
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Synthesis of application-specific on-chip networks

Permalink
https://escholarship.org/uc/item/2k31x6dd

Author
Yan, Shan

Publication Date
2009

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2k31x6dd
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Synthesis of Application-Specific On-Chip Networks

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Shan Yan

Committee in charge:

Professor Bill Lin, Chair
Professor Sujit Dey
Professor Curt Schurgers
Professor Michael B. Taylor
Professor Amin Vahdat

2009

Copyright

Shan Yan, 2009

All rights reserved.

The dissertation of Shan Yan is approved, and it is

acceptable in quality and form for publication on mi-

crofilm and electronically:

Chair

University of California, San Diego

2009

iii

DEDICATION

To my husband Bo Pan, my parents Gongrong Yan and Yuying Shi, and my

son George.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . ix

Acknowledgements . x

Vita and Publications . xii

Abstract of the Dissertation . xiii

Chapter 1 Introduction . 1
1.1 Limitations of Traditional On-Chip Communication Architectures 1
1.2 The NoC Approach . 2
1.3 Design Challenges of NoC Synthesis 4
1.4 Related Work . 5

1.4.1 Regular NoC architecture design 5
1.4.2 Custom NoC architecture design 6
1.4.3 Multicast . 7
1.4.4 3D NoC design . 7
1.4.5 Multiple usage scenarios 8
1.4.6 Deadlock considerations 8

1.5 Thesis Contributions . 9
1.6 Thesis Organization . 11

Chapter 2 NoC Synthesis Design Flow . 12
2.1 Design Flow . 12

2.1.1 Input Specification . 12
2.1.2 Floorplanning . 14
2.1.3 Networks-on-Chip Synthesis 15
2.1.4 NoC Objective and Constraints 16
2.1.5 NoC Power and Area Estimation 16
2.1.6 NoC Design Parameters 18
2.1.7 Detailed Design . 18

2.2 NoC Synthesis Problem and Formulation 18
2.2.1 Problem Description 18
2.2.2 Problem Formulation 19

v

2.3 Power Models for NoC components 20
2.3.1 Modelling Routers . 21
2.3.2 Modelling Interconnects 21

Chapter 3 Design Custom Topologies Based on Flow-Set Partitions and Steiner
Trees . 24
3.1 Overview . 24
3.2 Problem Formulation . 25

3.2.1 Flow-Set Partitioning 25
3.2.2 Steiner Tree Based Topology Construction 26
3.2.3 Implementation Optimization 27

3.3 CLUSTER . 27
3.4 DECOMPOSE . 30
3.5 Perturbation-Based Flow Partitioning 33

3.5.1 Overview of SA . 33
3.5.2 Representing the State Space 33
3.5.3 Generating Candidate Solutions 34
3.5.4 Incremental Cost Evaluation 34
3.5.5 Reducing the State Space 36

3.6 Router Merging . 37
3.7 Experimental Results . 38

3.7.1 Experimental Setup . 38
3.7.2 Results for Unicast Applications 40
3.7.3 Results for Multicast Applications 44

Chapter 4 Design Custom Topologies Based on Rip-Up and Reroute 51
4.1 Overview . 51
4.2 Design Algorithms – RRRM 52

4.2.1 Initial network construction 52
4.2.2 Flow Ripup and Rerouting 55
4.2.3 Router Merging . 57
4.2.4 Complexity of the algorithm 57

4.3 Experimental Results . 60
4.3.1 Experimental Setup . 60
4.3.2 Comparison of results 61

Chapter 5 3D Application-Specific NoC Architecture Synthesis 66
5.1 Overview . 66
5.2 3D Design Models . 68

5.2.1 3D Interconnect Modelling 68
5.2.2 Modelling Routers . 72

5.3 Design Algorithms . 72
5.4 Experimental Results . 72

5.4.1 Experimental Setup . 72

vi

5.4.2 Comparison of results 74

Chapter 6 Design of Application-Specific NoC for Multiple Usage Scenarios . . 77
6.1 Overview . 77
6.2 Problem and Formulation . 78
6.3 Multi-Profile Network Design Algorithms 79

6.3.1 Initial network construction 79
6.3.2 Flow Ripup and Rerouting 80

6.4 Evaluation . 83
6.4.1 Experimental Setup . 83
6.4.2 Comparison of Results 87

Chapter 7 Deadlock-Free NoC Architecture Synthesis 89
7.1 Statically Scheduled Routing 89
7.2 Virtual Channels . 90

Chapter 8 Conclusion and Future Work . 93
8.1 Future Directions . 95

Bibliography . 96

vii

LIST OF FIGURES

Figure 1.1: Regular tile-base NoC architecture [9] 2

Figure 2.1: Design flow. 13
Figure 2.2: Modern SoC designs combine hard and soft modules, packet-

based communications and conventional wiring-based interconnec-
tions. Source: EETimes [54]. 14

Figure 2.3: Illustration of the NoC synthesis problem. 17

Figure 3.1: Formulation of synthesis problem. 25
Figure 3.2: Affinity graph and MST for example shown in Figure 2.3. 31
Figure 3.3: Comparisons of all algorithms on unicast applications. 45
Figure 3.4: Comparisons of all algorithms on multicast applications. 49

Figure 4.1: Illustration of the RIPUP-REROUTE procedure. 58
Figure 4.2: Illustration of the ROUTER-MERGING procedure. 60
Figure 4.3: VOPD custom topology floorplans synthesized by different algorithms 62
Figure 4.4: Comparisons of all algorithms relative to RRRM. 65

Figure 5.1: 3D silicon integration [100]. 67
Figure 5.2: 3D interconnect model. 70
Figure 5.3: Different structures for an 8mm 3D interconnect. 71
Figure 5.4: Comparisons of all algorithms on benchmarks. 75

Figure 6.1: Hop count comparisons of MPR vs. regular mesh on benchmarks. . . . 84
Figure 6.2: Power comparisons of MPR vs. regular mesh on benchmarks. 84
Figure 6.3: Area comparisons of MPR vs. regular mesh on benchmarks. 85

Figure 7.1: Illustration of the virtual channel insertion procedure. 91

viii

LIST OF TABLES

Table 2.1: Power consumption of Routers using Orion [32]. 21
Table 2.2: Interconnect Parameters . 22
Table 2.3: Power consumption of interconnects. 22

Table 3.1: NoC power comparisons on unicast applications. 41
Table 3.2: NoC hop count comparisons on unicast applications. 42
Table 3.3: NoC router area comparisons on unicast applications. 43
Table 3.4: NoC power comparisons with exact solutions on unicast applications. . . 46
Table 3.5: NoC power comparisons on multicast applications. 47
Table 3.6: NoC hop count comparisons on multicast applications. 48
Table 3.7: NoC router area comparisons on multicast applications. 48
Table 3.8: NoC power comparisons with exact solutions on multicast applications. 49

Table 4.1: NoC power and execution time results 63
Table 4.2: NoC hop counts results. 63
Table 4.3: NoC router area results. 64

Table 5.1: Interconnect Parameters . 71
Table 5.2: Power and delay comparison of 3D interconnect models 71
Table 5.3: 3D NoC synthesis results. 74

Table 6.1: Characteristics for Five NAS Parallel Benchmarks 85
Table 6.2: Multiple Traffic Profile Benchmarks 86
Table 6.3: NoC synthesis results for multiple traffic profiles. 87

ix

ACKNOWLEDGEMENTS

I feel fortunate to have received a lot of help from so many people during my PhD

study in UCSD.

First, I own my deep gratitude to my great advisor, Professor Bill Lin, for his pa-

tience, insight, enlightenment, and help. He has set himself a very professional example

for me to perform research, as well as deal with challenges we are facing everyday. His

respect for innovation and hard work are part of a life-time gift that I can benefit in my

future career. Besides those, I am also impressed by his confidence, diligence, passion,

persistence and smartness. Without him, I could have not gone through all the difficulties

and achieved such a proud achievement in my life. It is indeed a great privilege for me to

study under his guidance.

Second, I am grateful to my proposal and dissertation committee members, Profes-

sor Sujit Dey, Professor Curt Schurgers, Professor Amin Vahdat, and Professor Michael B.

Taylor for their time and their reviews and suggestions of this dissertation.

I would like to thank all colleagues from our research group, as well as all of my

friends, including but not limited to Yanhua Mao, Chengmo Yang, Dan Liu, Zheng Wu,

Haichang Sui and Wenyi Zhang, thank all of them for their generous help in research and

companionship in these years. We have enjoyed the colorful life in La Jolla these years.

Jerry Chou, Chia-wei Chang, Hao Wang, Siddhartha Saha and Rohit S. Ramanujam, thank

them for making the group a friendly and fun place to work in.

I owe too much to my parents, Gongrong Yan and Yuying Shi, for their endless love

and unlimited support for all my educations and for helping me understand and explore the

rich and colorful outer world. I would be nothing without them in every conceivable way.

I wish they can always feel proud of me.

I feel blessed to have my adorable son, George Yan Pan, for witnessing the height I

have reached.

Last and most importantly, I want to thank my great and handsome husband Bo

Pan. I know these six years are too much for you. There is no such single word that can

express my deepest gratitude for your love, faith, understanding, tolerance, and support.

Chapter 2 is in part a reprint of the materials in the papers: Shan Yan, Bill Lin,

“Custom Networks-on-Chip Architectures with Multicast Routing”, IEEE Transactions on

x

VLSI Systems, volume: 17, issue: 3, on pages: 342-355, March 2009, and Shan Yan, Bill

Lin, “Joint Multicast Routing and Network Design Optimization for Networks-on-Chip”,

IET Computers and Digital Techniques, accepted for publication, 2009. Chapter 3 is in

part a reprint of the material in the papers: Shan Yan, Bill Lin, “Custom Networks-on-Chip

Architectures with Multicast Routing”, IEEE Transactions on VLSI Systems, volume: 17,

issue: 3, on pages: 342-355, March 2009, and Shan Yan, Bill Lin, “Application-specific

Network-on-Chip architecture synthesis based on set partitions and Steiner Trees”, 13th

Asia and south Pacific Design automation conference (ASP-DAC 2008), 2008: 277-282.

Chapter 4 is in part a reprint of the material in the paper: Shan Yan, Bill Lin, “Joint Mul-

ticast Routing and Network Design Optimization for Networks-on-Chip”, IET Computers

and Digital Techniques, accepted for publication, 2009. Chapter 5 is in part a reprint of the

material in the paper: Shan Yan, Bill Lin, “Design of Application-Specific 3D Network-

on-Chip Architectures”, The International Conference on Computer Design (ICCD 2008),

2008 Chapter 6 is in part a reprint of the material in the paper: Shan Yan, Bill Lin, “De-

sign of Application-Specific On-Chip Networks for Multiple Usage Scenarios", submitted

to IEEE Embedded Systems Letters, 2009 Chapter 7 is in part a reprint of the material in

the paper: Shan Yan, Bill Lin, “Custom Networks-on-Chip Architectures with Multicast

Routing”, IEEE Transactions on VLSI Systems, volume: 17, issue: 3, on pages: 342-355,

March 2009. The dissertation author was the primary author of all these papers.

xi

VITA

2000 B. S. in Electronic Engineering, Tsinghua University, Bei-
jing, China

2003 M. S. in Electronic Engineering, Tsinghua University, Bei-
jing, China

2009 Ph. D. in Electrical and Computer Engineering, University
of California, San Diego

PUBLICATIONS

Shan Yan, Bill Lin, “Joint Multicast Routing and Network Design Optimization for
Networks-on-Chip”, IET Computers and Digital Techniques, accepted for publication,
2009.

Shan Yan, Bill Lin, “Custom Networks-on-Chip Architectures with Multicast Routing”,
IEEE Transactions on VLSI Systems, volume: 17, issue: 3, on pages: 342-355, March
2009.

Shan Yan, Bill Lin, “Design of Application-Specific 3D Network-on-Chip Architectures”,
The International Conference on Computer Design (ICCD 2008), 2008.

Shan Yan, Bill Lin, “Application-specific Network-on-Chip architecture synthesis based on
set partitions and Steiner Trees”, 13th Asia and South Pacific Design Automation Confer-
ence (ASP-DAC 2008), 2008: 277-282

Shan Yan, Bill Lin, “Stream Execution on Embedded Wide-Issue Clustered VLIW Archi-
tectures”, EURASIP Journal on Embedded Systems, vol. 2008, Article ID 516240, 9 pages,
2008

Shan Yan, Bill Lin, “Stream execution on wide-issue clustered VLIW architectures”,2007
ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES’07), 2007: 158-160

Shan Yan, Bill Lin, “Optimized Custom Network Design for Multiple Traffic Profiles”,
submitted to NOCS 2009

Shan Yan, Bill Lin, “Design of Application-Specific On-Chip Networks for Multiple Usage
Scenarios”, submitted to IEEE Embedded Systems Letters, 2009

xii

ABSTRACT OF THE DISSERTATION

Synthesis of Application-Specific On-Chip Networks

by

Shan Yan

Doctor of Philosophy in Electrical and Computer Engineering

University of California San Diego, 2009

Professor Bill Lin, Chair

Networks-on-Chip (NoC) has been proposed as a scalable solution to the global

communication challenges in nanoscale System-on-Chip designs. The use of NoCs

with standardized interfaces facilitates the reuse of previously-designed and third-party-

provided modules in new designs. Besides design and verification benefits, NoCs have also

been advocated to address increasingly daunting clocking, signal integrity, and wire delay

challenges.

In this thesis, we present design methods for synthesizing NoC architectures that

are optimized for specific applications. We first present a novel design flow that integrates

floorplanning, NoC architecture synthesis, RTL generation, and detailed RTL design. The

proposed design flow is very flexible in that it allows for different user-defined objectives

and constraints. The proposed design flow also supports both unicast and multicast traffic.

We then present two approaches to the NoC synthesis problem. The first approach is

based on flow-set partitioning and Steiner-tree construction. In this approach, the problem

is decomposed into the inter-related steps of finding a good flow-set partition, deriving a

good physical network topology for each group using Steiner-tree-based algorithms, and

xiii

providing an optimized implementation for the derived topologies. The second approach is

based on a rip-up and re-route formulation that successively improves upon an intermediate

solution by “ripping” out a flow and freeing up any network resources occupied by it, then

“re-routing” the ripped-up flow over the remaining network. To consider multicast flows,

the re-routing step is formulated as a minimum directed spanning tree problem.

While both approaches are effective, we found that the rip-up and re-route approach

is generally better. Therefore, we chose to extend this approach to consider two additional

design dimensions. First, we describe extensions to consider 3D-NoC synthesis. This is

motivated by the increasing viability of 3D integration that has opened new opportunities

for chip design innovations. To support 3D-NoC synthesis, we propose accurate power

and delay models for 3D-wires with through-silicon-vias. Second, we describe extensions

to support multiple traffic profiles, which are useful for design applications that support

multiple usage scenarios, each with its own traffic profile.

Finally, all proposed algorithms have been integrated into a software package called

ARIES.

xiv

Chapter 1

Introduction

1.1 Limitations of Traditional On-Chip Communication

Architectures

Information explosion has generated abundant data for computer systems to pro-

cess. To accommodate this ever-increasing data growth, there is an ever-increasing need

for more computing power in these systems to perform real-time data processing. This has

naturally led to much more complicated Systems-on-Chip (SoC) designs. Thanks to ad-

vances in modern semiconductor technology, billions of transistors can now be integrated

onto the same silicon device, enabling the integration of hundreds or thousands of function

modules with large amounts of embedded memory to perform very sophisticated tasks.

These function modules can be CPU or DSP cores, video streaming processors, security

processors, high-bandwidth interfaces, etc [1]. However, the integration of many func-

tion modules has also created large volumes of on-chip traffic in many designs, making

highly-efficient on-chip communication architectures necessary. Unfortunately, as main-

stream semiconductor processes scale down from 180-nm to 45- or 32-nm technology, the

architectures and design methodologies for on-chip communication have not kept pace.

Increasing interconnect delays and power consumption of on-chip communication designs

have become major performance bottlenecks in many SoC designs, largely hindering the

performance of these systems.

Currently, bus-based architectures are still widely used as the dominant underly-

1

2

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

Computation
Element

Router

Figure 1.1: Regular tile-base NoC architecture [9]

ing fabric for supporting on-chip communications. There are many different bus-based

architecture designs that have been used in various modern SoCs to meet different com-

munication requirements, including several state-of-the-art bus architectures such as the

AMBA multi-layer bus [4], STBus [5] and SonicsMX [6]. These latest architectures use

multiple parallel buses to support multiple speeds for different levels of communication

requirement. Communications between buses are usually through bridges. Despite many

successful bus-based SoC designs that been developed in the past, many designers also

recognize that bus-based architectures are inherently not scalable.

1.2 The NoC Approach

To address the global communication challenges in nanoscale SoC designs,

Network-on-Chip (NoC) architectures have been proposed as a scalable solution [9, 10, 11].

NoCs are analogous to modern telecommunication networks that use packet-switching to

relay traffic from any source node to any destination node with the help of routers within

the network. In a NoC system, modules such as processor cores, embedded memories, and

specialized Intellectual Property (IP) blocks exchange data by using a network as a “public

transportation” sub-system.

3

An example is shown in Figure 1.1 to illustrate the fundamental principle of how an

NoC works. The chip consists of a 2D mesh of tiles. Neighboring tiles are interconnected

through direct links. Each tile may correspond to a general-purpose processor, a DSP core,

a video streaming processor, an embedded memory, or an external I/O interface, etc. Please

note Figure 1.1 is just a function level diagram. In general, the tiles may have very different

physical sizes and shapes. To facilitate inter-tile communications, a router is embedded in

each tile, and the interconnection of routers forms a global network. Thus, instead of

running potentially long global wires or buses across the chip to facilitate communications

between spatially distant tiles, inter-tile communication can be achieved simply by routing

packets over the NoC. In comparison with bus-based architectures, NoC architectures offer

the following benefits:

1. Improved Efficiency

The NoC approach improves silicon efficiency by optimizing and distributing all on-

chip communication resources in a systematic way. Virtual communication paths

can be formed through the network over links and routers. This avoids the need

for constructing permanent dedicated long wires that might be infrequently used.

Precious silicon real estate can be greatly saved by sharing network resources.

2. Improved Parallelism and Scalability

Unlike a global shared bus approach where all communications must be serialized to

occur one at a time, a well-designed NoC architecture provides improved parallelism

since data exchange can occur simultaneously over different parts of network. The

NoC approach is also scalable in that the size of the network and the dimensioning

of the network resources can grow with the design.

3. Reduced Complexity

The use of NoCs with standardized interfaces facilitates the reuse of previously-

designed and third-party-provided modules in new designs (e.g. processor cores).

The NoC approach provides a clean separation between computation and communi-

cation, which also simplifies the verification problem as interactions between mod-

ules can be verified at a higher network transactions level rather than at a detailed

wiring level. Modules can be largely verified separately.

4

4. Improved Predictability

Unlike conventional VLSI approaches with ad-hoc global wirings, NoCs can be de-

signed in a much more predictable way. Network interfaces and router microarchi-

tectures can largely be designed and verified independently, and signal integrity and

wiring delay issues can largely be isolated to the network links that interconnect the

routers and interfaces.

1.3 Design Challenges of NoC Synthesis

NoC architectures can be designed as regular or custom network topologies. Reg-

ular topologies, such as mesh or folded-torus networks, have been successfully employed

in a number of tile-based chip-multiprocessor projects, e.g. [15, 16], which are appropriate

because of processor homogeneity and application traffic variability. On the other hand,

for custom SoC applications, the design challenges are different in terms of varied module

sizes, irregularly spread module locations, and different communication data rate require-

ments. Therefore, a custom network architecture optimized to the needs of the application

is more appropriate. This synthesis problem is the focus of this thesis.

The NoC synthesis problem is challenging for a number of reasons. First, for a

large complex SoC design, an optimal solution will likely involve multiple networks since

each module will likely communicate only with a small subset of modules. Therefore, a

single network that spans all nodes is often unnecessary. Part of the synthesis problem is to

partition cores or the specified communication flows into groups, and connect each group

of cores to the same router or derive a separate optimal physical topology for each group of

flows so that they can share network resources. It is hard to decide which cores and flows

should be partitioned into the same group. In general, cores may be grouped together and

connect to the same routers even though they do not have flows that share common sources

or destinations because such cores may be able to beneficially share common intermediate

network resources. Also, it is hard to decide on the partition sizes beforehand, namely

whether a design with a few large routers would be more cost effective than a design with

many smaller routers.

Second, besides deciding on the partitioning of cores and flows, our synthesis prob-

5

lem must also decide on the physical network topology for each partition and on the con-

nectivity between them. The physical network topology for each partition must be dimen-

sioned properly to support the required traffic demands.

Finally, depending on the optimization goals and the implementation backend, the

appropriate cost function may be quite complex. For example, when considering power

minimization as the NoC design goal, both leakage power and dynamic switching power

need to be taken into account. It is well-known that leakage power is becoming increasingly

dominant [30, 32]. In the on-chip networks studied in [32], leakage power represented only

about 0.6% and 1.8% of the total power consumption at 180nm and 100nm, respectively.

However, leakage power increased to a hefty 32% at 70nm. High-performance micropro-

cessor studies show even a much larger leakage power component [30]. Therefore, it is

important to properly account for leakage power when adding routers and network links to

the synthesized architecture. However, when considering leakage power, the cost function

may need to account for possibly discrete cost increments of links and routers whereas

dynamic switching power may be best modeled as a function of cumulative data rates. In

general, the incorporation of accurate power and delay models in the NoC design flow is

critical.

1.4 Related Work

1.4.1 Regular NoC architecture design

The NoC design problem has received considerable attention in the literature.

Towles and Dally [9] and Benini and De Micheli [17] motivated the NoC paradigm. In [29],

Bertozzi et al. addressed the complementary problem of providing custom network archi-

tecture instantiations.

NoC architectures can be designed as regular and custom network topologies. Reg-

ular topologies, such as mesh or folded-torus networks, have been successfully employed

in a number of tile-based chip-multiprocessor projects, which are appropriate because of

processor homogeneity and application traffic variability. For example, MIT’s RAW pro-

cessor [15] and UT Austin’s TRIP architecture [16] are both based on the two dimensional

mesh topologies.

6

For the custom SoC applications, several existing NoC solutions have addressed

the mapping problem of different applications to a regular mesh-based NoC architec-

ture [18, 19, 20, 21]. In [18] and [19], Lei and Kumar and Ascia et al. presented different

genetic algorithms for the mapping of computation cores on to mesh-based NoC architec-

tures. Hu and Marculescu [20] proposed a branch-and-bound algorithm for the mapping

of computation cores on to mesh-based NoC architectures. Murali et al. [21] described a

fast algorithm for mesh-based NoC architectures that considers different routing functions,

delay constraints, and bandwidth requirements.

However, the regular NoC topologies may not be appropriate for the custom SoC

applications because of their different properties such as the varied module sizes, irreg-

ularly spread module locations and different communication data rate requirements etc.

Therefore, the custom network architecture optimized to the needs of the application is

more appropriate.

1.4.2 Custom NoC architecture design

On the problem of designing custom NoC architectures without assuming an ex-

isting network architecture, a number of techniques have been proposed [22, 23, 24, 25,

27, 28]. Pinto et al. [24] presented techniques for the constraint-driven communication ar-

chitecture synthesis of point-to-point links by using heuristic-based k-way merging. Their

technique is limited to topologies with specific structures that have only two routers be-

tween each source and sink pair. Ogras et al. [22, 23] proposed graph decomposition and

long link insertion techniques for application-specific NoC architectures.

Srinivasan et al. [25, 27] presented NoC synthesis algorithms that consider system-

level floorplanning. They formulated NoC synthesis as a mixed integer linear programming

problem. Their objective was to minimize the power consumption while satisfying perfor-

mance constraints. Their NoC architecture is derived from the slicing structure of their

floorplanning step by means of a channel intersection graph, where router locations are re-

stricted to corners of cores and links run around cores. In addition, as stated in [25, 26, 27],

their power minimization problem is one of minimizing the total traffic flowing through

the routers of the derived NoC architecture, which corresponds well to process technolo-

gies where dynamic switching power dominates, but not necessarily when leakage power

7

is substantial.

