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Abstract

Functional mapping of the mouse neocortex during postnatal development

by

Brian Romney Mullen

Functional imaging of neural cell populations at mesoscale is critical for mapping intra- and

inter-regional network dynamics across the dorsal neocortex. Past lab members produced a

flexible work flow for producing high quality segmentations of functional structure across neo-

cortex utilizing Independent Component Analysis (ICA). This unsupervised machine learning

decomposition of densely sampled recordings of cortical calcium dynamics, results in a col-

lection of components comprised of neuronal signal sources distinct from optical, movement,

and vascular artifacts. In this body of work, I built a supervised learning classifier that auto-

matically separates neural activity and artifact components, using a set of extracted spatial and

temporal metrics that characterize the respective components. Control data recorded in glial

cell reporter and non-fluorescent mouse lines validates human and machine identification of

functional component class.

Utilizing the insight from the machine learning analysis, I processed a large dataset

from three different transgenic mouse lines expressing calcium indicators in distinct sub-population

of neurons: pan-neuronal, upper, and lower layer specific excitatory neuronal subpopulations. I

was able to create domain maps to discretize the cortex into functional units and observe how

each domain behaves. The application of this data-driven method ultimately reduced the num-

ber of time series, while maintaining the informative structure at a mesoscale. From all these

vii



animals, I gain insight into the developing structural changes of circuitry based on age-related

functional changes observed in these domain maps.
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Chapter 1

Introduction

The development of the neocortex is a dynamic and adaptable process determined by

multiple factors. Molecular cues play a pivotal role in proper lamination and regionalization of

the neocortex, where transcription factors establish cell identity pushing for further differentia-

tion [23]. As neurons differentiate, their axons grow and are guided via molecular gradients to

the proper general regional connections [23, 26]. These two activity independent processes are

thought to establish the general cerebral architecture during development [11]. Expanding evi-

dence has shown that neuronal activity is essential for circuit formation and maturation, and that

change in activity patterns has direct consequences resulting in neurodevelopmental disorders

and learning disabilities [46, 29]. The focus of this body of work is to illustrate the functional

activity patterns that participate in the neocortical organization during the first month of ro-

dent postnatal development, which corresponds to the third trimester to adolescence in human

development [26, 15].

Two major extra-cortical events that drastically re-shape the functional map of the
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neocortex are the innervation by the thalamocortical axons and the integration of cortical GABAer-

gic interneurons migrating from the ganglionic eminences. Thalamocortical neurons extend

their axons into the cortex to establish layer 4 targets as early as postnatal day (P) 3 in mice, how-

ever these connections continue to refine into the second postnatal week [4, 40, 31]. Thalamic

connections are established using molecular guidance, even with mutations in key molecules for

synaptic release [41]. In the absence of thalamocortical projections,cortical areas fail to refine,

resulting in primary sensory cortices resembling adjacent higher order regions based on genetic

profiles [16, 48]. Concurrently, interneuronal populations that originate from the subpallium,

tangentially migrate and begin to integrate into the cortex starting around birth [30]. Thalamic

inputs continue to refine and assist in neocortical development for the first 12 days by first pro-

ducing connections to lower cortical layers, extending into layer 4 neurons, and interacting with

interneurons to promote connectivity [4, 36, 56].

Large-scale activity patterns that are TTX sensitive emerge during perinatal develop-

ment [20, 5]. Several notable changes to the activity patterns occur based on developmental

progression [70]. At birth, slow but intense cortical early network oscillations (cENO) prop-

agate through the cortex; followed by a faster, more structured cortical giant depolarizing po-

tentials (cGDP) by the middle of the first postnatal week [43, 5]. Restricted early oscillations

in functional barrel columns are thought to assist in local circuit development [70, 37, 27, 39].

Of note, evidence shows these functional columnar restrictions occur before the appearance of

canonical anatomical representation [69, 33].

Neural activity is required for establishing the microcircuit and long range connec-

tions. Functional activity, specifically calcium spiking, helps to establish the microcircuit and
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long-range connections through promoting dendrite maturation and axonal outgrowth/branching

[14, 72, 68]. Interneuron survival is contingent on the integration with excitatory neurons,

sculpting the microcircuit to the needs of the local circuit [65]. When looking at the laminar

developmental trajectory, there are distinct cellular properties when comparing physiological

recordings from upper and lower layers [52]. It has been shown that layer 4 projects to lay-

ers 2/3 early in development, however robust growth and synaptic connections occur between

P8 and P16 [8, 10]. Layer 2/3 project to layer 5 establish proper connections by P3 and ma-

ture around P13, which resembles the mature circuit [7, 6, 53]. Further, long range intracortical

connections require spontaneous and sensory evoked activity for proper connection [38, 59, 54].

Technological advances have allowed a collection of in vivo functional studies have

elucidated the regional properties and functional changes across development. Traveling and

stationary waves have been reported across all primary regions of the neocortex and are nec-

essary for proper circuit development. Visual systems have co-activating waves across cortex

and superior colliculus driven by the retinal activations [24, 17, 2]. Somatosensory and motor

regions have co-activating waves across the corresponding body map, coinciding with twitches

of the neonate [28, 18]. Standing waves occur in each barrel of the barrel field in the mouse

cortex, and circuit formation seemed initially independent of whisker input [39]. Further, sev-

eral of these reports pointed to the sudden and surprising switch of the cortex responding to

its intended stimuli during the second week of development, coinciding with circuit maturation

[39, 18].

While primary cortical areas are typical areas of investigations due to access to tar-

geted manipulation of the circuit, mesoscale imaging has shown that all patches of the cortex

3



are functionally active [3]. This has been accomplished through the advancements in ultra sen-

sitive calcium sensors for recording neural activity and mouse genetic lineages, which allow for

recording large number of distinct subpopulations of neurons [13, 25, 35]. Recently, our lab

has derived methods to segment these mesoscale imaging session using a data-based approach

to explore across the entire the developing cortex regardless of age or genotype [63].

This unsupervised machine learning decomposition of densely sampled recordings

of cortical calcium dynamics results in a collection of components comprised of neuronal sig-

nal sources distinct from optical, movement, and vascular artifacts. In Chapter 2, I explain

the supervised learning classifier that we built to automatically separate neural activity and ar-

tifact components, using a set of extracted spatial and temporal metrics that characterize the

respective components. I demonstrate that the performance of the machine classifier matches

human identification of signal components in novel data sets. Further, I analyzed control data

recorded in glial cell reporter and non-fluorescent mouse lines that validates human and ma-

chine identification of functional component class. This combined workflow of data-driven

video decomposition and machine classification of signal sources will aid robust and scalable

mapping of complex cerebral dynamics.

In Chapter 3, I discuss applications of mesoscale calcium imaging, which enables us

to visualize functional circuit maturation in the dorsal postnatal developing neocortex. Utilizing

independent component analysis, I create domain maps to discretize the cortex into functional

units and observe how each domain behaves. This data-driven method reduces the number of

time series that are needed to assess, while maintaining the informative structure at a mesoscale.

This method is applied across a large dataset from three different transgenic mouse lines ex-
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pressing calcium indicators in distinct sub-population of neurons: pan-neuronal, upper, and

lower layer specific excitatory neuronal subpopulations. From all these animals, I gain insight

into the developing structural changes of circuitry based on age-related functional changes ob-

served in these domain maps. Individual layer dynamics observed in upper and lower layer pop-

ulations progressively get faster and have higher frequencies than those seen in the pan-neuronal

mouse lines. Further investigation into this rich dataset may reveal more understanding of the

developing dynamics in cortical structure.

I finalize this dissertation in Chapter 4, where I recap the major findings of this body

of work and the reference collaborations and applications that utilized this analysis.
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Chapter 2

Automated classification of signal sources in

mesoscale calcium imaging

Introduction

A combination of advances in genetic engineering, parallel signal acquisition, and computa-

tion have enabled tremendously increased amounts of time series data concerning the function

of neural systems [12]. As a result, development of analytic tools to aid in the extraction of

meaning from these large datasets is being undertaken. Implementation of unsupervised and

supervised machine learning strategies can aid in extraction and interpretation of signals from

complex time series data increasingly common in systems neuroscience. Machine learning

techniques have been utilized to filter experimental artifacts, perform signal de-mixing, and un-

derstand brain-wide functional associations in data recorded with techniques such as fMRI and

EEG [51, 58, 22]. While analytic pipelines exist for these datasets, other types of functional
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recordings have their own advantages, as well as experimental challenges.

Mesoscale functional imaging across the dorsal cerebral cortical surface is used to

map and understand dynamics that bridge inter-regional (macroscale) and inter-cellular (mi-

croscale) datasets. Large calcium imaging datasets have been popularized due to advances in

mouse transgenics and the ability to record calcium flux activity simultaneously from many

neurons [44]. Analyzing population dynamics within and between regional networks in high

supracellular resolution recordings can further our understanding of information processing in

the brain. Mesoscale calcium imaging has been used to investigate patterns of neural activity

that assist in self-organization of the developing brain [2, 3]. Functional imaging in behaving

mice has been utilized to identify new cortical subregions [73]. Additionally, wide-field cal-

cium imaging of the neocortex during electrode stimulation has helped map information flow

between distant cerebral subregions [66].

Determination of neural signals from calcium imaging sessions in unanesthetized, be-

having mice is an essential, but challenging task due to numerous confounding signal sources.

Vascular artifacts are commonly seen due to vasodynamics and the resulting changes in blood

flow to meet the energy demands of surrounding tissue. Fluid exchange between vascular and

neural tissue causes cortical hemodynamics, which results in region specific changes of optical

properties among cerebral lobes [34]. Further, during the experimental preparation the skull

is typically fixed to a specific location, however slight brain movements occur within the cra-

nium that influence the recordings. Any optical property differences that originate from the

experimental preparation may be highlighted in the dataset as signal due to changes in tissue

contrast.

7



Principled exploration and identification of each signal source is necessary to reduce

the contamination resulting from these physiological dynamics. Independent component analy-

sis (ICA) is a nonparametric unsupervised machine learning technique that I utilized to identify

each signal source in densely sampled (5.5 million pixels per frame) calcium imaging videos

based on their spatially co-activating pixels and temporal properties [63]. The global mean time-

course was initially subtracted and stored, thereby zeroing out each frame and allowing ICA to

decompose each signal distinct from global effects. The decomposition results in hundreds of

neural source components per hemisphere that are distinctly de-mixed from from artifact source

signals.

In this study, I determined necessary conditions for identifying neural signals in

mesoscale cortical calcium flux videos and create a machine learning classifier to isolate neu-

ral activity for analysis. We show that a combination of morphological and temporal metrics

can characterize the signal components that maximize statistical independence in the video and

I built a classifier that automatically selects for neural components. Our concurrent analysis

of control wide-field imaging data corroborates the identification of artifact signal sources and

gives insight into the structure of neuronal calcium dynamics across neocortex.
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Results

ICA was successfully used to extract components from mesoscale imaging data across the dorsal

cortex of postnatal day 21 unanesthetized, pan-neuronal GCaMP6s expressing mice. Each com-

ponent has a spatially decomposed eigenvector with its corresponding relative intensity tempo-

ral fluctuations. Similar data was recorded and processed in three sets of age matched control

mice: cx3cr1 GFP (microglia; mGFP), adhl1 GFP (astrocyte; aGFP), and the non-transgenic

C57/black 6 (Bl6) mice.

Spatiotemporal metrics from components

Inspection of each set of experimental components resulted in the human classification as neu-

ral or artifact (Fig.2.1 a). The artifacts were further distinguished between vascular and other

for descriptive purposes. Neural components typically have globular spatial representation

with highly dynamic properties. Vascular artifact components can be easily identified by the

vascular-like spatial representation, which are also temporally dynamic. Other artifact compo-

nents that are commonly seen in the components are movement or preparation artifacts. These

typically have a diffuse spatial representation with smaller or sparse temporal activations. We

manually scored each component in the dataset as an artifact (vascular or other) or neural com-

ponent (Fig.2.1 b). From all the GCaMP experiments, on average 73.5± 5.9% of the com-

ponents were identified as neuronal, where the remaining 26.5± 6.3% were artifact (vascular:

8.7±2.7%; other: 17.6±7.1%). GCaMP mice had substantially higher numbers of neural com-

ponents compared to the controls, resulting in four times as many as the GFP mouse lines and
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six times the number in Bl6 mice (mean number of neural components GCaMP: 235, mGFP:62,

aGFP:54, Bl6: 39).

