UC Irvine
ICS Technical Reports

Title
Paradigm-oriented distributed computing using mobile agents

Permalink
https://escholarship.org/uc/item/2k17p7t2

Authors

Kuang, Hairong
Bic, Lubomir F.
Dillencourt, Michael B.

Publication Date
1999-09-20

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2k17p7t2
https://escholarship.org
http://www.cdlib.org/

no.99-38

ICS

TECHNICAL REPORT

Paradigm-Oriented Distributed Computing Using

Mobile Agents
o Notice: This Material
Lz;,’;’n’;‘fr’;f“;’:.f may be protected
Michael B. Dillencourt by COpyrI ght Law

(Title 17 U.S.C.)

UCI-ICS Technical Report No. 99-38
Department of Information and Computer Science
University of California, Irvine, CA 92697-3425

September 20, 1999

Information and Cemputer Science

University of California, Irvine
N
wf‘/@\RV \‘:Q:.“:'*-;\

<#*Unlversity of California %
\\EV!NE P
o

SLBAR
z
699
o -3%
Tﬁ ﬂéfgf rrented Distributed Computing Using Mobile Agen%;\g 99-

1y be protected Notice: This Material

. Hai K
-y Copyright Law Lubomir . Bic may be protected

(Tnle 17 USC) Michael B. Dillencourt by Copynght Law

Information and Computer Science .
University of California, Irvine, CA 92697-3425, USA (Tme 17 USC)

{hkuang, bic, dillenco}Qics.uci.edu

Abstract

We describe an environment for distributed computing that uses the concept of well-known paradigms. The main
advantage of paradigm-oriented distributed computing s that the user only needs to specify application-specific
sequential code, while the underlying infrastructure takes care of the parallelization and distribution. The main
features of the proposed approach, called PODC, which differentiate it from other approaches, are the following:
(1) It is intended for loosely-coupled metwork environments, not specialized multiprocessors; (2) it is based on an
infrastructure of mobile agents; (3) it supports programming in C, rather than a functional or special-purpose
language, and (4) it provides a Web-based interactive graphics interface through which programs are constructed,
invoked, and monitored.

The three paradigms presently supported in PODC are the bag-of-tasks, the branch-and-bound, and genetic
programming. We demonstrate their use, implemetation, and performance within the mobile agent-based PODC
environment.

Keywords: Programming Skeletons, Paradigm-Oriented Computing, Distributed Computing, Mobile Agents, a
Bag of Task, Branch and Bound, Genetic Programming

Technical areas: Distributed Programming Environment, Agent-based Computing

1 Introduction

Increasingly powerful workstations and PCs, interconnected through various networks, continue to proliferate
throughout the world. Most are greatly underutilized and thus represent a significant computational resource,
which could be tapped for running applications requiring large amounts of computations. Unfortunately, develop-
ing distributed application is significantly more difficult than developing sequential applications. Besides solving
the computational problems, the user must also deal with the partitioning and distribution of data, structuring
the program as a collection of concurrent activities, and coordinating their execution. In addition, issues of fault-
tolerance, resource management, and load balancing must be considered. As a result, only expert programmers
are able to take advantage of the widely available networks and clusters of computers.

To make the distributed computational resources available to a broader class of users, a number of tools and
environments have been proposed, which attempt to simplify the development of dlstnbuted program. One of the
pioneering ideas was to provide programming skeletons fColSQ] which embody specific well-known paradigms,
such as divide-and-conquer or a bag-of-tasks. FEach skeleton is a high-level template describing the essential

coordination structure of the algorithm. Only the problem specific data structures and functions need to be
supplied by the user, and are used as parameters for the given programming skeleton. This idea has been explored
mostly in the context of sequential program development, but can also be applied to distributed computing.

LT N
Paradigm-oriented distributed computing has a number of advantages over unrestricted-distributed program-

- ming. First, the domain knowledge is separated from issues of distribution and parallelization.. The user, who

* is the domain specialists, only needs to supply application-specific sequential functions, which are used as bulld—

* ing blocks for-the. distributed application. The parallelism is implied by the structure of the paradigm and is
‘exploited automatlcally This greatly simplifies the programming task, reduces program development cost, and

. eliminates the sources of potential programming errors. Second, since all instantiations of a paradigm share the
. same structure 1t 1s not necessary to fine-tune each application separately. Instead, 1nvest1ng the time and effort

into optumzmg the underlying common structures for best performance autornatlcally benefits all applications
that are based on the same paradigm.

One of the main limitations of programming skeletons is that they are not easily portable, but need to
be re-implemented for each new architecture. This would make the approach unsuitable for exploiting available
clusters of workstations and PCs, since their numbers, their individual characteristics, and their network topology
are known only at runtime and may even change dynamically with the changing availability of individual nodes
and/or links.

To address these problems and make paradigm-based computing feasible in dynamic heterogeneous computing
environments, we exploit the benefits of a mobile agents infrastructure. The autonomous migration ability of
agents makes them capable of utilizing a dynamically changing network. Their inherent portability allows them
to handle the distribution of tasks in a heterogeneous environment in a transparent manner. Agent mobility
can also be exploited for load balancing. Because of these features, mobile agents lend themselves naturally to
paradigm-oriented distributed computing.

