		E1A(wt), CMV:Tet-On, Mimimal SV40 Polv-A. E1B(wt). YPet-P2A-
657	Ad5	ADP, $\Delta 12.5k$, $\Delta RID\alpha$, $\Delta RID\beta$, $\Delta 14.7k$, TRE3G::E4

CMBT- 658	Ad5	E1A(wt), E2F1:Tet-On, Minimal SV40 Poly-A, E1B(wt), YPet-P2A-ADP, Δ 12.5k, Δ RID α , Δ RID β , Δ 14.7k, TRE3G::E4
CMBT- 659	Ad5	E1B-55k[H260A], mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A, PrMin::YPet
CMBT- 660	Ad5	E1B-55k[R240A], mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A, PrMin::YPet
CMBT- 661	Ad5	E1B-55k[H260A], Δ ADP[mCherry], Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A, PrMin::YPet
CMBT- 662	Ad5	E1B-55k[R240A], Δ ADP[mCherry], Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A, PrMin::YPet
CMBT- 663	Ad5	TRE3G::E1A (with cloning remnant), all else wt
CMBT- 664	Ad5	Δ12.5k, Δ6.7k, Δ19k, mCherry-P2A-ADP, ΔRIDa, ΔRIDb, Δ14.7k
CMBT- 665	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 poly-A
CMBT- 666	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 poly-A, PrMin::YPet (rev)
CMBT- 667	Ad5	Δ E1B-55k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 poly-A, PrMin::YPet (rev)
CMBT- 668	Ad5	E1B-55k[H260A], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 poly-A, PrMin::YPet (rev)
CMBT- 669	Ad5	E1B-55k[R240A], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 poly-A, PrMin::YPet (rev)
CMBT- 684	Ad5	Δ ADP[mCherry], Δ RIDa, Δ RIDb, Δ 14.7k, SV40 Poly-A, PrMin::Tet- On, TRE3G::E4
CMBT- 685	Ad5	Δ ADP[mCherry], Δ RIDa, Δ RIDb, Δ 14.7k, SV40 Poly-A, E2F1::Tet- On, TRE3G::E4
CMBT- 686	Ad5	Δ ADP[mCherry], Δ RIDa, Δ RIDb, Δ 14.7k, SV40 Poly-A, CMV::Tet- On, TRE3G::E4
CMBT- 687	Ad5	Δ ADP[mCherry], Δ RIDa, Δ RIDb, Δ 14.7k, SV40 Poly-A, EF1 α ::Tet- On. TRE3G::E4
PCMN- 688	Ad5	E1A-P2A-YPet-PEST. C to T mutation in DNA Poly to make H5Ts149
PCMN- 689	Ad5	E1A-P2A-YPet-PEST, C to T mutation in DNA Poly to make H5Ts149, Fiber-GS-mCherry
PCMN- 690	Ad5	C to T mutation in DNA Poly to make H5Ts149, YPet-P2A-ADP
CMBT- 691	Ad5	mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 poly-A on E4 side

•	i i	
CMBT- 692	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on E4 side
CMBT- 693	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::YPet, SV40 Poly-A on E4 side
CMBT- 694	Ad5	ΔE1B-55k[M1V, I90stop], Δ12.5k, Δ6.7k, Δ19k, mCherry-P2A-ADP, ΔRIDα, ΔRIDβ, Δ14.7k, PrMin::YPet, SV40 Ploy-A on E4 side
CMBT- 695	Ad5	E1B-55k[H260A], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, PrMin::YPet, SV40 Poly-A on E4 side
CMBT- 696	Ad5	E1B-55k[H240A], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::YPet, SV40 Poly-A on E4 side
PCMN- 697	Ad34	PVIII-P2A-YPet
PA-698	Ad5/Ad34	pVIII-P2A-YPet, △Ad5 Fiber[Ad34 Fiber]
CMBT- 699	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, E2F1::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 700	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, CMV::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 701	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, EF1 α ::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 702	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, E2F1::Tet-On (rev), SV40 Poly-A on E4 side, TRE3G::E4
CMBT- 703	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, CMV::Tet-On (rev), SV40 Poly-A on E4 side, TRE3G::E4
CMBT- 704	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, EF1α::Tet-On (rev), SV40 Poly-A on E4 side, TRE3G::E4
CMBT- 705	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, PrMin::Tet-On (rev), SV40 Poly-A on E4 side, TRE3G::E4
CMBT- 706	Ad5	TRE3G::E2A, YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, E2F1:Tet-On
CMBT- 707	Ad5	E1A(wt), EF1 α :Tet-On, minimal SV40 Poly-A, E1B(wt), TRE3G::E2A, YPet-P2A-ADP, Δ 12.5k, Δ RID α , Δ RID β , Δ 14.7k
CMBT- 708	Ad5	E1A(wt), CMV:Tet-On, Mimimal SV40 Poly-A, E1B(wt), TRE3G::E2A, YPet-P2A-ADP, Δ 12.5k, Δ RID α , Δ RID β , Δ 14.7k
CMBT- 709	Ad5	E1A(wt), E2F1:Tet-On, Minimal SV40 Poly-A, E1B(wt), TRE3G::E2A, YPet-P2A-ADP, Δ 12.5k, Δ RID α , Δ RID β , Δ 14.7k
CMBT- 710	Ad5	TRE3G::E2A, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, E2F1::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 711	Ad5	TRE3G::E2A, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, CMV::Tet-On (rev), SV40 Poly-A on E4 side

CMBT- 712	Ad5	TRE3G::E2A, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, Ef1 α ::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 713	Ad5	TRE3G::E2A, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 714	Ad5	PrMin::YPet placed inside E1A intron (forward) Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k
CMBT- 715	Ad5	PrMin::YPet placed inside E1A intron (reverse) Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k
CMBT- 716	Ad5	PrMin::YPet placed inside E1A intron (forward), ΔE1B-55k[M1V, I90stop], Δ12.5k, Δ6.7k, Δ19k, mCherry-P2A-ADP, ΔRIDα, ΔRIDβ, Δ14.7k
CMBT- 717	Ad5	PrMin::YPet placed inside E1A intron (reverse), Δ E1B-55k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k
CMBT- 718	Ad5	Δ E1B-55k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::Tet-On(rev), SV40 Poly-A on E4 side, TRE3G::E4
CMBT- 719	Ad5	Δ E1B-55k[M1V, I90stop], TRE3G::E2A, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::Tet-On(rev), SV40 Poly-A on E4 side
CMBT- 720	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, PrMin::YPet(for), Δ RID α , Δ RID β , Δ 14.7k
CMBT- 722	Ad5	Δ E1B-55k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, PrMin::YPet(for), Δ RID α , Δ RID β , Δ 14.7k
CMBT- 723	Ad5	Δ E2 Transcription Binding Sites, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry- P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on E4 side
CMBT- 724	Ad5	TRE3G::E2, Δ E2 Transcription Binding Sites, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, E2F1::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 725	Ad5	TRE3G::E2, Δ E2 Transcription Binding Sites, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, CMV::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 726	Ad5	TRE3G::E2, Δ E2 Transcription Binding Sites, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, Ef1 α ::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 727	Ad5	TRE3G::E2, Δ E2 Transcription Binding Sites, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::Tet-On (rev), SV40 Poly-A on E4 side