We extracted spatial and morphological metrics of the neural and artifact components

to characterize spatial feature differences (Fig.2.1 c). From each component’s spatial eigenvec-

tor I can pull general spatial intensity metrics like global minimum and maximum. Further, the

largest eigenvector values correspond to the regions that have the most dynamic change after

the video rebuild. Given that the shapes of the high pixel intensity values are used by humans

to identify their classification, I decided on a dynamic thresholding technique to binarize the

eigenvector. When examining the histogram of intensity values of the neural eigenvector (Fig.

1c), there is a large population of pixels centered around zero with a single long tail. We iden-

tified all pixels that were unique to the long tail by excluding all values that lie within range of

the shorter gaussian tail. From these binarized masks, morphometrics of each primary region

of the component can then be quantified, such as the axis lengths or eccentricity of the shape.

We characterized temporal dynamics of each component by extracting features from

the corresponding temporal fluctuations and their frequency analysis (Fig.2.1 d). The relative

intensity fluctuations allows us to pull out temporal features of each component, like standard

deviation and global maxima/minima of each component contribution. We performed wavelet

analysis on these time series to characterize only highly significant frequencies (Fig.2.5). We

calculated a power signal to noise ratio (PNR) with the 95% quantile of red noise defined by

the autocorrelation value of each time series. With this ratio, significant frequencies resulted in

a value above 1.

After extracting these metrics, I then compared the diverse populations of signal and

10



artifact components, separated between vascular and other, for each feature of interest (Fig.2.1

e-h). A full list of all metrics their respective definitions is provided, organizing between spa-

tial, morphometric, temporal, and frequency features (Fig.2.6). While the data shows trends,

there is not one single metric that alone could predict the classification of artifacts and signal

components.

Control neural components are not distinct globular regions as those from the GCaMP

line (Fig.2.7), but rather had co-activity with vascular units in the center of its domain. This

resulted in the thresholded region to be more similar to the vascular artifacts seen in GCaMP

components. However, I was still able to find example components that only had vascular

spatial representation without the surrounding tissue activation. Finally, I found similar artifacts

of the other category in the control data that are also present in the GCaMP sets of independent

components.

Characterization of spatiotemporal metrics

To investigate how well these metrics captured features of each component, I explored the cov-

erage of the cortical surface with regions identified by the dynamic thresholding technique.

Plotting all the contours of one experiment, the major footprint of the component shows the

representative space of each component within brain region (Fig.2.2a). The majority of de-

fined brain regions are represented by the GCaMP component footprints, with varying amounts

of overlap associated with different cortical areas. Control data resulted in sparsely mapped

footprints across the cortex. Further, the mapped centroid location of all components that had

a thresholded region from all GCaMP experiments shows the neural components have high

11



densities in the sensory portions of the brain (Fig.2.2b).

Thresholded GCaMP neural components have high densities in the olfactory bulbs

and posterolateral portions of the cortex, including visual, auditory, and somatosensory systems.

There are less dense localization of centroids along the anteromedial portions of the cortex, in-

cluding motor and retrosplenial cortices. Further, in both the GCaMP and control mice, I see the

majority of artifact components localize along anatomical brain vasculature. The major venous

systems including the rostral rhinal vein, the superior sagittal sinus, and the transverse sinus

show high densities of artifact centroid locations [67]. The cerebral arteries are less consistent

in localizing the primary domain of their respective components. We see that many of the other

artifacts align with the sagittal and lambda cranial sutures [62].

We investigated the effects of wavelet analysis on feature generation, by sorting each

component within each experiment to its temporal standard deviation value. We then ordered

each class of components based on variance and displayed a grayscale heatmap of the significant

frequencies in each component across experimental conditions (Fig.2.2c). Taking the average

of each of the global wavelet spectrum across each experiment highlighted the prominent fre-

quencies seen in each classification (Fig.2.2d). Prominent GCaMP frequencies are between

0.3 to 3.5 hz, where control dynamics are seen between 0-1hz. Vascular components tend to

have the same frequencies of their neural counter parts. Other components typically have faster

frequencies (above 3 hz), most likely due to motion artifacts.

We looked at the overall distribution of the class of components across the relative

variance position in the sorted index (Fig.2.2e). We found significant shifts in distribution in

the types of components based on variance. Neural component were found with high variance,
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however they significantly tapered off nearing the noise floor. We found the highest percentage

of vascular components with high variance, followed by constant low probability throughout

the relative variance. The other components had the highest probability close to the noise floor,

with low frequency throughout the rest of the relative variance position.

We found that wavelet analysis between all GCaMP experiments showed 95.8±3.8%

of the components had significant frequencies to assess. We found that 98.4± 2.5% of all

GCaMP neural components had significant frequencies (Fig.2.2f). Vascular artifacts had 93.0±

6.5% and other artifacts had 86.6± 9.4% of components with significant wavelet frequencies

within their respective class of components.

Among all GCaMP experiments, 92.3± 5.6% of the components had a thresholded

region to assess. However, when I looked at the breakdown of the class of components, I found

that 99.8± 0.2% of all neural components had a thresholded region(Fig.2.2e). The artifacts

had fewer thresholded components, specifically the other classification; vascular artifacts had

96.6± 3.6% and other artifacts had 60.2± 16.2% within their respective class of components

had a thresholded footprint. Of note, I found that components with low variance close to the

noise threshold had increased probability of not having a domain threshold.

Overall, this indicated that all metrics can be generated for the vast majority of neural

signal and vascular artifacts. However, on average, 40% of the other artifacts do not have

morphometrics for their components and 13% are lacking significant frequencies. Further, this

also shows changes in the relative spatial and temporal variance distributions of each of these

components. The neural and vascular components align with known and predictive anatomy and

were found primarily in mapped locations of increase variance. The majority other components
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have less variance, and therefore less contribution to the original dataset and, of the ones that

had a footprint, were typically found along cranial sutures. All control data had fewer footprint

and frequency metrics (Fig.2.2a,c).

Feature Selection

To build a classifier, I need to identify which metrics could distinguish between neural and ar-

tifact components. Correlation of metrics between neural signal and their respective t-statistics

identified which features were most likely useful to classify a component (Fig.2.3a).

For this process, I randomly selected seven animals from our twelve experiment dataset for de-

termining features for training the classifier. The remaining five were used as the novel dataset

for validating the machine learning performance.

We trained the random forest classifier with all metrics to identify the importance

of each feature (Fig.2.3b). The features having the greatest t-statistic magnitude had the most

importance for proper classification. In particular, spatial and morphological metrics were found

to have the highest relative importance for component classification. The final list of 10 feature

metrics utilized in the machine learning process are shown (Fig.2.3b).

Machine Learning Performance

We utilized the common approach of hiding a portion of the data from the learning algorithm

to validate efficiency of machine learning and establish hyperparameters (Fig.2.4a). Stratified

sorting was used to ensure an equal ratio of artifact and neural signal was placed into each

subset. We sampled and trained the random forest classifier 1000 times to see the distribution
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of results. We found that it performed well by all metrics assessed: mean accuracy of 97.1%,

mean precision of 98.4%, and mean recall of 97.6% (Fig.2.4b).

After establishing the efficacy of the classifier, I set out to assess the full classifier

based on all data points from the machine learning dataset. We projected all features onto

the first two components of a singular value decomposition (SVD), mapping both the human

classification and the mean classifier confidence for 1000 iterations (Fig.2.4c). As expected, I

saw distinct neural and artifact clusters in feature space. Interestingly, the two different types of

artifacts also separated into distinct portions of the projected feature space. The confidence of

the classifier showed very few components between the extremes, illustrated by the top binned

confidence value distributions for each human classification (Fig.2.4e).

We found 71.2±0.2% of components were binned in highly confident values for neural signals

(left-most bin), and 22.7± 0.2 were binned in highly confident values for artifacts (right-most

bin) (7.0±0.2% for vascular; 15.7±0.1% for other). This indicates that the classifier exhibits

reliable confidence in the decision boundaries.

To assess the efficacy of this classifier, I then tested 1000 iterations of novel data,

completely new experiments that were not involved in training the classifier (Fig.2.4a bottom).

We plotted the resulting 1000 iterations of each experiment separately (Fig.2.4d). Notably, I

found that the overall results were about the same as the subset classifier: mean accuracy of

96.9%, mean precision of 98.0%, and mean recall of 97.6%. From the histogram of classifica-

tion frequency, I found similar results to the confidence of the classifier (Fig.2.4f). Among all

components, 69.7± 2.0 were confidently classified by machine learning as neural signal (left-

most bin), where 25.8±1.4% were confidently classified as artifact (right-most bin; 7.5±0.4%
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of vascular; 18.2± 1.6% of other). The remaining 5% either resided outside the two extreme

bins or were mis-classified. We investigated the locations of the components that consistently

showed false positive or false negative (Fig.2.4g). The majority of these components were ei-

ther on the edge of the region of interest for the cortical hemispheres or within the olfactory

bulb.

Analysis of artifact signals in global mean

Removal of artifact components will ensure that neural signals are the dominant signal to be

analyzed; however, during reconstruction of the data, re-addition of the global mean must occur.

Thus I examined the influence that removal of artifact components has on the global mean

and how filtration of the global mean should be considered. For example, vascular artifacts

associated with the superior sagittal sinus contribute to the global mean and increase the range

of signals recorded during periods of motion. Assessment of the global mean from GFP control

experiments showed pronounced signal in these slower frequency oscillations, suggesting the

use of a highpass filter (Fig.2.8). Indeed, I found that application of a high-pass filter with a

0.5 Hz cutoff minimizes these types of global slow oscillations (Fig.2.9). This type of filtration

should not be applied to each component individually, as there are regional networks reliant on

these slower oscillations [57]. Removal of these low frequencies from the global mean gave

improved identification of the cortical patch signal sources that contribute to neural activation.
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Discussion

We have implemented an automated classification pipeline for selection of the maximally in-

dependent neural components in widefield calcium imaging videos of baseline neocortical dy-

namics. We identified combinations of component features that distinguish neural and artifact

signal sources from decompositions of sufficient spatiotemporal sampling and feature extrac-

tion in calcium flux videos. Vascular network artifact components were found to exist inde-

pendently of the globular neural signals (Fig.2.1) [63]. Vascular networks exhibited dynamics

within similar frequency ranges as neural components, due to the refraction or occlusion of the

GCaMP signal by the vasculature. Given that vascular artifacts had overlapping temporal and

frequency metrics with the neural components, I found that a set of spatial and morphological

feature metrics gave optimal classifier performance during machine assignment of components

to different signal classes. Furthermore, I showed another class of movement and optical arti-

facts that are present in both control and experimental GCaMP recordings. Frequency analysis

from these other artifacts had higher power in the faster dynamics (above 3 Hz) and are due to

motion. Indeed many of these other artifacts were associated with vascular tissue displacments

during animal movements (Fig.2.10). Thus, it is therefore necessary to removed these other arti-

facts during video pre-processing. Similar approaches have been implemented in fMRI studies,

where researchers built an ICA-based classifier to scrub motion artifacts [50, 45].