Murali et al. [28] presented an innovative deadlock-free NoC synthesis flow with

detailed backend integration that also considers the floorplanning process. The proposed

approach is based on the min-cut partitioning of cores to routers. However, their method

does not consider topologies where there may be intermediate routers that do not directly

connect to cores. Custom topologies that contain such intermediate routers may be useful

for the sharing of network resources.

1.4.3 Multicast

Multicasting in wormhole-switched networks has been explored in the context of

chip multiprocessors based on the methods in parallel machines for supporting cache co-

herency, acknowledgement collection, and synchronization, etc [68, 69]. In the NoC works

of [79, 80], they have reported that multicast service can be implemented in their NoC ar-

chitectures. However, the methods for providing multicast routing and services have not

been presented in details. In [75], a novel multicast scheme in wormhole-switched NoCs

using a connection-oriented technique to realize QoS-aware multicasting in a best-effort

network was proposed to support SoC applications. In [81], a router architecture supporting

unicast and multicast services was proposed using a mechanism for managing broadcast-

flows so that the communication links in an on-chip network can be shared. In [82], the

dual-path multicast algorithm, used in multicomputers, was adapted to wormhole-switched

NoCs to support deadlock-free multicast routing.

1.4.4 3D NoC design

Research in 3D NoC is only emerging recently. Several works have been done in

the area of 3D floorplanning and 3D placement and routing. Cong et al. [92, 96] proposed

thermal-driven design flows for 3D ICs including 3D floorplanning and 3D placement and

routing algorithms. In [93], thermal effect was formulated as another force in a force-

directed approach to direct the placement procedure. In [94], floorplanning is done by

accounting for the effects of the interconnect power consumption in estimating the peak

temperatures. In [97], a thermal-aware Steiner routing algorithm for 3D ICs is proposed by

constructing a delay-oriented Steiner tree under a given thermal profile in the first step and

8

then conducting the refinement by repositioning the through-silicon vias for further thermal

optimization.

On the problem of designing NoC architectures for 3D ICs, current literature has

focused on regular 3D mesh NoC architectures [95, 98, 99, 100], which is appropriate for

regular 3D processor designs [88, 89, 91]. Addo-Quaye [95] presented an algorithm for

the thermal-aware mapping and placement of 3D NoCs including regular mesh topologies.

Li et al. [89] proposed a similar 3D NoC topology targeting multi-processor systems by

employing a bus structure for communications between different device layers. In [98],

various possible topologies for 3D NoCs are presented and analytic models for zero-load

latency and power consumption of these networks are described. However, all these 3D

topologies are based on regular 3D mesh networks. To the best of our knowledge, a fully

automated application-specific 3D-NoC synthesis solution has remained an open problem.

1.4.5 Multiple usage scenarios

Increasingly, multiprocessor SoCs are designed to support different usage scenarios

since such SoC designs may be employed in different products or in products with different

operation modes. For these embedded applications, the NoC must be designed to satisfy the

communication characteristics and performance constraints of all usage scenarios consid-

ered. As discussed in greater details above, most prior work on custom NoC synthesis has

only considered a single traffic profile in their formulations [24, 29, 22, 23, 25, 28, 57, 58].

Several papers have considered support for different usage scenarios [59, 60]. However,

these papers assume the network topology is either given or is regular. Therefore, these

works do not directly address our goal of synthesizing an optimized custom NoC architec-

ture that supports multiple usage scenarios.

1.4.6 Deadlock considerations

Finally, deadlock-free routing is an important consideration for the correct opera-

tion of custom NoC architectures. The problem is very well studied and analyzed in the

literature in the area of parallel computer systems and multiprocessor systems. In [66],

Dally and Seitz proposed a necessary and sufficient condition for deterministic deadlock-

free routing using the concept of a channel dependency graph. For general multiprocessor

9

systems that can be programmed to run different applications, or in the case when adap-

tive routing is used, the problem is complicated by the challenge that the flows and rout-

ing paths are not necessarily known in advance [64, 65, 67]. In [67], Duato proposed a

necessary and sufficient condition for adaptive deadlock-free routing. In [68], Lin et al.

presented a deadlock-free dual-path routing algorithm for multicast wormhole routing for

multicomputers adopting 2D-mesh and hypercube topologies.

A comprehensive survey on methods for handling message-dependent deadlocks

in parallel computer systems is given in [70]. In contrast to the computer networks and

multiprocessor environments studied in this work, NoC storage and computation resources

are relatively more restricted, and the protocol stack is entirely implemented in hardware.

Hence, design constraints and optimization goals are fundamentally different.

Many NoCs [71, 72, 73] break request-response dependencies by introducing sep-

arate physical networks for the two message types. Virtual networks, instead of physical,

are used in [74, 75] to avoid deadlock in a higher-order configuration protocol and a for-

warding multicast protocol, respectively. All these solutions are protocol-specific and none

addresses the dependencies that can arise when IPs have both master and slave ports.

The possibility of considering message types in the topology synthesis was explored

in [76]. This work presents a methodology that tailors the NoC to a particular application

behavior while taking message-dependent deadlocks into account. Deadlocks are avoided

when selecting the routes for flows using the turn prohibition algorithm presented in [77,

78].

1.5 Thesis Contributions

In this thesis, we present methodologies and algorithms for the design and synthesis

of custom Networks-on-Chip (NoC) architectures that support both unicast and multicast

traffic flows. In particular, this thesis has explored the NoC design problem in the following

directions:

1. NoC synthesis design flow

This thesis presents a novel NoC synthesis design flow that takes as input an appli-

cation specification with performance constraints and generates an optimized NoC

10

architecture as output that can be fed into a detailed RTL design flow. The proposed

design flow incorporates floorplanning information as well as supports user-defined

objectives and constraints.

2. Novel NoC architecture synthesis algorithms to support both unicast and mul-

ticast applications

In general, there exists a variety of SoC applications. For many applications, sup-

port for multicast flows is necessary. Examples include the implementation of cache

coherence protocols and the management of network configurations. This thesis pro-

poses several novel NoC architecture synthesis algorithms that can support both uni-

cast and multicast applications. These algorithms can synthesize NoC architectures

that can efficiently support multicast flows without sacrificing the performance of

unicast flows. To our knowledge, we are among the first to consider support for

multicast applications in NoC synthesis.

3. Extensions to support 3D NoCs and 3D applications

The increasing viability of three dimensional silicon integration technology has

opened new opportunities for chip design innovation, including the prospect of ex-

tending emerging SoC design paradigms based on NoC interconnection architectures

to 3D chip design. In this thesis, we present extensions to our NoC synthesis design

flow and algorithms to support 3D-NoC synthesis. We present accurate power and

delay models for 3D wiring with through-silicon vias, and we present efficient 3D-

NoC synthesis algorithms that make use of these models. To our knowledge, we

are among the first to consider 3D-NoC synthesis in the application-specific design

domain.

4. Extensions to support multiple traffic profiles

Increasingly, multiprocessor SoCs are designed to support different usage scenarios

since such designs may be employed in different products or in products with differ-

ent operation modes. For these embedded applications, the NoC must be designed

to satisfy the communication characteristics and performance constraints of all us-

age scenarios considered. In this thesis, we present extensions to our NoC synthesis

design flow and algorithms to support multiple traffic profiles. To our knowledge,

11

we are among the first to consider support for multiple usage scenarios that does not

assume a given or regular network topology.

5. Deadlock-free architecture synthesis methodology

Finally, deadlock-free routing is a very important consideration for the correct oper-

ation of custom NoC architectures. In this thesis, several mechanisms are proposed

to ensure deadlock-free routing for all flows in our synthesized NoC architectures.

1.6 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 presents our NoC synthe-

sis design flow, which considers different user-defined objectives, constraints, and design

parameters. The proposed design flow also incorporates floorplanning. Our problem for-

mulation and power models are also presented in this chapter.

Chapter 3 presents the details of our proposed NoC synthesis algorithms that are

based on flow-set partitioning and Steiner-trees, and Chapter 4 presents the details of an

alternative NoC synthesis approach based on a rip-up and re-route concept. The experi-

mental results presented in these chapters show that both NoC synthesis approaches can

produce significantly better custom designs in terms of power, performance, as well as area

when compared to regular mesh-based designs.

While both approaches are effective, we found that the rip-up and re-route approach

is generally better. Therefore, we chose to extend this approach to consider two additional

design dimensions. First, we describe extensions to consider 3D-NoC synthesis. These

extensions are presented in Chapter 5. Second, we describe extensions to support mul-

tiple traffic profiles, which are useful for design applications that support multiple usage

scenarios, each with its own traffic profile. These extensions are presented in Chapter 6.

Finally, Chapter 7 presents mechanisms for ensuring deadlock-free operation, and

Chapter 8 summarizes this thesis and outlines some promising research directions.

Chapter 2

NoC Synthesis Design Flow

In this chapter, we present our NoC synthesis design flow that automates most of

the complex and time-intensive design steps in NoC synthesis. It provides design support

for application-specific network topologies tailored for different applications. The design

flow assumes that the application has already been mapped onto cores by using pre-existing

tools, and the resulting cores together with their communication requirements are taken as

inputs. The ultimate goal is to design and generate a customized NoC-based communica-

tion architecture for the given application. This chapter also presents our formulation of

the NoC synthesis problem as well as NoC power models for accurate power analysis.

2.1 Design Flow

Our NoC synthesis design flow is depicted in Figure 2.1. The major elements in the

design flow are elaborated below.

2.1.1 Input Specification

The input specification to our design flow consists of a list of modules and their

communications. As observed in recent trends, many modern SoC designs combine both

hard and soft modules as well as both packet-based network communications and conven-

tional wiring [54], as shown in Figure 2.2. Modules can correspond to a variety of different

types of intellectual property (IP) cores such as embedded microprocessors, large embed-

ded memories, digital signal processors, graphics and multimedia processors, and security

12

13

Input specification:
(Communication
Characteristics)

NoC
Topology
Synthesis

NoC design
parameters

NoC objectives
and constraints

ARIES

System
specsApplication Floorplanner

RTL design
Includes:

Placement
&routing

NoC
power and area

models

Codesign

Simulation

NoC architecture
(with routers & links)

Figure 2.1: Design flow.

encryption engines, as well as custom hardware modules. These modules can come in a

variety of sizes and can be either hard or soft macros, possibly as just black boxes with area

and power estimates and constraints on aspect ratios.

To facilitate modularity and interoperability of IP cores, packet-based communi-

cation with standard network interfaces is rapidly gaining adoption. Custom NoC archi-

tectures, as addressed in this chapter, are being advocated as a scalable solution to packet-

based communication. For network-based communications, traffic flows with required data

rates between modules are specified as part of the input specification. For our synthesis

problem, we consider both unicast and multicast traffic flows. As discussed in [56, 65],

multicast traffic flows are used in a variety of applications, and their direct support with

only replication of flits at optimal bifurcation points rather than full end-to-end replication

can significantly reduce network contention and resource requirements.

In general, a mixture of network-based communications and conventional wiring

may be utilized as appropriate, and not all inter-module communications are necessarily

over the on-chip network. For example, an embedded microprocessor may have dedicated

connections to its instruction and data cache modules. Our design flow and input specifica-

tion allow for both interconnection models.

14

Figure 2.2: Modern SoC designs combine hard and soft modules, packet-based communi-
cations and conventional wiring-based interconnections. Source: EETimes [54].

2.1.2 Floorplanning

The floorplanning problem has been extensively studied with many mature solu-

tions (e.g. [42, 43, 44]) These floorplanners can readily handle both hard and soft modules

as well as a variety of floorplanning constraints. In general, floorplanning solutions are

not restricted to a slicing structure, and existing methods often allow for non-slicing floor-

plans to achieve more efficient solutions1. The only requirement is that the modules are

non-overlapping.

Like the NoC design flow proposed by Murali et al. [28], we have also adopted

the open source floorplanner Parquet [44]. However, in the design flow proposed in [28],

floorplanning is performed after each NoC design has been produced to evaluate detailed

interconnect delays. NoC designs with different number of routers are considered. On

the other hand, in our design flow, an initial floorplanning step is performed before NoC

synthesis to obtain a placement of modules. This is important because the floorplanning

of modules is often influenced by non-network-based interconnections, and the floorplan

locations of modules can have a significant influence on the NoC architecture.

In particular, the input to a floorplanner like Parquet is a module netlist with

1A slicing floorplan is a floorplan that can be obtained by recursively cutting an enclosing rectangle by
either a vertical line or a horizontal line, which restricts the possible floorplans. On the other hand, a floorplan
that is not slicing is called a non-slicing floorplan. [42, 43]

15

weighted hyperedges. However, prior to NoC synthesis, the insertion of routers and net-

work links has not yet been decided. To enable to the use of existing floorplanners in

our design flow prior to NoC synthesis, we model traffic flows by using edge weights that

are in proportion to the rates of traffic flows among the modules. These weighted edges

are added along the side of weighted edges that represent wire connections among non-

network-based modules. Since conventional floorplanners [42, 43, 44] typically support a

hyperedge-based input graph model, multicast-like connectivity can be readily modeled.

With the module locations available from the initial floorplanning step, NoC syn-

thesis can better account for wiring delays and power consumptions during the exploration

of NoC architectures, including accounting for repeaters [34] on links where needed. After

NoC synthesis, actual routers and links in the synthesized NoC architecture can be fed back

to the floorplanner to update the floorplan, and the refined floorplanning information can

be used to obtain more accurate power and area estimates. Also, NoC synthesis can be

re-invoked with the refined floorplan as well. As shown experimentally in Section 3.7 and

4.3, our NoC synthesis algorithms are fast, making it feasible to iterate NoC synthesis with

floorplanning.

We would like to stress that the focus of this work is on the NoC synthesis prob-

lem. We readily admit that extensions to floorplanning to better consider network-based

communications is a complex problem and is a subject of separate research. Recent work

has explored the development of system floorplanners that are geared towards the context

of NoC synthesis [25]. Such NoC-centric floorplanners may be used in our design flow as

well.

2.1.3 Networks-on-Chip Synthesis

Given floorplanning information, the NoC synthesis step then proceeds to synthe-

size an NoC architecture that is optimized for the given specification and floorplan.

We designed a system called ARIES to do the topology synthesis. It provides sev-

eral algorithms to synthesize the best topology for application. ARIES takes the user spec-

ified objectives and constraints, the power and area models of NoC components, and the

design parameters as inputs. The NoC synthesis step is to synthesize the architecture that

meets all those objectives and constraints based on those parameters using those models.

16

Consider Figure 2.3(a) that depicts a small illustrative example. Figure 2.3(a) only

shows the portion of the input specification that corresponds to the network-attached mod-

ules and their traffic flows. The nodes represent modules, edges represent traffic flows,

and edge labels represent the data rate requirements for the corresponding flows. Multicast

traffic flows are represented with directed hyperedges, which are shown graphically in Fig-

ure 2.3(a) as a bundle of directed edges in a shaded region. For example, the traffic flow

from v0 to v1 and v3 is a multicast flow. This graph representation is called a communication

demand graph and is discussed in more details in Section 3.2.

An example floorplan is shown in Figure 2.3(b). As noted earlier, modules in a

design do not necessarily have to be attached to the on-chip network. Modules can also be

connected by conventional wiring, as shown in the unlabeled rectangles in Figure 2.3(b).

The communication demand graph with the floorplan positions annotated is illustrated in

Figure 2.3(c), and Figures 2.3(d) and 2.3(e) show two example network topologies.

2.1.4 NoC Objective and Constraints

Our NoC synthesis design flow allows different user-defined objective and con-

straints. An important feature of our NoC synthesis algorithms, which will be detailed in

the following chapters, is that they allow the decoupling of the evaluation cost function

from the topology exploration process. As power dissipation becomes a critical issue in

future IC designs due to the increased design complexity, we focus in this thesis on the

problem of minimizing network power consumption under performance constraints. Other

possible constraints can be design area, total wire length, or some combinations of them.

Another design objective is the minimization of hop counts for data routing under power

consumption constraints.

2.1.5 NoC Power and Area Estimation

To evaluate the power and area of the synthesized NoC architecture, we use a state-

of-the-art NoC power-performance simulator called Orion [31, 32] that can provide detailed

power characteristics for different power components of a router for different input/output

port configurations. It accurately considers leakage power as well as dynamic switching

17

v5

v6v3
200

v1 400

100

v4

v2
200

v0

(a) Example.

v4

v0
v2

v1 v3

v5

v6

(b) Floorplan.

λ(e1)
= 200

v0

v1

v2

v3

v5

v6

v4

λ(e2) = 200

λ(e4)
= 200

λ(e3)
= 100

(c) CDG.

200

200

200

200

200

300

v0

v1

v2

v3

v5

v6

v4

(d) One architecture.

400

200

v0

v1 v3

v4

v2

200

200300

v5

v6

(e) Alternative architecture.

Figure 2.3: Illustration of the NoC synthesis problem.

18

power. Orion also provides area estimates based on a state-of-the-art router microarchitec-

ture [35, 36].

To accurately evaluate wire configurations for the network links in the synthesized

architecture, we use a state-of-the-art repeated on-chip interconnect model [33, 34] to ac-

curately determine link power consumptions, including any repeaters needed. Since floor-

planning is performed in advance of NoC synthesis, wirelengths can be considered in the

link power estimation. The details of these models are discussed in Section 2.2.

2.1.6 NoC Design Parameters

In addition to user-defined objectives and constraints, NoC design parameters such

as the operating voltage, target clock frequency, and link widths are provided to the NoC

synthesis step as well. Operating voltage and clock frequency parameters are usually dic-

tated by the design, and link widths are often dictated by IP interface standards. However,

if the design allows for different voltages or clock frequencies, or if the IP modules allow

for different link widths, then NoC synthesis can be invoked to synthesize solutions for

a range of design parameters specified by the user. As noted earlier, our NoC synthesis

algorithms are fast, allowing for iterations with different design parameters.

2.1.7 Detailed Design

Finally, the synthesized NoC architecture with the rest of the design specification

can be fed to a detailed RTL design flow where design tools like RTL optimization and

detailed place and route are well established.

2.2 NoC Synthesis Problem and Formulation

2.2.1 Problem Description

The input to our NoC synthesis problem is a communication demand graph (CDG),

defined as follows:

Definition 1. A communication demand graph (CDG) is an annotated directed hypergraph

H(V, E, π, λ), where each node vi ∈ V corresponds to a module, and each directed hyper-

19

edge ek = s → D ∈ E represents a traffic flow from source s ∈ V to one or more destina-

tions D = {d1, d2, . . .}, D ⊆ V . The position of each node vi is given by π(vi) = (xi, yi).

The data rate requirement for each communication flow ek is given by λ(ek).

In general, traffic flows can either be unicast or multicast flows. Multicast flows are

flows with |D| > 1. For example, in Figure 2.3(c), e7 corresponds to a multicast flow from

source v4 to destinations v2, v5 and v6.

Based on the optimization goals and cost functions specified by the user, the out-

put of our NoC architecture synthesis problem is an optimized custom network topology

with pre-determined routes for the specified traffic flows on the network such that the data

rate requirements are satisfied. For example, Figures 2.3(d) and 2.3(e) show two different

topologies for the CDG shown in Figure 2.3(c).

Figure 2.3(d) shows a network topology where all flows share a common network.

In this topology, the pre-determined route for the multicast flow e7 travels from v4 to v2

to first reach v2, and then it bifurcates at v2 to reach v5 and v6. Figure 2.3(e) shows an

alternative topology comprising of two separate networks. In this topology, the multicast

flow e7 bifurcates in the source node to reach v6, then it is transferred over the network link

between v4 to v2 to reach v2, and then bifurcates to reach v5. Observe that in both cases,

the amount of network resources consumed by routing of multicast traffic is less than what

would be required if the traffic is sent to each destination as a separate unicast flow.

2.2.2 Problem Formulation

In general, the solution space of possible application-specific network architectures

is quite large. Depending on the communication demand requirements of the specific ap-

plication under consideration, the best network architecture may indeed be comprised of

multiple networks, among each, many flows sharing the same network resources.

The goal of the proposed work in this paper is to find an optimized network topol-

ogy such that the communication bandwidth requirements are satisfied and the power con-

sumption of the network is minimized. In order to obtain the best topology solutions with

minimum power consumption, accurate power models for interconnects and routers are

derived. They are provided to the synthesis design flow as a library and utilized by the

synthesis algorithms as evaluation criteria.

20

The application-specific NoC synthesis problem can be formulated as follows:

Input:

• The communication demand graph H(V, E, π, λ) of the application.

• The NoC network component library Φ(I, J), where I provides the power and area

models of routers with different sizes, and J provides power models of physical links

with different lengths.

• The target clock frequency, which determines the delay constraint for links between

routers.

• The floorplanning of the cores.

Output:

• A NoC architecture T (R,L, C), where R denotes the set of routers in the synthesized

architecture, L represents the set of links between routers, and a function C : V → R

that represents the connectivity of a core to a router.

• A set of ordered paths P , where each pij ∈ P = (ri, rj, . . . , rk), ri, . . . , rk ∈ R,

represents a route for a traffic flow e(vi, vk) ∈ E.

Objective:

• The minimization of power consumption for the synthesized NoC architecture.

2.3 Power Models for NoC components

In nanoscale technologies, minimizing power consumption is a very important de-

sign goal along with performance maximization. In this paper, the design goal of NoC

synthesis problem is to construct an optimized interconnection architecture such that the

communication requirements are satisfied and the power consumption is minimized.

The total power consumption of the communication architecture includes both leak-

age power and dynamic switching power of the routers and links. The dynamic switching

power is a function of data rate passing through each component and the leakage power is

related to the type and the characteristics of the components in the NoC architecture.

We will discuss the details of modelling these components in the following sections.

21

Table 2.1: Power consumption of Routers using Orion [32].

9.6
0.007936

16

7.2
0.005952

12

4.82.40.6Switching bit energy (pJ/bit)
0.0039680.0019840.000496Leakage power (W)

841Wire length (mm)

table-power-para-link

0.1080
0.0172
4x3

0.0676
0.0099
3x2

1.2189
0.0319
5x5

0.9180
0.0260
5x4

0.86510.56630.3225Switching bit energy (pJ/bit)
0.02160.01330.0069Leakage power (W)
4x43x32x2Ports (in x out)

table-power-para-router
2.3.1 Modelling Routers

It is well-known that leakage power is becoming increasing dominating [32]. In

the on-chip network studied in [32], leakage power represented only about 0.6% and 1.8%

of the total power consumption at 180nm and 100nm, respectively, but leakage power in-

creased to 25% at 70nm. High-performance microprocessor studies show even a much

larger leakage power component [30]. Therefore, it is important to properly account for

leakage power when adding routers and channels to the synthesized architecture. How-

ever, when considering leakage power, the cost function may need to account for possibly

discrete cost increments of links and routers whereas dynamic switching power may be

best modelled as a function of cumulative data rates. This non-linear characteristic of the

power consumption of the NoC makes it hard to be accurately modelled using MILP or LP

formulations.

To evaluate the power of the routers in the synthesized NoC architecture, We use a

state-of-the-art NoC power-performance simulator called Orion [31, 32] that can provide

detailed power characteristics for different power components of a router for different in-

put/output port configurations. It accurately considers leakage power as well as dynamic

switching power. Orion also provides area estimates based on a state-of-the-art router mi-

croarchitecture [35, 36]. The power cost of a router is modelled by its major building

blocks, namely the input buffers, crossbars, and arbiters. The power per bit values are used

as the basis for the entire router dynamic power estimation under different configurations.

The leakage power and switching bit energy of some example router configurations with

different number of ports in 70nm technology are showed in Table 2.1.

2.3.2 Modelling Interconnects

In the NoC architecture, interconnects can be modelled as distributed RC wires.

As discussed in Section 2.2.2, the target clock frequency is provided to our NoC synthesis

design flow as a design parameter. Depending on the network topology, long intercon-

22

Table 2.2: Interconnect Parameters
Electrical Physical

ρ = 2.53µΩ · cm kILD= 2.7 w= 500nm s= 500nm
rh= 46Ω/mm ch = 192.5fF/mm t = 1100nm h= 800nm

Table 2.3: Power consumption of interconnects.