CMBT- 728		Δ E1B-55k[M1V, I90stop], TRE3G::E2, Δ E2 Transcription Binding Sites, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β ,
	Ad5	Δ 14./k, PrMin::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 729	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, E2F1::Tet-On (rev), SV40 Poly-A on L5 side, TRE3G::E4
CMBT- 730	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, CMV::Tet-On (rev), SV40 Poly-A on L5 side, TRE3G::E4
CMBT- 731	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, EF1 α ::Tet-On (rev), SV40 Poly-A on L5 side, TRE3G::E4
CMBT- 732	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, PrMin::Tet-On (rev), SV40 Poly-A on L5 side, TRE3G::E4
CMBT- 733	Ad5	Δ E1B-55k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::Tet-On (rev), SV40 Poly-A on L5 side, TRE3G::E4
CMBT- 734	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, E2F1::Tet-On (for), SV40 Poly-A on L5 side, TRE3G::E4
CMBT- 735	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, CMV::Tet-On (for), SV40 Poly-A on L5 side, TRE3G::E4
CMBT- 736	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, EF1α::Tet-On (for), SV40 Poly-A on L5 side, TRE3G::E4
CMBT- 737	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, PrMin::Tet-On (for), SV40 Poly-A on L5 side, TRE3G::E4
CMBT- 738	Ad5	Δ E1B-55k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::Tet-On (for), SV40 Poly-A on L5 side, TRE3G::E4
CMBT- 739	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, E2F1::Tet-On (rev), SV40 Poly-A on L5 side
CMBT- 740	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, CMV::Tet-On (rev), SV40 Poly-A on L5 side
CMBT- 741	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, Ef1α::Tet-On (rev), SV40 Poly-A on L5 side
CMBT- 742	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::Tet-On (rev), SV40 Poly-A on L5 side
CMBT- 743	Ad5	$ \begin{array}{l} \Delta \text{E1B-55k}[\text{M1V, I90stop}], \ \Delta \text{12.5k}, \ \Delta \text{6.7k}, \ \Delta \text{19k}, \ \text{mCherry-P2A-ADP}, \\ \Delta \text{RID}\alpha, \ \Delta \text{RID}\beta, \ \Delta \text{14.7k}, \ \text{PrMin::Tet-On (rev), SV40 Poly-A on L5} \\ \text{side} \end{array} $
CMBT- 744	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, E2F1::Tet-On (for), SV40 Poly-A on L5 side
CMBT- 745	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, CMV::Tet-On (for), SV40 Poly-A on L5 side

CMBT- 746	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, EF1 α ::Tet-On (for), SV40 Poly-A on L5 side
CMBT- 747	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, PrMin::Tet-On (for), SV40 Poly-A on L5 side
CMBT- 748	Ad5	Δ E1B-55k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, PrMin::Tet-On (for), SV40 Poly-A on L5 side
CMBT- 749	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on E4 side, TRE3G::E4
CMBT- 754	Ad5	ΔE1B-55K[M1V, I90stop, Δ AA91-307], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: E1B-55k (for), CMV::Tet-On (for), Tet-On Poly-A, Δ E4orf3
CMBT- 755	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, SV40 Poly-A on L5 side, E2F1::Tet-On (for), Tet-On Poly-A
CMBT- 756	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, SV40 Poly-A on L5 side, CMV::Tet-On (for), Tet-On Poly-A
CMBT- 757	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, SV40 Poly-A on L5 side, EF1α::Tet-On (for), Tet-On Poly-A
CMBT- 758	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, SV40 Poly-A on L5 side, PrMin::Tet-On (for), Tet-On Poly-A
CMBT- 759	Ad5	Δ E1B-55k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, PrMin::Tet-On (for), Tet-On Poly-A
CMBT- 760	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, E2F1::Tet-On (for), Tet-On Poly-A, TRE3G::E4
CMBT- 761	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::Tet-On (for), Tet-On Poly-A, TRE3G::E4
CMBT- 762	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, EF1 α ::Tet-On (for), Tet-On Poly-A, TRE3G::E4
CMBT- 763	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, PrMin::Tet-On (for), Tet-On Poly-A, TRE3G::E4
CMBT- 764	Ad5	Δ E1B-55k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, PrMin::Tet-On (for), Tet-On Poly-A, TRE3G::E4
CMBT- 765	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, PrMin::YPet (rev), Δ RID α , Δ RID β , Δ 14.7k
CMBT- 766	Ad5	Δ E1B-55k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, PrMin::YPet (rev), Δ RID α , Δ RID β , Δ 14.7k

CMBT- 767	Ad5	Δ E1B-55k[M1V, I90stop, Δ AA91-307], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::YPet (rev), SV40 Poly-A on E4 side
CMBT- 768	Ad5	PrMin::YPet placed in front of E1A intron (forward) Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k
CMBT- 769	Ad5	PrMin::YPet placed in front of E1A intron (reverse) Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k
CMBT- 770	Ad5	PrMin::YPet placed in front of E1A intron (forward), ΔE1B- 55k[M1V, I90stop], Δ12.5k, Δ6.7k, Δ19k, mCherry-P2A-ADP, ΔRIDα, ΔRIDβ, Δ14.7k
CMBT- 771	Ad5	PrMin::YPet placed in front of E1A intron (reverse), ΔE1B- 55k[M1V, I90stop], Δ12.5k, Δ6.7k, Δ19k, mCherry-P2A-ADP, ΔRIDα, ΔRIDβ, Δ14.7k
CMBT- 772	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, TRE3G (rev), mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 773	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, TRE3G(rev), PrMin::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 774	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, TRE3G(rev), mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, TRE3G(rev), PrMin::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 775	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, TRE3G (for), mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, PrMin::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 776	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, TRE3G(for), PrMin::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 777	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, TRE3G(for), mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, TRE3G(for), PrMin::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 778	Ad5	Δ E1B-55k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, TRE3G (rev), mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 779	Ad5	Δ E1B-55k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, TRE3G(rev), PrMin::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 780	Ad5	Δ E1B-55k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, TRE3G(rev), mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, TRE3G(rev), PrMin::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 781	Ad5	Δ E1B-55k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, TRE3G (for), mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::Tet-On (rev), SV40 Poly-A on E4 side

CMBT- 782	Ad5	Δ E1B-55k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, TRE3G(for), PrMin::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 783	Ad5	Δ E1B-5k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, TRE3G(for), mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, TRE3G(for), PrMin::Tet- On (rev), SV40 Poly-A on E4 side
CMBT- 784	Ad5	E1A(wt), PrMin::YPet (for),minimal SV40 poly-A,E1B(wt), Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
CMBT- 785	Ad5	E1A(wt), PrMin::Tet-On (for),minimal SV40 poly-A,E1B(wt), Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
CMBT- 787	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, PrMin::YPet (rev), SV40 Poly-A on E4 side, Δ E4-ORF3
CMBT- 790	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, E2F1::Tet-On (for),SV-40 Poly-A plus termination sequence
CMBT- 791	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::Tet-On (for),SV-40 Poly-A plus termination sequence
CMBT- 792	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, EF1 α ::Tet-On (for),SV-40 Poly-A plus termination sequence
CMBT- 793	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, PrMin::Tet-On (for),SV-40 Poly-A plus termination sequence
CMBT- 794	Ad5	Δ E1B-55K[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, PrMin::Tet-On (for),SV-40 Poly-A plus termination sequence
CMBT- 795	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, SV40 Poly-A on L5 side, E2F1::Tet-On (for),SV-40 Poly-A plus termination sequence, TRE3G::E4
CMBT- 796	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, SV40 Poly-A on L5 side, CMV::Tet-On (for),SV-40 Poly-A plus termination sequence, TRE3G::E4
CMBT- 797	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, EF1 α ::Tet-On (for),SV-40 Poly-A plus termination sequence, TRE3G::E4
CMBT- 798	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, PrMin::Tet-On (for),SV-40 Poly-A plus termination sequence, TRE3G::E4