The data rebuild of identified neural components with mean filtration is a statistically

valid process for isolating neural signals. Our recordings consisted of large sets of densely

sampled image frames having at least 12 bits of dynamic range across pixel intensities. We
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hypothesize that these sampling conditions coupled with a strong neuronal GCaMP signal-to-

noise ratio optimizes ICA’s signal de-mixing ability to isolate functionally discrete patches of

cerebral cortex from other physiological signals. In control recordings lacking a calcium sen-

sor to report neuronal dynamics, high quality isolation of signal components was not attained

given equivalent video sampling conditions. The dynamics of vascular and neural tissues are

energetically and thus physiologically linked and the interplay between the hemodynamic re-

sponses and neural signals is known [64, 34]. Even so, I found that neural GCaMP components

comprise discrete units across the cortex (Fig.2.2) [63]. In tissue expressing a contrast agent,

such as GFP, the optical hemodynamics are enhanced and result in widespread regional effects

among the cerebral lobes from control animals. Wavelet analysis on the global mean and indi-

vidual neural components show the dominant signals extracted from GCaMP animals as being

in a faster frequency range than cortical hemodynamics (>1 Hz). Our results indicate that

neural GCaMP signals heavily outweigh the neocortical hemodynamic signals in decomposed

independent components of densely sampled wide-field calcium imaging videos.

Functional imaging in unanesthetized, behaving animals gives insight into the na-

ture of physiological processes, however, nontrivial challenges arise during such sessions with

intermixed sets of time varying signals. This work demonstrates that signal components hav-

ing maximal statistical independence captured in sufficiently sampled mono-chromatic calcium

flux videos exhibit a combination of spatiotemporal features that allow machine classification

of signal type. Implementation of automated machine classifiers for neural signals is practical

given densely captured arrays of spatially and temporally variant data gathered from individual

subjects.
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Figures
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Figure 2.1: Class identity cannot be established by any individual extracted feature. (a) Ex-
amples of independent components of neural (n) signal, vascular (v) artifacts, and other (o)
artifacts. Components are defined by both the spatial representation (eigenvector) and its tem-
poral fluctuations. Circular windows magnify key portions of the eigenvector. Eigenvector
values represented by colormap from blue to red. Temporal representation is in relative inten-
sity (black time course under the eigenvector), only 1 minute of the full 20 minutes are shown.
(b) A comparison of the number of neural signal (GCaMP: dark blue; controls: light blue)
and the artifact components (vascular: red; other : orange) with each animal shown (GCaMP
components: N=12 animals, n=3851; mGFP components: N=3, n = 484; aGFP components:
N=3, n = 442; WT components: N=3, n=229). (c) Examples of binarization of the eigenvector.
Histogram shows the full distribution of eigenvector values. The dynamic threshold method
to generate binarized masks was used to identify the high eigenvector signal pixels (yellow)
against the gaussian background (blue). Windowed spatial representation shows binarization
on the key portions of the eigenvector. (d) Examples of neural and artifact wavelet analysis
shown in the to signal power-noise ratio (PNR) plots. 95% red-noise cutoff was used to create
signal to noise ratio (black dashed lines). (e) Histograms of example spatial metrics derived
from GCaMP eigenvector values, (f) morphometrics from the shape of the binarized primary
region, (g) temporal metrics derived from relative temporal intensities, (h) frequency metrics
derived from the PNR.

20



Figure 2.2: Spatial thresholding and frequency data reliably produce neural metrics. (a) In-
dividual experiment preparation with corresponding spatial footprints by class of component:
GCaMP neural (dark blue), control neural (light blue), vascular (red), other (orange). (b) All
model experiments (N=12) with corresponding centroid location of each of the class of met-
rics. Histograms show resulting average distribution of spatial location across the field of view
(error bars are standard deviation between experiments). (c) Individual experiment (same as
(a)), where components are sorted by temporal variance. PNR mapped to each component and
organized between the classification of component. (d) Main frequencies seen in each compo-
nent class between each experimental condition. Dotted lines represent the mean within each
animal, where the gray around the mean corresponds to the standard deviation of that animal.
The color line corresponds to the grand mean all between experiments. (e) Relative position of
the types of components between experiments and transgenic model, shown as the average and
standard deviation between experiments. (f) The percent components that had footprints and
frequency data that was above the noise cut-off, separated by component type and experimental
condition.
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Figure 2.3: Spatial and morphological metrics are most important to classify components.
(a) Correlation and t-statistic between artifact and neural components for each feature (N=7,
n=2190). Spatial (circles), morphological (triangle), temporal (diamond), and frequency
(square) metrics plotted. Cut off values that helped in the selection process are dotted lines,
rejected values in gray. Closed points are components that met requirements. (b) Relative
importance metric from the Random forest classifier plotted against each metric by their re-
spective classes. (c) Selected metrics shown in the list within each type of feature, sorted by
greatest t-statistics magnitude.
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Figure 2.4: Classifier is 97 precent accurate on new experimental data. (a) The dataset was
parsed into ML modeling dataset (N=7, n=2190) that was used to establish the machine learn-
ing pipeline and a novel dataset (N=5, n=1661) of full experiments that will not influence the
classifier. Modeling data was stratified 70/30 split based on classification. 1000 iteration of
training the machine learning classifier on selected metrics and validating the machine classi-
fication with human classifications. 1000 iterations of training on the full ML building dataset
was performed and the novel dataset was assessed on its performance. (b) Performance of the
ML training, using subsets of the ML modeling dataset. 1000 iterations resulted in accuracy,
precision and recall boxplots. (c) SVD projection of metric data with human classification map-
ping (left) and the confidence of the ML classifier (right). (d) Performance of each of the novel
datasets the full classifier’s performance, animals plotted separately showing distribution of the
1000 different trained classifiers. (e) Histogram of human classification with the percent of in
each bin confidence bin (same data as c, right). Log-scale was used to highlight the low per-
centage points. (f) Histogram of human classification with the percent in each binned novel
classification. Classification bins based on the percent each classification occurred correctly in
the 1000 trials. (g) Approximate location of false negative and positives from novel datasets.
True positive (TP), False positive (FP), False negative (FN), True Negative (TN), human (h),
machine (m)
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Figure 2.5: Morlet wavelet transform can be used to create a signal to noise ratio that indicates
frequencies of high likelihood of signal. (a) Example neural time series, 90 sec of data recorded
at 10hz reported in the temporal portion of a component (b) Morlet wavelet (=4) was used
for the wavelet transform. (c) The power spectra of the wavelet transform (colorbar, purple to
yellow) and the global spectral analysis (black, right). The 95th quantile is shown in dashed
lines on the global spectral analysis. Reformatting the frequency spacing, produces (d). (d)
A signal to noise power ratio is calculated by dividing the power spectra by the 95% quantile.
All values above 1 (dashed line) would indicate a high probability of signal. Anything below
1 would most likely be considered noise (colorbar, green to red). Reformatting the frequency
spacing, produces (f).
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Figure 2.6: Spatial, Morphometric, Temporal, and Frequency features extracted from compo-
nents. (a) Spatial metrics from statistical characteristics of each eigenvector (spatial represen-
tation of the component). The histogram of all eigenvector values is shown the right of the
eigenvector. (b) Morphometrics collected from the binarized thresholded masked region of the
eigenvector. The largest (primary) domain was used to generate the features for each eigenvec-
tor. The majority of metrics calculated utilizes sci-kit image region properties. (c) Temporal
metrics are statistical descriptors from the corresponding row of the mixing matrix for each
eigenvector. (d) Frequency analysis was done on the mixing matrix row, utilizing the PNR cal-
culated from wavelet analysis (Figure S1). The longest of all continuous frequencies was used
to extract each feature.
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Figure 2.7: Examples of control components, resulting in similar artifact components to
GCaMP recordings. Control components from 20 minutes of recording from cx3cr1 GFP (mi-
croglia; mGFP, left), adlh1 GFP (astrocyte; aGFP, center), and Black 6 (Non-transgenic; Bl6,
right) mice. Two IC examples from each control group corresponding to hemodynamics/neural
activity (top) and artifacts (bottom). Artifacts chosen shows a vascular and other artifact com-
monly seen in GCaMP recordings. Similar data description in regards to temporal and spatial
representations as seen in Figure 1. (b) Examples of control binarization of the eigenvector
only showing the windowed spatial representation on the key portions of the eigenvector. (d)
Examples of neural and artifact wavelet analysis shown in the to signal power-noise ratio (PNR)
plots.
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Figure 2.8: Mean filtration to minimize global slow oscillations seen in GFP control data. (a)
30sec examples of the global mean that was subtracted and stored at the initiation of the pipeline,
before the decomposition into eigenvectors for GCaMP, mGFP, aGFP and Bl6. (b) Global
wavelet spectrum (top) and its corresponding power to noise ratio (PNR; bottom) of GCaMP
(N=4), mGFP (N=3), aGFP (N=3), and Bl6 (N=3), red indicates the omitted frequencies from
our applied high-pass filter. (c) High-pass filtration results of the same 30 sec in (a).
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Figure 2.9: Readdition of the global mean with high-pass filter better represents neural signal.
Rebuilt video from all components (left) or with only neural components (center, right) with
mean re-addition from the original global mean (left, center) or the global mean with 0.5 Hz
high pass filtration (right). All movies are on the same scale of change in fluorescence over
mean fluorescence (rainbow colorbar)

28



Figure 2.10: Vascular and other artifacts are more correlated to movement than neural compo-
nents. (a) All neural (blue), vascular (red), and other (orange) components and their correla-
tion to the motion vector from each animal. (b) Spatial location and corresponding correlation
(green to pink) of each of component to motion based on their respective classification and ge-
netic background. neural: left column, vascular: center column, other: right column. Top row:
GCaMP, second row: mGFP, third row: aGFP, last row: Bl6
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Methods

Mice

All animal studies were conducted in accordance with the UCSC Office of Animal Research

Oversight and Institutional Animal Care and Use Committee protocols. P21-22 Snap25 GCaMP6s

transgenic mice (JAX: 025111), Cx3cr1 GFP (JAX: 005582), and Aldh1 GFP (MGI: 3843271)

were maintained on a C57/Bl6 background in UCSCs mouse facilities. To identify Snap25

GCaMP expressing mice, a single common forward primer (5’-CCC AGT TGA GAT TGG

AAA GTG-3’) was used in conjunction with either transgene specific reverse primer (5’-ACT

TCG CAC AGG ATC CAA GA-3’; 230 band size) or control reverse primer (5’-CTG GTT

TTG TTG GAA TCA GC-3’; 498 band size). The expression of this transgene resulted in pan-

neuronal expression of GCaMP6s throughout the nervous system. To identify GFP expressing

mice a forward (5’-CCT ACG GCG TGC AGT GCT TCA GC-3’) and reverse (5’-CGG CGA

GCT GCA CGC TGC GTC CTC-3’; 400 band size) PCR amplification was used to identify

which animals had the GFP transgene. At the end of each recording session, the animal was

either euthanized or perfused and the brain dissected.

7 animals used in this study were experiment and control mice a study looking at mi-

crobiota influence on cerebral networks.[47] These methods work independent of experimental

condition and the perinatal penicillin had little effect on domain parcellation.
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Surgical procedure

All mice were anesthetized with isoflurane (2.5% in pure oxygen) for the procedure. Body tem-

perature was maintained at 30C for the duration of the surgery and recovery using a feedback-

regulated heading pad. Lidocaine (1%) was applied subcutaneous on the scalp, followed by

careful removal of skin above the skull. Opthalmic ointment was used protect the eyes during

the surgery. The cranium was attached using to two head bars using cyanoacrylate, one across

the occipital bone of the skull and the other on the lateral parietal bone.

After the surgery was complete, mice were transferred to a rotating disk for the duration of

the recording. At the end of the recording session, the animal was euthanized and the brain

dissected.

Recording calcium dynamics

In-vivo wide-field fluorescence recordings were collected in a minimally invasive manner. Imag-

ing through the skull by single-photon excitation light from two blue LED light (470 nm;

Thorlabs M470L3) produces a green fluorescent signal that is collected through coupled 50mm

Nikon lenses (f5.6 / f1.2, optical magnification ∼ 1x) into a scientific CMOS camera (PCO

Edge 5.5MP, 6.5µm pixel resolution). The top lens in the tandem lens setup was used to focus

on the cortical surface, thereby lowering the magnification slightly; anatomical representation

for each pixel corresponded to 6.9± 0.2µm (min: 6.7µm, max: 7.2µm). Excitation light was

filtered with a 480/30 nm bandpass (Chroma Technology AT480/30x) and the emission signal

was filtered with 520/36 nm bandpass (Edmund Optics 67-044). Data collection was performed
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in a dark, quiet room with minimal changes in ambient light or sound, thus the brain activity

recorded was resting state without direct stimulation. Raw data was written directly as a set of

16 bit multi-image TIFF files.