9.6
0.007936

16

7.2
0.005952

12

4.82.40.6Switching bit energy (pJ/bit)
0.0039680.0019840.000496Leakage power (W)

841Wire length (mm)

table-power-para-link

0.1080
0.0172
4x3

0.0676
0.0099
3x2

1.2189
0.0319
5x5

0.9180
0.0260
5x4

0.86510.56630.3225Switching bit energy (pJ/bit)
0.02160.01330.0069Leakage power (W)
4x43x32x2Ports (in x out)

table-power-para-router

nects may be required to implement network links between routers, which may have wire

delays that are larger than the target clock frequency. To achieve the target frequency, re-

peaters may need to be inserted. Thus we use the state-of-art repeated on-chip interconnect

model [33, 34] where the interconnect is evenly divided into k segments with repeaters in-

serted between them that are s times as large as a minimum-sized repeater. The delay and

power consumption per bit of this interconnect can be modelled using the Elmore model,

as in [33, 34]. When minimizing power consumption is the objective, the optimum size sopt

and number kopt of repeaters that minimize power consumption while satisfying the delay

constraint can be determined for the interconnect using the method proposed in [33].

In our experiments, the physical and electrical parameters in 70nm technology are

used and are listed in Table 2.2. The wires are implemented on the global metal layers and

their parameters are extracted from ITRS [2].

In our NoC synthesis design flow, we use the above interconnect model to evaluate

optimum power consumption of interconnects with different wire lengths under the given

design frequency and delay constraints. These results are provided to the design flow in

the form of a library. Since the floorplanning is performed in advance of NoC synthesis,

wirelength is known for each on-chip interconnect when evaluating the power consumption.

Table 2.3 lists the static power and switching bit energy parameters of some ex-

ample interconnects with different wirelengths in 70nm technology under 1GHz frequency

constraints.

23

Acknowledgement

This chapter is in part a reprint of the materials in the following two papers: Shan

Yan, Bill Lin, “Custom Networks-on-Chip Architectures with Multicast Routing”, IEEE

Transactions on VLSI Systems, volume: 17, issue: 3, on pages: 342-355, March 2009; Shan

Yan, Bill Lin, “Joint Multicast Routing and Network Design Optimization for Networks-

on-Chip”, IET Computers and Digital Techniques, accepted for publication, 2009. The

dissertation author was the primary author of both papers.

Chapter 3

Design Custom Topologies Based on

Flow-Set Partitions and Steiner Trees

3.1 Overview

In this chapter, we describe our NoC synthesis algorithms based on the set-partition

of flows and Steiner Tree. Our problem formulation is based on the decomposition of the

problem into the inter-related steps of finding good flow partitions, deriving a good physi-

cal network topology for each group in the partition, and providing an optimized network

implementation for the derived topologies. Our solutions may be comprised of multiple

custom networks, each interconnecting a subset of communicating modules. In particular,

we propose four algorithms for systematically examining different set partitions of com-

munication flows. The first two are heuristic algorithms called CLUSTER and DECOM-

POSE, and the last two are perturbation-based probabilistic algorithms called PERTURB

(perturbation-based flow partitioning) and R-PERTURB (reduced perturbation-based flow

partitioning).

For each set partition considered, we use well-developed Rectilinear-Steiner-Tree

(RST) algorithms [39, 40, 41] to generate a physical network topology for each group in

the set partition. Though the RST problem is in itself NP-hard, well-developed fast RST al-

gorithms are available that can be effectively used, as indicated by the run-times presented

in Section 3.7. For each RST derived, the routes for the corresponding flows and the band-

width requirements for the corresponding network links are determined. Our formulation

24

25

Flow Partitioning

Steiner Tree Based Topology Construction

Implementation Optimization

Figure 3.1: Formulation of synthesis problem.

supports a decoupling of the evaluation cost function from the exploration process, which

enables the flexible incorporation of different design objectives and constraints. Although

we use Steiner trees to generate a physical network topology for each group in the set

partition, the final NoC architecture synthesized is not necessarily limited to just trees as

RST implementations of different groups may be connected to each other to form non-tree

structures.

The rest of this chapter is organized as follows. Section 3.2 presents the problem

description and our formulation. Sections 3.3 and 3.4 describe the CLUSTER and DE-

COMPOSE, respectively. Section 3.5 describes PERTURB and R-PERTURB. Section 3.6

describes router merging algorithm. Finally, experimental results are presented in Sec-

tion 3.7.

3.2 Problem Formulation

The synthesis formulation is depicted in Figure 3.1 and each element is elaborated

below.

3.2.1 Flow-Set Partitioning

Flow partitioning is performed in the outer loop of our synthesis formulation to

explore different partitioning of flows to separate sub-networks. In general, the solution

26

space of distinct set partitions of n flows, commonly known as the nth Bell number, is

known to grow Θ(n log n)n [38]. Bn grows rapidly, with e.g. B10, B11, and B12 equal to

115975, 678570, and 4213597, respectively, and so on. The goal of the heuristic algo-

rithms CLUSTER and DECOMPOSE presented in Sections 3.3 and 3.4 is to significantly

reduce the number of flow partitions that we consider in a systematic manner. In Sec-

tion 3.5, we also present two simulated annealing based flow partitioning algorithms called

perturbation-based flow partitioning (PERTURB) and reduced perturbation-based flow par-

titioning (R-PERTURB).

3.2.2 Steiner Tree Based Topology Construction

For each flow partition considered, physical network topologies must be decided

for carrying the traffic flows. In current process technologies, layout rules for implement-

ing wires dictate physical topologies where the network links run horizontally or vertically.

Thus, the problem is similar to Rectilinear Steiner Tree (RST) problem that has been exten-

sively studied for the conventional VLSI routing problem. Given a set of nodes, the RST

problem is to find a network with the shortest edge lengths using horizontal and vertical

edges such that all nodes are interconnected. The RST problem is well-studied with very

fast implementations available [39, 40]. Figures 2.3(d) and 2.3(e) show possible RSTs for

the set partitions {{1, 2, 3, 4}} and {{1, 2}, {3, 4}}, respectively. We use an RST solver in

the inner loop of flow partitioning to generate topologies for the set partitions considered.

RSTs are only re-evaluated for the groups in the set partition that changed at each step, and

previously computed RSTs can be cached.

Since most existing Steiner tree algorithms are based on a hypergraph model, they

match closely to our topology construction problem for multicast traffic flows. In addi-

tion, emerging CMOS technologies are providing an increasing number of metal layers for

implementing network links, facilitating “over-the-module” routing of network links. At

65nm, as much as 11 copper metal layers has been demonstrated [55]. However, the use

of some hard IP macros may prohibitive routing over them. Fortunately, our Steiner-tree

based topology construction formulation allows for the use of available obstacle-avoiding

RST algorithms [41] to accommodate this type of constraints.

After a physical topology is generated for each group in a set partition, the routes

27

for the corresponding flows and the bandwidth requirements for the corresponding network

links can be readily derived. The routes for the flows follow directly from the tree struc-

ture of the RST solution. For example, in Figure 2.3(d), the route for the unicast flow e4

travels from v4 through v2 and v6 to reach v5. For the multicast flow e1, a flit is first sent

from v0 through v2 and v4 to v3. The flit is then copied and forwarded to v1 over the net-

work link from v3 to v1. Correspondingly, the cumulative bandwidth requirements for each

network link can also be readily derived from the RST solution, as for example shown in

Figures 2.3(d) and 2.3(e).

3.2.3 Implementation Optimization

Given the RST-based topologies generated, network implementations are next de-

rived. In particular, a separate network implementation is initially generated for each RST.

Routers are allocated at junctions where either flows from multiple links must be multi-

plexed to the same outgoing link or flows from the same link must be de-multiplexed to

multiple outgoing links, and network links are allocated to connect routers and network

interfaces. To segment long links, repeaters are inserted as required [34]. Although the

RST problem generates a graph with undirected edges, network links and router ports are

only allocated in the direction of traffic flows. After an initial network implementation is

generated for each RST, the separate networks are combined together to form a complete

NoC architecture.

To improve upon the initial NoC architecture generated, a greedy router merging

procedure is performed to further optimize the implementation and reduce cost. The detail

of the router merging algorithm is discussed in Section 3.6. It works iteratively by consid-

ering all possible mergings of two routers connected with each other in each iteration and

keeps merging routers until no improvement can be made further.

3.3 CLUSTER

In this section, we present an algorithm called CLUSTER that reduces the number

of set partitions considered from Θ(n log n)n to Θ(n3), which is a significantly smaller

subset of set partitions. The details of the algorithm is shown in Algorithm 1. The CLUS-

28

TER algorithm takes a communication demand graph and an evaluation cost function as

input and generates an optimized network architecture implementation details as output.

As discussed before, our synthesis formulation provides a decoupling of the evaluation

cost function from the exploration process. In particular, the CLUSTER algorithm starts

by implementing each edge in the communication demand graph separately. The solution

for each single edge is a simple RST connecting two terminals. It sets these single edges

as the initial set partition, denoted as P 0 = {{e1}, {e2}, . . . , {en}}, as shown in lines 2-5.

Then, in lines 7-18, at each iteration, the algorithm systematically generates new

candidate set partitions starting from the set partition chosen from the previous iteration.

In particular, in the first iteration, the algorithm starts with the initial set partition P 0 =

{{e1}, {e2}, . . . , {en}} with n groups, each group containing exactly one edge. Then, in

lines 8-13, the algorithm generates new candidate set partitions from P 0 by considering all

pairwise mergings of groups in P 0. The groups are denoted as gu and gv in the pseudo-

code. For each pairwise merging considered, an RST solver is called to generate a physical

network topology for the merged set of flows, and the cost of this network is calculated

using the specified evaluation function C. We do not need to solve an RST problem for

the entire set of flows, just the subset of flows in the merged groups is considered. We

then, in line 12, compute the total cost of the resulting set partition by summarizing the

cost of implementing all the other sets using their own networks. In lines 15-16, we select

the merging that achieves the best cost in this iteration and choose it as P 1. In general, we

start from the chosen set partition, P t, from the iteration to generate pairwise mergings of

groups from P t, and the best merging is selected as the new chosen set partition P t+1. At

each iteration, the number of groups that need to be considered is reduced by 1, but the

size of groups will become increasingly larger. Finally, in the last iteration, we only need

to consider the mergings of two groups.

At each iteration in lines 7-18, we maintain the chosen set partition and the associ-

ated cost calculations for that iteration. Then, in the end of the algorithm, lines 23-24, we

choose the set partition with the minimum cost. Since at each iteration t, there can be at

most (n−t)(n−t−1)/2 possible pairwise group mergings, and there are (n−1) iterations,

the number of set partitions considered in the CLUSTER algorithm is Θ(n3).

29

Algorithm 1 CLUSTER (G(V, E, π, λ), C, T)
Input: G(V, E, π, λ): communication demand graph

C: specified evaluation function for implementation cost

Output: T : synthesized network architecture

1: initialize P 0 = ∅
2: for all ek ∈ E do

3: P 0 = P 0 ∪ {ek}
4: cost({ek}) = EvaluateCost(T ({ek}), C)

5: end for

6: t = 0

7: while |P t| > 1 do

8: for all gu, gv ∈ P t do

9: guv = gu ∪ gv

10: T (guv) = SolveRST(guv)

11: cost(guv) = EvaluateCost(T (guv), C)

12: β(gu, gv) = cost(guv) +
∑

gi∈P t,gi 6=gu,gv
cost(gi)

13: end for

14: (u, v) = arg mingu,gv∈P tβ(gu, gv)

15: P t+1 = P t\{gu, gv}
16: P t+1 = P t+1 ∪ {gu ∪ gv}
17: t = t + 1

18: end while

19: for all t ∈ [0, n− 1] do

20: c(P t) =
∑

gu∈P t cost(gu)

21: soln[P t] =
⋃

gu∈P t T (gu)

22: end for

23: t = arg mint∈[0,n−1]c(P
t)

24: T = soln[P t]

25: return T

30

3.4 DECOMPOSE

The DECOMPOSE algorithm described in this section reduces the number of set

partitions considered from Θ(n log n)n to Θ(n2). The details of the algorithm is shown in

Algorithm 2. This algorithm works in the opposite direction as CLUSTER when generating

candidate set partitions and the corresponding RST topologies. It starts by considering

all communication demands as a single cluster. In each iteration, the algorithm considers

different ways of breaking up an existing group in the set partition chosen from the previous

iteration into two smaller ones. Then, the differential cost of splitting a group is evaluated

by generating an RST for each sub-group and evaluating their costs using the specified

evaluation function. To facilitate this decomposition process, two important graphs are

used in DECOMPOSE: Affinity Graph (AG) and its Minimum Spanning Tree (MST). The

affinity graph A is built by associating each flow in the communication demand graph to

a vertex in the affinity graph. An edge is added between each pair of the vertices in the

affinity graph to form a complete graph. A weight is attached to each edge e′ = (v′i, v
′
j) and

is calculated as w(e′) = cost({ei, ej}) +
∑

ek∈E,ek 6=ei,ej
cost({ek}), where ei is the flow

in the communication demand graph associated with v′i in the affinity graph. cost({ek})
is calculated by calling on the evaluation function to evaluate the cost of implementing

{ek} separately and cost({ei, ej}) is calculated by evaluating the cost of implementing

a generated RST topology for {ei, ej} together. The weights of the edges in the affinity

graph reflect the benefits of implementing flows represented by vertices in the affinity graph

together using shared resources. The affinity graph used here is based on the similarity

graph model proposed in [24], except that RSTs are used to determine the affinities. In

particular, in the affinity graph, the smaller the weight, the less the resulting total cost of

clustering the two flows connected by that edge. The motivation is to only cluster flows that

are connected by small weighted edges so that the total implementation cost is minimized.

Then the minimum spanning tree M of A that contains the minimum number of minimal

weighted edges connecting all the vertices in A is derived. The affinity graph and its MST

of the example in Figure 2.3 are shown in Figure 3.2. The cost considered is the total power

consumption based on the 70nm technology power estimations shown in Table 2.1.

Recall that the vertices in the spanning tree M corresponds to flows in the com-

munication demand graph G. Since M is initially a spanning tree, it interconnects all

31

0 1 2 3 4 5

4

3

2

1

0

5

0

1

λ(e1)
= 200

2

3

4

5

7

6

λ(e3)
= 100λ(e2)

= 200

λ(e4)
= 400

v1’=e1 v2’=e2

v3’=e3v4’=e4

w(e1’)= 0.008

w(e2’)
= 0.008w(e3’)

= 0.008
w(e4’)
= 0.008

w(e5’)
= 0.008

w(e6’)= 0.013

v1’=e1 v2’=e2

v3’=e3v4’=e4

w(e1’)= 0.008

w(e2’)
= 0.008w(e3’)

= 0.008

(a) Affinity graph.

0 1 2 3 4 5

4

3

2

1

0

5

0

1

λ(e1)
= 200

2

3

4

5

7

6

λ(e3)
= 100λ(e2)

= 200

λ(e4)
= 400

v1’=e1 v2’=e2

v3’=e3v4’=e4

w(e1’)= 0.008

w(e2’)
= 0.008w(e3’)

= 0.008
w(e4’)
= 0.008

w(e5’)
= 0.008

w(e6’)= 0.013

v1’=e1 v2’=e2

v3’=e3v4’=e4

w(e1’)= 0.008

w(e2’)
= 0.008w(e3’)

= 0.008

(b) MST of affinity graph.

Figure 3.2: Affinity graph and MST for example shown in Figure 2.3.

vertices, which is interpreted as having all flows in a single cluster. During the course of

the DECOMPOSE algorithm, we will selectively remove edges from M to create disjoint

set of vertices, which will correspond to disjoint sets of flows into groups, thus forming a

particular set partition.

In each iteration shown in lines 5-9, the algorithm systematically generates new

candidate set partitions starting from the set partition chosen from the previous iteration.

Inside the while loop, new set partitions are generated by temporarily removing one edge

from M . This is achieved by calling the routine SelectEdgeToDelete(M). With an edge

removed, the corresponding group is split into two sub-groups. We evaluate the cost of

this splitting by solving an RST problem for each sub-group and calling on the evaluation

function to compute the new costs. In the first iteration of the algorithm, the spanning tree

M has (n − 1) edges. Thus, (n − 1) new candidate set partitions will be generated. The

set partition with the best cost will be chosen as the set partition for the current iteration.

This set partition, and the corresponding modified M , will be used as the starting point for

the next iteration. At iteration t, M will have (n − t − 1) remaining edges. Therefore,

(n − t − 1) candidate set partitions will be generated and considered. The algorithm ends

when all flows in the problem have been split into their own individual groups. Then, at

the end of the algorithm, at line 10, we choose the set partition with the minimum cost

among the set partitions chosen from all iterations. Since at each iteration t, there can be

at most (n − t − 1) candidate set partitions, the number of set partitions considered in the

DECOMPOSE algorithm is Θ(n2), which is again considerably smaller than Θ(n log n)n.

32

Algorithm 2 DECOMPOSE (G(V, E, π, λ), C, T)
Input: G(V, E, π, λ): communication demand graph

C: specified evaluation function for implementation cost

Output: T : synthesized network architecture

1: A = GenerateAffinityGraph(G)

2: M = GenerateMinSpanningTree(A)

3: t = 0

4: n = |E|
5: while |M | < n do

6: (e, soln[t], cost[t]) = SelectEdgeToDelete(M)

7: remove e from M

8: t = t + 1

9: end while

10: T = soln[arg mintcost[t]]

11: return T

SelectEdgeToDelete(M)

1: for all ei ∈ M do

2: temporarily remove ei from M

3: components(M) = CalculateConnectedComponents(M)

4: for all gi ∈ components(M) do

5: T (gi) = SolveRST(gi)

6: soln[ei] = soln[ei] ∪ T (gi)

7: cost[ei] = cost[ei] + EvaluateCost(T (gi), G, C)

8: end for

9: add ei back to M

10: end for

11: e = arg minei∈Mcost[ei]

12: return (e, soln[e], cost[e])

33

3.5 Perturbation-Based Flow Partitioning

In this section, we present two alternative flow partitioning algorithms called PER-

TURB (perturbation-based flow partitioning) and R-PERTURB (reduced perturbation-

based flow partitioning). These algorithms are based on the use of simulated annealing [45],

which has been successfully employed in numerous global optimization problems. Sec-

tions 3.5.2 to 3.5.4 describe PERTURB, and Section 3.5.5 describes a more efficient version

called R-PERTURB that considers a reduced state space.

3.5.1 Overview of SA

Simulated annealing (SA) is a generic perturbation-based probabilistic global op-

timization algorithm [45]. Each step of the SA algorithm replaces the current solution by

a random perturbation, chosen with a probability that depends on the change in cost and

a global temperature parameter T . We use the transition probability from [45], which is

defined as 1 if ∆ = c′ − c is negative, where c′ and c are the costs of the new state and the

previous state, respectively (i.e., reduced cost moves are always accepted). Otherwise, the

acceptance probability is e−∆/T . The allowance for “increased cost” moves prevents SA

from becoming stuck at local minima.

In order to apply the SA method to a specific problem, three questions must be

resolved: How should the solution space be represented? How should new candidates be

generated? And what cost function should be used to evaluate each candidate? Each of

these questions is addressed below.

3.5.2 Representing the State Space

SA based optimization requires a representation of the state space that can be

searched to find optimal solutions. PERTURB takes a communication demand graph and

an evaluation function as inputs and generates an optimized network architecture as output.

Given a communication demand graph that specifies all the communication demand flows

in the application, the goal is to explore the state space of different possible set partitions

of the flows, implement each set partition as groups of Rectilinear Steiner Trees (RSTs),

and evaluate the cost of each implementation. During the annealing process, best solution

34

seen is maintained. The solution space considered by PERTURB is the set of Θ(n log n)n

set partitions, although only a subset of candidates are evaluated during the simulated an-

nealing process.

3.5.3 Generating Candidate Solutions

PERTURB works by randomly moving to a neighbor state from the current state

in each step and evaluating the benefit of the move. The candidate set partition is gener-

ated from the current set partition by the function GenerateNewSetPartition(), as shown in

Algorithm 3. It takes the current set partition configuration and communication demand

graph as input. Two flows are randomly selected from the communication demand graph

and the sets that they belong to in the current partition are found as S0 and S1. If the two

flows are in different sets of the current set partition, the corresponding two sets are merged

into one set in the new partition; otherwise, the set is randomly split into S0
new and S1

new

by randomly assigning one flow in S0
new and the other in S1

new and randomly assigning

remaining flows in the original set to S0
new and S1

new. The new set(s) generated together

with the remaining sets in the original partition form the new set partition and are returned.

This method of generating new set partitions allow use to traverse the Θ(n log n)n state

space of possible set partitions.

3.5.4 Incremental Cost Evaluation

For each set partition of the flows generated in each step of PERTURB, an RST

solver is called to generate a physical network topology for the configuration. The flows in

each set in the set partition are considered as a cluster and an RST instance is solved as the

physical network topology of this cluster. Note that for each new set partition generated

from the old one, at most two clusters can change, by either merging two clusters into one

or splitting one cluster into two. All others remain unchanged. So we only incrementally

generate and solve the RST instances for the clusters merged or the cluster split. The

derived RSTs are then implemented and evaluated as discussed in Section 3.2.3.

35

Algorithm 3 GenerateNewSetPartition(P, G(V, E, π, λ))
Input: P : input set partition

G(V, E, π, λ): communication demand graph

Output: P ′: new generated set partition

1: randomly select 2 flows e0, e1 ∈ E, e0 6= e1

2: S0 = set(e0), S1 = set(e1)

3: if S0 6= S1 then

4: P ′ = P\{S0, S1}
5: P ′ = P ′ ∪ {S0 ∪ S1}
6: else

7: S0
new = {e0}

8: S1
new = {e1}

9: for all ei ∈ S0, ei 6= e0, e1 do

10: if random(0, 1) > 0.5 then

11: S0
new = S0

new ∪ {ei}
12: else

13: S1
new = S1

new ∪ {ei}
14: end if

15: end for

16: P ′ = P\{S0}
17: P ′ = P ′ ∪ {S0

new, S1
new}

18: end if

19: return P ′

36

3.5.5 Reducing the State Space

The PERTURB algorithm presented above explores a state space that comprises

of all possible set partitions. However, the large state space that it considers can lead to

long run times. In this section, we present another SA-based algorithm called Reduced-

PERTURB (R-PERTURB) that reduces the size of the state space from Θ(n log n)n set

partitions to Θ(2n). In practice, R-PERTURB can significantly reduce run times while still

achieving good results as compared to PERTURB.

R-PERTURB works in the similar way as PERTURB except it uses a different

neighbor selection method to generate candidate solutions. In order to efficiently reduce

the number of set partitions considered without excluding potentially good candidates, R-

PERTURB again makes use of affinity graphs and minimum spanning trees, as used in

the DECOMPOSE algorithm. Before the SA process starts, an affinity graph A and its

minimum spanning tree M are first derived from the communication demand graph, as

described in Section 3.4. Referring again to Figure 3.2, it shows the affinity graph and its

minimum spanning tree for the example shown in Figure 2.3.

For the initial minimum spanning tree generated, the edges in M are numbered and

saved in N . At each iteration, a new neighboring set partition is generated from the current

set partition by using the function GenerateNewSetPartition() shown in Algorithm 4. It

works by randomly selecting an edge in the initial minimum spanning tree saved in N . If

the selected edge is in the current M , it is removed from M ; otherwise, it is added to M .

By adding or removing edges to/from M , the set partition represented by M changes. The

new set partition is saved to P ′ in the function GetDisjointSets() by finding all the disjoint

sets of vertices in M , which correspond to disjoint sets of flows.

For a communication demand graph containing n flows, the number of vertices in

the affinity graph A is n, and the number of edges in the minimum spanning tree is n−1. By

considering adding or removing edges in the spanning tree to generate new set partitions,

R-PERTURB considers a reduced state space of Θ(2n) possible set partitions, which is

much smaller than Θ(n log n)n. Similar to PERTURB, only a subset of candidates in the

reduced state space are evaluated during the simulated annealing process.