CMBT- 799	Ad5	Δ E1B-55K[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, PrMin::Tet-On (for),SV-40 Poly-A plus termination sequence, TRE3G::E4
CMBT- 812	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, YPet (for)
CMBT- 813	Ad5	TRE3G (rev) placed before pVIII ORF, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 814	Ad5	Δ E1B-55K[M1V, I90stop], TRE3G (rev) placed before pVIII ORF, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 815	Ad5	E1B-55k[H260A], TRE3G (rev) placed before pVIII ORF, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 816	Ad5	E1B-55k[R240A], TRE3G (rev) placed before pVIII ORF, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 817	Ad5	E1A(wt), PrMin::YPet, minimal SV40 poly-A, Δ E1B-55K[M1V, I90stop, Δ AA91-307], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
CMBT- 818	Ad5	E1A(wt), PrMin::Tet-On, minimal SV40 poly-A, Δ E1B-55K[M1V, I90stop, Δ AA91-307], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
CMBT- 828	Ad5	E1B-55k[H260A], TRE3G::E2A, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::Tet-On(rev), SV40 Poly-A on E4 side
CMBT- 829	Ad5	E1B-55k[R240A], TRE3G::E2A, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::Tet-On(rev), SV40 Poly-A on E4 side
CMBT- 830	Ad5	E1A(wt), PrMin::Tet-On, minimal SV40 poly-A, TRE3G(rev) placed between E2 early promoter and pVIII ORF, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
CMBT- 831	Ad5	E1A(wt), PrMin::Tet-On, minimal SV40 poly-A, Δ E1B-55K[M1V, I90stop, Δ AA91-307], TRE3G(rev) placed between E2 early promoter and pVIII ORF, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
CMBT- 832	Ad5	E1A(wt), PrMin::Tet-On, minimal SV40 poly-A, TRE3G::E2, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
CMBT- 833	Ad5	E1A(wt), PrMin::Tet-On, minimal SV40 poly-A, Δ E1B-55K[M1V, I90stop, Δ AA91-307], TRE3G::E2, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry- P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k

CMBT- 840	Ad5	E1A(wt), PrMin::YPet,minimal SV40 poly-A, ΔE1B-55K[M1V, I90stop], Δ12.5k, Δ6.7k, Δ19k, mCherry-P2A-ADP, ΔRID α , ΔRID β , Δ14.7k
CMBT- 841	Ad5	E1A(wt), PrMin::Tet-On,minimal SV40 poly-A, Δ E1B-55K[M1V, I90stop], TRE3G::E2, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
CMBT- 842	Ad5	E1A(wt), PrMin::YPet,minimal SV40 poly-A, E1B-55K[H260A], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
CMBT- 843	Ad5	E1A(wt), PrMin::Tet-On,minimal SV40 poly-A, E1B-55K[H260A], TRE3G::E2, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
CMBT- 844	Ad5	E1A(wt), PrMin::YPet,minimal SV40 poly-A, E1B-55K[R240A], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
CMBT- 845	Ad5	E1A(wt), PrMin::Tet-On,minimal SV40 poly-A, E1B-55K[R240A], TRE3G::E2, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
CMBT- 846	Adts	E1A(wt), PrMin::Tet-On,minimal SV40 poly-A, TRE3G::E2, Δ 12.5k, Δ 6, 7k, Δ 19k, mCherry-P2A-ADP, Δ RIDG, Δ RIDG, Δ 14, 7k,
CMBT- 847	Ad5	Hexon-P2A-YPet, all else wt
CMBT- 848	Ad5	Hexon-P2A-Ypet, Δ 12.5k, Δ 6.7k, Δ 19k, mChery-P2A-ADP Δ RID α , Δ RID β , Δ 14.7k
CMBT- 851	Ad5	mCherry-P2A-ADP, SV40 poly-A on E4 side
PCMN- 852	Ad5	pVIII-P2A-YPet
PCMN- 853	Ad5/34	pVIII-P2A-YPet, Fiber = Ad5 tail + Ad34 Shaft + Ad34 Knob
PCMN- 854	Ad34	all wt
PGMN- 855	Ad34	pVIII-P2A-YPet, all else wt
PCMN- 856	Ad9	all wt
PGMN- 857	Adg	pVIII-P2A-YPet, all else wt
PCMN- 858	Ad5	Δ12.5k, Δ6.7k, Δ19k, YPet-P2A-ADP, ΔRID $\alpha/\beta/14.7$ K + EGFRVHH- GS-FKBP, FRB-TtoL-Fiber
PCMN- 859	Ad5	Δ12.5k, Δ6.7k, Δ19k, ΔRIDα/β/14.7K + EGFRVHH-GS-FKBP, FRB- TtoL-Fiber
PCMN- 860	Ad5	YPet-P2A-ADP, ΔRIDα/β/14.7K + EGFRVHH-GS-FKBP, FRB-TtoL- Fiber

PCMN-		
862	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDa, Δ RIDb, Δ 14.7k
CMBT-		
863	Ad5	YPet-P2A-Hexon, all else wt
CMBT-		YPet-P2A-Hexon, Δ 12.5k, Δ 6.7k, Δ 19k, mChery-P2A-ADP, Δ RID α ,
864	Ad5	$\Delta RID\beta$, $\Delta 14.7k$
PCMN-		
866	Ad5/Ad34	E1B-55k-P2A-YPet, Fiber = Ad5 Tail + Ad34 Shaft + Ad34 Knob
PCMN-		
867	Ad9	E1B-55k-P2A-YPet, all else wt
PCMN-		
868	Ad34	E1B-55k-P2A-YPet, all else wt
PCMN-		
869	Ad5	YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
PCMN-		
870	Ad5	mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
PCMN-		
871	Ad5	mCherry-P2A-ADP
PCMN-		F1B-55K-P2A-YPet, ARIDa ARIDB, A14.7k, F3.:FGFRVHH-GS-FKBP
872	Ad5	FRB-Totl-Fiber
CMBT-	7.00	
873	Ad5	YPet-P2A-nVIII
PCMN-	7.00	
874	Ad5	Δ12.5k. Δ6.7k. Δ19k. YPet-P2A-ADP. ΔRIDα ΔRIDB. Δ14.7k
PCMN-		
875	Ad5/Ad9	E1B-55k-P2A-YPet. Fiber = Ad5 Tail + Ad9 Shaft + Ad9 Knob
CMBT-		
876	Ad5	E1A-P2A-YPet-PEST, mCherry-P2A-ADP
CMBT-		
877	Ad5	E1A-P2A-YPet-PEST, mCherry-P2A-ADP, $\Delta RID\alpha$, $\Delta RID\beta$, $\Delta 14.7k$
CMBT-		$F1A_P2A_VDet_PEST A12 5k A6.7k A10k mCherny_P2A_ADP$
878	Ad5	$A R I D \alpha$ $A R I D \beta$ $A 14.7k$
CMBT-	7.03	
879	Ad5	F1A-P2A-PFST mCherry-P2A-ADP
CMBT-	7.05	
880	Ad5	F1A-P2A-PFST_mCherry-P2A-ADP_ARIDg_ARIDg_A14_7k
CMPT	7105	E1A D2A DEST, A12 Ek, A6 7k, A10k, mCharmy D2A ADD, ADD
QQ1		EIA-PZA-PEST, Δ 12.5K, Δ 0.7K, Δ 19K, MCNENY-PZA-ADP, Δ RID α ,
CNUT	A05	Δκιυρ, Δ14./κ
	Ade	
	AUS	
	Ade	
003	AUS	E1A-rest, monenty-rza-ADP, Δκιυα, Δκιυβ, Δ14./K
CMBT-		E1A-PEST, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β ,
884	Ad5	Δ14.7k