The total amount of data recorded for each animal was generally at least 40 min

and the amount of time in between video segments was less than 1 minute. All analyzed data

consisted of two sequential full spatial resolution recordings concatenated together giving 20

min of data sampled at 10 frames per second for each video decomposition[63].

Dynamic Thresholding

The spatial histogram of eigenvector values across each component can be visualized as a single

tailed gaussian distribution centered around 0, where the tail represents the spatial footprint of

each component. The two edges of the distribution are first identified. The boundary closer to

0 is taken as the edge of the central noise distribution, and that boundary is used to define the

dynamic threshold on the opposite side of 0. Any values outside of this noise distribution and

is part of the wider tail are included in the binarized domain of the component. If the tail was

negative, the component was flipped spatially and temporally for visualization purposes.

ICA and Data processing

ICA decompositions were run on a single computing cluster node having 1024 GB of RAM.

After ICA processing, metric extraction was computed on local computers with 16-32GB of

RAM.
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Metric generation and classification of Neural Independent Components

An ensemble random forest classifier from the scikit-learn 23 package[1] was used to train and

classify between human scored signal and artifact components [21], based on features calculated

from each component .

Wavelet Mean filtration

Wavelet decomposition on the time series signals were performed with a ω = 4 morlet wavelet

family, code adapted from C. Torrence and G. Compo,[55] available at

URL: http://paos.colorado.edu/research/wavelets/

Significance was determined using the 95th percentile of a red-noise model fit to the

time series autocorrelation. Frequency distributions are all displayed as the ratio of the global

wavelet specturm, relative to the noise cutoff. For wavelet filtering, the original signal was

rebuilt excluding all frequency signals in a certain range.

Statistical significance

Statistical significance was calculated using OLS models from statsmodel.formula.api with

Holm-Sidak multiple testing correction (p ≤ 0.5: *; p ≤ 0.01: **; p ≤ 0.001: *** ). Model

significance is determined by the F-statistic, and significance of two-group analyses (p>|t|) are

calculated with t-tests.
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Chapter 3

Functional Mapping of the Mouse Neocortex

During Post-natal Development

Introduction

Neural activity is essential for proper organization and maturation of the cortex, well before

behavioral or sensory input. During development, change in activity patterns has direct conse-

quences resulting in learning disabilities and neurodevelopmental disorders [46, 29]. In mice,

these spontaneous traveling and stationary waves have been reported across all primary regions

of the neocortex. In primary visual cortex, co-activating waves co-exist with the superior col-

liculus driven by the retinal activations [24, 17, 2]. Barrel cortex has reported standing waves

in each barrel in the mouse somatosensory cortex, and circuit formation seemed initially in-

dependent of whisker input [39]. Somatosensory and motor regions have waves across the

corresponding body map, coinciding with twitches of the neonate [28, 18]. Further, several of
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these reports pointed to the sudden and surprising switch of the cortex responding to its intended

stimuli during the second week of development, coinciding with circuit maturation [39, 18].

While primary cortical areas are typical areas of investigations due to access for tar-

geted circuit manipulation, mesoscale imaging has shown that all patches of the cortex are

functionally active as early as P3-5 [3]. This has been accomplished through the advancements

in ultra sensitive calcium sensors for recording neural activity and mouse genetic tools, which

allow for recording large numbers of distinct subpopulations of neurons [13, 25, 35]. Recently,

our lab has developed methods to segment these mesoscale imaging sessions using a data-based

approach to explore across the entire developing cortex regardless of age [63]. This method

discretized the cortical sheet into functional units based on recorded activities, resulting in a

domain map of a few hundred domains. These domains can be assessed based on function and

connectivity.

In this study, I have established development functional profiles for three targeted

neuronal populations using upper-layer (cux2), lower-layer (rbp4), and pan neuronal (snap25)

driven expression of the genetically encoded calcium indicator (GCaMP6). I provide a glimpse

into the functional dynamics of the entire dorsal cortex through the first three weeks of devel-

opment. I describe functional profiles for both primary cortical regions as well as associated

cortices, in attempts to understand the development of higher order functional networks. Fur-

ther, I highlight varying types of information based on the subpopulation of neurons utilized.

Finally, these profiles can be used to approximate functional mapping for experiments, or will

assist researchers with methods to determine the functional map based on their own experimen-

tal conditions.
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Results

Transgenic expression profiles of calcium indicators

To explore the developmental progress of functional activity, I chose the snap25 +/snap25-2A-GCaMP6s

(snap25 GCaMP6s) and recorded functional activity throughout the first three weeks of devel-

opment. This was done to observe the pan-neuronal progression activity in cells capable of

synaptic release [60]. Previous work did not characterize if the snap25 protein is expressed in

the transgenic mice , given the self proteolytic capabilities of the gene construct leaves protein

residue on snap25 protein (Fig.3.7 a). [35]. I investigated the developmental protein expres-

sion profile and showed dynamic changes for all three proteins: snap25, GFP, and GCaMP. All

protein products follow similar developmental profiles, increasing in the first 2 weeks and stabi-

lizing after the second week, consistent with known profiles (Fig.3.7 b-c) [49]. Immunostaining

for GCaMP6s and its resulting GFP degradation shows almost uniform expression across the

cortical layers, however the younger mice tend to have biased lower layer expression (Fig.3.7

d-e). Previous reports on developmental mRNA expression across cortical lamination showed

similar results [9].

I further compare between the stated pan-neuronal mouse line (snap25 GCaMP6s)

to layer specific neuronal lines. Two cre lines were chosen, one for upper layers (layers 2-4;

Cux2-creER) and the other for lower layer (layer 5; Rbp4-cre). Both cre lines were indepen-

dently mated and back-crossed with R26 floxed GCaMP6f +/+ (Ai95) producing homozygous

expression of GCaMP6f in their respective cortical layers. The activities of Cux2-CreER and
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Rbp4-Cre have been reported in adult mice [25], however their activities in neonatal and young

mice are less known. Immunostaining showed of Rbp4-cre directed GCaMP6s specifically in

deep-layer neurons as early as P6 (Fig.3.8 e-f). After tamoxifen induction, GCaMP6s expres-

sion was induced in upper-layer neurons at postnatal day (P) 6 and P14 in mice containing

Cux2-CreER (Fig.3.8 a-d). I was able to achieve robust lateral expression at P6, but lacked

many of the medial expression; however, by P14 there was an increase in medial expression in

addition to the robust lateral expression of the GCaMP6.

Domain map creation and characterization

To attain maximal spatial decomposition of our recorded signal, I verified that I collected

enough data at each age [63]. The decomposition results in components made of the spatial

representative eigenvector and their corresponding temporal influence on the data [42]. The

maximal decomposition was validated by comparing the number of components achieved from

20 minutes to 30 minutes of recording (Fig.3.9 d-e). I observed that the recordings that had

more components at 20 minutes, increased slightly at 30 minutes. Interestingly, the two ex-

tremes of our two week dataset (P2 and P14), did not benefit from more data, underscoring

that the temporal complexity of the neural signal (see Fig.3.3) does not influence the number

of components. Spatial complexity of early functional activity increases due to increasing cell

populations expressing GCaMP, however, each cortical patch seems to behave independent of

each other. As the animal ages and spatial complexity changes due to the cortex establishing

the macro-circuit, it appears as though less data would be required to maximally segment across

the cortex. As such, I decided to run the analysis on 30 minutes of data for every age of the first
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two weeks of development.

Comparing the eigenvectors of the decompositions, I observed many similarities be-

tween eigenvector patterns of different ages and cellular subpopulations. From the data col-

lected at the various ages of the snap25 GCaMP6s mice, I identified seemingly corresponding

eigenvectors in purported motor (top row), somatosensory (middle row) and higher order visual

cortex (bottom row) (Fig.3.1 a). Intriguingly, I found similar eigenvectors in recordings of both

upper-layer (Cux2-CreER; Ai95) and lower-layer (Rbp4-Cre; Ai95) dataset (Fig.3.9 a-c). Un-

fortunately, these types of comparisons are most easily done on eigenvectors with multiple areal

influences which are a minority of eigenvectors. I found that on average 65-85% of the eigen-

vectors have only one eigenvector area of high influence and this percentage changed with age

(Fig.3.9 f); P10-P12 had the most multi-areal eigenvectors (35%), where P2-6 had the fewest

(15%).

To ensure that these methods are truly identifying functionally relevant structure, I

recorded from 3 different ages (P7, P14, P21) of two mice GFP-expressed uniformly across the

cortex, microglia (mGFP; cx3cr1 GFP) and astrocytes (aGFP; aldh1 GFP). Further, I recorded

non-transgenic background line, C57/Bl6 (bl6) mice at those same ages. I processed the video

data in similar fashion to the GCaMP6 videos and compared the resulting components and

domain maps to the age-matched experimental data.

I maximally project through all eigenvectors to create domain maps that segment the

cortex based on the underlying data [63]. Example domain maps from various ages of pan-

neuronal (snap25), upper cortical layers (cux2), lower cortical layers (rbp4), and one control

(aGFP) are shown (Figure 1 b). I found that all age matched, non-GCaMP controls had non-
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significant similar domain numbers (N = 24,two-way ANOVA on age and genotype, age-F:3.39

p > 0.05, genotype-F:1.58 p > 0.05, interaction-F:0.34 p > 0.05), as such I compared all age-

matched animals to the collection of controls. Plotting all snap25 GCaMP6s animals (N=42)

number of domains with respect to age, there is an increase in the number of domains from P2-

P5, the domain number plateaus between P7 to P12, then decreases in number to P21 (Figure 1

c-left). However when I ran the ANOVA I found no significant differences between ages based

on domain number (one-way ANOVA, age-F:2.85 p > 0.05). I compared the data recorded

from control mice to those from snap25 GCamP6s mice the domain numbers of all age-matched

controls were significantly lower than all snap25 GCamP6s mice (two-way ANOVA on age and

GCaMP6s expression, age-F:10.8 p < 0.0001, expression-F: 593.93, p < 0.0001, interaction-

F:50.66 p < 0.0001).

Given that during development the cortical area increases with respect to age (Fig.3.10),

I investigated how domain density was impacted. I summed the total area for all domains that

represent cortical area, and used that to calculate the density of domains (Fig.3.1 d-left panel).

Again, I found that all age matched, non-GCaMP controls had similar domain densities with

each other and were significantly reduced from all GCaMP recordings (two-way ANOVA on

age and genotype, age-F:2.18 p > 0.05, genotype-F:6.544 p < 0.05, interaction-F:0.99 p >

0.05; post-hoc on age produced no significant differences). Plotting all snap25 GCaMP6s ani-

mals (N=42) number of domains with respect to age, there were significant differences between

ages (one-way ANOVA, age-F:98.72 p < 0.0001). I initially observed an increase in domain

density from P2-P4, which peaked between P4-P6. Following this peak, the domain density

rapidly decreased until P10, when the change in density of domains slowly decreased between
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P10-P12. There was a rapid decrease in density between P12 to P14, and a subtle difference in

density between P14 and P21 animals. The domain densities in all age-matched controls were

significantly lower when compared to snap25 GCaMP6s expressing mice (two-way ANOVA

on age and GCaMP6s expression, age-F:33.73 p < 0.0001, expression-F: 605.32 p < 0.0001,

interaction-F: 109.19 p < 0.0001).

When I compared the data obtained from the snap25 GCaMP6s to those from the

Cux2-CreER; Ai95 (upper-layer neurons) and from the Rbp4-Cre; Ai95 (lower-layer neurons),

I found domain numbers and densities were similar at P6. However, maps in Rbp4-Cre; Ai95

mice reduced in both domain number and density at older ages (Fig.3.1 c-d, right panels).