37

Algorithm 4 GenerateNewSetPartition(M, N)
Input: M : modified MST of current set partition.

N : original MST edges array

Output: P ′: new generated set partition

1: randomly select 1 edge ei from N

2: if ei ∈ M then

3: remove ei from M

4: else

5: add ei to M

6: end if

7: P ′ = GetDisjointSets(M)

8: return P ′

3.6 Router Merging

After the physical network topology has been generated using the above algorithms,

a router merging step is used to further optimize the topology to reduce the power consump-

tion cost. The router merging step was first proposed by Srinivasan in [27]. Their router

merging was based on the distance between routers. However, in our work, we propose

a new router merging algorithm for reducing the power consumption of the network and

improving the performance.

As has been observed, routers that connect with each other can be merged to elimi-

nate router ports and links and thus possibly the corresponding costs. Routers that connect

to the same common routers can also be merged to reduce ports and costs. We propose a

greedy router merging algorithm, which is shown in Algorithm 5. The algorithm works it-

eratively by considering all possible mergings of two routers connected with each other. In

each iteration, each router’s adjacent routers list are constructed and sorted by the distance

between them in increasing order. They are possible candidate mergings. Then the routers

are considered to merge in the decreasing order of the number of neighbors they have. For

each candidate merging, if the topology from the merging result is valid, the total power

consumption of the resulting topology after merging is evaluated using the power models.

Routers are merged if they have not merged in this iteration and the cost is improving. After

all routers are considered in the current iteration, they are updated by replacing the routers

38

merged with the new one generated. Those routers are reconsidered in the next iteration.

The algorithm keeps merging routers until no improvement can be made further. After

router merging, the optimized topology is generated and the routing paths of all flows are

updated. Since the router merging will always reduce the number of routers in the topology,

it will not increase the hop counts for all the flows thus will not worsen the performance of

the application. The topology generated after router merging represents the best solution

with the minimum power consumption. It is returned as the final solution for our NoC

synthesis algorithm.

3.7 Experimental Results

3.7.1 Experimental Setup

We have implemented our four proposed algorithms CLUSTER, DECOMPOSE,

PERTURB and R-PERTURB in C++. In our implementation, we incorporated a fast pub-

lic domain Rectilinear Steiner Tree solver called GeoSteiner4.0 [39, 40] to generate the

physical network topologies in the inner loop of the four algorithms. The proposed router

merging algorithm has been integrated into the four algorithms as well to improve the solu-

tions generated. As discussed in the design flow outlined in Chapter 2, we use Parquet [44]

for the floorplanning step.

To evaluate our proposed synthesis algorithms, two groups of experiments were

used. The first group of experiments was used to evaluate the performance of our algo-

rithms on applications with only unicast flows. The second group of experiments was used

to evaluate the performance of our algorithms on benchmarks with multicast traffic flows.

For the first group of experiments, three sets of benchmarks were used to evaluate

the proposed algorithms. The first set of benchmarks consists of four different video pro-

cessing applications obtained from [29], including a Video Object Plane Decoder (VOPD),

an MPEG4 decoder, a Picture-In-Picture (PIP) application, and a Multi-Window Display

(MWD) application. The next set of benchmarks were obtained from [20] and [25]. They

correspond to different encoder/decoder combinations of a H.263 video codec, a MP3 au-

dio codec, and a generic MultiMedia System (MMS). Finally, to generate larger benchmark

instances, we generated synthetic benchmarks from the above video applications.

39

Algorithm 5 ROUTER-MERGING(R, T)
Input: R: routers list T : network topology

Output: R′: new routers list; T ′: new network topology

1: done = 0

2: while done = 0 do

3: for all ri ∈ R do

4: adj(ri) = generate all 1-hop adjacent router list and sort it by their distance to ri

in increasing order

5: end for

6: sort routers in R by their number of adjacent routers in decreasing order

7: for all ri ∈ R in this order do

8: for all rj ∈ adj(ri) do

9: if neither ri nor rj is merged in this round then

10: evaluate the total power consumption cost of merging ri and rj

11: merge ri, rj to r′ if merging is valid and total power consumption is improv-

ing

12: delete ri, rj from R and add r′ to R

13: end if

14: end for

15: end for

16: if no merging is done in this iteration then

17: done = 1

18: end if

19: end while

20: update topology T ′ and routing path for all flows

21: return R′ = R, T ′

40

For the second group of experiments, in the absence of published benchmarks with

multicast traffic, we generated a set of synthetic benchmarks. In particular, we used the

NoC-centric bandwidth-version of Rent’s rule proposed in [46] to generate these bench-

marks. The details of this benchmark generation process is described in Section 3.7.3.

All experimental results were obtained on a 1.5 GHz Intel P4 processor machine

with 512 MB of memory running Linux.

3.7.2 Results for Unicast Applications

Method of evaluation

In all our experiments, we aim to evaluate the performance of the four proposed

algorithms CLUSTER, DECOMPOSE, PERTURB, and R-PERTURB on all benchmarks

with the objective of minimizing the total power consumption of the synthesized NoC ar-

chitectures. The total power consumption includes both the leakage power and the dynamic

switching power of all network components. As discussed in Chapter 2, we use a power-

performance simulator called Orion [31, 32] to estimate the power consumptions of router

configurations generated. We applied the design parameters of 1 GHz clock frequency, 4-

flit buffers, and 128-bit flits. For the link power parameters, we use the state-of-art on-chip

repeated interconnect model [33, 34] to evaluate the optimum powers for links with differ-

ent lengths under the given delay constraint of 1ns. Both routers and links are evaluated

using the 70nm technology and they are provided in a library.

For evaluation, fair direct comparison with previously published NoC synthesis re-

sults is difficult in part because of vast differences in the power parameters assumed1. To

evaluate the effectiveness of our algorithms, we have designed two sets of experiments. In

the first set of experiments, we generated a full mesh implementation for each benchmark

for comparison. For the positioning of modules on the mesh implementation, we again

used Parquet [44]. In a full mesh implementation, each module is connected to a router

with 5 input/output ports. Packets are routed using XY routing over the mesh from source

to destination. We also generated a variant of the basic mesh topology called optimized

mesh (opt-mesh) by eliminating router ports and links that are not used by the traffic flows.
1We use the Orion simulator to estimate power consumption [31, 32]. The power estimates are consistent

with another published power-optimized NoC implementation described in [37]. The power estimates are on
the same order of magnitude for the same router configuration in the same technology.

41

Table 3.1: NoC power comparisons on unicast applications.

Table-unicast-mesh

U16
U15
U14
U13
U12
U11
U10
U9
U8
U7
U6
U5
U4
U3
U2
U1

Label

0.3441.4252.5510.5748480.1352.4410.10800.1412.4210.0212.680.1422.4710.25130.500.13948444in1
0.3001.0082.528.4732480.1192.458.26540.1222.428.137.540.1242.498.3773.020.1204036V+M+M
0.1540.4952.899.296200.0532.899.29110.0532.899.290.960.0532.899.297.450.0532120M+P
0.2020.6332.497.8111000.0812.467.73320.0822.247.041.300.0902.357.3915.470.0862724V+M
0.2600.6422.065.0817350.1262.145.29470.1211.964.853.960.1322.115.2132.070.1233325MMS
0.1220.2572.475.221860.0492.244.74140.0542.244.740.320.0542.244.741.880.0541411MMDec
0.1310.3761.915.504000.0681.915.50170.0681.785.120.770.0731.915.503.890.0681914MMEnc
0.0650.1782.476.77340.0262.476.7740.0262.476.770.070.0262.476.770.190.02687h263dec
0.0430.0992.606.03130.0162.606.0210.0162.606.020.040.0162.606.020.110.01666mp3dec
0.0500.1002.164.28180.0232.164.2810.0232.164.280.050.0232.164.280.090.02387mp3enc
0.1060.2583.769.111260.0283.458.3570.0313.428.290.230.0313.769.110.820.0281212G5
0.0800.1552.274.38750.0352.244.3170.0362.244.310.140.0362.174.180.370.037107H263
0.1210.2604.629.911800.0264.319.2480.0283.948.440.320.0314.319.241.570.0281312MWD
0.0600.1782.938.65380.0212.938.6530.0212.938.650.090.0212.938.650.240.02188PIP
0.0920.2762.357.081590.0392.296.89100.0402.276.840.300.0402.357.071.090.0391312MPEG4
0.1520.2723.606.422100.0423.606.4280.0423.606.420.340.0423.606.421.350.0421412VOPD

Power
(W)

Power
(W)

Improv.
PERT./

opt

Improv.
PERT./
Mesh

Time
(sec)

Power
(W)

Improv.
R-P/
Opt

Improv.
R-P/
Mesh

Time
(sec)

Power
(W)

Improv.
DE/opt

Improv.
DE/
mesh

Time
(sec)

Power
(W)

Improv.
CL/opt

Improv.
CL/
mesh

Time
(sec)

Power
(W)

opt-meshmeshPERTURBR-PERTURBDECOMPOSECLUSTER

|E||V|Appli.

These experiments are designed to show the benefits of application-specific NoC architec-

tures. In the second set of experiments, we implemented an exact algorithm, referred to

as EXACT, that exhaustively enumerates all distinct set partitions. These experiments are

designed to show how close our synthesis algorithms are to exact enumeration results.

Comparison of results

The synthesis results of our four algorithms on all unicast benchmarks at 70nm with

comparison to results using mesh and opt-mesh topologies are shown in Table 3.1. For each

algorithm, the power results, the execution times, and power improvements of that algo-

rithm over mesh and opt-mesh topologies are reported. The power results of all algorithms

relative to mesh implementations are graphically compared in Figure 3.3(a). The results

show that all algorithms can efficiently synthesize NoC architectures that minimize power

consumption. All algorithms can achieve substantial reduction in power consumption over

the standard mesh and opt-mesh topologies in all cases. The two heuristic algorithms can

achieve comparable results as the two perturbation-based algorithms.

In particular, CLUSTER can achieve on average a 6.92× reduction in power over

the standard mesh topologies and a 2.68× reduction over the optimized mesh topologies,

and DECOMPOSE can achieve on average a 6.83× and a 2.60× reduction in power over

the standard mesh and optimized mesh topologies. Similarly, PERTURB can achieve on

average a 7.16× and a 2.73× reduction in power over the standard mesh and optimized

mesh topologies, and R-PERTURB can achieve on average a 6.99× and a 2.66× reduction

in power over the standard mesh and optimized mesh topologies, respectively.

The execution times of all algorithms are graphically compared in Figure 3.3(b).

42

Table 3.2: NoC hop count comparisons on unicast applications.

Hop counts for unicast

2.212.400.922.400.922.350.942.460.904in1
2.232.480.902.280.982.231.002.400.93V+M+M
2.103.390.623.390.623.390.623.390.62M+P
2.302.211.042.001.151.771.302.211.04V+M
2.302.301.002.370.972.370.971.901.21MMS
2.362.071.142.071.142.071.142.071.14MMDec
2.262.151.052.151.052.151.052.151.05MMEnc
2.253.000.753.000.753.000.753.000.75h263dec
2.334.660.504.660.504.660.504.660.50mp3dec
2.432.431.002.431.002.431.002.431.00mp3enc
2.583.110.833.110.833.110.833.110.83G5
2.602.171.202.171.202.171.202.171.20H263
2.544.700.544.700.544.700.544.700.54MWD
2.253.570.633.570.633.570.633.570.63PIP
3.002.171.382.171.382.051.462.171.38MPEG4
2.794.360.644.360.644.360.643.930.71VOPD

Avg.
hops

Improv.
PERT/mesh

Avg.
hops

Improv.
R-P/mesh

Avg.
hops

Improv.
DE/mesh

Avg.
hops

Improv.
CL/mesh

Avg
hopsApplication

meshPERTURBR-PERTURBDECOMPOSECLUSTER

The results show that all algorithms work quite fast. The two heuristic algorithms, CLUS-

TER and DECOMPOSE, work much faster than PERTURB. As can be seen, CLUSTER

can achieve better results than DECOMPOSE because it examines more set partition candi-

dates in its solution space, but it requires longer run times. R-PERTURB also works faster

than PERTURB because it searches a smaller state space than PERTURB. However, it can

achieve similar results as PERTURB, with execution times comparable to the two heuristic

algorithms.

To evaluate the performance of the synthesized topologies, average hop count re-

sults for the benchmarks from the synthesized topology are reported in Table 3.2 and graph-

ically compared in Figure 3.3(c). Hop counts correspond to the number of intermediate

routers that a packet needs to pass through from the source to the destination. The re-

sults show that the solutions obtained using our algorithms can achieve much lower hop

counts, and thus lower latencies, than the corresponding mesh topologies. In particular,

CLUSTER, DECOMPOSE, R-PERTURB and PERTURB can achieve on average a 2.89×,

2.90×, 2.93×, and 2.95× reduction in hop count. In a number of benchmarks, some mod-

ules only have single incoming flow or single outgoing flow. For example, for the VOPD

benchmark, 6 out of the 12 modules have at most one incoming flow as well as one outgoing

flow, and 10 out of the 12 modules have either at most one outgoing flow or one incoming

43

Table 3.3: NoC router area comparisons on unicast applications.

2.012.540.792.360.862.360.862.360.864in1
1.812.410.752.410.752.410.752.410.75V+M+M
1.033.300.313.300.313.300.313.300.31M+P
1.192.470.483.340.362.230.532.180.54V+M
1.812.140.852.290.792.220.821.910.95MMS
0.892.870.312.580.352.580.352.580.35MMDec
0.912.020.452.020.452.020.451.710.53MMEnc
0.432.470.182.470.182.470.182.470.18h263dec
0.312.940.102.940.102.940.102.940.10mp3dec
0.362.320.162.320.162.320.162.320.16mp3enc
0.713.590.203.590.203.590.203.590.20G5
0.482.310.212.310.212.310.211.370.35H263
0.877.950.116.350.146.350.145.290.16MWD
0.414.000.104.000.104.000.104.000.10PIP
0.482.280.212.280.212.280.212.280.21MPEG4
1.016.280.166.280.166.280.166.280.16VOPD

Router
Area

(mm2)

Impro.
PERT./

opt-mesh

Router
Area

(mm2)

Impro.
R-P/

opt-mesh

Router
Area

(mm2)

Impro.
DE/

opt-mesh

Router
Area

(mm2)

Impro.
CL/

opt-mesh

Router
Area

(mm2)Application

opt-meshPERTURBR-PERTURBDECOMPOSECLUSTER

Table-unicast-area
flow. For these benchmarks, the most efficient architectures are actually ones that provide

direct network links between network interfaces for some of its traffic flows without going

through intermediate routers2. For these benchmarks, the average hop count may be less

than one since not all flows necessarily pass through intermediate routers. Our flow par-

titioning problem formulation is able to arrive at these implementations by exploring set

partitions in which some flows are grouped in their own partition.

To evaluate the area costs of the synthesized solutions, we also used Orion [31]

to estimate the areas of the routers in the synthesized architectures, using the same 70nm

technology used for power estimation. The area cost of a solution corresponds to the sum

of the router areas in the solution. The results are presented in Table 3.3 and compared in

Figure 3.3(d). Total area costs of all routers in a custom NoC solution produced by our

algorithms are only in the range of 0.10 to 0.86 mm2, even for the largest benchmark 4in1

with 44 modules (about 0.02 mm2 amortized area costs per module in the 4in1 example,

2State-of-the-art router microarchitectures, such as those proposed in [35, 36, 37], employ finite buffers
and virtual channels. Flow control is used to prevent upstream routers or network interfaces from sending
more data when either buffer space or virtual channel is unavailable. Network interfaces that interoperate with
these router microarchitectures must also correspondingly support the same flow control mechanism. This
flow control mechanism can be used to control data transfers between network interfaces that are directly
connected by a network link. Our synthesis algorithms can also be constrained to produce architectures
where flows are required to pass through at least one router.

44

which is small in comparison to the expected size of modules). In comparisons to the area

costs of the opt-mesh solutions, our algorithms are on average 3.12× lower.

In the next set of experiments, we compare our algorithms with an exact algorithm

that enumerates all distinct set partitions. As the number of distinct set partitions grows

Θ(n log n)n, the CPU times for generating the exact solutions increase very quickly. We

set a CPU timeout limit of 8 hours. The results are compared in Table 3.4. Out of the 16

benchmarks tested, we were able to obtain results for exact enumeration for only 6 of the

benchmarks. The largest unicast benchmark that exact enumeration could complete was

a benchmark with 12 flows (namely G5). This is because the number of set partitions of

N flows grows as the Bell number, and B12 = 4, 213, 597 and B13 = 27, 644, 437. The

exact enumeration of G5 with 12 flows took about 4 hours. However, we estimate that

it will take more than 27 hours to generate exact solution for a benchmark with 13 flows

(e.g. MPEG4), which is well beyond our 8 hour timeout limit.

On the other hand, as shown in Table 3.4, of the 6 benchmarks where exact enumer-

ation was possible, our PERTURB algorithm could achieve the exact solution in all cases

and the longest execution time was only about 2 minutes. CLUSTER was able to achieve

the same results as exact enumeration in 5 out of the 6 cases, and on average, the results are

within just 1% of the exact results. Moreover, the CPU times for the 6 benchmarks were all

under 1 second whereas the EXACT algorithm took as much as 4.5 hours to achieve similar

results. Likewise, DECOMPOSE and R-PERTURB were able to achieve the exact solution

in 4 out of the 6 cases, and on average, the results are within 2% of the exact results, and

these results were achieved in the range of 0.23 to 7 seconds.

3.7.3 Results for Multicast Applications

In this section, we present experimental results on benchmarks with multicast traffic

to evaluate the performance of our algorithms on the synthesis of NoC communication

architectures with multicast routing.

Benchmark generation using Rent’s rule

To generate synthetic benchmarks with multicast traffic, we used the NoC-centric

bandwidth-version of Rent’s rule proposed by Greenfield et al. [46]. In particular, they

45

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16
0

0.2

0.4

0.6

0.8

1

P
ow

er
 r

at
io

 o
ve

r
m

es
h

CLUSTER
DECOMPOSE
R−PERTURB
PERTURB
mesh
opt−mesh

(a) Power

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16
0.01

0.1

1

10

100

1000

10000

E
xe

cu
tio

n
T

im
e

(s
ec

)

CLUSTER
DECOMPOSE
R−PERTURB
PERTURB

(b) Execution time

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16
0

0.5

1

1.5

2

2.5

3

3.5

A
ve

ra
ge

 h
op

s

CLUSTER
DECOMPOSE
R−PERTURB
PERTURB
mesh

(c) Hop count

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
ou

te
r

ar
ea

 (
m

m
2)

CLUSTER
DECOMPOSE
R−PERTURB
PERTURB
opt−mesh

(d) Area

Figure 3.3: Comparisons of all algorithms on unicast applications.

46

Table 3.4: NoC power comparisons with exact solutions on unicast applications.

144400.0281.001260.0281.0970.0311.100.230.0311.000.820.028G5
2930.0351.00750.0351.0270.0361.020.140.0361.050.370.037H263

90.0211.00380.0211.0030.0211.000.090.0211.000.240.021PIP
70.0261.00340.0261.0040.0261.000.070.0261.000.190.026h263dec
10.0161.00130.0161.0010.0161.000.040.0161.000.110.016mp3dec
10.0231.00180.0231.0010.0231.000.050.0231.000.090.023mp3enc

t.o.t.o.t.o.48480.135n.a.800.141n.a.12.680.142n.a.130.500.1394in1
t.o.t.o.t.o.32480.119n.a.540.122n.a.7.540.124n.a.73.020.120V+M+M
t.o.t.o.t.o.6200.053n.a.110.053n.a.0.960.053n.a.7.450.053M+P
t.o.t.o.t.o.11000.081n.a.320.082n.a.1.300.090n.a.15.470.086V+M
t.o.t.o.t.o.17350.126n.a.470.121n.a.3.960.132n.a.32.070.123MMS
t.o.t.o.t.o.1860.049n.a.140.054n.a.0.320.054n.a.1.880.054MMDec
t.o.t.o.t.o.4000.068n.a.170.068n.a.0.770.073n.a.3.890.068MMEnc
t.o.t.o.t.o.1800.026n.a.80.028n.a.0.320.031n.a.1.570.028MWD
t.o.t.o.t.o.1590.039n.a.100.040n.a.0.300.040n.a.1.090.039MPEG4
t.o.t.o.t.o.2100.042n.a.80.042n.a.0.340.042n.a.1.350.042VOPD

Time
(sec)

Power
(W)

Power
Ratio

PERT/EX
Time
(sec)

Power
(W)

Power
Ratio

R-P/EX
Time
(sec)

Power
(W)

Power
Ratio

DE/EX
Time
(sec)

Power
(W)

Power
Ratio

CL/EX
Time
(sec)

Power
(W)

EXACTPERTURBR-PERTURBDECOMPOSECLUSTER

Appli.

Table-unicast-exact
showed that the traffic distribution models of NoC applications should follow a similar

Rent’s rule distribution as in conventional VLSI netlists. The bandwidth-version of Rent’s

rule was derived showing that the relationship between the external bandwidth B across

a boundary and the number of blocks G within a boundary obeys B = kGβ , where k

is the average bandwidth for each block and β is the Rent’s exponent. The benchmark

generation procedure proposed in [47] is adopted and modified in accordance to NoC-

centric Rent’s rule to generate multicast benchmarks. The average bandwidth k for each

block and Rent’s exponent β are specified by the user. In our experiments, we generated

large NoC benchmarks by varying k ranging from 100kb/s to 500kb/s and varying β from

0.65 to 0.75. We formed multicast traffic with varying group sizes for about 10% of the

flows. Thus our multicast benchmarks cover a large range of applications with mixed

unicast/multicast flows and varying hop count and data rate distributions.

Comparison of results

Using the above benchmark generation process, we generated 8 multicast bench-

marks with the number of modules ranging from 4 to 36 and the number of flows ranging

from 6 to 84 (with some as multicast flows). We applied our four algorithms to derive op-

timized NoC architectures for them with the goal of minimizing power consumption. We

again compare our results with both mesh and opt-mesh implementations. For multicast

47

Table 3.5: NoC power comparisons on multicast applications.

New benchmarks: Table-multicast-mesh

0.8181.0921.552.07287300.5281.532.047120.5361.351.81390.6051.552.0714300.5288436M8
0.6390.8751.502.05209800.4261.532.094760.4181.532.09200.4191.502.054990.4266830M7
0.5700.7071.642.04141370.3471.581.963740.3601.351.67130.4221.642.042350.3475825M6
0.4170.5381.602.0742080.2601.541.992540.2711.431.8570.2911.562.021320.2664820M5
0.2550.4021.422.2428400.1801.442.261780.1781.452.2930.1761.332.10310.1913216M4
0.0810.1041.942.492030.0421.842.36150.0441.802.310.10.0451.802.310.40.045106M3
0.0550.1021.743.211140.0321.743.21140.0321.622.980.10.0341.743.210.20.03285M2
0.0430.0561.712.22370.0251.712.2240.0251.712.220.10.0251.712.220.10.02564M1

Power
(W)

Power
(W)

Improv.
PERT./

opt

Improv.
PERT./
mesh

Time
(sec)

Power
(W)

Improv.
R-P/
opt

Improv.
R-P/
Mesh

Time
(sec)

Power
(W)

Improv.
DE/opt

Improv.
DE/mesh

Time
(sec)

Power
(W)

Improv.
CL/opt

Improv.
CL/
mesh

Time
(sec)

Power
(W)|E||V|

opt-meshmeshPERTURBR-PERTURBDECOMPOSECLUSTER

Appli.

routing over a mesh implementation, we applied the efficient multicast routing algorithm

described in [69] to determine the routing of multicast traffic. We then again generated

opt-mesh implementations by eliminating router ports and links that are not used by the

traffic flows.