CMBT-		
885	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
CMBT-		
886	Ad5	DBP-P2A-YPet
PCMN-		
887	Ad5	E3-14.7k-P2A-YPet
PCMN-		
888	Ad9	E3-14.8k-P2A-YPet
PCMN-		
889	Ad34	E3-15k-P2A-YPet
CMBT-		
890	Ad5	E3-14.7k-P2A-YPet
CMBT-		
891	Ads	YPet-GS-pVII
CMBT-		
892	Ad5	YPet-P2A-pVII
CMBT-		
893	Ad5	pVII-GS-YPet
CMB1-	A.15	
894	Ad5	
CMBT-		TRE3G::E2A, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α ,
895	A.15	Δ RID β , Δ 14.7k, PrMin::ADP-P2A-Tet-On(rev), SV40 Poly-A on E4
	Ad5	SIDE
CMBT-		ΔE1B-55k[M1V, I90stop], TRE3G::E2A, Δ12.5k, Δ6.7k, Δ19k,
896		mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::ADP-P2A-Tet-
	Ad5	On(rev), SV40 Poly-A on E4 side
CMPT		E1B-55k[H260A], TRE3G::E2A, Δ12.5k, Δ6.7k, Δ19k, mCherry-P2A-
		ADP, $\Delta RID\alpha$, $\Delta RID\beta$, $\Delta 14.7k$, PrMin::ADP-P2A-Tet-On(rev), SV40
097	Ad5	Poly-A on E4 side
		$F1P_55k[P240A]$ TPF2G··F2A_A12.5k_A6.7k_A10k_mCherry_P2A_
CMBT-		$\Delta D = \Delta P D \alpha \Delta P D \beta \Delta 14.7 k Pr M in :: \Delta D P - P 2 A - Tot - On(row) SV40$
898	Ad5	Poly- Δ on E4 side
CMBT-	Aus	
899	Ad5	YPet[G25D]-GS-nVII
CMBT-	7.03	
900	Ad5	F4-ORF3-P2A-YPet
PCMN-	7.03	
901	Ad5	F1B-55K-P2A-YPet + 2AA's from c-term of F1B-55k
PCMN-		
902	Ad9	E1B-55K-P2A-YPet + 2AA's from c-term of E1B-55k
PCMN-		
903	Ad34	E1B-55K-P2A-YPet + 2AA's from c-term of E1B-55k
CMBT-		
904	Ad5	YPet-P2A-ADP, ΔRID α , ΔRID β , Δ14.7k, plus RID α fragment

CMBT- 905	Ad5	E1A[Δ LXCXE], Δ 12.5k, Δ 6.7k, Δ 19k, YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k
CMBT- 906	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, YPet-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, Δ E4-ORF6/7
CMBT- 907	Ad5	E1A[Δ LXCXE], Δ 12.5k, Δ 6.7k, Δ 19k, YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, Δ E4-ORF6/7
CMBT- 908	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, YPet-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, EGFRVHH-GS-FKBP
CMBT- 909	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, FRB-TtoL-Fiber
CMBT- 910	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, EGFRVHH-GS-FKBP, FRB-TtoL-Fiber
CMBT- 916	Ad5	TRE3G::E2A, Δ12.5k, Δ6.7k, Δ19k, mCherry-P2A-ADP, ΔRIDα, ΔRIDβ, Δ14.7k, PrMin::YPet-P2A-Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 917	Ad5	Δ E1B-55k[M1V, I90stop], TRE3G::E2A, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::YPet-P2A-Tet- On (rev), SV40 Poly-A on E4 side
CMBT- 918	Ad5	E1B-55k[H260A], TRE3G::E2A, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::YPet-P2A-Tet-On (rev), SV40 Poly-A on E4 side
CMBT- 919	Ad5	E1B-55k[R240A], TRE3G::E2A, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::YPet-P2A-Tet-On (rev), SV40 Poly-A on E4 side
PCMN- 920	Ad5 5/9/9	14.7k-P2A-YPet, Fiber = Ad5 tail + Ad9 Shaft + Ad9 Knob
PCMN- 921	Ad5 5/34/34	14.7k-P2A-YPet, Fiber = Ad5 tail + Ad34 Shaft + Ad34 Knob
PCMN- 922	Ad5	E1A[ΔLXCXE], YPet-P2A-ADP
CMBT- 925	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::ADP-P2A-Tet-On, SV40 Poly-A on E4 side
CMBT- 926	Ad5	Δ E1B-55k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::ADP-P2A-Tet-On, SV40 Poly-A on E4 side
CMBT- 927	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, PrMin::YPet-P2A-Tet-On, SV40 Poly-A on E4 side
CMBT- 928	Ad5	Δ E1B-55k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::YPet-P2A-Tet-On, SV40 Poly-A on E4 side

CMBT- 929	Ad5	ΔΕ1Β-55K[M1V, I90stop, ΔΑΑ91-307], Δ12.5k, Δ6.7k, Δ19k, mCherry-P2A-ADP, ΔRIDα, ΔRIDβ, Δ14.7k, SV40 Poly-A on L5 side, TRE3G:: E1B-55k (for), E2F1::Tet-On (for), Tet-On Poly-A, ΔE4orf3
CMBT- 930	Ad5	ΔE1B-55K[M1V, I90stop, ΔAA91-307], Δ12.5k, Δ6.7k, Δ19k, mCherry-P2A-ADP, ΔRIDα, ΔRIDβ, Δ14.7k, SV40 Poly-A on L5 side, TRE3G:: E1B-55k (for), EF1A::Tet-On (for), Tet-On Poly-A, ΔE4orf3
CMBT- 931	Ad5	ΔE1B-55K[M1V, I90stop, ΔAA91-307], Δ12.5k, Δ6.7k, Δ19k, mCherry-P2A-ADP, ΔRIDα, ΔRIDβ, Δ14.7k, SV40 Poly-A on L5 side, CMV::E1B-55k (for), Tet-On Poly-A, ΔE4orf3
CMBT- 932	Ad5	Δ L3-Endoprotease, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: Endoprotease (for), CMV::Tet-On (for), Tet-On Poly-A
CMBT- 933	Ad5	Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: DNA Binding Protein (for), CMV::Tet-On (for), Tet-On Poly-A
CMBT- 934	Ad5	YPet-GS-ADP
CMBT- 935	Ad5	∆ADP[YPet]
CMBT-		
936	Ad5	14.7k-P2A-YPet
CMBT- 937	Ad5	Δ RID α , Δ RID β , Δ 14.7k, E3B::YPet
CMBT- 938	Ad5	Fiber-GS-YPet
PCMN- 945	Ad2	all wt
	Aus	
PCMN- 946	Ad3	15.3k-P2A-YPet
PCMN- 949	Ad5 5/3/3	14.7k-P2A-YPet. Fiber = Ad5 tail + Ad3 Shaft + Ad3 Knob
PCMN-		
950	Ad5	E1A-P2A-YPet
PCMN-		
951	Ad3 3/5/5	15.3k-P2A-YPet, Fiber = Ad3 tail + Ad5 Shaft + Ad5 Knob
PCMN- 952	Ad9 9/5/5	14.8k-P2A-YPet, Fiber = Ad9 tail + Ad5 Shaft + Ad5 Knob
PCMN- 953	Ad34 34/5/5	15k-P2A-YPet, Fiber = Ad34 tail + Ad5 Shaft + Ad5 Knob
PCMN-	1 - 1 2	
962	Ad5 5/5/3	14.7k-P2A-YPet, Fiber = Ad5 tail + Ad5 Shaft + Ad3 Knob