(Domain number two-way ANOVA on age and GCaMP6s driver, age-F:94.98 p < 0.0001,

driver-F: 20.86 p < 0.0001, interaction-F: 2.06 p > 0.05; Domain density two-way ANOVA on

age and GCaMP6s driver, age-F:94.97 p < 0.0001, driver-F: 20.85 p < 0.0001, interaction-F:

2.06 p > 0.05). Similar to the Snap25-GCaMP6s mice, there were significant and substantial

decreases between P6 and P10 domain number and density for Rbp4-Cre; Ai95 mice. Cux2-

CreER; Ai95 mice started off with high density of domains at early ages, especially in the lateral

regions where GCaMP6f expression was high, and then became comparable to the Snap25

GCaMP6s animals by P14. Significant decreases in density occurred at between both age steps

in the Cux2-CreER; Ai95 mice, where there was only a significant decrease in the domain count

between P10 and P14. To determine the effect of TAM on cortical domain maps, I administered

TAM to early neonatal snap25 GCaMP6s mice through oral gavage, and recorded functional

activity at P6. I did not see any significant changes in domain number or density in TAM dosed

snap25 GCaMP6s animals treated with TAM when compared to the non-treated animals.
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Next I examined the distributions of domain sizes and shapes per domain map. For

full accounting of the inter-animal variation, I plotted the mean and 95% confidence interval

of the full distribution across the domain map for each animal. I found that the domain size

for our pan-neuronal line gradually increased on average after P6, with significant one day

growths beginning on days 6, 9, 12, and 13 (Fig.3.2 a,c, left panel) (one-way ANOVA, age-

F:688.89 p < 0.0001). In addition, there were significant increases in area from P14 to P21.

All non-GCaMP controls showed drastically and significantly larger domains than age-matched

GCaMP-expressing mice (two-way ANOVA on age and genotype, area-F:20.79 p < 0.0001,

genotype-F:906.29 p=0, interaction-F:12.69 p < 0.0001).

Similar significant increases in domain areal sizes were observed in layer specific

GCaMP6s-expressing mice (two-way ANOVA on age and GCaMP6s driver, age-F:2362.12

p=0, driver-F:677.11 p=0, interaction-F:206.27 p=0). However, a distinct sharp increase in

domain sizes was observed from P6 to P10 from Rbp4-Cre; Ai95 mice, whereas Cux2-CreER;

Ai95 mice showed a sharp increase in domain size from P10 to P14. Domain sizes increased

at a slower pace in Snap25-GCaMP6s mice than either of these drastic changes, but the rate of

increase was more similar to the Rbp4-Cre; Ai95 mice. This is illustrated by comparing the

significant areal change and the changes to major/minor axis of the pan-neuronal (black), lower

layer (orange), and upper layer (blue) signal (Fig.3.2 a, right panel). As a control, I found that

TAM dosed snap25 GCaMP6s did not show significant changes in domain areal sizes from the

non-dosed counterpart.

In addition to the size, shape is a key factor of each domain where I show a marked

increase in eccentricity at the end of the first week of development (Fig.3.2 b). Eccentricity

41



of each domain measures the severity of deviation away from being circular to elongated (0:

circular, 1:highly elongated). The Snap25-GCaMP6s mice showed similar shape distributions

at P7, but a noted shift in the average value was noted in the mice older than P8 (one-way

ANOVA, age-F:28.74 p < 0.0001). This same phenomenon was observed in the Cux2-CreER;

Ai95 and Rbp4-Cre; Ai95 mice, and there was an apparent the shift upward in eccentricity

from P6 to P10 or P14 (two-way ANOVA age and GCaMP driver, age-F:69.96 p < 0.0001,

driver-F:5.25 p < 0.01, interaction-F: 3.25 p < 0.05). There were no significant differences in

eccentricity in any mouse line from P10 to P14, nor significant differences between TAM dosed

and the non-dosed Snap25-GCaMP6s mice.

I examined spatial locations of the 25th percentile of the largest domains (left) and

the 25th percentile most eccentric domains with their respective orientation (right), and found

that they revealed underlying cortical structures (Fig.3.2 d). While some of the largest and

most eccentric resided along known physical borders (ie. edge and midline of the cortex),

many others corresponded to known structural regional distinctions. Large domains populated

the anterior and medial aspects of the cortex, where eccentric domains were found pushing

up against known cortical domains. Compared to the Allen Brain institute reference map for

adults, there was a striking correlation between these two factors and the reference map. Further,

I examined how these two features developed with respect to age and subpopulation (Fig.3.2

e). Conservatively, these distinct boundaries were observed as early as P6; with instances of

structure occurring in even earlier data.

42



Wavelet transform

Utilizing domain maps, I was able to reduce the number of time courses from millions of indi-

vidual pixels to hundreds of domains, while maintaining a data-driven understanding of under-

lying cortical structure. This produced a large number of time courses that need to be analyzed

based on varying dynamics between each age. Examples of the time courses across devel-

opmental ages of snap25 GCaMP6s, across a single hemisphere and sorted from anterior to

posterior were shown in Fig.3.3 a. I observed distinct changes in the amount of activations and

the propagating waves across regional areas.

To explore functional activity of each cortical domain, I implemented wavelet anal-

ysis to determine prominent frequencies and when each domain was active. Examples of time

courses were chosen based on the purported primary somatosensory cortex (top row), retrosple-

nial cortex (middle row), and primary visual cortex (bottom row) (Fig.3.3 b). Their respective

domain number is shown in the upper right corner of the time course in Fig.3.3 a. I utilized

a Morlet wavelet (ω= 4) for this analysis and showed the resulting wavelet transform ratio for

each representative time course. To create this ratio, I approximated the distribution of red

noise with the same lag-1 autocorrelation value as the time course being analyzed. Dividing

the wavelet transformation power by 95 % quantile of the power distribution of this red-noise

approximation, I expected any value above 1 would most likely be part of the desired signal.

From the wavelet transform, I projected through time to determine prominent frequen-

cies of each time course, obtaining the global wavelet power spectrum (GWPS) ratio (Fig.3.3 b,

right of each wavelet transform). The higher the value above 1 (dashed line) indicates the more
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likely the frequencies exist in the time course. This allows us to quickly assess the frequencies

present in each dataset (Fig.3.4; next subsection).

In addition, I projected through frequency space (0.1 - 5 Hz projection) to deter-

mine the scaled average wavelet power (SAWP) and its corresponding threshold of significance

(dashed line; Fig.3.3 b, bottom of each wavelet transform). Any SAWP value above this signif-

icance line showed periods of time when the domains were more likely to be active. This was

used to characterize the events that occur in each domain (Fig.3.5; subsequent subsection after

next).

Prominent frequencies across development

GWPS ratios (Fig.3.3 b, right of each wavelet transform) revealed that at all ages of the first

two weeks of development, the wavelets in snap25 GCaMP6s mice were dominated by slower

frequencies, typically around 1Hz and lower (Fig.3.4 b a). This was observed by highlighting

the significant frequencies above the waveform for any average power to noise ratio (PNR)

above the cut-off value (1; red bars) and the frequencies corresponding to the local maxima of

each individual GWPS ratio (histogram, right column). From the histogram of local maxima,

I found that there were typically two distinct peaks that fell above and below 0.75 hz. Further,

I observed a transient shift to increased frequency power from P7-P10, which subsequently

returned to the prominent slower frequencies at the end of the two weeks of development (P12-

P14).

I observe this transient upward frequency shift around P10 in all mouse lines: snap25

GCaMP6s (black), Cux2-CreER; Ai95 (blue), and rbp4-Cre; Ai95 (orange) mice. The Cux2-
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CreER; Ai95 and Rbp4-Cre; Ai95 mice showed the similar two peak distributions at early ages

(P6), although the higher peak in Cux2-CreER; Ai95 animals was shifted to faster frequencies

(Fig.3.4 b). The frequency shift was detected in both Cux2-CreER; Ai95 and Rbp4-Cre; Ai95

mice (Fig.3.4 b), that subsequently returned back to similar frequency as in the younger animals

(Fig.3.4 a,d). There was no difference due to the TAM dosing (green) when compared to the

Snap25 GCaMP6s animal that did not receive the gavaged drug.

It was not until P21 Snap25 GCaMP6s that I observed a significant increase in higher

frequency and a decrease in lower frequency dynamics than younger animals, as seen from

the GWPS and histograms, as well as the integration of the power spectra from the defined

windows (Fig.3.4 a,e). Window ranges were selected based on the local maxima histograms,

where breaks between peaks resided (0-0.1, 0.1-0.75, 0.75-3, 3-5 Hz). When compared to the

younger mice, P21 mice showed significantly lower integrated frequency power in the lowest

frequency range (0-0.1 Hz) than any of the younger animals (one-way ANOVA age-F:663.58

p=0). There was an increase in power in the second frequency window (0.1-0.75 Hz) from the

first week (P2-P6) into the second (P7-P10), which then shifted lower again (one-way ANOVA

age-F:133.53, p=0). Where in the two faster frequency windows (0.75-3 Hz and 3-5 Hz), the

integrated power was substantially higher in the P21 animals (0.75-3 Hz one-way ANOVA age-

F:2415.09 p=0, 3-5 Hz one-way ANOVA age-F:4941.68 p=0).

Cux2-CreER; Ai95 mice showed an increasing amount of faster frequencies in neu-

ral activity compared to the Snap25-GCaMP6s and Rbp4-Cre; Ai95 mice. Slower frequencies

in the Cux2-CreER; Ai95 and Rbp4-Cre; Ai95 mice tended to be lower than in the Snap25

GCaMP6s animals, however, progressive increase from P6 to P10 and then decrease from
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P10 to P14 in power frequency were noted in all animals (0 - 0.1 Hz two-way ANOVA on

age and GCaMP driver, age-F:1831.78 p=0, driver-F:1748.91 p=0, interaction-F:390.33 p <

0.0001; 0.1 - 0.75 Hz two-way ANOVA on age and GCaMP driver, age-F:533.00 p < 0.0001,

driver-F:5100.93 p=0, interaction-F:94.64 p < 0.0001). While Rbp4-Cre; Ai95 mice had faster

frequencies identified by the local maxima of the GWPS ratio than Snap25 GCaMP6s mice,

the integration showed that neural activity in Cux2-CreER; Ai95 mice increased with age and

surpassed in power in the widowed faster dynamics (both 0.75-3 and 3-5Hz) than the other

two mouse lines (0.75-3 Hz two-way ANOVA on age and GCaMP driver, age-F:1424.08 p=0,

driver-F:5581.48 p=0, interaction-F:334.667 p < 0.0001; 3-5Hz two-way ANOVA on age and

GCaMP driver, age-F:2176.17 p=0, driver-F:6148.84 p=0, interaction-F:349.59 p < 0.0001).

Both Snap25-GcaMP6s and Rbp4-Cre; Ai95 mice showed a slight but significant increase from

P6 - P10, however the change was not significant going up to P14. In all frequencies, there was

no significant difference due to TAM dosing of Snap25 GCaMP6s mice.

Wavelet derived event characterization

SAWP was utilized to determine each activation event, allowing us to characterize all events

and showed the progressive increase in activity in each domain of the cortex. To minimize the

influence of neighboring domains, the center 100 pixels (10x10 pixels) of each domain was uti-

lized to create the event-based characterization. Each event was defined by SAWP between the

0.1-5 Hz frequencies with powers that resided above the significance threshold of each wavelet

transform (Fig.3.3 b, bottom of each wavelet transform). This binarized version of the time

course, which allowed us to calculate the number of events that occured per minute (Fig.3.5 a,
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top row), the duration of each event (middle row), and the inter-event interval between neigh-

boring events (bottom row). Significant increases in the number of events were noted on Snap25

GCaMP6s, whereby P21 the bulk of the number of events was around 5 per minute (one-way

ANOVA age-F:2204.51 p=0). As expected, the median inter-event duration decreased with re-

spect to age (one-way ANOVA age-F:1579.03 p=0). Unexpectedly, for the Snap25 GCaMP6s

animals, I found that the average event duration did not change during the first two weeks of

development, but finally decreased by P21 (one-way ANOVA age-F:471.01 p=0).