The power consumption results and the execution times of all algorithms on the

multicast benchmarks are reported in Table 3.5. The power results of all algorithms rela-

tive to mesh implementations are compared in Figure 3.4(a). The execution times of our

four algorithms are compared in Figure 3.4(b). For the multicast benchmarks, all of our

algorithms can achieve substantial reduction in power over the standard mesh and opt-

mesh implementations. Among all algorithms, PERTURB achieves the best performance

over our other algorithms, with on average a 2.30× reduction in power over the standard

mesh and a 1.64× reduction over the optimized mesh topologies. R-PERTURB is slightly

worse than PERTURB by achieving on average a 2.27× and a 1.61× reduction in power

over the standard mesh and optimized mesh topologies. However, its execution times are

8 to 45 times faster than PERTURB. The two heuristic algorithms can achieve comparable

results as the two probabilistic algorithms. In particular, CLUSTER can achieve on aver-

age a 2.25× and a 1.60× reduction in power over the standard mesh and optimized mesh

topologies, and DECOMPOSE can achieve on average a 2.15× and a 1.53× reduction in

power over the standard mesh and optimized mesh topologies, respectively. Both heuris-

tic algorithms work much faster than PERTURB. For example, DECOMPOSE can obtain

all results in less than 1 minute. For applications with large problem sizes, the heuristic

algorithms and R-PERTURB can be used without sacrificing much performance.

Average hop count results are also reported in Table 3.6 and Figure 3.4(c). The re-

sults show that, for multicast applications, the synthesized topologies using our algorithms

can also achieve lower hop counts than both mesh and opt-mesh topologies. In particular,

on average, CLUSTER, DECOMPOSE, R-PERTURB and PERTURB can achieve 1.84×,

48

Table 3.6: NoC hop count comparisons on multicast applications.

New benchmarks: Table-multicast-hops

2.741.322.081.202.281.352.031.262.18M8
2.911.432.031.621.791.312.212.001.46M7
3.161.701.862.191.441.382.301.352.34M6
2.961.701.751.322.251.472.011.531.94M5
2.341.511.551.441.631.301.801.541.52M4
2.501.851.352.501.002.311.082.311.08M3
2.252.500.902.500.902.860.792.500.90M2
2.002.220.902.220.902.220.902.220.90M1

Avg.
hops

Improv.
PERT/mesh

Avg.
hops

Improv.
R-P/mesh

Avg.
hops

Improv.
DE/mesh

Avg.
hops

Improv.
CL/mesh

Avg.
hops

meshPERTURBR-PERTURBDECOMPOSECLUSTER

Appli.

Table 3.7: NoC router area comparisons on multicast applications.

5.431.793.021.763.081.813.011.773.06M8
4.291.712.511.692.541.782.411.602.68M7
3.861.892.041.892.041.902.031.902.03M6
2.831.811.561.561.811.761.611.781.59M5
1.741.521.151.561.121.451.201.531.14M4
0.582.320.252.010.291.570.371.650.35M3
0.401.890.211.890.211.740.231.890.21M2
0.311.770.181.770.181.770.181.770.18M1

Router
Area

(mm2)

Impro.
PERT/

opt-mesh

Router
Area

(mm2)

Impro.
R-P/

opt-mesh

Router
Area

(mm2)

Impro.
DE/

opt-mesh

Router
Area

(mm2)

Impro.
CL/

opt-mesh

Router
Area

(mm2)
Appli.

opt-meshPERTURBR-PERTURBDECOMPOSECLUSTER

New benchmarks: Table-multicast-area

1.78×, 1.88×, and 1.78× reduction in hop count.

The area costs in terms of router areas for the multicast benchmarks are reported in

Table 3.7 and Figure 3.4(d). The area costs of our algorithms are in the range from 0.18

mm2 to 3.06 mm2 for the largest benchmark M8 with 84 modules (about 0.04 mm2 amor-

tized area costs per module). In comparisons to the area costs of the opt-mesh solutions,

our algorithms are on average 1.77× lower.

Finally, we again compare our algorithms with the exact enumeration algorithm for

multicast applications. The results are compared in Table 3.8. We again set a CPU timeout

limit of 8 hours. Out of the 8 multicast benchmarks tested, we were only able to obtain

the results for exact enumeration for 3 of them. Of these 3 benchmarks, PERTURB could

achieve the exact solution in all these cases, and the longest execution time was only about

3.5 minutes. CLUSTER and R-PERTURB were able to achieve the exact solution in 2 out

of the 3 cases, and on average, the results are within just 3% and 2% of the exact results

respectively. Likewise, DECOMPOSE was able to achieve the exact solution in 1 out of 3

49

Table 3.8: NoC power comparisons with exact solutions on multicast applications.

New benchmarks: Table-multicast-exact

t.o.t.o.n.a.287300.528n.a.7120.536n.a.390.605n.a.14300.528M8
t.o.t.o.n.a.209800.426n.a.4760.418n.a.200.419n.a.4990.426M7
t.o.t.o.n.a.141370.347n.a.3740.360n.a.130.422n.a.2350.347M6
t.o.t.o.n.a.42080.260n.a.2540.271n.a.70.291n.a.1320.266M5
t.o.t.o.n.a.28400.180n.a.1780.178n.a.30.176n.a.310.191M4
2580.0421.002030.0421.06150.0441.080.10.0451.080.40.045M3

70.0321.001140.0321.00140.0321.080.10.0341.000.20.032M2
0.20.0251.00370.0251.0040.0251.000.10.0251.000.10.025M1

Time
(sec)

Power
(W)

Power
Ratio

PERT/EX
Time
(sec)

Power
(W)

Power
Ratio

R-P/EX
Time
(sec)

Power
(W)

Power
Ratio

DE/EX
Time
(sec)

Power
(W)

Power
Ratio

CL/EX
Time
(sec)

Power
(W)

EXACTPERTURBR-PERTURBDECOMPOSECLUSTER

Appli.

M1 M2 M3 M4 M5 M6 M7 M8
0

0.2

0.4

0.6

0.8

1

P
ow

er
 r

at
io

 o
ve

r
m

es
h

CLUSTER
DECOMPOSE
R−PERTURB
PERTURB
mesh
opt−mesh

(a) Power

M1 M2 M3 M4 M5 M6 M7 M8
0.01

0.1

1

10

100

1000

10000

100000

E
xe

cu
tio

n
T

im
e

(s
ec

)

CLUSTER
DECOMPOSE
R−PERTURB
PERTURB

(b) Execution time

M1 M2 M3 M4 M5 M6 M7 M8
0

0.5

1

1.5

2

2.5

3

3.5

A
ve

ra
ge

 h
op

s

CLUSTER
DECOMPOSE
R−PERTURB
PERTURB
mesh

(c) Hop count

M1 M2 M3 M4 M5 M6 M7 M8
0

1

2

3

4

5

6

R
ou

te
r

ar
ea

 (
m

m
2)

CLUSTER
DECOMPOSE
R−PERTURB
PERTURB
opt−mesh

(d) Area

Figure 3.4: Comparisons of all algorithms on multicast applications.

50

cases, and on average, the results are within 5% of the exact results.

Acknowledgement

This chapter is in part a reprint of the material in the following papers: Shan Yan,

Bill Lin, “Custom Networks-on-Chip Architectures with Multicast Routing”, IEEE Trans-

actions on VLSI Systems, volume: 17, issue: 3, on pages: 342-355, March 2009; Shan

Yan, Bill Lin, “Application-specific Network-on-Chip architecture synthesis based on set

partitions and Steiner Trees”, 13th Asia and south Pacific Design automation conference

(ASP-DAC 2008), 2008: 277-282. The dissertation author was the primary author of both

papers.

Chapter 4

Design Custom Topologies Based on

Rip-Up and Reroute

4.1 Overview

In this chapter, we describe an alternative NoC synthesis approach based on a rip-

up and reroute concept that has been successfully used in the VLSI routing problem [48,

49, 50]. The rip-up and reroute concept provides us with a heuristic iterative mechanism to

identify increasingly improving solutions. There are two central differences between our

on-chip network routing and design problem and the VLSI routing problem. The first is the

ability to share network resources in our problem, and the second is the difference in cost

models. In the latter case, the costs of routers and links are not simple linear costs, and the

sharing of network resources further complicates the optimization process.

The algorithms presented in this chapter improve over the earlier algorithms pre-

sented in Chapter 3. Our earlier NoC synthesis algorithms were based on the formulation

of the problem as set partitioning of traffic flows, finding a good network topology for

each flow set using a Steiner tree formulation and providing an optimized network imple-

mentation for the derived topologies. All possible set partition of flows are investigated in

an intelligent way and a Rectilinear Sterner tree problem is solved for each intermediate

set partition, which makes those algorithms less efficient for future large applications with

hundreds to thousands of cores envisioned.

In particular, we propose a very efficient algorithm called Ripup-Reroute-and-

51

52

Router-Merging (RRRM) that synthesizes custom NoC architectures for supporting both

unicast and multicast traffic flows. The key part of the algorithm is a rip-up and reroute

procedure that routes multicast flows by way of finding the optimum multicast tree on a

condensed multicast routing graph using the directed minimum spanning tree formulation

and the efficient algorithms [51, 52]. Then a router merging procedure follows after to

further optimize the network topology

As already has been shown in the previous chapter, our Steiner-tree based formu-

lation already significantly outperformed regular mesh and optimized mesh topologies. In

comparison to those algorithms, the performance of our new algorithm was able to achieve

a relative reduction of up to 45% in terms of power consumption, up to 21% in terms of

hop counts and up to 39% in terms of router area. More important, the execution times of

our new algorithm are 2 to 3 orders of magnitude faster than the previous algorithms even

for very large benchmarks.

The rest of this chapter is organized as follows. Section 4.2 describes the details of

RRRM algorithm and Section 4.3 presents the experimental results.

4.2 Design Algorithms – RRRM

In this section, we present algorithms for the NoC topology synthesis process based

on the rip-up and reroute approach. The entire process is a joint multicast routing and

network design procedure that consists of the inter-related steps of constructing an initial

network topology, rip-up and rerouting multicast flows to design the network topology,

inserting the corresponding network links and router ports to implement the routing, and

merging routers to optimize network topology based on design objectives. In particular, we

propose an algorithm called Ripup-Reroute-and-Router-Merging (RRRM). The details of

the algorithm are discussed in this section.

4.2.1 Initial network construction

The details of RRRM are described in Algorithm 6. RRRM takes a communication

demand graph (CDG) and an evaluation function as inputs and generates an optimized

network architecture as output. It starts with initializing a network topology by a simple

53

router allocation and flow routing scheme. Then it uses a procedure of rip-up and rerouting

flows to refine and optimize the network topology. After that, a router merging step is done

to further optimize the topology to obtain the best result.

In the initialization, every flow is routed using its own network. To construct an

initial network topology, a router is allocated at each core and placed close to the location of

network interface. These routers are not actual routers that will be included in the network

topology. Only those that have traffic either multiplexed from more than two ports to

the same port or de-multiplexed from one port to more than two ports at the end of the

RRRM procedure will be included. After router allocation, a Routing Cost Graph (RCG)

is generated (Algorithm 6 line 2). RCG is a very important graph used in the whole rip-up

and reroute procedure of the RRRM algorithm.

Definition 2. The RCG(R,E) is a weighted directed complete graph with each vertex

ri ∈ R represents a router, and each directed edge eij = (ri, rj) ∈ E from ri to rj

corresponds to a connection from ri to rj . A weight w(eij) is attached to each edge which

represents the incremental cost of routing a flow f through eij .

Please note that RCG does not represent the actual physical connectivity between

different routers and its edge weights change during the whole RIPUP-REROUTE pro-

cedure for different flows. Also, the actual physical connectivity between the routers is

established during RIPUP-REROUTE procedure, which is explained in the following sec-

tions.

Before RIPUP-REROUTE, initial network topology is constructed using InitialNet-

workConstruction() procedure. Each flow ek = (sk, dk) in the CDG is routed using a direct

connection from router rsk
to router rdk

, where ri is the router that core i connects to, and

the path is saved in path(ek). Multicast flows are routed as a sequence of unicast flows

from the source to each of their destinations. The links and router ports are configured and

saved. If a connection between routers can not meet the delay constraints, its corresponding

edge weight in RCG is set to infinity. This can be used to guide the rerouting of the flows

to use other valid links instead of this one in the RIPUP-REROUTE procedure.

As an example, after initial network construction, the connectivity of routers for the

example shown in Figure 2.3(a) is shown in Figure 4.1(a).

54

Algorithm 6 RRRM(G(V, E, π, λ), C, L)
Input: G(V, E, π, λ): CDG, C: cost function,

L: library of network components

Output: T : synthesized network topology

1: R = InitialRouterAllocation(G)

2: RCG = ConstructFullyConnectedGraph(R)

3: (links, routers) = InitialNetworkConstruction(G, RCG)

4: (links, routers) = RIPUP-REROUTE(G, RCG, C, L)

5: cost = EvaluatePowerConsumption(links, routers)

6: ROUTER-MERGING(cost, links, routers)

7: T = ObtainBestTopology(links, routers)

8: return T

InitialNetworkConstruction(G, RCG)

1: for all flow ek = (sk → Dk) ∈ E do

2: for all destination dki ∈ Dk do

3: route ek using a direct connection between rsk
and rdki

4: if link(rsk
, rdki

) exists, update bandwidths of links, routers ports

5: path(ek) = (rsk
→ rdki

)

6: update routers rsk
, rdki

, link(rsk
, rdki

)

7: if link(rsk
, rdki

) not meet delay constraint, update wgt(rsk
, rdki

) = ∞ in RCG

8: end for

9: end for

55

4.2.2 Flow Ripup and Rerouting

Once the initial network is constructed and the initial flow routing is done, the key

procedure of the algorithm – RIPUP-REROUTE procedure is invoked to route flows and

find an optimized network topology.

The details of RIPUP-REROUTE are described in Algorithm 7. In the RIPUP-

REROUTE procedure, each multicast routing step is formulated as a minimum directed

spanning tree problem. Two important graphs, Multicast Routing Graph (MRG) and Mul-

ticast Routing Tree (MRTree), are used to help facilitate the rip-up and rerouting procedure.

They are defined as follows.

Definition 3. Let f be a multicast flow with source s ∈ V and one or more destinations

D ⊆ V . i.e., D = {d1, d2, . . . , d|D|}, each di ∈ V .

A Multicast Routing Graph (MRG) is a complete graph Γ(N, A) defined for f as

follows:

• N = s ∪D.

• There is a directed arc between every pair of nodes (i, j) in N . Each arc ai,j ∈ A

corresponds to a shortest path pi,j between the same nodes in the corresponding

RCG, pi,j = e1 → e2 → · · · → ek.

• The weight for arc ai,j , w(ai,j), corresponds to the path weight of the corresponding

shortest path pi,j in RCG. i.e.,

w(ai,j) =
∑
ei∈p

w(ei)

Definition 4. A Multicast Routing Tree (MRTree) is the Minimum Directed Spanning Tree

for multicast routing graph Γ(N, A) with s ∈ N as the root.

When a flow is ripped-up and rerouted, its current path is deleted and the links and

router ports resources it occupies are released (line 3). Then based on the current network

connectivity and resources occupation, the RCG related to this flow is built and the weights

of all edges in RCG are updated (line 4). In particular, for every pair of routers in RCG, the

cost of using those routers and the link connecting them is evaluated. This cost depends on

56

the sizes of the routers, the traffic already routed on the routers and the connectivity of the

routers to other routers. It also depends on whether an existing physical link will be used or

a new physical link needs to be installed. If there are already router ports and links that can

support the traffic, the marginal cost of reusing those resources is calculated. Otherwise,

the cost of opening new router ports and installing new physical link to support the traffic is

calculated. The cost is assigned as edge weight to the edge connecting the pair of routers in

RCG. If the physical links used to connect the routers can not satisfy the delay constraints,

a weight of infinity is assigned to the corresponding edges in RCG.

Once the RCG is constructed, the multicast routing graph (MRG) for the flow is

generated from RCG (line 5). MRG is built by including every source and destination router

of the flow as its nodes. For each pair of the nodes in MRG, the least cost directed path with

least power consumption on RCG is found for the corresponding routers using Dijkstra’s

shortest path algorithm and the cost is assigned as edge weight to the edge connecting

the two nodes in MRG. Then the Chu-Liu/Edmonds algorithm [51, 52] is used to find the

rooted directed minimum spanning tree of MRG with the source router as root. A rooted

directed spanning tree of a graph is defined as a graph which connects, without any cycle,

all n nodes in the graph with n − 1 arcs such that the sum of the weight of all the arcs is

minimized. Each node, except the root, has one and only one incoming arc. This directed

minimum spanning tree is obtained as the multicast routing tree (MRTree) so that the routes

of the multicast flow follows the structure of this tree. The details of Chu-Liu/Edmonds

Algorithm is summarized in Algorithm 8. The multicast routing for flow f in RCG can

be obtained by projecting MRTree back to RCG by expanding the corresponding arcs to

paths. A special case is when f is a unicast flow with source s and destination d. In this

case, MRG will just consist of two nodes, namely s and d, and one directed arc from s to

d. Therefore, the routing between s and d in RCG is simply a shortest path between s and

d.

After the path is determined, the routers and links on the chosen path are updated.

As an example, Figure 4.1(b) shows the RCG for rerouting the multicast flow e7.

For clarity, only part of the edges are shown for RCG. The MRG and MRTree for e7 are

shown in Figure 4.1(c) and (d) respectively. By projecting MRTree back to RCG, the

routing path for e7 is determined, namely e7 bifurcates in the source router R4 to reach

R6 and v6, then it is transferred over the network link between R4 to R2 to reach v2, and

57

then bifurcates to reach R5 and v5. The real physical connectivity between routers before

and after rip-up and rerouting e7 are also shown in Figure 4.1(e) and (f). From them,

we observe that the link between R4 and R5 and their corresponding ports are saved thus

the power consumptions are reduced after rerouting e7 by utilizing the existing network

resources for routing other flows.

This RIPUP-REROUTE process is repeated for all the flows. The results of this

procedure depends on the order that the flows are considered, so the entire procedure can

be repeated for several times to reduce the dependency of the results on flow ordering 1.

Once the path of each flow is decided, the size of each router, the links that connect the

routers are determined. Routers that have no traffic multiplexing or de-multiplexing are

deleted and links are reconnected. The remain routers and links constitute the network

topology. The total implementation cost of all the routers and links in this topology is

evaluated and the network topology is obtained.

4.2.3 Router Merging

After the physical network topology has been generated using RIPUP-REROUTE,

a router merging step is used to further optimize the topology to reduce the power consump-

tion cost. The same router merging algorithm as described in Section 3.6 and Algorithm 5

is used in RRRM.

As an example, the connectivity graphs before and after ROUTER-MERGING pro-

cedure for the example of Figure 4.1(a) are shown in Figure 4.2(a) and (b). It is shown that

after router merging, the network resources are reduced from 4 routers to 3 routers and the

total power consumption is reduced as well.

4.2.4 Complexity of the algorithm

For an application with |V | IP cores and |E| flows, the initial network construc-

tion step needs O(|E|) time. In the rip-up and reroute procedure, each flow is ripped-

up and rerouted once. The edge weight calculation for router cost graph takes O(|V |2).
1In the experiments, we’ve tried several flow ordering strategies such as largest flow first, smallest flow

first, random ordering etc., and we found the ordering of smallest flow first gave the best results. Thus we used
this ordering in our experiments. Also, we observed that repeating the whole RIPUP-REROUTE procedure
twice is enough to generate good results.

58

v5

v6v3
200

v1 400

100

v4

v2
200

v0

v5

v6v3
200

v1

400

100
v4

v2

200

v0

200

200

200

example

(a) Example.

R5

R6R3R1 R4

R2R0

Connectivity graph after initialization

200 200
200

200

200

100 400
100

100

(b) Initial connectivity.

R5

R6R3R1 R4

R2R0

RCG for ripup-reroute e7

0.35

0.25

0.47

0.80
0.80

0.75
0.75

0.40
0.70

0.35 0.75

0.40

0.70

0.72
0.35

0.70…
0.90
0.90

0.80
0.80

0.80
0.80

0.35

R5

R6R4

R2

0.70

0.40
0.70

0.47

0.75 0.45
0.75

0.70
0.70

0.35
0.72

Condensed multicast routing graph for flow e7
(c) RCG.

0.35

100

Condensed multicast routing tree for flow e7

R5

R6R4

R2 0.40

0.35

0.35

R5

R6R4

R2

0.70

0.40
0.70

0.47

0.75 0.45
0.75

0.70
0.70

0.35
0.72

(d) MRG.

0.35

100

Condensed multicast routing tree for flow e7

R5

R6R4

R2 0.40

0.35

0.35

R5

R6R4

R2

0.70

0.40
0.70

0.47

0.75 0.45
0.75

0.70
0.70

0.35
0.72

(e) MRTree.

R5

R6R3R1 R4

R2R0

400 200

400

200

100 400
100

100

Connectivity graph after ripup-reroute e3

(f) Connectivity before reroute e7.

R5

R6R3R1 R4

R2R0

400 200

400

300

100 400

100

Connectivity graph after ripup-reroute e7

(g) Connectivity after reroute e7.

Figure 4.1: Illustration of the RIPUP-REROUTE procedure.

59

Algorithm 7 RIPUP-REROUTE(G(V, E, π, λ), RCG, C, L)
Input: G(V, E, π, λ): CDG, RCG: router cost graph,

C: cost function, L: library of network components

Output: links, routers: links and routers of synthesized network topology

1: while need another round do

2: for all flow ek ∈ E in increasing order of λ(ek) do

3: delete path(ek) and release the link and router resources it occupied

4: update all edge weights in RCG for flow ek, according to power consumption of

the corresponding links and routers resources

5: MRG(ek) = ConstructMulticastRoutingGraph(RCG)

6: MTree(ek) = FindMulticastTree(MRG(ek))

7: path(ek) = Find paths from sk to dki ∈ Dk in MTree(ek)

8: Update link, BW_avail, routers for path(ek)

9: end for

10: end while

11: return links, routers

Algorithm 8 DirectedMinimumSpanningTree(G(N, A))
1: Discard the arcs entering the root if any; For each node other than the root, select the

entering arc with the smallest cost; Let the selected n− 1 arcs be the set S.

2: If no cycle formed, G(N, S) is a MST. Otherwise, continue.

3: For each cycle formed, contract the nodes in the cycle into a pseudo-node (k), and

modify the cost of each arc which enters a node (j) in the cycle from some node (i)

outside the cycle according to the following equation.

c(i, k) = c(i, j)− (c(x(j), j)−minj(c(x(j), j))

where c(x(j), j) is the cost of the arc in the cycle which enters j.

4: For each pseudo-node, select the entering arc which has the smallest modified cost;

Replace the arc which enters the same real node in S by the new selected arc.

5: Go to step 2 with the contracted graph.

60

R6R1 R4

R2

400 200

400

300

100 400

100

Connectivity graph before router merging

R1 R4

R2v0

400 200

400

300

100

500

v0

v3

v5

v3

v5

v6

400

(a) Before router merging.

R6R1 R4

R2

400 200

400

300

100 400

100

Connectivity graph before router merging

R1 R4

R2v0

400 200

400

300

100

500

v0

v3

v5

v3

v5

v6

400

(b) After router merging.

Figure 4.2: Illustration of the ROUTER-MERGING procedure.

For a multicast flow with m destinations, the construction of multicast routing graph takes

O((m+1)2|V |2) by finding shortest path between each pair of nodes. Then it takes O(|V |2)
to find the rooted directed minimum spanning tree as the multicast tree by using the Chu-

Liu/Edmonds algorithm. So the overall complexity of our algorithm is O(|E||V |2).

4.3 Experimental Results

4.3.1 Experimental Setup

We have implemented our proposed algorithm RRRM in C++. We also use Par-

quet [44] for the initial floorplanning step.

In all our experiments, we aim to evaluate the performance of our algorithm RRRM

on all benchmarks with the objective of minimizing the total power consumption of the

synthesized NoC architectures. We use the same power-performance simulator Orion and

applied the same design parameters as described in Chapter 3.

As already has been shown in the previous chapter, our previous Steiner-tree based

formulation and the proposed four algorithms already significantly outperformed regular

mesh and optimized mesh topologies. Specifically, the two heuristic algorithms CLUSTER

and DECOMPOSE could achieve similar results as the other probabilistic algorithms but

with faster execution times.