PCIVIN-		
963	Ad5 5/5/9	14.7k-P2A-YPet, Fiber = Ad5 tail + Ad5 Shaft + Ad9 Knob
PCMN-		
964	Ad5 5/5/34	14.7k-P2A-YPet, Fiber = Ad5 tail + Ad5 Shaft + Ad34 Knob
PCMN-		
965	Ad3 3/3/5	15.3k-P2A-YPet, Fiber = Ad3 tail + Ad3 Shaft + Ad5 Knob
PCMN-		
966	Ad9 9/9/5	14.8k-P2A-YPet, Fiber = Ad9 tail + Ad9 Shaft + Ad5 Knob
PCMN-	Ad34	
967	34/34/5	15k-P2A-YPet, Fiber = Ad34 tail + Ad34 Shaft + Ad5 Knob
PCMN-		
968	Ad5	DBP-P2A-YPet
PA-969	Ad5 5/3/3	Δ E1-EF1 α -[luc-GFP]-miR122; fiber chimera Ad5/3/3
PA-970	Ad5 5/9/9	Δ E1-EF1 α -[luc-GFP]-miR122; fiber chimera Ad5/9/9
PA-971	Ad5 5/34/34	Δ E1-EF1 α -[luc-GFP]-miR122; fiber chimera Ad5/34/34
	Ad34	
PA-972	34/34/5	Δ E1-EF1 α -[luc-GFP]-miR122; fiber chimera Ad34/34/5
PA-973	Ad34 34/5/5	Δ E1-EF1 α -[luc-GFP]-miR122; fiber chimera Ad34/5/5
PA-979	Ad34	ΔE1-EF1α-[luc-GFP]-miR122
		ΛΕ2-DNA Binding Protein. Λ12.5k. Λ6.7k. Λ19k. mCherry-P2A-
CLADT		ADP. $\Delta RID\alpha$, $\Delta RID\beta$, $\Delta 14.7k$, SV40 Polv-A on L5 side. TRE3G:: DNA
CIVIB1-		
991	Ad5	Binding Protein (for), E2F1::Tet-On (for), Tet-On Poly-A
991	Ad5	AF1A[AAA6-285] A12 5k A6 7k A19k mCherry-P2A-ADP ARIDG
CMBT-	Ad5	Binding Protein (for), E2F1::Tet-On (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: E1A (for).
CMBT- 991 CMBT- 992	Ad5	Binding Protein (for), E2F1::Tet-On (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: E1A (for), CMV::Tet-On (for), Tet-On Poly-A
CMBT- 991 CMBT- 992	Ad5 Ad5	Binding Protein (for), E2F1::Tet-On (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: E1A (for), CMV::Tet-On (for), Tet-On Poly-A
CMBT- 991 CMBT- 992	Ad5 Ad5	Binding Protein (for), E2F1::Tet-On (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: E1A (for), CMV::Tet-On (for), Tet-On Poly-A Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- Δ DP, Δ RID α , Δ RID α , Δ 14.7k, SV40 Poly-A on L5 side, CMV::DNA
CMBT- 991 CMBT- 992 CMBT- 993	Ad5 Ad5	Binding Protein (for), E2F1::Tet-On (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: E1A (for), CMV::Tet-On (for), Tet-On Poly-A Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::DNA Bindnig Protein (for), Tet-On Poly-A
CMBT- 991 CMBT- 992 CMBT- 993	Ad5 Ad5 Ad5	Binding Protein (for), E2F1::Tet-On (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: E1A (for), CMV::Tet-On (for), Tet-On Poly-A Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::DNA Bindnig Protein (for), Tet-On Poly-A
CMBT- 991 CMBT- 992 CMBT- 993 CMBT- 994	Ad5 Ad5 Ad5	Binding Protein (for), E2F1::Tet-On (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: E1A (for), CMV::Tet-On (for), Tet-On Poly-A Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::DNA Bindnig Protein (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::DNA
CMBT- 991 CMBT- 992 CMBT- 993 CMBT- 994 PCMN-	Ad5 Ad5 Ad5 Ad5 Ad5	Binding Protein (for), E2F1::Tet-On (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: E1A (for), CMV::Tet-On (for), Tet-On Poly-A Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::DNA Bindnig Protein (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::E1A, Tet-On Poly-A
CMBT- 991 CMBT- 992 CMBT- 993 CMBT- 994 PCMN- 995	Ad5 Ad5 Ad5 Ad5 Ad34 34/5/34	Binding Protein (for), E2F1::Tet-On (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: E1A (for), CMV::Tet-On (for), Tet-On Poly-A Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::DNA Bindnig Protein (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::E1A, Tet-On Poly-A 15k-P2A-YPet, Fiber = Ad34 Tail + Ad5 Shaft + Ad34 Knob
CMBT- 991 CMBT- 992 CMBT- 993 CMBT- 994 PCMN- 995 PCMN-	Ad5 Ad5 Ad5 Ad5 Ad34 34/5/34	Binding Protein (for), E2F1::Tet-On (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: E1A (for), CMV::Tet-On (for), Tet-On Poly-A Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::DNA Bindnig Protein (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::E1A, Tet-On Poly-A 15k-P2A-YPet, Fiber = Ad34 Tail + Ad5 Shaft + Ad34 Knob VPet-P2A-ADP, Δ RID α [M1K] Δ RID β [M1K, C30G, M60ston]
CMBT- 991 CMBT- 992 CMBT- 993 CMBT- 994 PCMN- 995 PCMN- 996	Ad5 Ad5 Ad5 Ad5 Ad34 34/5/34	Binding Protein (for), E2F1::Tet-On (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: E1A (for), CMV::Tet-On (for), Tet-On Poly-A Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::DNA Bindnig Protein (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::E1A, Tet-On Poly-A 15k-P2A-YPet, Fiber = Ad34 Tail + Ad5 Shaft + Ad34 Knob YPet-P2A-ADP, Δ RID α [M1K], Δ RID β [M1K, C30G, M60stop], Δ 14.7k[M1K, M9stop, M31stop, M39stop]
CMBT- 991 CMBT- 992 CMBT- 993 CMBT- 993 CMBT- 994 PCMN- 995 PCMN- 996 PCMN-	Ad5 Ad5 Ad5 Ad5 Ad34 34/5/34 Ad5	Binding Protein (for), E2F1::Tet-On (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: E1A (for), CMV::Tet-On (for), Tet-On Poly-A Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::DNA Bindnig Protein (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::E1A, Tet-On Poly-A 15k-P2A-YPet, Fiber = Ad34 Tail + Ad5 Shaft + Ad34 Knob YPet-P2A-ADP, Δ RID α [M1K], Δ RID β [M1K, C30G, M60stop], Δ 14.7k[M1K, M9stop, M31stop, M39stop]
CMBT- 991 CMBT- 992 CMBT- 993 CMBT- 994 PCMN- 995 PCMN- 996 PCMN- 997	Ad5 Ad5 Ad5 Ad5 Ad34 34/5/34 Ad5 Ad5	Binding Protein (for), E2F1::Tet-On (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: E1A (for), CMV::Tet-On (for), Tet-On Poly-A Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::DNA Bindnig Protein (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::E1A, Tet-On Poly-A 15k-P2A-YPet, Fiber = Ad34 Tail + Ad5 Shaft + Ad34 Knob YPet-P2A-ADP, Δ RID α [M1K], Δ RID β [M1K, C30G, M60stop], Δ 14.7k[M1K, M9stop, M31stop, M39stop] Δ RID α [M1K], Δ RID β [M1K, C30G, M60stop], 14.7k-P2A-YPet
CMBT- 991 CMBT- 992 CMBT- 993 CMBT- 993 CMBT- 994 PCMN- 995 PCMN- 996 PCMN- 997 PCMN-	Ad5 Ad5 Ad5 Ad5 Ad34 34/5/34 Ad5 Ad5	Binding Protein (for), E2F1::Tet-On (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: E1A (for), CMV::Tet-On (for), Tet-On Poly-A Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::DNA Bindnig Protein (for), Tet-On Poly-A Δ E1A[Δ AA6-285], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV::E1A, Tet-On Poly-A 15k-P2A-YPet, Fiber = Ad34 Tail + Ad5 Shaft + Ad34 Knob YPet-P2A-ADP, Δ RID α [M1K], Δ RID β [M1K, C30G, M60stop], Δ 14.7k[M1K, M9stop, M31stop, M39stop] Δ RID α [M1K], Δ RID β [M1K, C30G, M60stop], 14.7k-P2A-YPet Δ 10.1k[M1K, V17I], Δ 14.9k[M1K, C33G, M57Stop], 15k-P2A-YPet.