When I compared all mouse lines, I observed a progressive increase in the number of

events per domain as the animals age (two-way ANOVA age and GCaMP driver, age-F:6918.08

p=0, driver-F:417.67 p<0.0001, interaction-F:569.65 p=0). Corresponding to this, the inter-

event interval decreased with age for all mouse lines (two-way ANOVA age and GCaMP driver,

age-F:882.34 p=0, driver-F:255.76 p<0.0001, interaction-F:80.91 p<0.0001). When analyzing

the duration of each event in the layer specific lines, I observed a progressive decrease in the

event duration for both the Cux2-creER; Ai95 (middle row, right panel, blue) and the Rbp4-

Cre; Ai95 (orange) mice (two-way ANOVA age and GCaMP driver, age-F:336.31 p<0.0001,

driver-F:4685.20 p=0, interaction-F:184.90 p<0.0001).

Utilizing the binarized time course, I calculated the regional percent of activation

time and identified the cortical domains that were the most active in each mouse line. Snap25

GCaMP6s mice were most active at every age when compared to the Cux2-CreER; Ai95 and

Rbp4-Cre; Ai95 mice (Fig.3.5 b). At each age the most active cortical areas shifted, where in

Snap25 GCaMP6s animals the highest amount of activity was focused in the auditory cortex

at P6, retrosplenial and higher order motor cortices at P10, and widespread higher order areas
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at P14. Cux2-CreER; Ai95 mice showed the highest activity in barrel and body core primary

regions at P6, the most active cortical areas at P10 matched the Snap25 GCaMP6s pattern. They

had equal activity across the whole cortex by P14. rbp4 tended to have low sparse activity, but

higher percentage activations in primary cortical areas.

I characterized the percent of domains that were active with respect to the percent-

age time there was cortical activity, showing increasing activity based on mouse line and age

(Fig.3.5 c). Each histogram shows the mean and standard deviation of the amount of time all

animals spend in the binned cortical percentages, the average of each animal was shown by the

red line (one-way ANOVA average values, age-F:24.53 p < 0.0001). Early Snap25 GCaMP6s

mice (P2-P4) showed similar distributions, for the majority of time little to no domain activity

was observed across the entirety of the cortex. By P5-P6, the cortex became more active, and

the average progressively increased to closer to 50% of the time through P7-P9. By P10-P12,

the activities were evenly distributed, with the majority and minority of activities across the cor-

tex. During P13-P21, the percent of active areas shifted higher, with a long tail to no activity,

maintaining that 50% of the cortex on average was active. TAM dosing (P6 green histogram)

of Snap25-GCaMPs mice had no effect on the distribution of cortical activity when compared

to the age matched non-dosed animal.

Cux2-CreER; Ai95 and Rbp4-Cre; Ai95 mice showed decreased cortical activity when

compared to age matched Snap25 GCaMP6s, but also showed increasing cortical activities

with age alone (two-way ANOVA based on age and GCaMP driver, age-F:49.83 p < 0.0001,

driver-F:77.02 p < 0.0001, interaction-F:4.08 p < 0.05). Rbp4-Cre; Ai95 mice showed no

significant shifts in activities with r age based on the post-hoc analysis. Cux2-CreER; Ai95
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mice, however, showed an increase in the amount of activity between P6 and P10, however did

not show significant increase from P10 to P14. TAM dosed Snap25 GCaMP6s did not show

any difference from age-matched non-dosed mice.

Inter-hemispheric correlations

Development of functional long range cortical connectivity is pivotal for the two hemispheres

to work in conjunction with each other. Visual inspection of the data indicated an apparently

increased inter-hemispheric symmetry through developmental ages. To quantify this effect in

an unbiased manner, I explored Pearson’s correlation coefficients with hierarchical clustering

and mapping similar inter-hemispheric positioned domains.

Hierarchical clustering showed a u-shaped developmental profile with high percent-

ages of inter-hemispheric clustering in neonates animals (P2-P3) and adolescent animals (P14-

P21). Given that hierarchical clustering depends on the distance between points in n-dimensional

space (where n is the number of domains per animal), I explored the distribution of distances

in each snap25 GCaMP6s mouse (Fig.3.6 a; top panel; black: maximal distance, grey:mean

distance, light grey:40th percentile). Selection of cluster defining distance was shown as the

dashed line (top), just below 40th percentile. This resulted in an increasing number of clusters

(middle panel) which peaked at P9, followed by a decrease of clusters to P21 (one-way ANOVA

age-F:12.05 p > 0.0001). When I queried which percentage of clustered domains had domains

on both hemispheres, and found that P9 had the lowest percentage (bottom panel, one-way

ANOVA age-F:10.78 p < 0.0001).

Given the high symmetry at P21, I inspected Pearson’s coefficient of the two posi-
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tional nearest domains on the contralateral hemisphere. After mapping the domains, I plotted

the centroids of one hemisphere, colored based on the correlation coefficient across ages and

mouse lines (Fig.3.6 b). In all Snap25 GCaMP6s lines I observed a high level of correla-

tion in the body core region. The frontal motor cortex first developed high correlation values

(P10-P14), followed by the sensory regions (P14-P21). In the Cux2-CreER; Ai95 mice, I ob-

served little correlation at the youngest age (P6), which ultimately became similar to the Snap25

GCamP6s line (P14). Of note, similar to the Snap25-GCamp6s mice, it was interesting that the

binocular region of the primary visual cortex in the Cux2-CreER; Ai95 mice was highly cor-

related at P10. The Rbp4-Cre; Ai95 mice showed similar symmetry as the Cux2-CreER; Ai95

mice in the motor regions early on (P6, with seemingly increasing correlation through age),

however it was more difficult to assess due to the reduced numbers of domains in older animals.

When analyzing the distribution of correlation values based on interhemispheric map-

ping, I observed a v-shaped developmental profile in Snap25 GCamP6s mice (one-way ANOVA

age-F:116.80, p < 0.0001). There was a decrease in correlation values from P2 to P11, fol-

lowed by a rapid increase in correlation through P21 (Fig.3.6 c; top panel) Both P6 Cux2-

CreER; Ai95 and Rbp4-Cre; Ai95 animals showed significant decrease in correlation, ultimately

achieving similar symmetries between P10 and P14 (bottom panel; cux2 : blue, rbp4: or-

ange) (two-way ANOVA age and GCaMP driver, age-F:316.00 p < 0.0001, driver-F:74.07 p

< 0.0001, interaction-F:29.63 p < 0.0001) There was no change in symmetry profile when

Snap25 GCaMP6s non-dosed compared to TAM gavaged (green) mice.
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Discussion

In this study I explored the early postnatal development of functional cortical activity patterns at

mesoscale. I presented data from three different calcium based imaging mouse lines, one pan-

neuronal including both excitatory and inhibitory neurons (Snap25 GCaMP6s) and two layer

specific excitatory subpopulations of neurons (Cux2-creER/upper layers and Rbp4-cre/lower

layers independently mated with Ai95 floxed GCaMP6f mouse line). Utilizing an ICA-pipeline

I developed, I segmented the cortex into functional units at various ages of development [63].

This data-driven method reduced the number of time series that were needed for analysis, while

maintaining the informative resolution of mesoscale. Wherein, I was able to assess sub-regional

networks and how they interacted with each other across the majority of cortex.

Many different models have been proposed based on cortical columns and I find it

difficult not to speculate that these developmental domains may be the closest units across the

neocortex to date. Cortical columns were first proposed by Mountcastle, but subsequently inte-

grated into several models of columnar organization. Many have discussed the cortical column

with respect to the barrel fields and ocular dominance, as they are the most clearly separated

components of their respective regions. However, cortical columns have been difficult to iden-

tify in other cortical regions due to the flow of information from one patch of cortex to the next.

Several evidence indicate that the developmental domains I identified may be a close represen-

tation across the whole cortex. First, in our previous characterization of P21 recordings, I was

able to show the subsequent recordings produced similar domain maps [63]. Second, between

P6 to P9 in the snap25 GCaMP6s mice, the numbers of units did not change even though the
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cortex was expanding, shown by the decrease in domain density (Figure 1). This is more sur-

prising when considering that the complexity of the neural signal across the cortex increased

through this time period shown by event detection activity (Fig.3.5) and hierarchical cluster

analysis (Fig.3.6), yet ICA still identified the same number of components. Third, domain sizes

between all three P6 mouse lines were very similar, and the domains had similar distribution of

eccentricity and areas across the cortex (Fig.3.2). While more experimentation is still needed

to validate this line of thinking, I am excited by the prospect.

These domains assist our understanding of the cortex based on regional constraints

or to infer progressive modifications of structural circuitry based on age-related functional

changes. I show that domains do not have the same uniform areas, but rather regional biases for

larger domains that develop in the anterior-medial portions of the cortex. Further, I showed that

the domain derived from functional activity maintained known regional borders, exemplified by

the highly eccentric domains surrounding known regions (Fig.3.2). As the animal aged, I ob-

served that these domains amalgamated into larger functional units that showed similar activity

based on each independent spatial component.

Layer specific changes can also be observed in the developing cortex. The rapid

domain growth in the Rbp4-Cre; Ai95 mice between P6 and P10 was striking, suggesting a

rapid cortico-cortical connection maturation. It was reported that deeper fluorescent changes

were associated with more diffuse signal as it passed through the upper layers [61], however

I believe in this case in a strong case of circuit maturation. The same rate of change was not

observed between P10 and P14, although more dendritic maturation was reported at this later

ages [8, 10, 26]. Further, the Cux2-creER; Ai95 mice showed a drastic increase in domain size
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between P10 and P14. This further highlighted the progressive development of each cortical

layer that has been explored in the past [6, 26].

Due to the fact I was recording from population dynamics with calcium imaging tech-

niques, I was well aware of the slow dynamics that I would be recording from, yet were struck

with some of the frequency and event results. First, all three mouse groups showed an increase

in frequency from P6 to P10, then returned to a slower frequency by P14 (Fig.3.4). While

I was aware of each regional shift in frequency, large scale dynamic shifts across the cortex

were unexpected. Further, the layer specific frequency and event progression advanced to our

expectations, where the events increased in number while decreasing their duration (Fig.3.5).

However, snap25 GCaMP6s did not follow this same pattern.

In fact, for the majority of postnatal ages I did not observe a decrease in event duration, but

rather the events were sustained. I believe this was due to the diverse population of cells that

expressed the calcium indicator, including all layers of excitatory and inhibitory neurons. This

was also consistent with the predominant slow frequencies I observed during the first two post-

natal weeks of development. As the circuit matures during the first two weeks, neurons get

activated in non-uniform fashion, all the cell types extending out the event and slowing down

the recorded frequency. This slow frequency and long event did not carry on to P21 animals,

which indicated that the circuit needs further maturation into the third week of development.

Mesoscale imaging is a useful tool to use in conjunction with other experiments to

explore more complicated circuit maturations. This body of work has demonstrated novel ways

of thinking about these large scale imaging techniques and highlighted aspects that need further

exploration. While the majority of the field is focused on their respective areas of interest, I
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hope our study puts primary regions in perspective of the whole cortex functional development.

Each primary region is not only behaving with their respective systems, but coinciding with

functional activities across cortical domains at early ages.
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Figures
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Figure 3.1: Domain maps created from eigenspace show an evolving development of cortical
units based on cell types.
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(a) Examples of eigenvectors of neural signals at postnatal day(P) 2, P6, P10, P14, and P21.

Similar eigenvectors can be found at various stages of development and across multiple regions.

Purported motor (top), head-sensory (middle), and visual (bottom) cortices. (b) Examples of

domain maps created by max projection through the eigenspace for the same animals in Snap25-

GCaMP6s mice (top row). Examples of domain maps created by data from layer specific driven

GCaMP expression from upper layers (cux2; middle row) and layer 5 (rbp4; bottom row) data.