Therefore, in the experiments in this chapter, in order to evaluate the effectiveness

of our new algorithm, we applied RRRM on the same sets of benchmarks used in Chapter 3

and compared its synthesis results with the results of CLUSTER and DECOMPOSE. We

61

do not repeat here the comparisons with mesh-based topologies since our new formulation

already outperforms our earlier work. In particular, in order to emphasize the benefit and

efficiency of our new algorithm on large benchmarks, we pick up those benchmarks with

the number of cores larger than 15 and reported their results in this chapter. The results

show that the algorithm RRRM outperforms CLUSTER and DECOMPOSE in both power

consumption and performance with execution times two to three orders of magnitude faster.

The details of the results are discussed in the following sections.

The same two groups of benchmarks were used. The first group of benchmarks

was used to evaluate the performance of our algorithm on applications with only unicast

flows and the second group of benchmarks was used for applications with both unicast and

multicast flows.

All experimental results were obtained on a 1.5 GHz Intel P4 processor machine

with 512 MB of memory running Linux.

4.3.2 Comparison of results

The floorplans for the custom topologies synthesized by our tool using different al-

gorithms for one of the benchmark VOPD are shown in Figure 4.3. Figure 4.3(a) shows the

topology generated by RRRM. It consists of three routers with 0.040W power consump-

tion. Figure 4.3(b) shows the topology generated by CLUSTER and DECOMPOSE. Those

two algorithms generated the same topology for VOPD consisting of four routers with each

having a smaller size. Its total power consumption is 0.042W . Although the topology gen-

erated by RRRM has larger routers, it benefits from reducing one router, leading to lower

power for the overall network.

The synthesis results of our algorithm RRRM on all benchmarks at 70nm with

comparison to results using CLUSTER and DECOMPOSE are shown in Table 4.1. For all

benchmarks, the power results and the execution times of each algorithm, and power ra-

tios and execution time ratios of CLUSTER and DECOMPOSE over RRRM are reported.

The power results of all algorithms relative to RRRM are graphically compared in Fig-

ure 4.4(a). The results show that RRRM can efficiently synthesize NoC architectures that

minimize power consumption as well as achieve good performance. Among all 14 bench-

marks tested, RRRM can achieve better results than CLUSTER and DECOMPOSE for 12

62

(a) Topology by RRRM (b) Topology by CLUSTER and DECOMPOSE

Figure 4.3: VOPD custom topology floorplans synthesized by different algorithms

benchmarks. On average RRRM can achieve a 9% reduction in power consumption over

CLUSTER and a 17% reduction in power consumption over DECOMPOSE, respectively.

Moreover, due to the low complexity of RRRM, it works much faster and more ef-

ficient than CLUSTER and DECOMPOSE. The execution times of all algorithm relative to

RRRM are graphically compared in Figure 4.4(b). As can be seen from the results, RRRM

can obtain results for all benchmarks under 1 minute. Even for the largest benchmarks

tested with 64 cores and 164 flows, RRRM can finish within 35 seconds while it takes

CLUSTER over 5 hours to finish. On average RRRM is 1786 times faster than CLUSTER

and 57 times faster than DECOMPOSE. Its low complexity and very short execution time

makes RRRM more suitable and efficient for benchmarks with large sizes.

To evaluate the performance of the synthesized topologies, average hop count re-

sults for the benchmarks from the synthesized topology are reported in Table 4.2 and the

results of all algorithms relative to RRRM are graphically compared in Figure 4.4(c). Hop

counts correspond to the number of intermediate routers that a packet needs to pass through

from the source to the destination. The results show that RRRM can improve performance

of the synthesized topologies as well. In particular, the solutions obtained using RRRM

63

Table 4.1: NoC power and execution time results

103441.221.131531185761.141.05235.000.92416464B14M9
132021.100.96058788081.060.93015.000.87613656B13M8
221261.190.86892553851.040.7635.820.73212249B12M7
22681.450.774101731231.120.5973.070.53410042B11M6
26391.290.60594114301.120.5281.520.4708436B10M5
32201.190.4197924991.210.4260.630.3526830B9M4
72131.380.42213062351.140.3470.180.3055825B8M3

11771.130.29122001321.030.2660.060.2574820B7M2
10031.170.1761033311.270.1910.030.1503216B6M1
470.941.060.14265251311.040.1390.020.1344844B54in1
501.001.030.1243651731.000.1200.020.1204036B4V+M+M
620.621.250.05374571.250.0530.010.0432120B3M+P

1301.300.990.0901547150.940.0860.010.0912724B2V+M
970.970.960.1323207320.890.1230.010.1383325B1MMS

Ratio
/ RRRM

Time
(sec)

Ratio
/ RRRM

Power
(W)

ratio
/ RRRM

Time
(sec)

Ratio
/ RRRM

Power
(W)

Time
(sec)

Power
(W)

DECOMPOSECLUSTERRRRM

|E||V|LabelAppli.

Table-combo-power

Table 4.2: NoC hop counts results.

1.102.931.112.952.66B14M9
1.162.661.072.472.30B13M8
1.092.641.032.512.43B12M7
0.872.211.082.742.54B11M6
0.772.030.832.182.63B10M5
1.291.900.991.461.47B9M4
0.972.300.992.342.36B8M3
1.042.011.001.941.94B7M2
1.131.800.961.521.59B6M1
1.130.941.080.900.83B54in1
1.111.001.030.930.90B4V+M+M
1.190.621.190.620.52B3M+P
1.211.300.971.041.07B2V+M
0.840.971.051.211.15B1MMS

Ratio /RRRMAvg. HopsRatio /RRRMAvg. HopsAvg. Hopsapplication
DECOMPOSECLUSTERRRRM

label

Table-combo-hops

64

Table 4.3: NoC router area results.

1.015.611.105.545.05B14M9
1.085.190.984.814.90B13M8
1.084.240.993.923.95B12M7
0.943.361.213.562.93B11M6
0.983.011.143.062.68B10M5
0.902.411.392.681.93B9M4
1.002.031.142.031.78B8M3
1.011.611.021.591.56B7M2
1.061.201.271.140.90B6M1
1.000.861.100.860.78B54in1
1.000.751.040.750.72B4V+M+M
1.000.311.390.310.22B3M+P
0.980.530.980.540.56B2V+M
0.970.920.970.950.98B1MMS

Ratio / RRRMArea (mm2)Ratio /RRRMArea (mm2)Area(mm2)application
DECOMPOSECLUSTERRRRM

label

Table-combo-area

can on average achieve a 3% reduction in average hop counts over CLUSTER and a 7%

reduction in average hop counts over DECOMPOSE.

Finally, to evaluate the area costs of the synthesized solutions, we also used

Orion [31, 32] to estimate the areas of the routers in the synthesized architectures, using the

same 70nm technology used for power estimation. The area cost of a solution corresponds

to the sum of the router areas in the solution. The results are presented in Table 4.3 and their

relative results over RRRM are compared in Figure 4.4(d). Total area costs of all solutions

produced by RRRM are better than those produced by CLUSTER and DECOMPOSE. In

particular, on average, total area costs produced by RRRM are 12% better than those of

CLUSTER and 1% better than those of DECOMPOSE.

Acknowledgement

This chapter is in part a reprint of the material in the paper: Shan Yan, Bill Lin,

“Joint Multicast Routing and Network Design Optimization for Networks-on-Chip”, IET

Computers and Digital Techniques, accepted for publication, 2009. The dissertation author

was the primary author of the above paper.

65

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14

P
ow

er
 ra

tio
 o

ve
r R

R
R

M

RRRM CLUSTER DECOMPOSE

Fig-combo-power(a) Power

0

0

1

10

100

1000

10000

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14

E
xe

cu
tio

n
tim

e
ra

tio
 o

ve
r R

R
R

M

RRRM CLUSTER DECOMPOSE

0.01

0.1

Fig-combo-time(b) Execution time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14

A
vg

. h
op

s
ra

tio
 o

ve
r R

R
R

M

RRRM CLUSTER DECOMPOSE

Fig-combo-hops
(c) Hop count

Fig-combo-area

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14

R
ou

te
r a

re
a

ra
tio

 o
ve

r R
R

R
M

RRRM CLUSTER DECOMPOSE

(d) Area

Figure 4.4: Comparisons of all algorithms relative to RRRM.

Chapter 5

3D Application-Specific NoC

Architecture Synthesis

In this chapter, we present extensions to our proposed NoC synthesis algorithms

to support 3D chip designs. In particular, we propose extensions to the rip-up and reroute

algorithms presented in Chapter 4 because they generally produced better results with less

CPU times than the algorithms presented in Chapter 3 based on set partitions and Steiner

trees.

The rest of this chapter is organized as follows. Section 5.1 provides an overview

of the 3D NoC design problem. Section 5.2 presents thaccurate power and delay models

for 3D wiring and routers. Section 5.3 describes our 3D synthesis algorithm RRRM-3D.

Finally, Section 5.4 presents experimental results.

5.1 Overview

The advent and increasing viability of 3D silicon integration technology have

opened a new horizon for new on-chip interconnect design innovations. In particular,

there has been considerable discussion in recent years on the benefits of three dimen-

sional (3D) silicon integration in which multiple device layers are stacked on top of

each other with direct vertical interconnects tunneling through them using through-silicon

vias [83, 84, 85, 86] (Fig. 5.1). 3D integration promises to address many of the key chal-

lenges that arise from the semiconductor industry’s relentless push into the deep nano-scale

66

67

~5
0

um

La
ye

r X
+1

La
ye

r X

~4x4 um

~1.05x1.05 um Top View

4 um 4 um

4
um

4
um

Via Pad

Via

Silicon Substrate

Metal Layer

1.05 um

1.
05

 u
m

Figure 5.1: 3D silicon integration [100].

regime. First, as feature sizes continue to shrink, and integration densities continue to in-

crease, interconnect delays have become a critical bottleneck in chip performance. By

providing a third dimension of interconnect, wire delays can be substantially reduced by

enabling greater spatial locality. Second, for many high-performance applications, such

as video or graphics processing, the performance bottleneck is often in the chip-to-chip

or chip-to-memory communication. Three dimensional integration offers the compelling

advantage that massive amounts of bandwidth can be provided between device layers with-

out incurring the usual latency penalty, leading potentially to new architectures that can

achieve much higher performance. Third, fabrication technologies specific to functions

such as RF circuits, memories, or optoelectronic devices are often incompatible with the

processing steps needed for high performance logic devices. Three dimensional intercon-

nect provides a flexible way to integrate these disparate technologies into a single systems-

on-chip (SoC) design. Recent advances in 3D technology in the area of heat dissipation and

micro-cooling mechanisms have alleviated earlier thermal viability and reliability concerns

regarding stacked device layers.

In this chapter, we investigate the problem of designing application-specific 3D-

NoC architectures for custom SoC designs. NoC design in 3D chips imposes new con-

straints and opportunities compared to that of a 2D NoC design. Current literature has

focussed on regular 3D mesh NoC architectures [98, 99, 100], which is appropriate for

regular 3D processor designs [88, 89, 91]. However, in the case of designing application-

specific 3D NoC architectures for custom SoC designs, there are many choices that depend

68

on the 3D floorplanning of cores, traffic requirements, and accurate power and delay mod-

els for 3D wiring. In our work, we derive accurate power models for 3D interconnects

and routers. Then we extend our Ripup-Reroute-and-Router-Merging (RRRM) algorithm

into the 3rd dimension to optimize topologies for 3D applications. Our 3D NoC design

flow integrates 3D floorplanning and our synthesis process is both performance and power

consumption aware.

5.2 3D Design Models

Power dissipation is a critical issue in 3D circuits due to the increased power density

of stacked ICs and the low conductivity of the dielectric layers between the device layers.

Therefore, designing custom 3D-NoC topologies that offer low power characteristics is of

significant interests.

The different power consumption components that are comprised in 3D-NoC

topologies are routers, horizontal interconnects that connect modules in the same 2D layer,

and the through-silicon vias (TSVs) that connect modules or horizontal interconnects on

different layers.

We will discuss the details of modelling these components in the following sections.

5.2.1 3D Interconnect Modelling

In 3D-NoCs, interconnect design imposes new constraints and opportunities com-

pared to that of 2D NoC designs. There is an inherent asymmetry in the delay and power

costs in a 3D architecture between the vertical and the horizontal interconnects due to dif-

ferences in wire lengths. The vertical TSVs are usually few tens of µm in length whereas

the horizontal interconnects can be thousands of µm in length. Consequently, extending a

traditional 2D NoC fabric to the third dimension by simply adding routers at each layer and

connecting them using vertical vias is not a good option, as router latencies may dominate

the fast vertical interconnect. Hence, we explore an alternate option: a 3D interconnect

structure that connects modules on different layers as shown in Fig. 5.2(a) and we derive

an accurate model for it.

As discussed in Chapter 2, the target clock frequency is provided to our 3D-NoC

69

synthesis design flow as a design parameter. However, depending on the network topology,

long interconnects may be required to implement network links between routers, which

may have wire delays that are larger than the target clock frequency. To achieve the target

frequency, repeaters may need to be inserted. In the 2D design problem, interconnects can

be modelled as distributed RC wires. One way to optimize the interconnect delay is to

evenly divide the interconnect into k segments with repeaters inserted between them that

are s times as large as a minimum-sized repeater. When minimizing power consumption is

the objective, the optimum size sopt and number kopt of repeaters that minimize power con-

sumption while satisfying the delay constraint can be determined for the interconnect [33].

For the 3D interconnect structure, we extended this distributed RC model. As shown in

Fig. 5.2(b), a 3D interconnect is divided into k segments by repeaters. Among the k seg-

ments, k − 1 segments are part of the horizontal interconnect with the same structure. The

other one is a different structure with two horizontal parts connected by a vertical via. The

delay and power consumption per bit of this interconnect can be modelled using the El-

more model, as in [33, 34, 98]. In order to take the vertical via into account for the delay

and power calculation of the entire interconnect, we first consider the interconnect as k

segments with the same structure. We use the methodology described in [33] to find sopt

and kopt for an interconnect with specific length to minimize power while satisfying the

delay constraint1. After that, the delay and power of each segment are known. Given the

fixed length and the physical parameters of the via, the detailed structure of the segment

including the via which gives the same delay as the delay of the original segment without

via can be determined by properly choosing the length of the horizontal wire parts in this

segment. Finally, the total length of the 3D interconnect can be adjusted to the original

length by evenly adjusting the length of each segment.

Besides deciding the segment structure with vertical via, the via position on the

interconnect also needs to be determined. That is, which wire segment is selected to include

the via. As an example, in order to determine the influence of via positioning on the delay

and power of the entire 3D interconnect, we performed experiments to evaluate the delay

and power of an 8mm 3D interconnect with a via length of 150µm under different via

positions. In the experiments, the physical and electrical parameters in 70nm technology

are used and are listed in Table 5.1. The horizontal wires are implemented on the global

1Since inserting TSV adds delay, we tighten the delay constraints by some extent to get valid solutions.

70

(a) 3D interconnect. (b) Distributed RC model with repeaters

Figure 5.2: 3D interconnect model.

metal layers and their parameters are extracted from IRTS [2]. The parameters of vertical

vias are obtained from [98]. For the vertical via, the length of 50µm is assumed for a via

that connects adjacent layers.

For a 3D interconnect of 8mm in length, if the target frequency is 1GHz, then the

power optimum solution using the methodology described in [33] is to divide the intercon-

nect into 3 segments. Thus, there are 3 possible via positions with 3 interconnect structures

correspondingly, which are shown in Fig. 5.3. The optimization result of each structure

together with the result of the interconnect without vertical via (labelled as 2D-wire) are

shown in Table 5.2. The differences of delay and power results of all structures relative

to the 2D-wire results are also listed. The results show that the influence of the vertical

via on the total delay and power consumption of the entire interconnect is very small. The

150µm via results in 0.25% increase in delay and 2.85% increase in power over the 8mm

interconnect. The results also show that the position of via on the interconnect has little

effect on the delay and power. All the structures result in the same total delay and power.

Thus, for our 3D-NoC synthesis algorithm, we can safely choose to position the via in the

first segment of the interconnect for all 3D interconnects in the synthesized NoC topology

for the purpose of computing the interconnect power costs.

In our 3D-NoC synthesis design, we use the above 3D interconnect model to eval-

uate optimum power consumption of interconnects with different wire lengths under the

given design frequency and delay constraint. These results are provided to the design flow

in the form of a library. We emphasize that the focus of this work is on 3D-NoC synthesis

algorithms. We readily admit that 3D interconnect optimization is a complex problem and

a subject of separate research. New or alternative 3D interconnect models can be easily

used with our synthesis algorithms and design flow.

71

(a) 2D-wire. (b) Model A.

(c) Model B. (d) Model C.

Figure 5.3: Different structures for an 8mm 3D interconnect.

Table 5.1: Interconnect Parameters

Interconnect Structure
Parameter

Electrical Physical

Horizontal Bus
ρ = 2.53µΩ · cm kILD= 2.7 w= 500nm s = 500nm
rh= 46Ω/mm ch = 192.5fF/mm t = 1100nm h = 800nm

Vertical Bus
ρ = 5.65µΩ · cm rv = 51.2Ω/mm w= 1050nm Lvia= 50µm
cv = 600fF/mm

Table 5.2: Power and delay comparison of 3D interconnect models

Model
Power Delay

(mW) % diff to 2D-wire (ns) % diff to 2D-wire
2D-wire 0.3909 0.00% 0.1951 0.00%

A 0.4020 2.85% 0.1956 0.25%
B 0.4020 2.85% 0.1956 0.25%
C 0.4020 2.85% 0.1956 0.25%

72

5.2.2 Modelling Routers

To evaluate the power of the routers in the synthesized NoC architecture, we ex-

tended the router power model in 2 dimensions to 3 dimensions. The routers are still

located on a 2D layer. The ports of routers on the same layer are connected by horizontal

interconnects whereas the ports of routers on different layers are connected by 3D inter-

connects. We again use the NoC power-performance simulator Orion [31, 32] to estimate

the detailed power characteristics for different power components of a router for different

input/output port configurations. The power per bit values are also used as the basis for the

entire router power estimation under different configurations.

5.3 Design Algorithms

We extend our Ripup-Reroute-and-Router-Merging (RRRM) algorithm into 3D

(RRRM-3D). As discussed in Chapter 4.2.2, the entire process of RRRM-3D is decom-

posed into the inter-related steps of constructing an initial network topology, rip-up and

rerouting flows to design the network topology, inserting the corresponding network links

and router ports to implement the routing, and merging routers to optimize network topol-

ogy based on design objectives.

The RIPUP-REROUTE-3D algorithm for routing flows and the ROUTER-

MERGING-3D algorithm to optimize topologies are based on using the above proposed

power models of 3D network links and router ports as cost evaluation criteria. The details

of the algorithm are similar to RRRM, which is discussed in Algorithm 6-8 and Algo-

rithm 5. They are not repeated here.

5.4 Experimental Results

5.4.1 Experimental Setup

We have implemented our proposed algorithm RRRM-3D in C++. In our experi-

ment, we aim to evaluate the performance of our proposed algorithm RRRM-3D on bench-

marks with the objective of minimizing the total power consumption of the synthesized

73

NoC architectures under the specific performance constraint for the traffic flows. The per-

formance constraint is specified in the form of average hop counts of all the traffic flows

in the benchmarks. The total power consumption includes both the leakage power and the

dynamic switching power of all network components. We use the same power-performance

simulator Orion and applied the same design parameters as described in Chapter 3.

All existing published benchmarks are targeted to 2D architectures. However, their

sizes are not big enough to take advantage of 3D network topologies. In the absence of

published 3D benchmarks with a large number of available cores and traffic flows, we gen-

erated a set of synthetic benchmarks by extending the NoC-centric bandwidth-version of

Rent’s rule proposed by Greenfield et al. [46]. They showed that the traffic distribution

models of NoC applications should follow a similar Rent’s rule distribution as in conven-

tional VLSI netlists. We used this NoC-centric Rent’s rule [46, 47] to generate large 3D

NoC benchmarks for 3D circuits with varying number of cores in each layer and flows of

varying data rate distributions. The benchmarks are generated for 3D circuits with 3 layers

and 4 layers respectively with face-to-back bounding between each layer. The total number

of cores for these benchmarks are ranging from 48 to 120. The total number of flows are

ranging from 101 to 280.

Our work is among the first in the area of application-specific NoC synthesis of

3D network topologies. In the absence of previously published work on this area, direct

comparison with others’ work is unavailable. To evaluate the effectiveness of our proposed

algorithm, we have generated a full 3D mesh implementation for each benchmark for com-

parisons. In a full 3D mesh implementation, each module is connected to a router with 7

input/output ports, with 1 local port, 4 ports connecting to the four directions in the same

layer, and 2 ports connecting to the upper and lower adjacent layers. Packets are routed

using XY Z routing over the mesh from source to destination. We also generated a variant

of the basic mesh topology called optimized mesh (opt-mesh) by eliminating router ports

and links that are not used by the traffic flows.

All experimental results were obtained on a 1.5GHz Intel P4 processor machine

with 512MB memory running Linux.

74

Table 5.3: 3D NoC synthesis results.

3.213.2333.215.67011440.812.590.440.251.4262801204B9
3.522.9793.524.9754460.632.220.450.271.3352481083B8
3.062.4613.064.5994430.882.680.440.241.0832281004B7
3.112.2543.114.0322350.852.650.480.271.089203903B6
2.751.6372.753.5501370.822.250.530.240.867177804B5
2.691.6782.693.269790.882.380.510.260.850169753B4
3.401.7123.402.769370.602.050.460.280.788149644B3
2.771.3262.772.530150.992.730.490.260.654133603B2
2.540.9902.541.95140.982.480.500.250.497101483B1

Avg.
Hops

Power
(W)

Avg.
Hops

Power
(W)

Time
(sec)

Ratio to
mesh/opt

Avg.
Hops

Ratio to
opt-mesh

Ratio
to mesh

Power
(W)|flows||cores||L|

opt-meshmeshRRRM

Bench.

RRRM table-result

5.4.2 Comparison of results

The synthesis results of our algorithm on all benchmarks at 70nm with comparison

to results using mesh and opt-mesh topologies are shown in Table 5.3. For each algorithm,

the power results and the average hop counts are reported.

In the experiments, we used the average hop count results of 3D mesh topologies

as the performance constraints feeding to RRRM-3D for each benchmark. The average

hop count results for the different benchmarks of 3D mesh topologies reported in Table 5.3

are small, all under 3.5. The average hop count results of RRRM-3D on all benchmarks

relative to opt-mesh/mesh implementation are graphically compared in Fig. 5.4(b). The

results show that the results of RRRM-3D satisfies constraints for all the benchmarks. On

average, RRRM-3D can achieve 17% average hop count reduction over the mesh topology.

The power consumption results of RRRM-3D and opt-mesh relative to mesh im-

plementations are graphically compared in Fig. 5.4(a). The results show that RRRM-3D

can efficiently synthesize NoC architectures that minimize power consumption under the

performance constraint. It can achieve substantial reduction in power consumption over the

standard mesh and opt-mesh topologies in all cases. In particular, it can achieve on average

a 74% reduction in power consumption over standard mesh topologies and a 52% reduction

over the optimized mesh topologies.

The execution times of RRRM are also reported in Table 5.3. The results show that

RRRM works very fast. For the largest benchmarks with 120 cores and 280 flows, it can

finish within 20 minutes.

75

B1 B2 B3 B4 B5 B6 B7 B8 B9
0

0.2

0.4

0.6

0.8

1

P
ow

er
 r

at
io

 o
ve

r
m

es
h

RRRM
opt−mesh
mesh

(a) Power

B1 B2 B3 B4 B5 B6 B7 B8 B9
0

0.2

0.4

0.6

0.8

1

A
vg

. h
op

s
ra

tio
 o

ve
r

op
t/m

es
h

RRRM
opt−mesh/mesh

(b) Hop count

Figure 5.4: Comparisons of all algorithms on benchmarks.

76

Acknowledgement

This chapter is in part a reprint of the material in the paper: Shan Yan, Bill Lin,

“Design of Application-Specific 3D Network-on-Chip Architectures”, The International

Conference on Computer Design (ICCD 2008), 2008. The dissertation author was the

primary author of the above paper.