PCMN- 999	Ad5	E1A[ΔLXCXE], hexon[E451Q], ΔE3-12.5k, ΔE3-6.7k, ΔE3-19k, YPet- P2A-ADP, ΔE4-ORF6/7
PCMN- 1000	Ad5	E1A[Δ LXCXE], hexon[E451Q], Δ E3-6.7k, Δ E3-12.5k, Δ E3-19k, YPet- P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, Δ E4-ORF6/7
PCMN-	Ad34 34/5/5	Δ 10.1k, Δ 14.9k, 15k-P2A-YPet, Fiber = Ad34 tail + Ad5 Shaft + Ad5 Knob
PCMN-	71054 547 57 5	
1002	Ad5	ΔΕ3-12.5k, ΔΕ3-6.7k, ΔΕ3-19k, YPet-P2A-ADP
PCMN- 1003	Ad5	E1A[Δ LXCXE], hexon[E451Q], YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, Δ E4-ORF6/7
PCMN- 1010	Ad5	E1A[Δ LXCXE], hexon[E451Q], YPet-P2A-ADP, Δ E3-RID α , Δ RID β , Δ 14.7k, EGFRVHH-GS-FKBP, Δ E4-ORF6/7
PCMN- 1011	Ad5	YPet-P2A-ADP, ΔE3-RIDα, ΔRID eta , Δ14.7k, EGFRVHH-GS-FKBP
PCMN- 1012	Ad5	E1A[Δ LXCXE], hexon[E451Q], YPet-P2A-ADP, FRB-TtoL-Fiber, Δ E4-ORF6/7
PCMN- 1013	Ad5	YPet-P2A-ADP, FRB-TtoL-Fiber
PCMN- 1014	Ad34/Ad5	Δ pVIII[Replace with Ad34 version of pVIII], YPet-P2A-ADP, Fiber = Ad34 tail + Ad5 shaft + Ad5 knob (35,990bp, 1.035)
PCMN- 1015	Ad34/Ad5	Δ pVIII[Replace with Ad34 version of pVIII], YPet-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, Fiber = Ad34 tail + Ad5 shaft + Ad5 knob (34,937bp, 1.005)
PCMN- 1016	Ad34/Ad5	Δ pVIII[Replace with Ad34 version of pVIII], Δ 12.5k, Δ 6.7k, Δ 19k, YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, Fiber = Ad34 tail + Ad5 shaft + Ad5 knob (33,433bp, 0.961)
PCMN- 1017	Ad34/Ad5	Δ pVIII[Replace with Ad34 version of pVIII], YPet-P2A-ADP, Fiber = Ad34 tail + Ad34 shaft + Ad34 knob (35,222bp, 1.013)
PCMN- 1018	Ad34/Ad5	Δ pVIII[Replace with Ad34 version of pVIII], YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, Fiber = Ad34 tail + Ad34 shaft + Ad34 knob (34,169bp, 0.983)
PCMN- 1019	Ad34/Ad5	Δ pVIII[Replace with Ad34 version of pVIII], Δ 12.5k, Δ 6.7k, Δ 19k, YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, Fiber = Ad34 tail + Ad34 shaft + Ad34 knob (32,665bp, 0.939)
PCMN- 1020	Ad5	E1A[Δ LXCXE], hexon[E451Q], Δ 12.5k, Δ 6.7k, Δ 19k, EGFRVHH-GS- FKBP-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, FRB-Fiber, Δ E4-ORF6/7
PCMN- 1021	MAV1	wt
PCMN- 1022	MAV1	E3-Glycoprotein-P2A-YPet

PCMN-		
1023	MAV1	E3-Glycoprotein-P2A-Renilla_Luciferase
PCMN-		
1024	Ad34	ΔE1B-54.9k[M1V, V89STOP], 15k-P2A-YPet
PCMN-		
1025	Ad34	15k-P2A-YPet, ∆E4-ORF3
PCMN-		
1026	Ad34	ΔΕ1Β-54.9k[M1V, V89STOP], 15k-P2A-YPet, ΔΕ4-ORF3
PCMN-		
1027	Ad5	Δ E4-ORF2, all else WT
PCMN-		
1028	Ad5	Flag-E4-Orf2, all else WT
PCMN-		
1031	Ad5	E1A-YPet, all else WT
		Δ12.5k[M1K], Δ6.7k[M1K], Δ19k[M1K, V31stop, E39stop, C46stop,
PCMN-		E51stop], YPet-P2A-ADP, Δ RID α [M1K], Δ RID β [M1K, C30G,
1032	Ad5	M60stop], Δ 14.7k[M1K, M9stop, M31stop, M39stop]
PCMN-		
1033	Ad5	YPet-P2A-ADP, Ad9 E4-ORF2
PCMN-		
1034	Ad5	Ad9 E4-ORF2
PCMN-		E1A[Δ LXCXE], hexon[E451Q], Δ 12.5k, Δ 6.7k, Δ 19k, EGFRVHH-GS-
1035	Ad5	YPet-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, Δ E4-ORF6/7
PCMN-		E1A[Δ LXCXE], hexon[E451Q], Δ 12.5k, Δ 6.7k, Δ 19k, EGFRVHH-P2A-
1036	Ad5	ADP, $\Delta RID\alpha$, $\Delta RID\beta$, $\Delta 14.7k$, $\Delta E4-ORF6/7$
		$F1\Delta[\Delta XCXE]$ here $F1\Delta XCXE]$ here F
1037	Ad5	$\Delta RID\alpha \Delta RID\beta \Delta 14.7k E3B \oplus GGERV/HH \Delta E4_ORE6/7$
PCMN-	Aus	
1038	Ad5	$\Delta RID\alpha$, $\Delta RID\beta$, 14.7k-P2A-YPet
PCMN-		ΛΕ1Β-55k[M1V, I90stop], Λ12,5k, Λ6,7k, Λ19k, YPet-P2A-ADP.
1039	Ad5	$\Delta RID\alpha$, $\Delta RID\beta$, $\Delta 14.7k$, $\Delta E4-ORF3$
DCMN		A12 5k A6 7k A10k VPot D2A ADD APIDG APIDG A14 7k Eibor
10/1	A42/A434	- Ad5 tail + Ad5 chaft + Ad34 knob
1041	Auj/Auj4	
		E1A[Δ LXCXE], hexon[E451Q], Δ 12.5k, Δ 6.7k, Δ 19k, YPet-P2A-ADP,
PCMN-		$\Delta RID\alpha$, $\Delta RID\beta$, $\Delta 14$. /k, Fiber = Ad5 tail + Ad5 shaft + Ad34 knob,
1042	Ad5/Ad34	Δ E4-ORF6/7
PCMN-		E1A[Δ LXCXE], hexon[E451Q], (Renilla Luc)-P2A-ADP, Fiber = Ad5
1047	Ad5/Ad34	tail + Ad5 shaft + Ad34 knob, Δ E4-ORF6/7
		E1A[Δ LXCXE], hexon[E451Q], Δ 12.5k, Δ 6.7k, Δ 19k, (Renilla Luc)-
PCMN-		P2A-ADP, ΔRIDα, ΔRIDβ, Δ14.7k, Fiber = Ad5 tail + Ad5 shaft +
1048	Ad5/Ad34	Ad34 knob, Δ E4-ORF6/7