P7 and P21 aGFP controls are also shown for comparison. (c) Domain number for all domain

maps created for each age and condition across both hemispheres. (d) Domain density for all

experiments takes the number of domains for each experiment and is divided by the sum of areas

of all domains that comprise the cortex. snap25 GCaMP6s (black circles), snap25 GCaMP6s

with TAM dose (green circles), cux2 creER; floxed GCaMP6f + TAM (blue); rbp4 cre; floxed

GCaMP6f (orange); mGFP (purple down-triangle); aGFP (purple up-triangle), c57/bl6 mouse

(purple diamond)
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Figure 3.2: Domain sizes increase with age and shapes are not random. (a) Domain surface
area plotted by age. Each individual animal is shown by their mean (open circle) and the 95th
confidence interval (bar). Model was fit showing the progressive increase in area (red line,
model error shown in white dashed lines). 95th confidence interval of the samples based on
bootstrap shown (light grey filled). All genotypes and controls shown. (b) Eccentricity of
domains plotted by animal, with 95th confidence and mean indicated (similar to a).(c) Contour
of the full distribution of major and minor axes plotted by age. Gradient colors represent the
age, light colors are young, decreasing in brightness to older ages. Far right panel overlaps
the densities of all P6 data. (d) Upper quartiles of both surface area and eccentricity shown
for P21 animal (left) with the adult Allen brain atlas map (right). All the centroids of each the
highest size quartile shown (dots), plotted lateral to medial. Highest eccentricity quartile shown
by plotting the major axis of each domain in its characterized orientation (lines). (e) Similar
plotting as in (d) for each age and genotype. Snap25 GCaMP6s (black), Snap25 GCaMP6s
with TAM dose (green), Cux2-creER; Ai95 (blue); Rbp4-cre; Ai95 (orange); mGFP (purple
down-triangle); aGFP (purple up-triangle), c57/cl6 mouse (purple diamond).

58



Figure 3.3: Extracted time courses from one hemisphere show progressive change in time
course dynamics across ages.

59



(a) 3 minute examples of half domain datasets from P2, P6, P10, P14, and P21 snap25

GCaMP6s mice. Time courses plotted in change in fluorescence with respect to mean fluo-

rescence ( ∆ F/F ). All time courses from one hemisphere sorted by centroid position of each

domain from anterior (yellow) to posterior (green). Under each domain map, all time courses

from each domain are plotted (grey scale; lower limit kept at -0.1, variable upper limits based

on age, see legend lower right). (b) Three examples per age of time course and the resulting

wavelet transform ratio with red-noise normalization. Below the wavelet transform is the scaled

average wavelet power (SAWP) through 0.1-5 Hz, showing when prominent wavelet activations

occur (significance indicated values above the dashed line). The global wavelet power spectrum

(GWPS) projected through the full time course exists to the right of the wavelet transform,

indicating prominent frequencies above 95

60



Figure 3.4: Prominent frequencies that arise at each developmental age. (a) Average GWPS
of each animal (left column black line) with variance within each animal (left column grey),
separated by age. Frequencies that are prominent in that age bracket, based on the mean GWPS,
indicated (red) above the power ratio curves. Histograms of the local maxima of each domain
GWPS (right column, black histogram). Similar analysis as (a) for P6 (b), P10 (c), and P14 (d)
layer specific (cux2: blue; rbp4: orange) and snap25 GCaMP6s TAM control animals (green).
(e) Integrated window power based on prominent frequencies seen in the histograms of local
maxima. Top row corresponds to integration of all power between 0 and 0.1 Hz, second row
0.1-0.75 Hz, third row 0.75-3 Hz, and bottom row 3-5Hz. Left column shows power integration
based on age, and the right column shows comparisons between the 4 conditions across each
age assessed: snap25 GCaMP6s (grey), snap25 GCaMP6s + Tamoxifen (green), cux2 (blue),
and rb4 (orange).
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Figure 3.5: Wavelet analysis shows regional and age dependent activity patterns. (a) Box and
whisker plots for the number of events, the duration and the inter-event duration for each do-
main. Rate of events per minute (top row), the event duration plotted per second (middle
row), and the inter-event duration (bottom row) for snap25 GCaMP6s animals (grey), snap25
GCaMP6s + TAM (green), cux2 (blue), and rbp4 (orange) plotted by each age. (b) Example
heatmaps for activity percentage for P6, P10, and P14 recordings of snap25, cux2, and rbp4.
(c) Density plots showing the percentage of domains that are active (y-axis) at what percent-
age of time (x-axis) for each age and experimental condition. To show intra-animal variation,
individual red lines are the average value for each animal in the dataset.
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Figure 3.6: Interhemispheric symmetry drastically increases after P10. (a) Hierarchical cluster
analysis based on Pearson’s correlation coefficient. Top: distribution of the distances in n-
dimensional space (n = number of domains). Maximal distance (black), mean distance (dark
grey), 40th quantile (light grey). Dotted line indicates the defining distance for a cluster to be
formed. Middle: The number of final clusters based on age and the defining distance. Bottom:
The percentage of clusters that had components on both hemispheres. (b) Mapping each domain
onto the opposite hemisphere, k-means clustering was used to determine the closest existing
domain. Scatter plot showing one hemisphere, with color based on Person’s correlation values
for each pair of time courses (Blue: negative correlation, yellow: no correlation, red: positive
correlation. (c) Range plots of each independent experiment (95th CI: bar; mean: Open circle)
for Snap25 GCaMP6s (black), Snap25 GCaMP6s + TAM (green), Cux2-cre; Ai95 (blue), and
Rbp4-cre; Ai95 (orange)
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Figure 3.7: Snap25 driven expression of GCaMP increases during the first two weeks of devel-
opment, then stabilizes.
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(a) Genetic construct from derived mouse line (Madison et al. 2015). Self proteolytic cleavage

between Snap25 and GCaMP6s proteins. (b) Western blot of Snap25 GCaMP animals increas-

ing in age from left to right (P3, P7, P14, P21, P28, P35) and control data on the far right

column (age P28). Genotypes indicated on top of each column, verified via PCR, indicating

positive (+) for the transgene or not (−). Sizes (kDa) on the right of the gel based on the pro-

tein ladder. (c) Quantification of four bands from the western blot data, non-modified copy of

Snap25 (upper left) and its transgenic analog (upper right), GFP (bottom left) and GCaMP6s

(bottom right). (d) Histological expression of GCaMP6s in P3, P7, P14, and P21 animals, one

anterior and posterior section were selected for analysis. GCaMP expression was measured in

the medial portion of each section and a lateral section. (e) Quantification of the GCaMP6s at

the same cortical locations in d. Individual animals are in grey and the mean of all animals is in

black. Data was normalized to the highest average value.
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Figure 3.8: Immunostaining shows robust expression of GCaMP6s in layers 2-4 and in deep
cortical layers in mice containing Cux2-CreER and Rbp4-Cre as early as P6. (a,c) Two example
sections from Cux2-creER; Ai95 taken at 2.5x and 10x magnification. White boxed region in
low magnification is the location of the 10x image. The medial and lateral dashed lines indicate
the areas of quantification. (e, f) Two example sections from Rbp4-cre; Ai95 with similar
sections as in (a). P6 (a,e) and P14 (c,g) are shown with their respective expression histograms
(b,d,f,h), plotted from pia surface to the white matter (wm). Relative expression was calculated
based on background (0) and the max intensity (1) of each section. Individual animals are
shown in grey. Mean histogram is shown in black.
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Figure 3.9: Example Eigen-decompositions from the three mouse lines, verification of maximal
decomposition and increasing number of multi-areal eigenvectors.
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Example eigenvectors from cux2, rbp4, and snap25 driven GCaMP mouse lines at ages (a)

P6, (b) P10, and (c) P14. Snap25 are the same eigenvectors as Figure 1. (d,e) Verification

maximal eigenvector decomposition, comparison of 20 min to 30 minutes worth of data. In-

creases in spatially complex animals, independent of temporal complexity. (f) Quantification

of the percentage of multi-areal independent components. Significant increase in the number of

multi-areal eigenvectors seen after the first week of development.
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Figure 3.10: Cortical area defined by domain map increases with respect to age. (a) Total area
of the cortex defined by the domain map for all GCaMP expressing mice (circles): Snap25
GCaMP6s (black), Snap25 GCaMP6s + TAM (green), cux2-creER; Ai95 (blue), Rbp4-cre;
Ai95 (orange). Control (purple) for mGFP (down triangle), aGFP (up triangle), or C57/bl6 mice
(diamond). High variance in the controls due to cortical areas that were not included in the
domain map generation.
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Methods

Mice

All animal studies were conducted in accordance with the UCSC Office of Animal Research

Oversight and Institutional Animal Care and Use Committee protocols. All mice were main-

tained on C57/Bl6 background in UCSCs mouse facilities. P2-21 Snap25 GCaMP6s transgenic

mice (JAX: 025111), P6-14 floxed GCaMP6f transgenic mice (Ai95; JAX:028865) crossed

with either Rbp4-cre (MMRRC 031125-UCD) or Cux2-creER (graciously gifted to us by Dr

Bin Chen [19]) strains were used for cortex specific activity. Cux2 creER were bred at least

10 generations onto the C57/Bl6 background. Control mice were P7-21 Cx3cr1 GFP (JAX:

005582), P7-21 Aldh1 GFP (MGI: 3843271), and P7-21 C57/Bl6 non-transgenic mice.

To identify Snap25 GCaMPs expressing mice, a single common forward primer (5’-

CCC AGT TGA GAT TGG AAA GTG-3’) was used in conjunction with either transgene spe-

cific reverse primer (5’-ACT TCG CAC AGG ATC CAA GA-3’; 230 band size) or control

reverse primer (5’-CTG GTT TTG TTG GAA TCA GC-3’; 498 band size). The expression of

this transgene resulted in pan-neuronal expression of GCaMP6s throughout the nervous system

in adulthood [35]. To identify floxed GCaMP6f homozygous mice a mutant forward (5’-ACG

AGT CGG ATC TCC CTT TG-3’; 450 band size) or internal control (5’-AAG GGA GCT GCA

GTG GAG TA-3’, 297 band size) were run with a common reverse primer (5’-CCG AAA ATC

TGT GGG AAG TC-3’). The presence of CRE was determined via PCR using primers (5’-CAT

CGC TCG ACC AGT TTA GT-3’) and (5’-CGA TGC AAC GAG TGA TGA GG-3’; 375 band
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size) To identify GFP expressing mice a forward (5’-CCT ACG GCG TGC AGT GCT TCA

GC-3’) and reverse (5’-CGG CGA GCT GCA CGC TGC GTC CTC-3’; 400 band size) PCR

amplification was used to identify which animals had the GFP transgene.

Tamoxifen dosing

P1-2 neonates were orally gavaged at 75mg/kg/day Tamoxifen (Sigma) for three consequetive

days from a 20mg/mL tamoxifen concentration in corn oil. Pups were allowed to rest a full day

prior to imaging.

Surgical procedure

All mice were anesthetized with isoflurane (2.5% in pure oxygen) for the procedure. Body tem-

perature was maintained at 37C for the duration of the surgery and recovery using a feedback-

regulated heading pad. Lidocaine (1%) was applied subcutaneous on the scalp, followed by

careful removal of skin above the skull. If the eyes were open, opthalmic ointment was used

protect the eyes during the surgery. The cranium was attached using to two head bars using

cyanoacrylate, one across the occipital bone of the skull and the other on the lateral parietal

bone. Animals were allowed to recover for 1-1.5 hours to regain cognitive function. P2-8 were

imaged on the heating pad, those that were expecially young (P2-P3) were further wrapped in

a pulled cotton nest. After the mouse were ambulatory, mice were transferred to a rotating disk

for the duration of the recording. At the end of each recording session, the animal was either

euthanized or perfused and the brain dissected.
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Recording calcium dynamics

In-vivo wide-field fluorescence recordings were collected in a minimally invasive manner. Imag-

ing through the skull by single-photon excitation light from two blue LED light (470 nm;

Thorlabs M470L3) produces a green fluorescent signal that is collected through coupled 50mm

Nikon lenses (f5.6 / f1.2, optical magnification ∼ 1x) into a scientific CMOS camera (PCO

Edge 5.5MP, 6.5µm pixel resolution). The top lens in the tandem lens setup was used to focus

on the cortical surface, thereby lowering the magnification slightly; anatomical representation

for each pixel corresponded to 6.9± 0.2µm (min: 6.7µm, max: 7.2µm). Excitation light was

filtered with a 480/30 nm bandpass (Chroma Technology AT480/30x) and the emission signal

was filtered with 520/36 nm bandpass (Edmund Optics 67-044). Data collection was performed

in a dark, quiet room with minimal changes in ambient light or sound, thus the brain activity

recorded was resting state without direct stimulation. Raw data was written directly as a set of

16 bit multi-image TIFF files.