Chapter 6

Design of Application-Specific NoC for

Multiple Usage Scenarios

6.1 Overview

Increasingly, multiprocessor SoCs are designed to support different usage scenarios

since such SoC designs may be employed in different products or in products with different

operation modes. For these embedded applications, the NoC must be designed to satisfy the

communication characteristics and performance constraints of all usage scenarios consid-

ered. Although a regular full-mesh architecture is able to support multiple traffic profiles,

custom NoCs designs tailored and optimized for a given set of traffic profiles can signif-

icantly outperform a regular mesh architecture in terms of power, performance, and area.

Prior work has either only considered a single traffic profile in their custom NoC synthesis

formulations [24, 29, 22, 23, 25, 28, 57, 58] or has assumed a given or regular network

topology for supporting different usage scenarios [59, 60].

In this chapter, we present extensions to the RRRM algorithms presented in Chap-

ter 4 to synthesize custom NoC architectures that are optimized for a given set of traffic

profiles. These traffic profiles correspond to the communication requirements for different

usage scenarios.

77

78

6.2 Problem and Formulation

The composing parts of the input specification to our design flow is similar as ones

discussed in previous chapters: the first part is a set of application specifications, where

each application specification specifies a list of tasks and the corresponding communica-

tion characteristics and performance constraints between them. The usage scenarios for

these applications are also provided, which describe which applications may be running

concurrently. The second part is the floorplan for the modules that will be used to imple-

ment the application tasks. These modules can correspond to a variety of programmable

processors and intellectual property (IP) cores. In particular, the floorplan specifies the

locations of these modules. Finally, the third part of the input specification provides the

task-to-module mapping1.

Given the communication requirements between tasks, the usage scenarios, the

floorplan, and the task-to-module mapping, a set of traffic profiles between modules can

be derived that specifies the inter-module communication demands. Each of these derived

traffic profile is captured in a corresponding graph representation called a Communication

Demand Graph (CDG), which is defined in Chapter 2.

For N usage scenarios, we have N CDGs, G1, G2, . . . , GN .

Based on the optimization goals and cost functions specified by the user, the out-

put of our NoC synthesis problem is an optimized custom network topology with pre-

determined routes for the specified traffic flows of each application on the network such

that the data rate requirements for each usage scenario are satisfied.

As usual, to obtain the best solutions with minimum power consumption, accurate

power models for interconnects and routers are derived. They are provided to the synthesis

design flow as a library and utilized by the synthesis algorithms as evaluation criteria. The

application-specific NoC synthesis problem for multiple traffic profiles can be formulated

as follows:

Input:

• The N communication demand graphs G1(V1, E1, π1, λ1), . . ., GN (VN , EN , πN , λN)

for N usage scenarios.
1Often the task-to-module mapping is determined by the designer based on knowledge about the design

and/or based on the specific hardware capabilities of particular processors or IP cores and the specific required
functionalities of the different tasks.

79

• The NoC network component library Φ(I, J), where I provides the power and area

models of routers with different sizes, and J provides power models of physical links

with different lengths.

• The target clock frequency, which determines the delay constraint for links between

routers.

• The hop count constraints H1, . . ., HN for N usage scenarios.

Please note that the last three elements of the input are the same as the ones for a

single usage scenario NoC synthesis problem.

Output:

• A NoC architecture T (R,L, C), where R denotes the set of routers in the synthesized

architecture, L represents the set of links between routers, and a function C : V → R

that represents the connectivity of a processor to a router.

• Sets of ordered paths P1, P2, . . . , PN , where each pij ∈ Ps = (ri, rj, . . . , rk),

ri, . . . , rk ∈ R, represents a route for a traffic flow e(vi, vk) ∈ Es for usage sce-

nario Gs.

Objective:

• Power minimization for the synthesized NoC architecture.

6.3 Multi-Profile Network Design Algorithms

We present in this section our custom NoC synthesis algorithm for supporting mul-

tiple usage scenarios. The algorithm is based on the Ripup-Reroute-and-Router-Merging

(RRRM) procedure that was described in Chapter 4 for the single traffic profile case. To

support multiple usage scenarios, we present a multi-traffic-profile version of RRRM called

Multi-Profile-RRRM (MPR).

6.3.1 Initial network construction

The details of MPR are described in Algorithm 9. MPR takes a set of CDGs, an

evaluation function, and the hop count constraint of each usage scenario as inputs, and it

80

generates an optimized network architecture as output. It starts with initializing a network

topology by a simple router allocation and flow routing scheme. It then uses a procedure

of rip-up and rerouting of flows to refine and optimize the network topology. After that, a

router merging step is performed to further optimize the topology to obtain the best result.

In order to support all usage scenarios, we consider all flows from all N CDGs in the rip-up

and reroute procedure, and we design a network that can support any of the N CDGs. For

this, we introduce a notion of exclusive flows.

Definition 5 (Exclusive Flows). Two flows f1 and f2 are said to be exclusive, denoted as

f1#f2, if they cannot simultaneously occur.

Definition 6 (Exclusive Flow Sets). Two disjoint sets F1 and F2 are said to be exclusive if

∀f1 ∈ F1,∀f2 ∈ F2, f1#f2

Flows from two different traffic profiles form a disjoint exclusive flow sets.

The initial router allocation steps of the MPR procedure are the same as the ones

of the RRRM. After an initial router allocation, a Routing Cost Graph (RCG)(Which is

defined in Chapter 4) is generated (Line 2).

Following the initial router allocation, an initial network topology is constructed

using the InitialNetworkConstruction() procedure. Each flow ek = (sk, dk) in each CDG is

routed using a direct connection from router rsk
to router rdk

, where ri is the router that core

i connects to, and the path is saved in path(ek). The links and router ports are configured

and saved. The flows that use such links and router ports are updated. A set of exclusive

flow sets are associated with each link and router port. Flows from different applications

are saved in different exclusive flow sets. Flows from the same application are in the same

flow set. The bandwidth contributions from different traffic profiles are updated separately

for links and routers as well.

6.3.2 Flow Ripup and Rerouting

Once the initial network is constructed and the initial flow routing is done, the key

procedure of the algorithm, MP-RIPUP-REROUTE, is invoked to route the flows and to

find an optimized network topology. The details of MP-RIPUP-REROUTE are described

81

Algorithm 9 MPR(G, C, L, H)
Input: G = {G1, G2, . . . , GN}: CDGs, C: cost function,

L: library of network components,

H = {H1,H2, . . . ,HN}: hop count constraints

Output: T : synthesized network topology

1: R = InitialRouterAllocation(G)

2: RCG = ConstructFullyConnectedGraph(R)

3: (links, routers) = InitialNetworkConstruction(G, RCG)

4: (links, routers) = MP-RIPUP-REROUTE(G,RCG, C, L, H)

5: cost = EvaluatePowerConsumption(links, routers)

6: RouterMerging(cost, links, routers)

7: T = ObtainBestTopology(links, routers)

8: return T

InitialNetworkConstruction(G, RCG)

1: for all CDG Gi ∈ G do

2: for all flow ek = (sk → dk) ∈ Ei do

3: route ek using a direct connection between rsk
and rdk

4: update exclusive flow sets routed on rsk
, rdk

and link(rsk
, rdk

)

5: update bandwidths of routers rsk
, rdki

, link(rsk
, rdki

)

6: path(ek) = (rsk
→ rdk

)

7: if link(rsk
, rdk

) not meet delay constraint, update wgt(rsk
, rdk

) = ∞ in RCG

8: end for

9: end for

in Algorithm 10. In the MP-RIPUP-REROUTE procedure, given the hop count constraints

of each application, each flow routing step is formulated as a performance constrained

shortest path problem.

When a flow is ripped-up and rerouted, its current path is deleted and the links and

router ports resources it occupies are released (Line 4). Then based on the current network

connectivity and resources occupation the RCG related to this flow is built and the weights

of all edges in RCG are updated (Line 5).

In order to support multiple traffic profiles, when calculating the weights of the

edges, we separate the cost calculation into a static component, and a dynamic component.

The static costs are caused by the installations of routers and links. They are related to the

leakage power of routers and links. As long as a router port or a link needs to be installed to

support an application, The static cost is calculated as appropriate. The dynamic costs are

82

caused by routing flows on the routers and links. They are related to the dynamic power of

routers and links which are the functions of traffic data rates. For the dynamic component,

the dynamic cost for each application (exclusive flow set) is computed separately. The

maximum dynamic power cost among all applications is taken as the worst-case dynamic

cost since only one application can run at a time. In order to do this, for each router port

and link, the exclusive flow sets for flows routing through them are maintained and tracked.

In particular, for every pair of routers in RCG, the cost of using those routers and the link

connecting them is evaluated. This cost depends on the sizes of the routers, the traffic

already routed on the routers and the connectivity of the routers to other routers. It also

depends on whether an existing physical link will be used or a new physical link needs

to be installed. If there are already router ports and links that can support the traffic, the

marginal cost of reusing those resources is calculated. Otherwise, the cost of opening new

router ports and installing new physical link to support the traffic is calculated. The cost is

assigned as edge weight to the edge connecting the pair of routers in RCG. If the physical

links used to connect the routers cannot satisfy the delay constraints, a weight of infinity is

assigned to the corresponding edges in RCG.

Once the weights are assigned to all edges, the least cost path that satisfy the hop

counts constraint of the flow is chosen for routing that flow using the H-hops shortest paths

algorithm proposed in [61]. The H-hops shortest paths problem is defined as follow.

Definition 7 (H-hops Shortest Paths Problem). For a given graph G(N, E), a source node

s ∈ N , and a maximal hop count H , find the least cost h-hop path from s to every destina-

tion node u ∈ N , for each hop count value h, 1 ≤ h ≤ H .

After the path is determined, the routers and links on the chosen path are updated.

This MP-RIPUP-REROUTE process is repeated for all flows. The result of this

procedure depends on the order that the traffic profiles and flows are considered. In our

implementation, we allow users to define the priority of the applications so that the appli-

cations with higher priority can be rip-up and rerouted before the applications with lower

priority. And the entire procedure can be repeated for several times for each application

to reduce the dependency of the results on flow ordering. Once the path of each flow is

decided, the size of each router, the links that connect the routers are determined. Routers

that have no traffic multiplexing or de-multiplexing are deleted and links are reconnected.

83

The remaining routers and links constitute the network topology. The total implementation

cost of all the routers and links in this topology is evaluated and the network topology is

obtained.

Algorithm 10 MP-RIPUP-REROUTE(G, RCG, C, L,H)
Input: G = {G1, G2, . . . , GN}: CDGs, RCG: router cost graph, C: cost function, L: library of network

components,

H = {H1,H2, . . . ,HN}: hop count constraints

Output: links, routers: links and routers of synthesized network

1: while need another round do

2: for all Gi ∈ G in descending order of the priority do

3: for all flow ek ∈ Ei in increasing order of λ(ek) do

4: delete path(ek) and release the link and router resources it occupied

5: update exclusive flow sets on the link and router ports

6: update all edge weights in RCG for flow ek, according to power consumption of the correspond-

ing links and routers resources

7: (P 1(sk, dk),P 2(sk, dk),. . .,PHi(sk, dk)) = H-hops-ShortestPaths(Gi, sk, dk,Hi)

8: path(ek) = least-cost path in (P 1(sk, dk), P 2(sk, dk),. . .,PHi(sk, dk))

9: Update link,BW_avail, routers for path(ek) and update exclusive flow sets on them

10: end for

11: end for

12: end while

13: return links, routers

Finally, after the physical network topology has been generated using MP-RIPUP-

REROUTE, a greedy router merging step is used to further optimize the topology to reduce

the power consumption.

6.4 Evaluation

6.4.1 Experimental Setup

We have implemented our proposed algorithm MPR in C++. In all our experi-

ments, we aim to evaluate the performance of MPR on all benchmarks with the objective

of minimizing the total power consumption of the synthesized NoC architectures under the

performance constraints to support multiple traffic profiles. The total power consumption

84

0.00

0.20

0.40

0.60

0.80

1.00

1.20

SoC1 SoC2 SoC3 NAS1 NAS2 NAS3 NAS4

R
el

at
iv

e
Av

er
ag

e
H

op
 C

ou
nt

s

MPR mesh

Figure 6.1: Hop count comparisons of MPR vs. regular mesh on benchmarks.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

SoC1 SoC2 SoC3 NAS1 NAS2 NAS3 NAS4

R
el

at
iv

e
Po

w
er

 C
on

su
m

pt
io

n

MPR mesh

Figure 6.2: Power comparisons of MPR vs. regular mesh on benchmarks.

85

0.00

0.20

0.40

0.60

0.80

1.00

1.20

SoC1 SoC2 SoC3 NAS1 NAS2 NAS3 NAS4

R
el

at
iv

e
R

ou
te

r A
re

a

MPR mesh

Figure 6.3: Area comparisons of MPR vs. regular mesh on benchmarks.

includes both the leakage power and the dynamic switching power of all network compo-

nents. We use the same power-performance simulator Orion and applied the same design

parameters as described in Chapter 2.

Table 6.1: Characteristics for Five NAS Parallel Benchmarks

720121102^3BSP-B-12138464102^3BSP-B-64SP
920128256^3BMG-B-12840864256^3BMG-B-64MG
466128102^3BLU-B-12822464102^3BLU-B-64LU
64012875000BCG-B-1282566475000BCG-B-64CG
726121102^3BBT-B-12138464102^3BBT-B-64BT
2163664^3ASP-A-36961664^3ASP-A-16Pentadiagonal solver (SP)
17636256^3AMG-A-367216256^3AMG-A-16Multigrid (MG)
1043664^3ALU-A-36481664^3ALU-A-16LU solver (LU)
1283614000ACG-A-36481614000ACG-A-16Conjugate gradient (CG)
2163664^3ABT-A-36961664^3ABT-A-16block tridiagonal solver (BT)

comm# ProcSizeClassLabel# comm# ProcSizeClassLabelBenchmark

128x-B-121,x-B-1285NAS4
64x-B-645NAS3
36x-A-365NAS2
16x-A-165NAS1
25MMS, VOPD,MPEG4,MWD,PIP5SoC3
8PIP, H263, MP3enc, MP3dec, H263dec5SoC2
12VOPD, MPEG4,MWD,G5,MMdec5SoC1

ProcessorsBenchmarks# BenchBench groupTwo sets of benchmarks were used to evaluate the proposed algorithm. The first set

of benchmarks are real SoC applications used beforeWe group those applications into three

multiple traffic profile groups according to their sizes, each consisting of several applica-

tions. The second set of benchmarks are NAS parallel benchmarks [62]. We ran the class A

benchmarks with 16 and 36 processes and class B benchmarks with 64 and 121 processes

(for BT and SP) or 128 processes (for other six benchmarks). The traffic patterns were then

extracted using Intel Trace Analyzer and Collector 7.1 on a Linux platform [63]. Among

the eight benchmarks, we excluded EP, FT and IS in our experiments because there were

too few communications among the processes. Table 6.1 lists the characteristics of the

86

Table 6.2: Multiple Traffic Profile Benchmarks

720121102^3BSP-B-12138464102^3BSP-B-64SP
920128256^3BMG-B-12840864256^3BMG-B-64MG
466128102^3BLU-B-12822464102^3BLU-B-64LU
64012875000BCG-B-1282566475000BCG-B-64CG
726121102^3BBT-B-12138464102^3BBT-B-64BT
2163664^3ASP-A-36961664^3ASP-A-16Pentadiagonal solver (SP)
17636256^3AMG-A-367216256^3AMG-A-16Multigrid (MG)
1043664^3ALU-A-36481664^3ALU-A-16LU solver (LU)
1283614000ACG-A-36481614000ACG-A-16Conjugate gradient (CG)
2163664^3ABT-A-36961664^3ABT-A-16block tridiagonal solver (BT)

comm# ProcSizeClassLabel# comm# ProcSizeClassLabelBenchmark

128x-B-121,x-B-1285NAS4
64x-B-645NAS3
36x-A-365NAS2
16x-A-165NAS1
25MMS, VOPD,MPEG4,MWD,PIP5SoC3
8PIP, H263, MP3enc, MP3dec, H263dec5SoC2
12VOPD, MPEG4,MWD,G5,MMdec5SoC1

ProcessorsBenchmarks# BenchBench group

rest five benchmarks that were used in the experiments with different class type and num-

ber of processes configurations. Then for each number of processes, we grouped all five

benchmarks together into multiple traffic profile benchmarks. All the multiple traffic profile

benchmarks used in our experiments from these two sets are summarized in Table 6.2.

For the two sets of benchmarks, we mapped each benchmark onto a chip-

multiprocessor architecture where the number of processors is equal to the maximum num-

ber of tasks that a usage scenario for that benchmark will require. These processors are

arranged into a two-dimensional rectangular floorplan. For the task-to-module mapping,

we implemented a simulated annealing based algorithm for deciding on the assignment

of tasks to processors. We employed a simple metric for modeling the communicating

costs between communicating processors based on the bandwidth requirements of the cor-

responding flows, and we used this metric in the simulated annealing procedure to find a

task-to-module mapping that minimizes the total communication cost. Then we derived

the communication demand graphs for the different usage scenarios based on these task-

to-module mappings, with the derived communication demand graphs serving as inputs to

our NoC synthesis algorithms.

To evaluate the effectiveness of MPR, we generated a regular mesh implementation

for comparison. We assumed the same rectangular processor floorplans and task-to-module

mappings that were used in our custom NoC generations. In a mesh implementation, each

processor is connected to a router with 5 input/output ports, with 1 local port and 4 ports

connecting in four directions. Packets are routed using XY routing over the mesh from

source to destination.

87

6.4.2 Comparison of Results

Table 6.3 shows the synthesis results of MPR on all multiple traffic profile bench-

marks at 70nm with comparisons to results using mesh topologies. For each algorithm,

the average hop counts, the power results, and the router areas of the synthesized NoC

topologies of each benchmark group are reported.

Table 6.3: NoC synthesis results for multiple traffic profiles.

45.094.6614.8440.5223.330.974.510.9013.322NAS4
14.233.682.8080.517.220.953.490.732.063NAS3
7.503.441.3050.533.980.893.050.911.193NAS2
2.892.650.4820.461.330.952.530.760.367NAS1
4.932.530.6690.311.530.932.360.370.245SoC3
1.122.740.1530.370.410.862.360.410.062SoC2
2.012.940.2990.430.870.692.030.490.148SoC1

Router Area
(mm2)Hops

Power
(W)

Ratio to
mesh

Router Area
(mm2)

Ratio to
meshHops

Ratio to
mesh

Power
(W)

Benchmark
group

meshMPR

In our experiments, we used the average hop count results of each traffic profile over

a mesh topology as the performance constraints considered by MPR for each benchmark.

The average hop count results of MPR on all benchmarks relative to mesh implementations

are graphically compared in Fig. 6.1. The results show that the solutions produced by MPR

are able to satisfy the provided performance constraints for all benchmarks. On average,

MPR can achieve a 11% average hop count reduction over the mesh topology.

The power consumption results of MPR relative to mesh implementations are

graphically compared in Fig. 6.2. The results show that MPR can efficiently synthesize

NoC architectures that minimize power consumption under performances constraints to

support multiple traffic profiles for both SoC and NAS-parallel benchmarks. It can achieve

substantial reduction in power consumption over standard mesh topologies in all cases. In

particular, it can achieve on average a 35% reduction in power consumption over standard

mesh topologies for all benchmarks. It is worth mentioning that for the SoCs benchmark

sets where each module only needs to communicate with a small number of modules, the

application-specific NoC topologies are more appropriate for supporting multiple traffic

profiles. On average, our algorithm can achieve a 58% reduction in power consumption

over mesh topologies. Even for the communication-intensive parallel benchmarks in the

NAS benchmark suite, an application-specific NoC architecture can be significantly better

88

than a regular mesh. On average, our algorithm can achieve a 17% reduction in power

consumption over mesh topologies on these NAS benchmarks.

To evaluate the area costs of the synthesized solutions, we also used Orion [31]

to estimate the areas of the routers in the synthesized architectures, using the same 70nm

technology used for power estimation. The area cost of a solution corresponds to the sum of

the router areas in the solution. The results are presented in Table 6.3 and all the area results

of MPR relative to mesh results are graphically compared in Fig. 6.3. In comparisons to

the area costs of the mesh solutions, our algorithms are on average 55% lower than mesh.

Acknowledgement

This chapter is in part a reprint of the material in the paper: Shan Yan, Bill Lin,

“Design of Application-Specific On-Chip Networks for Multiple Usage Scenarios", sub-

mitted to IEEE Embedded Systems Letters, 2009. The dissertation author was the primary

author of the above paper.

Chapter 7

Deadlock-Free NoC Architecture

Synthesis

Finally, in this chapter, we address deadlock considerations in our NoC synthesis

algorithms. Deadlock-free routing is an important consideration for the correct operation of

custom NoC architectures. The problem is very well studied and analyzed in the literature.

In [66], Dally and Seitz proposed a necessary and sufficient condition for deterministic

deadlock-free routing using the concept of a channel dependency graph. For general mul-

tiprocessor systems that can be programmed to run different applications, or in the case

when adaptive routing is used, the problem is complicated by the challenge that the flows

and routing paths are not necessarily known in advance [64, 65, 67]. On the other hand,

for our custom NoC synthesis problem, the traffic flows and their required data rates are

specified in advance, and pre-determined routes, for both unicast and multicast flows, are

decided and fixed as part of the NoC synthesis process.

For our deterministic routing problem, deadlock-free operations can be ensured in

the following ways:

7.1 Statically Scheduled Routing

For our NoC solutions, the required data rates are specified and the routes are fixed.

In this setting, data transfers can be statically scheduled along the pre-determined paths

with resource reservations to ensure deadlock-free routing. As advocated in [101], stati-

89

90

cally scheduled traffic is an effective option for providing guaranteed traffic. It has been

shown in [101, 102] that router microarchitectures can be effectively extended so that stat-

ically scheduled traffic can co-mingle well with best effort traffic.

7.2 Virtual Channels

As shown in [66], a necessary and sufficient condition for deadlock-free routing is

the absence of cycles in a channel dependency graph. In our problem setting, the traffic

flows are known in advance, and the synthesis procedure is responsible for deciding on a

good network topology and finding pre-determined routes for the specified traffic flows.

Given that the traffic flows, routing paths, and network topology are all fixed by the syn-

thesis procedure, we can construct a corresponding channel dependency graph where each

node in the graph corresponds to a channel in the network, and a directed edge is added

from ci to cj if there is a channel dependence from ci to cj (i.e., a flow is holding ci and

waiting for cj).

For the unicast case, the construction is straightforward: if cj follows immediately

after ci in a routing path for a flow, then we add an edge from ci to cj . The multicast case

is more complicated as deadlocks may be caused by the resource dependence between two

multicast trees, even though the trees may not form a cycle topologically. To consider the

multicast case as well, we propose and use an extended channel dependency graph con-

struction as follows. If a multicast flow enters a router r through channel ci and bifurcates

from r to a group of channels FO(ci), then we add an edge from ci to each cj ∈ FO(ci).

We refer to FO(ci) as the fanout set of ci. It is defined as follows.

Definition 8. A multicast flow enters a router r through channel ci and bifurcates to a

group of channels FO(ci), FO(ci) is the fanout set of ci.

The intuition is that if a multicast flow has acquired channel ci, then it can only

proceed if it can acquire all the channels at the fanout set of ci. In addition, let cj ∈ FO(ci)

and ck ∈ FO(ci) be two channels in the fanout set of ci. Then we also need to add an edge

from cj to each channel in the fanout set of ck as well. That is, we need to add an edge from

cj to each c` ∈ FO(ck). The intuition is that if a multicast flow has acquired channels cj

and ck, it cannot proceed past cj unless it can proceed past ck as well. Similarly, we need

91

A
C

B

E
D

F

FO(A) = {B,C}
FO(B) = {F}
FO(C) = {F}

M0: A {B,C} {F}
M1: D {E,F} {C}

(a) Deadlock example.

CB E F

A D

M0 M1
(b) Extended channel dependency graph.

CB E F

A D

A

C B

E
D

F

F’

C’

(c) Virtual channel insertion.