PCMN-		
1055	Ad5/Ad34	YPet-P2A-ADP, Fiber = Ad5 tail + Ad5 shaft + Ad34 knob
PCMN-		E1A[Δ LXCXE], hexon[E451Q], YPet-P2A-ADP, Fiber = Ad5 tail + Ad5
1056	A05/A034	Shaft + Ad34 khob, Δ E4-OKF6/7
		mCherry-P2A-ADP ARIDG ARIDG A14 7k SV40 Poly-A on L5 side
CMBT-		TRE3G:: DNA Binding Protein (for). E2F1::Tet-On (for). Tet-On
1057	Ad5	Poly-A, ΔE4-ORF6/7
CMBT-		
1058	Ad5	E1A-YPet, all else WT
		Duplicate section of L4-33kDa protein after E2 early promoter
CMBT-		(Contains all AAs with alternate CODONs). Δ 12.5k, Δ 6.7k, Δ 19k,
1059	Ad5	mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k (34,267bp, 0.954)
		Duplicate section of L4-33kDa protein after E2 early promoter
		(Contains all AAs with alternate CODONs). E2 Early promoter Inr
CMBT-		flanked by Tet-O binding sequences. $\Delta 12.5k$, $\Delta 6.7k$, $\Delta 19k$,
1060	Ad5	mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k (34,286bp, 0.954)
		Duplicate section of L4-33kDa protein after E2 early promoter
		(Contains all AAs with alternate CODONs). E2 Early promoter Inr
CNADT		flanked by Tet-O binding sequences. $\Delta 12.5k$, $\Delta 6.7k$, $\Delta 19k$,
1061	Ad5	mcherry-PZA-ADP, $\Delta RiD\alpha$, $\Delta RiDp$, $\Delta 14.7k$, Privin::Tetr (rev), SV40 Poly-A on F4 side (35.553hp, 0.989)
		ΔE1B55k[M1V, I90stop], Duplicate section of L4-33kDa protein
		F2 Early promoter Int flanked by Tet-O binding sequences
CMBT-		$\Delta 12.5k$, $\Delta 6.7k$, $\Delta 19k$, mCherry-P2A-ADP, $\Delta RID\alpha$, $\Delta RID\beta$, $\Delta 14.7k$.
1062	Ad5	PrMin::TetR (rev), SV40 Poly-A on E4 side (35,553bp, 0.989)
		Duplicate section of L4-33kDa protein after F2 early promoter
		(Contains all AAs with alternate CODONs). E2 Early promoter Inr
		flanked by Tet-O binding sequences. $\Delta 12.5k$, $\Delta 6.7k$, $\Delta 19k$,
CMBT-		mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, CMV::TetR (rev), SV40
1063	Ad5	Poly-A on E4 side (35,684bp, 0.993)
		Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-
		ADP, $\Delta RID\alpha$, $\Delta RID\beta$, $\Delta 14.7k$, SV40 Poly-A on L5 side, CMV-Tet-O::
CMBT-		DNA Binding Protein (for), CMV::TetR (for), Tet-On Poly-A
1064	Ad5	(36,509bp, 1.016)
		Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-
CLART		ADP, ΔRIDα, ΔRIDβ, Δ14.7k, SV40 Poly-A on L5 side, CMV-Tet-O::
CMBT-	Ade	DNA Binding Protein (for), PrMin::TetR (for), Tet-On Poly-A
1002	AUS	(1010)
CMBT- 1066	Ad5	Δ E1B55k[M1V, I90stop], Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV-Tet-O:: DNA Binding Protein (for), PrMin::TetR (for), Tet-On Poly-A (36,299bp, 1.010)
---------------	-----	--
PCMN- 1070	Ad5	mCherry-P2A-ADP, 14.7k-P2A-YPet (37,494, 1.043)
CMBT- 1076	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, SV40 poly-A on L5 side, CMV::YPet (rev)
CMBT- 1077	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 poly-A on L5 side, E2F1::YPet (rev)
CMBT- 1078	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, SV40 poly-A on L5 side, MUC1::YPet (rev)
CMBT- 1079	Ad5	Δ12.5k, Δ6.7k, Δ19k, mCherry-P2A-ADP, ΔRID α , ΔRID β , Δ14.7k, SV40 poly-A on L5 side, Ptf1aRE::YPet (rev)
CMBT- 1080	Ad5	Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: DNA Binding Protein (for), MUC1::Tet-On (for), Tet-On Poly-A
PCMN- 1087	Ad5	E1A[Δ LXCXE], hexon[E451Q], Δ 12.5k, Δ 6.7k, Δ 19k, EGFRVHH-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, Fiber = Ad5 tail + Ad5 shaft + Ad34 knob, Δ E4-ORF6/7 (33,570bp, 0.934)
PCMN- 1091	Ad5	E1A[Δ LXCXE], hexon[E451Q], Δ 12.5k, Δ 6.7k, Δ 19k, EGFRVHH-GS- FKBP-P2A-ADP, Δ RID α , Δ RID β , 14.7k-P2A-YPet, FRB-Fiber, Δ E4- ORF6/7 (35,310bp, 0.982)
PCMN- 1092	Ad5	E1A[Δ LXCXE], hexon[E451Q], Δ 12.5k, Δ 6.7k, Δ 19k, EGFRVHH-P2A- ADP, Δ RID α , Δ RID β , 14.7K-P2A-YPet, Fiber = Ad5 tail + Ad5 shaft + Ad34 knob, Δ E4-ORF6/7 (34,737bp, 0.966)
CMBT- 1093	Ad5	E1B55k[H260A], Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV-Tet-O:: DNA Binding Protein (for), PrMin::TetR (for), Tet-On Poly-A (36,299bp, 1.010)
CMBT- 1094	Ad5	E1B55k[R240A], Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV-Tet-O:: DNA Binding Protein (for), PrMin::TetR (for), Tet-On Poly-A (36,299bp, 1.010)
CMBT- 1105	Ad5	ΔE1A/E1B + EF1α::YPet
CMBT- 1106	Ad5	Δ E1A/E1B + EF1 α ::YPet, Fiber = 5/5/34
CMBT- 1107	Ad5	Δ E1A/E1B + EF1 α ::YPet, Fiber = 5/5/3

CMBT- 1108	Ad5	Δ E1A/E1B + EF1a::YPet, Fiber = 5/5/9
CMBT- 1120	Ad5	E1A[Δ LXCXE], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, E2F1::YPet (rev), Δ E4-ORF6/7
PGMN- 1421	Ad5	E1A-P <u>2A-YPet, 14.7k-P</u> 2A-mCherry
CMBT- 1131	Ad5	Δ E1B-55k[M1V, I90stop], Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly- A on L5 side, TRE3G:: DNA Binding Protein (for), PrMin::Tet-On (for), Tet-On Poly-A
CMBT- 1132	Ad5	Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: DNA Binding Protein (for), Tet-On Poly-A (rev), MUC1::Tet-On (rev)
CMBT- 1133	Ad5	Δ E1B-55k[M1V, I90stop], Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly- A on L5 side, TRE3G:: DNA Binding Protein (for), Tet-On Poly-A (rev), PrMin::Tet-On (rev)
CMBT- 1134	Ad5	Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV-Tet-O:: DNA Binding Protein (for), PrMin::TetR (Rev), Tet-On Poly-A
CMBT- 1135	Ad5	Δ E1B-55k[M1V, I90stop], Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly- A on L5 side, CMV-Tet-O:: DNA Binding Protein (for), PrMin::TetR (Rev), Tet-On Poly-A
CMBT- 1136	Ad5	E1B-55k[H260A], Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV-Tet-O:: DNA Binding Protein (for), PrMin::TetR (Rev), Tet-On Poly-A
CMBT- 1137	Ad5	E1B-55k[R240A], Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, CMV-Tet-O:: DNA Binding Protein (for), PrMin::TetR (Rev), Tet-On Poly-A
CMBT- 1138	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: YPet (for), CMV::Tet-On (for), Tet-On Poly-A
PCMN- 1139	Ad5	E1A[Δ LXCXE], hexon[E451Q], Δ 12.5k, Δ 6.7k, Δ 19k, Δ RID α , Δ RID β , Δ 14.7k, Fiber = Ad5 tail + Ad5 shaft + Ad34 knob, Δ E4-ORF6/7
PCMN- 1142	Ad5	E1A-P2A-YPet, 14.7k-P2A-mCherry
PCMN- 1143	Ad5	E1A-P2A-YPet, $\Delta RID \alpha$, $\Delta RID \beta$, $\Delta 14.7 k$