The total amount of data recorded for each animal was generally at least 40 min and

the amount of time in between video segments was less than 1 minute. All analyzed data of

ages less than P14 consisted of three sequential full spatial resolution recordings concatenated

together giving 30 min of data sampled at 10 frames per second for each video decomposition.

P21 animals consisted of 20 min of data, with exact same sampling parameters as the younger

mice[63].
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ICA and Data processing

ICA decompositions were run on a single computing cluster node having 1024 GB of RAM. Af-

ter ICA processing, selection of artifacts and domain map generation (all with a blur parameter

of 51) was computed on local computers with 16-32GB of RAM. [63, 42]

Domain feature generation and clustering analysis

Scipy hierarchical clustering was utilized to determine cluster (scipy.cluster.hierarchy) Shape

metrics for each domain were calculated based on regionprops (Skimage.measure.regionprops)

Wavelet Mean filtration

Wavelet decomposition on the time series signals were performed with a ω = 4 morlet wavelet

family, code adapted from C. Torrence and G. Compo,[55] available at

URL: http://paos.colorado.edu/research/wavelets/

Significance was determined using the 95th percentile of a red-noise model fit to the

time series autocorrelation. Frequency distributions are all displayed as the ratio of the global

wavelet specturm, relative to the noise cutoff. For wavelet filtering, the original signal was

rebuilt excluding all frequency signals in a certain range.

Immunofluorescence

Free floating tissue sections of 30 m coronal neocortex were blocked with 5% normal donkey

serum (NDS), then incubated with chicken anti-GFP (Novus; 1:2000 dilution) at 4C for 24-48

hours.
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Secondary antibody, Goat anti-chicken (1:500) conjugated to Alexa488, was applied for 4 hours

at room temperature and tissue was counterstained with DAPI. Images collected on Zeiss Ax-

ioImager as tiled images at 2.5x magnification and z-stack at 10x utilizing the Apotome feature.

Western blot

P3, P7, P14, P21, P28, and P35 full cortices of Snap25 GCaMP6s mice with control non-

transgenic liter mates were dissected and flash-frozen to be stored at 80C. Cortices were ho-

mogenized using sonification (Diagenode) in lysis buffer containing 50 mM Tris/HCl, 0.25%

(w/v) sodium deoxycholate, 150 mM NaCl, 1 mM EDTA, 1% (w/v) Nonidet P40 (Igepal), with

phosphatase inhibitor cocktail (Thermo Halt) containing AEBSF, aprotinin, bestatin, E-64, leu-

peptin and pepstatin A.

Then 10 g samples were resolved on 10% (w/v) mini-SDS polyacrylamide gels (Bio-

Rad) and transferred to PVDF membranes. Ponseau stain was used to verify protein load and

help approximate cutting of the PVDF membranes into two sections, along with the protein

ladder (Amersham Pharmacia Biotech) (upper section with GFP, GCaMP and actin, lower with

snap25). Membranes were blocked with 5% (w/v) non-fat dried skimmed milk in PBS-T [17

mM KH2PO4, 50 mM Na2HPO4, 1.5 mM NaCl, pH 7.4, and 0.05% (v/v) Tween 20] for

1 h at room temperature and then incubated 48 hrs at 4C in PBS-T plus 5% (w/v) non-fat

dried skimmed milk containing primary rabbit anti--actin (1:5000; Novus) added to the upper

membrane and rabbit anti-snap25 (1:5000 dilution; Novus) antibodies added to the lower. Pro-

tein bands were detected using an ECL kit (Amersham Pharmacia Biotech), with horseradish

peroxidase-conjugated secondary Donkey anti-rabbit antibodies (1:30000,Novus). Upper mem-
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brane was then striped of antibodies using acidic (pH 2.2) aqueous solution containing 0.1%

SDS and 1% Tween20. Re-processing of the upper membrane was then done utilizing rabbit

anti-GFP (1:5000 dilution; Sigma Aldrich) and the same secondary antibody concentrations.

Relative protein levels in each sample were determined by comparison with -actin

levels. Relative intensities of the protein bands were quantified by scanning densitometry using

ImageJ.

Regression analysis (with model error)

Polynomial fit for each data point was conducted. The degree of the polynomial was selected

by minimizing the error of the fit, while assessing each coefficient for its impact on the model.

An ANOVA was run on the coefficients to determine how each coefficient differed from zero

and each other.

Once the degree was selected, bootstrapping was utilized to determine model error

(1000 iterations of 1000 randomly selected points for domain metric fitting; 1000 iterations of

25 randomly selected points for animal metrics)

Sample confidence interval calculation

95% confidence interval was determined via bootstrapping 1000 iterations of 300 samples span-

ning the day before and after of development. Confidence intervals were reported for each it-

eration, resulting distributions of lower and upper confidence intervals. The mean values of the

distributions were reported.
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Statistical significance

Statistical significance was calculated using OLS models from statsmodel.formula.api with

Holm-Sidak multiple testing correction (p ≤ 0.5: *; p ≤ 0.01: **; p ≤ 0.001: *** ). Model

significance is determined by the F-statistic, and significance of two-group analyses (p>|t|) are

calculated with t-tests.
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Chapter 4

Conclusion

In this dissertation, I developed tools necessary to explore functional activity across

the full dorsal cortical sheet of the first three weeks of developing neonatal mice. This big-data

approach showcases the the strengths of collecting sufficient spatial representation with goals

of understating functional activity. Further, this work begins to take on some of the challenging

tasks of developmental neuroscience. Such that the end product shows that functional cortical

activity patterns give key provisional insight into postnatal brain development. These insight

can be capitalized on in future experimentation involved with cortical maturation and circuit

formation.

Past work in the lab

Previous work in the lab that culminated to this body of work, show data-driven methods to spa-

tially segment the cortex that represents underlying cortical structure. Independent component

analysis (ICA) decomposes the functional calcium recordings into components, comprised of a
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spatial eigenvector and functional activity time course. We can maximally project through the

spatial representation to achieve a domain map to discretize the cortex, while maintaining the

underlying structural limitations based on function. This reduces the number of time courses

from a few million of individual pixels down to a few hundred domains. These domain maps

can be replicated on from subsequent recordings with slight variations [63].

Machine learning in identification of Neural components

In the Chapter 2, I demonstrate what constitutes neural components from the ICA decomposi-

tion. With the use of controls, I was able to identify many of the common non-GCaMP based

signals that are produced while recording from non-anesthetized freely behaving mice. These

included movement and vascular artifact components that I saw in many of recordings. How-

ever, I also found many of the hemodynamic components in these non-GCaMP controls that

were very distinct from tight globular components found from GCaMP animals. These neural

components were unmixed from any vascular influence, a common trait in all our data collec-

tions that was never seen in control animals.

From each of the components, I was able to extract key features and teach a machine

to identify each neural component with 97% accuracy. Spatial features were key to identifying

each neural component. Selecting on the neural components allows for a filtered representation

of only the GCaMP6s signals without the influence of motion or vascular artifacts. Upon estab-

lishing the machine learning algorithm, I was able to show high accuracy, even on novel data

that was not used to generate the model.
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Developmental profiles of functioning developing cortex

In chapter 3, I utilized the ICA-pipeline across development in three different mouse lines to

establish functional developmental profiles. The pan-neuronal (snap25 GCaMP6s) was utilized

to establish a full functional profile, wherein I showed developmental day-resolution changes

for the first two weeks. The upper (Cux2-creER; Ai95) and lower cortical layer (Rbp4-cre;

Ai95) were used to compare and understand how varying subpopulations contributed to the

signal seen in the pan neuronal line. We were impressed with the fact that each of these lines

produced similar looking components, strengthening our conviction that ICA components are

based on structurally relevance.

In each mouse line, I found that the domain maps across development give insight

in underlying circuit development. We consistently found that highly eccentric domains out-

line major structural divisions between regions. Further, I found in all mouse lines that the

anteromedial portion of the cortex contained larger domains than the sensory regions of the cor-

tex. The highest density of cortical domains occurs between P4-P6 in our Snap25 GCaMP6s

line. The same number is maintained through P9 even while the cortex is growing, thereby de-

creasing in density. We found that around P10-P14, the circuits assemble into larger functional

marco-circuits, contributing to the larger domains seen in older animals.

When I analyzed the time courses from each of these domains, I showed that pan-

neuronal expression of calcium indicators maintain slower frequencies than the subpopulation

dynamics, but eventually speed up by P21. Both layer specific subpopulations (lower and upper

layers) have faster dynamics, with increased counts of shortened events. We show that the
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structured activity in pan neuronal developing cortex begins to shift at P5, increasing in activity

until P9. Many of the higher order regions that specialize in sensory-sensory and sensory-motor

integration begin to show high levels of activity at the end of the first week, which increases as

the animals ages.

Inter-hemispheric correlation occurs rapidly after P11, first in the frontal cortex then

in sensory regions posterolateral cortex. Day to day significant increases are shown after the P11

date. Lower layer subpopulations did not have much change in correlation during the first week,

but showed significant increase from P10 to P14. Upper layer neurons showed ever increasing

cortical inter-hemispheric connections.

Applications and future possibilities

Our ambitions are that our work will benefit the greater community and enable higher quality

and robust data collection and analysis. Given the excitement and positive feedback for our data

acquisition and analytical pipeline that I received from several researchers, I have developed a

number of collaboration. These collaborations will produced a number of papers to further our

understanding of how cortical patterns are affected by behavior, genetics or environment.

Two such collaboration with the Zuo lab at UCSC look at how environmental condi-

tions change cortical circuits. The first collaboration investigated how cortical patterns change

in adults after chronic stress and are ameliorated after treatment with a novel therapeutic [32].

This work benefited from our filtration methods identifying only neural signal imaged through

the cranial window, independent of vascular artifacts. Through this analysis, we were able to
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compare calcium imaging between the mesoscale cortical activity with microscale 2-photon

single cell imaging, to elucidate the therapeutic benefits of the novel drug. The second collabo-

ration with the Zuo lab investigated cortical changes due to perinatal penicillin exposure across

the entire dorsal cortex [47]. Utilizing the domain maps from our pipeline, we were able to

show widespread lengthening of functional events due to perinatal exposure to penicillin, with

little effect on regional coherence.

In addition to collaborating with neuroscientists, I have worked to strengthen our sta-

tistical understanding and collaboration. I have completed a designated emphasis in statistics

and had various rigorous discussions of analytic approaches with Raquel Prado from the UCSC

statistics department. These discussions have helped shape the way I approach the analysis

and conclusions I attain from this large dataset. Further, the Prado lab has made advances in

Bayesian approaches to model complex time series data [71], of which they actively working

toward an efficient calculation and better time series models for the data I have produced. De-

velopment of these models will only further our understanding of developing cortical dynamics.

Our hope and desire is that this work inspires developmental neuroscientists in pur-

suing previously untapped and difficult investigations. Future work can use this technology

in order to map regional networks independent of a reference map. As such, researcher will

be able to create their own maps regardless of the genetic manipulations that resulted in aber-

rant maps. This opens up the possible investigation into cortico-cortical connections that have

eluded researcher for years. Of course, we will always further our work with the promise to

share our open-source code and hardware development for the benefit of all.
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