Figure 7.1: Illustration of the virtual channel insertion procedure.

to add an edge from ck to each channel in the fanout set of cj (i.e., an edge from ck to each

cm ∈ FO(cj)). This extended construction treats unicast flows as a special case.

Figure 7.1 shows the example of how to use virtual channel to avoid deadlock.

Figure 7.1(a) shows part of a network with four routers. There are two multicast flows M0

and M1. M0 is from host (1,1) through channel A to B, C then to F . M1 is from host

(2, 1) through channel D to E, F then to C. The fanout set of channel A is B, C. The

fanout set of channel B and C is F . In the current state, there is a deadlock situation since

M0 has acquired channel A and B, C but needs F to proceed. M1 has acquired channel D

and E, F but needs C to proceed. Both need resource that is hold by others. The extended

channel dependency graph is shown in Figure 7.1(b).

Using the above extended channel dependency graph construction, resource depen-

dencies between multicast trees show up as cycles in the extended channel dependency

graph even if they don’t form cycles topologically. The cycles in the extended channel

92

dependency graph can be broken by splitting a channel in the cycle into two virtual chan-

nels (or by adding another virtual channel if the physical channel has already been split).

The added virtual channels are implemented in the corresponding routers. To decide on

where to introduce virtual channels, we simply use a greedy heuristic of splitting the first

channel encountered in each cycle. We readily admit that a more sophisticated optimiza-

tion procedure could be envisioned for this virtual channel insertion problem. However,

our simple greedy heuristic appears to suffice since we have found that virtual channels are

rarely needed to resolve deadlocks in practice for custom networks.

Figure 7.1c shows that the extended channel dependency graph has a cycle between

channel C and F . Thus we add a virtual channel C ′ to C and a virtual channel F ′ to F . By

allowing flows coming from A to C and flows from E to C ′, flows from B go to F ′ and

flows coming from D go to F , the deadlock is solved. Using this method, we find all cycles

in extended CDG and add virtual channels as needed to guarantee deadlock free routing.

In all the benchmarks that we tested in our evaluations throughout this thesis, no

deadlocks were found in any of the synthesized solutions. Therefore, we did not need to

add any virtual channels to them. They were all verified to be deadlock-free.

Acknowledgement

This chapter is in part a reprint of the material in the paper: Shan Yan, Bill Lin,

“Custom Networks-on-Chip Architectures with Multicast Routing”, IEEE Transactions on

VLSI Systems, volume: 17, issue: 3, on pages: 342-355, March 2009. The dissertation

author was the primary author of the above paper.

Chapter 8

Conclusion and Future Work

This thesis has demonstrated practical design methodologies and algorithms for

the automated synthesis of custom Networks-on-Chip (NoC) architectures that are opti-

mized to a given application. Besides data rate requirements, the proposed design method-

ologies and algorithms take into considerations user-defined objectives and constraints,

implementation-specific design and process parameters, and floorplanning information. In

addition, the proposed solutions are unique in comparison to prior work in that they con-

sider both unicast and multicast flows, the latter being increasingly important to support

applications such as cache coherence. Chapter 2 provided an overview to our proposed

design flow and general problem formulation.

Specifically, two approaches to the NoC synthesis problem have been developed.

The first approach is based flow-set partitioning and Steiner-tree construction, which was

presented in Chapter 3. It is based on decomposing the problem into the inter-related

steps of finding good flow-set partitions, deriving a good physical network topology for

each group in the partition, and providing an optimized network implementation for the

derived topologies. The second approach is based on a rip-up and re-route concept, which

aims to produce increasingly better solutions through an iterative exploration process. At

each iteration, a flow is ripped up from the current solution, with the network resources

that it occupied released. Then this removed flow is re-routed over the remaining network

based on formulating the multicast re-routing problem as a minimum directed spanning

tree problem. This approach was described in Chapter 4. To our knowledge, our synthesis

algorithms are among the first to optimize for multicast flows in the application-specific

93

94

design domain.

The synthesis algorithms presented in these two chapters were evaluated on a vari-

ety of NoC benchmarks using power optimization as the primary objective. Experimental

results showed that these algorithms can achieve 79.3% and 82.0% reduction in power

consumption over different mesh implementations on unicast benchmarks and 47.9% and

50.5% reduction in power consumption on multicast benchmarks respectively. Significant

improvements in performance were also achieved, with an average of 65.8% and 70.2% re-

duction in hop count on unicast benchmarks and 45.1% and 47.8% reduction in hop count

on multicast benchmarks.

The proposed design methodologies and algorithms have also been extended to

consider 3D chip designs and multiple use case applications. Specifically, while both NoC

synthesis approaches presented in Chapters 3 and 4 produced high quality results, we found

that the rip-up and re-route approach generally produced better results with less CPU times.

Therefore, we chose to extend this approach to consider the additional design dimensions.

The extensions for 3D NoC synthesis were presented in Chapter 5. The advantages of 3D

silicon integration were explored in this chapter. Also, accurate power and delay models for

3D wiring with through-silicon vias were proposed along with efficient 3D-NoC synthesis

algorithms that make use of these models. Experimental results showed that our 3D synthe-

sis algorithms can on average achieve a 63% reduction in power consumption and a 17%

in hop counts over different mesh implementations. To our knowledge, we are among the

first to consider the 3D-NoC synthesis problems in the application-specific design domain.

The extensions to support multiple use case applications were presented in Chap-

ter 6. Increasingly, multiprocessor SoCs are designed to support different usage scenarios

since such SoC designs may be employed in different products or in products with different

operation modes. For these embedded applications, the NoC must be designed to satisfy

the communication characteristics and performance constraints of all usage scenarios con-

sidered, each with its own traffic profile. To support multiple traffic profiles, a concept

of exclusive flow sets was introduced. Experimental results showed that our multi-profile

synthesis algorithms can on average achieve a 35% reduction in power consumption and a

11% in hop counts over different mesh implementations. To our knowledge, we are among

the first to consider multiple usage scenarios in the application-specific design domain.

Finally, Chapter 7 provided several mechanisms to ensure deadlock-free routing.

95

One mechanism is based on statically scheduled routing, and the other is based on virtual

channel insertions.

8.1 Future Directions

Throughout this thesis, two assumptions have been made. The first is that the goal of

NoC synthesis is to generate an efficient network architecture that can support the specified

data rates. However, the proposed formulations do not directly address Quality-of-Service

(QoS) issues such as real-time delay guarantees and bursty traffic. Accurate handling of

these QoS issues will become increasingly important in future applications. Thus, extend-

ing our design methodologies and algorithms to synthesize NoCs with QoS support needs

to be explored, with investigation into different QoS mechanisms.

The second assumption that needs to be relaxed is the assumption that the on-chip

communication architecture should either be “bus-based” or “network-based”. Although

“buses” are inherently not scalable as a global communication fabric, they are still quite

cost-effective for interconnecting small clusters of modules. They are simpler and cheaper

to implement than full network solutions because they alleviate the need for routers. They

also alleviate the need for “in-network” buffering since data is assumed to be held at the

module until the module can acquired the bus. They are also inherently more power effi-

cient for multicast operations if the communication remains local. One potentially interest-

ing future direction to explore is the synthesis of “hybrid” multi-tier architectures that make

use of local bus segments for “intra-cluster” communications and a global network that in-

terconnects these bus segments for “inter-cluster” communications. Such hybrid multi-tier

architectures can potentially lead to more power efficient and higher performance on-chip

communication architectures.

Bibliography

[1] P. Guerrier and A. Greiner. A generic architecture for on-chip packet-switched in-
terconnections. In Proc. Design Automation and Test in Europe Conf.(DATE), pages
250-256, 2000.

[2] The International Technology Roadmap for Semiconductors (ITRS), 2007.

[3] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and T. Todd. Surviving the
SoC revolution. Kluwer Academic Publisher, 1999.

[4] ARM Inc. AMBA On-Chip Bus Standard. http://www.arm.com/products/solutions/
AMBAHomePage.html.

[5] STBus from STMicrolectronics.

http://www.st.com/stonline/prodpres/dedicate/soc/cores/stbus.htm.

[6] http://www.sonicsinc.com/.

[7] IBM Inc. CoreConnect Bus Architecture. http://www-
3.ibm.com/chips/products/coreconnect.

[8] D. Flynn. AMBA: enabling reusable on-chip designs. IEEE Micro, 17(4):20-27,July-
Aug 1997.

[9] W. J. Dally and B. Towles. Route packets, not wires: on-chip interconnection net-
works. In Proc. Design Automation Conf. (DAC), pages 684-689, June 2001.

[10] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and D. Lindqvist.
Network on a chip: an architecture for billion transistor era. In Proc. of the IEEE
NorChip Conf., pages 166-173, Nov. 2000.

[11] S. Kumar, A. Jantsch, M. Millberg, J. Oberg, J. Soininen, M. Forsell, K. Tiensyrja,
and A. Hemani. A network on chip architecture and design methodology. In Proc.
Symposium on VLSI, pages 105-112, April 2002.

[12] Michael Keating and Pierre Bricaud. Reuse methodology manual for System-on-Chip
designs. Kluwer Academic, 1998.

96

97

[13] W. Dally and J. Poulton. Digital systems engineering. Cambridge University Press,
1998.

[14] ARM Inc. ARM processor core overview. http://www.arm.com/products/CPUs/.

[15] M. B. Taylor et al., “The RAW microprocessor: A computational fabric for software
circuits and general-purpose programs," IEEE Micro, vol. 22, no. 6, pp. 25-35, 2002.

[16] K. Sankaralingam et al. “Exploiting ILP, TLP, and DLP with the polymorphous
TRIPS architecture," ISCA, 2003.

[17] L. Benini and G. De Micheli, “Networks on chips: A new SoC paradigm," IEEE
Computer, pp. 70-78, January 2002.

[18] T. Lei and S. Kumar, “A two-step genetic algorithm for mapping task graphs to a
network on chip architecture," Proc. Euromicro Symp. Dig. Syst. Des., 2003, pp. 180-
187.

[19] G. Ascia, V. Catania, M. Palesi, “Multi-objective mapping for mesh-based NoC ar-
chitectures," Proc. CODES/ISSS, 2004, pp. 182-187.

[20] J. Hu, R. Marculescu, “Energy-aware mapping for tile-based NoC architectures under
performance constraints," ASP-DAC, 2003.

[21] S. Murali and G. De Micheli, “Bandwidth constrained mapping of cores onto NoC
architectures," DATE, 2004.

[22] U. Ogras, R. Marculescu, “Energy and performance driven NoC communication ar-
chitecture synthesis using a decomposition approach," DATE, 2005.

[23] U. Ogras, R. Marculescu, “Application specific Network-on-Chip architecture cus-
tomization via long range link insertion," ICCAD, 2005.

[24] A. Pinto, L. P. Carloni, A. L. Sangiovanni-Vincentelli, “Efficient synthesis of net-
works on chip," ICCD, 2003.

[25] K. Srinivasan, K. S. Chatha, G. Konjevod, “Linear-programming-based techniques
for synthesis of network-on-chip architectures," IEEE Transactions on VLSI Systems,
Volume 14, Issue 4 (April 2006), pp. 407-420.

[26] K. Srinivasan, K. S. Chatha, “ISIS: A genetic algorithm based technique for custom
on-chip interconnection network synthesis", International Conference on VLSI De-
sign (IVLSI), 2005.

[27] K. Srinivasan, K. S. Chatha, G. Konjevod, “Application specific Network-on-Chip
design with guaranteed quality approximation algorithms," ASPDAC 2007.

[28] S. Murali, et al., “Designing application-specific networks on chips with floorplan
information," ICCAD, 2006.

98

[29] D. Bertozzi, A. Jalabert, et al., “NoC synthesis flow for customized domain specific
multiprocessor systems-on-chip," IEEE Transactions on Parallel and Distributed Sys-
tems, Volume 16, Issue 2 (Feb 2005), pp. 113-129.

[30] A. S. Grove, “Changing vectors of Moore’s law," Keynote presentation, International
Electron Device Meeting, December 2002.

[31] H. Wang et al., “Orion: A power-performance simulator for interconnection net-
works", MICRO 35, November 2002.

[32] X. Chen, L.-S. Peh, “Leakage power modeling and optimization in interconnection
networks," ISPLED, 2003.

[33] G. Chen and E. G. Friedman, “Low-power repeaters driving RC and RLC intercon-
nects with delay and bandwidth constraints," IEEE Trans. on VLSI Systems, Feb.
2006.

[34] L. Zhang, H. Chen, et al., “Repeated On-Chip Interconnect Analysis and Evaluation
of Delay, Power, and Bandwidth Metrics under Different Design Goals", ISQED 2007

[35] L.-S. P. and W. J. Dally, “A delay model and speculative architecture for pipelined
routers.”, 7th International Symposium on High-Performance Computer Architecture
(HPCA), 2001

[36] H. Wang, L.-S. Peh and S. Malik, “Power-driven design of router microarchitectures
in on-chip networks", MICRO 36, 2003.

[37] R. Mullins, “Minimising dynamic power consumption in on-chip networks," Interna-
tional Symposium on System-on-Chip, 2006.

[38] D. E. Knuth, The art of computer programming. Pre-Fascicle 3B. A draft of Sections
7.2.1.4-5: Generating all partitions. Addison-Wesley.

[39] D. M. Warme, P. Winter, M. Zachariasen, “Exact algorithms for plane Steiner Tree
problems: A computational study," Advances in Steiner Trees, pp. 81-116, Kluwer
Academic Publishers, 2000.

[40] http://www.diku.dk/geosteiner/

[41] C.-W. Lin, S.-Y. Chen, Ch.-F. Li, Y.-W. Chang, C.-L. Yang, “Efficient obstacle-
avoiding rectilinear Steiner tree construction," International Symposium on Physical
Design, 2007.

[42] N. A. Sherwani, Algorithms for VLSI Physical Design Automation, 3rd edition,
Kluwer Academic Publishers, Norwell, MA, 1998.

[43] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C.K. Cheng, and J. Gu, “Corner block
list: An effective and efficient topological representation of non-slicing floorplan,"
ICCAD, 2000.

99

[44] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning: Enabling hierarchical
design," IEEE Transactions on VLSI Systems, vol 11(6), pp. 1120-1135, December
2003.

[45] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,"
Science, vol. 220, number 4598, pp. 671-680, 1983.

[46] D. Greenfield, A. Banerjee, et al., “Implications of Rent’s Rule for NoC Design and
Its Fault-Tolerance," NOCS 2007, May 2007.

[47] D. Stroobandt, P. Verplaetse, J. van Campenhout, “Generating synthetic benchmark
circuits for evaluating CAD tools," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Volume 19, Issue 9, Sep 2000 Page(s):1011 - 1022

[48] William A. Dees, Jr. and Patrick G. Karger “Automated rip-up and reroute tech-
niques," DAC, 1982.

[49] Hyunchul Shin, Alberto L. Sangiovanni-Vincentelli, “A Detailed Router Based on
Incremental Routing Modifications: Mighty," IEEE Trans. on CAD of Integrated Cir-
cuits and Systems, Vol. 6, Issue 6, pp. 942-955, 1987

[50] H. Shirota, S. Shibatani, M. Terai, “A new rip-up and reroute algorithm for very large
scale gate arrays," ICICC, May 1996

[51] Y. J. Chu and T. H. Liu, “On the shortest arborescence of a directed graph”, Science
Sinica, v.14, 1965, pp.1396-1400.

[52] J. Edmonds, “Optimum branchings”, Research of the National Bureau of Standards,
71B, 1967, pp.233-240.

[53] S. Yan, B. Lin, “Application-Specific Network-on-Chip architecture synthesis based
on set partitions and Steiner trees," ASPDAC, 2008

[54] E. Wein and J. Benkoski, “Hard macros will revolutionize SoC design," EE Times,
August 20, 2004.

[55] “UMC Delivers Leading-edge 65nm FPGAs to Xilinx," Design and Reuse, November
8, 2006.

[56] P. Gratz, K. Sankaralingam, H. Hanson, P. Shivakumar, R. McDonald, S. W. Keck-
ler, D. Burger, “Implementation and evaluation of a dynamically routed processor
operand network," NOCS 2007, May 2007.

[57] S. Yan and B. Lin, “Design of application-specific 3D networks-on-chip architec-
tures", ICCD, 2008.

[58] S. Yan, B. Lin, “Custom networks-on-chip architectures with multicast routing," IEEE
Transactions on VLSI Systems, March 2009.

100

[59] S. Murali et al., “Mapping and configuration methods for multi-use-case networks on
chips", ASPDAC, 2006.

[60] S. Murali, M. Coenen, et al., “A methodology for mapping multiple use-cases onto
networks on chips", DATE 2006, pp. 118-123.

[61] Gang Cheng and Nirwan Ansari, “Finding a least hop(s) path subject to multiple
additive constraints", Computer Communications, Feb 2006.

[62] D. Bailey, E. Barszcz, et al., “The NAS parallel benchmarks", Technical Report NAS-
95-020, NASA Ames Research Center, 1995

[63] http://www.intel.com/cd/software/products

[64] Jose Duato, Sudhakar Yalamanchili, Lionel Ni, “Interconnection Networks," IEEE
Computer Society, 1997

[65] B. Towles, W. J. Dally, Principles and Practices of Interconnection Networks, Morgan
Kaufmann, 2003.

[66] W. J. Dally, C. L. Seitz, “Deadlock-free message routing in multiprocessor intercon-
nection networks," IEEE Transactions on Computers, vol. C-36, no. 5, May 1987.

[67] J. Duato, “A necessary and sufficient condition for deadlock-free adaptive routing in
wormhole networks," IEEE Transactions on Parallel and Distributed Systems, 1995.

[68] X. Lin, P.K. McKinley, L.M. Ni, “Deadlock-free multicast wormhole routing in 2-
D mesh multicomputers", IEEE Transactions on Parallel and Distributed Systems,
Volume: 5, Issue: 8, Page(s): 793-804, Aug 1994

[69] M. P. Malumbres, J. Duato, J. Torrellas, “An efficient implementation of tree-based
multicast routing for distributed shared-memory," IEEE Symposium on Parallel and
Distributed Processing, 1996.

[70] Y. H. Song and T. M. Pinkston, “A progressive approach to handling message-
dependent deadlock in parallel computer systems," IEEE Transactions on Parallel
and Distributed Systems, vol. 14, no. 3, pp. 259ĺC275, 2003.

[71] Arteris, “A comparison of network-on-chip and busses," White paper, 2005.

[72] S. Murali and G. de Micheli, “An application-specific design methodology for STbus
crossbar generation," In Proceedings of Design, Automation and Test in Europe
(DATE ąŕ05), vol. 2, pp. 1176ĺC1181, Munich, Germany, March 2005.

[73] SonicsMX Datasheet, Sonics, 2005, http://www.sonicsinc.com/.

101

[74] B. Gebremichael, F. Vaandrager, Z. Miaomiao, K. Goossens,E. Rijpkema, and A.
Rćĺadulescu, “Deadlock prevention in the Æthereal protocol," in Proceedings of the
13th IFIP WG 10.5 Advanced Research Working Conference Correct Hardware De-
sign and Verification Methods (CHARME ąŕ05), pp. 345-348, Germany, October
2005.

[75] Z. Lu, B. Yin, and A. Jantsch, “Connection-orientedmulticasting in wormhole-
switched networks on chip," in Proceedings of IEEE Computer Society Annual Sym-
posium on Emerging VLSI Technologies and Architectures, pp. 205.210, Karlsruhe,
Germany, March 2006.

[76] S. Murali, P. Meloni, F. Angiolini, et al., “Designing messagedependent deadlock free
networks on chips for applicationspecific systems on chips," in Proceedings of IFIP
International Conference on Very Large Scale Integration, pp. 158.163, Nice, France,
October 2006.

[77] D. Starobinksi et al., “Application of network calculus to general topologies using
turn-prohibition", IEEE/ACM Transactions on Networking, Vol. 11, Issue 3, pp. 411-
421, June 2003.

[78] A. Hansson et al., “A Unified Approach to Mapping and Routing on a Combined
Guaranteed Service and Best-Effort Network-on-Chip Architectures", Technical Re-
port No: 2005/00340, Philips Research, April 2005.

[79] K. Goossens, J. Dielissen, and A. Rćadulescu, “The thereal network on chip: Con-
cepts, architectures, and implementations," IEEE Design and Test of Computers,
2005.

[80] M. Millberg et al., “Guaranteed bandwidth using looped containers in temporally
disjoint networks within the Nostrum network on chip," DATE, 2004.

[81] F. A. Samman, T. Hollstein and M. Glesner, “Multicast parallel pipeline router archi-
tecture for network-on-chip", DATE 2008, 2008.

[82] E.A. Carara, F.G. Moraes, “Deadlock-Free Multicast Routing Algorithm for
Wormhole-Switched Mesh Networks-on-Chip," ISVLSI, 2008.

[83] K. Lee et al. “Three-Dimensional Shared Memory Fabricated using Wafer Stacking
Technology," IEDM Technical Digest, Dec. 2000.

[84] L. Xue, C. C. Liu et al., “Three Dimensional Integration: Technology, Use, and Issues
for Mixed-Signal Applications," IEEE Trans. on Electron Devices, 50:601-609, May
2003.

[85] W. R. Davis et al. “Demystifying 3D ICs: The Pros and Cons of Going Vertical,"
IEEE Design & Test of Computers, 22(6):498-510, 2005.

102

[86] M. Kawano, S. Uchiyama et al., “A 3D Packaging Technology for 4Gbit Stacked
DRAM with 3Gbps Data Transfer," IEEE Int. Electron Devices, pp. 1-4, 2006.

[87] B. Black, D. Nelson et al., 3D Processing Technology and Its Impact on IA32 Micro-
processors. ICCD, 2004.

[88] T. Kgil et al. PICOSERVER: Using 3D Stacking Technology to Enable a Compact
Energy Efficient Chip Multiprocessor. ASPLOS-XII, 2006.

[89] F. Li, C. Nicopoulos et al., Design and Management of 3D Chip Multiprocessors Us-
ing Network-in-Memory. In 33rd International Symposium on Computer Architecture
(ISCA), pages 130-141, 2006.

[90] K. Bernstein, P. Andry et al., Interconnects in the Third Dimension: Design Chal-
lenges for 3D ICs, DAC, 2007.

[91] P. Morrow, B. Black et al., Design and Fabrication of 3D Microprocessor, Material
Research Soc. Symp. 2007.

[92] J. Cong, J. Wei, and Y. Zhang, “Thermal-Driven Floorplanning Algorithm for 3D
ICs," ICCAD, 2004.

[93] B. Goplen and S. Sapatnekar, “Efficient Thermal Placement of Standard Cells in 3D
ICs using a Force Directed Approach," ICCAD, 2003.

[94] W.-L. Hung, G.M. Link, et al., “Interconnect and thermal-aware floorplanning for 3D
microprocessors," ISQED, 2006.

[95] C. Addo-Quaye, Thermal-aware mapping and placement for 3-D NoC designs, IEEE
International SOC Conference, 2005.

[96] J. Cong, and Y. Zhang, “Thermal-Driven Multilevel Routing for 3-D ICs," ASPDAC,
2005.

[97] Mohit Pathak, Sung Kyu Lim, “Thermal-aware Steiner Routing for 3D Stacked ICs,"
ICCAD, 2007.

[98] V. F. Pavlidis, E. G. Friedman, 3-D Topologies for Networks-on-Chip, IEEE Trans-
actions on VLSI Systems, Oct. 2007.

[99] H. Matsutani, M. Koibuchi, H. Amano, Tightly-Coupled Multi-Layer Topologies for
3-D NoCs, International Conference on Parallel Processing (ICPP), 2007.

[100] J. Kim, C. Nicopoulos et al., A Novel Dimensionally-Decomposed Router for On-
Chip Communication in 3D Architectures, Proceedings of the International Sympo-
sium on Computer Architecture, 2007.

[101] E. Rijpkema et al., “Trade-offs in the design of a router with both guaranteed and
best-effort services for networks on chip," DATE, 2003.

103

[102] N. Enright-Jerger, M. Lipasti and L.-S. Peh, “Circuit-switched coherence", IEEE
Computer Architecture Letters, vol. 6, no. 1, Mar. 2007.