PCMN- 1144	Ad5	E1A-P2A-YPet, Δ RID α [M1K], Δ RID β [M1K, C30G, M60stop], Δ 14.7k[M1K, M9stop, M31stop, M39stop]
PCMN- 1145	Ad5	E1A-P2A-YPet, Δ12.5k, Δ6.7k, Δ19k, ΔRIDα, ΔRIDβ, Δ14.7k
PCMN- 1146	Ad5	E1A-P2A-YPet, Δ12.5k[M1K], Δ6.7k[M1k], Δ19k[M1K, V31stop, E39stop, C46stop, E51stop], ΔRIDα[M1K], ΔRIDβ[M1K, C30G, M60stop], Δ14.7k[M1K, M9stop, M31stop, M39stop]
CMBT- 1154	Ad5	E1B-55k[H260A], Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: DNA Binding Protein (for), Tet-On Poly-A (rev), PrMin::Tet-On (rev)
CMBT- 1155	Ad5	E1B-55k[R240A], Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: DNA Binding Protein (for), Tet-On Poly-A (rev), PrMin::Tet-On (rev)
PCMN- 1162	Ad5	NanoLuc-P2A-ADP
PCMN- 1163	Ad5	E3-14.7k-P2A-NanoLuc
CMBT- 1171	Ad5	Δ12.5k, Δ6.7k, Δ19k, mCherry-P2A-ADP, ΔRID α , ΔRID β , Δ14.7k, SV40 poly-A on L5 side, PSES::YPet (rev)
CMBT- 1172	Ad5	Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: DNA Binding Protein (for), PSES::Tet-On (for), Tet-On Poly-A
CMBT- 1173	Ad5	Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: DNA Binding Protein (for), Tet-On Poly-A (rev), PSES::Tet-On (rev)
CMBT- 1180	Ad5	E1B-55k[H260A], Duplicate section of L4-33kDa protein after E2 early promoter (Contains all AAs with alternate CODONs). E2 Early promoter Inr flanked by Tet-O binding sequences. Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::TetR (rev), SV40 Poly-A on E4 side
CMBT- 1181	Ad5	E1B-55k[R240A], Duplicate section of L4-33kDa protein after E2 early promoter (Contains all AAs with alternate CODONs). E2 Early promoter Inr flanked by Tet-O binding sequences. Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, PrMin::TetR (rev), SV40 Poly-A on E4 side
CMBT- 1187	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, SV40 Poly-A on L5 side, Tet-On Poly-A (rev), CMV::Tet-On (rev), TRE3G:: YPet (rev)

CMBT- 1188	Ad5	Δ E1B-55k[M1V, I90stop], Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly- A on L5 side, Tet-On Poly-A (rev), PrMin::TetR (Rev), , CMV-Tet- O:: DNA Binding Protein (rev)
CMBT- 1189	Ad5	Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, Tet-On Poly-A (rev), PSES::Tet-On (rev), TRE3G:: DNA Binding Protein (rev)
CMBT- 1190	Ad5	ADP-YPet
CMBT- 1194	Ad5	Δ E1B-55k[M1V, I90stop], Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly- A on L5 side, Tet-On Poly-A (rev), PrMin::Tet-On (rev), TRE3G:: DNA Binding Protein (rev)
CMBT- 1195	Ad5	E1B-55k[H260A], Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, Tet-On Poly-A (rev), PrMin::Tet-On (rev), TRE3G:: DNA Binding Protein (rev)
CMBT- 1196	Ad5	E1B-55k[R240A], Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, Tet-On Poly-A (rev), PrMin::Tet-On (rev), TRE3G:: DNA Binding Protein (rev)
CMBT- 1197	Ad5	Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, Fiber = Ad4 Tail + Ad5 Shaft + Ad34 Knob, SV40 Poly-A on L5 side, TRE3G:: DNA Binding Protein (for), PSES::Tet-On (for), Tet-On Poly-A
CMBT- 1198	Ad5	Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, Fiber= Ad5 Tail + Ad5 Shaft + Ad34 Knob, SV40 Poly-A on L5 side, Tet-On Poly-A (rev), PSES::Tet-On (rev), TRE3G:: DNA Binding Protein (rev)
CMBT- 1199	Ad5	E1B-55K[H260A], Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: DNA Binding Protein (for), PrMin::Tet-On (for), Tet-On Poly-A
CMBT- 1200	Ad5	E1B-55K[R240A], Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: DNA Binding Protein (for), PrMin::Tet-On (for), Tet-On Poly-A
CMBT- 1202 CMBT-AA	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, Fiber = Ad5 tail + Ad5 shaft + Ad34 knob, SV40 poly-A on L5 side, PSES::YPet (rev)

CMBT- 1203 CMBT-AB	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, Fiber = Ad5 tail + Ad5 shaft + Ad34 knob, SV40 poly-A on L5 side, CMV::YPet (rev)
CMBT- 1204 CMBT-AC	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, Fiber = Ad5 tail + Ad5 shaft + Ad34 knob, SV40 poly-A on L5 side, E2F1::YPet (rev)
CMBT- 1205 CMBT-AD	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, Fiber = Ad5 tail + Ad5 shaft + Ad34 knob, SV40 poly-A on L5 side, MUC1::YPet (rev)
CMBT- 1206 CMBT-AE	Ad5	Δ E1B-55k[M1V, I90stop], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, Fiber = Ad5 tail + Ad5 shaft + Ad34 knob, SV40 poly-A on L5 side, PrMin::YPet (rev)
CMBT- 1207 CMBT-AF	Ad5	E1A[Δ LXCXE], Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, Fiber = Ad5 tail + Ad5 shaft + Ad34 knob, SV40 Poly-A on L5 side, E2F1::YPet (rev), Δ E4-ORF6/7
CMBT- 1208 CMBT-BA	Ad5	Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, Tet-On Poly-A (rev), PrMin::TetR (Rev), CMV-Tet-O:: DNA Binding Protein (rev)
CMBT- 1209 CMBT-BB	Ad5	E1B-55k[H260A], Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, Tet-On Poly-A (rev), PrMin::TetR (Rev), , CMV-Tet-O:: DNA Binding Protein (rev)
CMBT- 1210 CMBT-BC	Ad5	E1B-55k[R240A], Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, Tet-On Poly-A (rev), PrMin::TetR (Rev), , CMV-Tet-O:: DNA Binding Protein (rev)
CMBT- 1211 CMBT-DA	Ad5	Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, Fiber = Ad5 tail + Ad5 shaft + Ad34 knob, SV40 poly-A on L5 side, PSES::YPet (rev) Corrected version of PSES
CMBT- 1212 CMBT-EA	Ad5	Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, Fiber = Ad5 Tail + Ad5 Shaft + Ad34 Knob, SV40 Poly-A on L5 side, TRE3G:: DNA Binding Protein (for), PSES::Tet-On (for), Tet-On Poly-A, corrected version of PSES
CMBT- 1213 CMBT-EB	Ad5	Δ E2-DNA Binding Protein, Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, Fiber= Ad5 Tail + Ad5 Shaft + Ad34 Knob, SV40 Poly-A on L5 side, Tet-On Poly-A (rev), PSES::Tet-On (rev), TRE3G:: DNA Binding Protein (rev), corrected version of PSES
CMBT- 1214	Ad5	Δ E1B-55k[M1V, I90stop], , Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A- ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-A on L5 side, TRE3G:: YPet (for), PrMin::Tet-On (for), Tet-On Poly-A

CMBT-		Δ 12.5k, Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RIDα, Δ RIDβ, Δ 14.7k, SV40 Poly-A on L5 side, Tet-On Poly-A (rev), PrMin::Tet-On (rev),
1215	Ad5	TRE3G:: YPet (rev)
		Δ E1B-55k[M1V, I90stop], Δ E2-DNA Binding Protein, Δ 12.5k,
CMBT-		Δ 6.7k, Δ 19k, mCherry-P2A-ADP, Δ RID α , Δ RID β , Δ 14.7k, SV40 Poly-
1216	Ad5	A on L5 side, PrMin::DNA Binding Protein (rev)

PCMN-		E1A[∆LXCXE], hexon[E451Q], Fiber = Ad5 tail + Ad5 shaft + Ad34
1250	Ad5/Ad34	knob, Δ E4-ORF6/7