Using a mobile-agent system called MESSENGERS [FBD99, FBDM98], which was developed by our group in
previous research efforts, we have developed an environment for paradigm-oriented distributed computing, called
PODC. This environment currently supports three common computing paradigms: (1) bag-of-tasks, (2) branch-
and-bound search, and (3) genetic programming. After presenting the overall system architecture in Section
2, the three paradigms will be presented in detail in Section 3. Section 4 illustrates the user’s point of view
when employing the paradigms, while Section 5 presents the underlying implementation using MESSENGERS.
Performance evaluations are discussed in Section 6, followed by general conclusions.

2 System Architecture

PODC is a graphics-based environment that supports paradigm-oriented distributed programming. To develop
an application and execute it in a distributed manner, the user must first choose one of the paradigms supported
by the system, and develop the necessary application-specific functions that perform the corresponding domain
computations. These functions are all written using conventional unrestricted C, but must obey certain conven-
tions regarding input and output. The user is then guided through a series of form-based queries, during which
s/he supplies the necessary information. Using this information the system automatically generates and compiles
distributed code, starts the MESSENGERS system on the set of available nodes, and monitors the execution of the
application.

PODC has a 3-tier client/server architecture. The top level is the client, which interacts with the users
through a graphics interface and permits the submission and monitoring of applications. The middle level is the
server, which builds and supervises the execution of the application. The third level represents the underlying
MESSENGERS system, which runs the application on a given computer network. The 3-tier architecture makes it
possible to provide the user a Web-based interactive grapfiic interface. It also allows the user to be off-line while
the application is running and to retrieve the running status and the results later.

% problem
* specific info
X submission
client window
server paradigm
specfic info
logical
00 00
ke CERXD

physical
network Ij Ey
(a)

send a mail to the user
notifying of password info
A

| history log
server
feedback result
logical
network
physical
network

Feedback info

§ /control
. feedback
client .
window
‘ history log
server

logica

network
physical
network

send a mail to the user

notifying of completion status
Y

SETver

(d)

Figure 1: System Architecture

history log

result

0

Figure 1 illustrates the different stages of developing and running an application in PODC. Assuming the
user already has the necessary sequential functions for the application and has stored them as files, Figure 1(a)
shows the submission of an application through a special submission window in the client. First, the user chooses
the desired paradigm from a list. By selecting a paradigm, the user implicitly specifies the parallel algorithm
for the generated distributed program. The user’s email address is also required, to identify and notify the user.
Then the user provides problem specific information by specifying the relevant file names and other information
relevant to the selected paradigm. This information works as a road map for identifying the actual parameters
and to instantiate the program skeleton.

When the user instructs the system to start the application, the server transparently chooses a set of work-
stations and automatically generates and compiles the distributed application codes. The system then starts
up the MESSENGERS system on the set of workstations and begins to execute the distributed programs. The
application is structured as a collection of multiple tasks, each of which is implemented as a Messenger, which
hops to its own workstation where it works on the task. The underlying MESSENGERS system performs the
necessary distribution, load balancing, and fault-recovery automatically and transparently. During execution of
the distributed application, the underlying network might change, for example, as a results of failure or a change
in the system workload. The MESSENGERS can seamlessly adapt to such changes.

Figure 1(b) shows the system while the application is running. During this time, the user is able to monitor
the progress using a graphics display, which continuously provides specific information about the amount of work
performed thus far, any errors encountered, partial solutions, and other useful statistics. The feedback information
is generated by the distributed application and sent to the server, which is then passed to the client and displayed
on the feedback window. The server also saves this information in a history log for later processing.

The user is not required to remain on line while the application is running. This is particularly useful with
long running applications. If the user leaves the system, a password is issued, implemented as a unique application
identifier. Figure 1(c) shows the situation where the system continues operating while the user is off-line. During
this time, the server continues receiving feedback information from the distributed application and recording it
in the history log. A user who chooses to reconnect to the server and check the status of the running application
later can do so by presenting the password together with the user’s identifier (the user’s email address). This
recreates the on-line monitoring situation shown in Figure 1(b).

When the application terminates, the MESSENGERS system is shut down and the user is sent a notification
via email, as illustrated in Figure 1(d). At that time, the user is able to retrieve the results through a Web
browser or ftp tool.

3 Overview of the Paradigms

Currently PODC supports three paradigms: bag-of-tasks, branch-and-bound search, and genetic programming.
There are three main reasons for choosing these paradigms. First, many applications that fit those paradigms
are highly computationally intensive and thus can benefit from multiple computers to improve their performance
through parallelism. Second, an application following these paradigms can easily be divided into large numbers
of coarse grained tasks. Third, each of those tasks is highly asynchronous and self-contained, and there is limited
communication among the tasks. Each task receives information from other tasks at the time of its creation in the
form of parameters and it passes its results to other tasks at the time of its termination. Any other information
exchanges among running tasks are non-essential in the sense that they do not affect the correctness, although
they may have significant impact on the performance. These three properties make the chosen paradigms suitable
for execution in a network environment, where the cost of communication is high, and must be offset by large
numbers of independent coarse-grain tasks.

To make the paradigm-oriented approach to distribifed computing practical, we must be able to clearly dif-
ferentiate between application-specific program components, which must be provided by the user, and paradigm-

specific components, which are provided by the system. In the remainder of this section, we describe each
paradigm in pseudo-code that makes it clear which application-specific components are required.

The application-specific components must be expressed in the form of sequential functions. However, certain
conventions concerning input and output must be obeyed. In particular, the main compute functions are not
allowed to use any read/write commands. The reason is that these functions will be performed on different nodes
or may even be moved at runtime. Thus any open files or other I/O connections would become meaningless.
To solve the problem, each paradigm requires the specification of special functions for input and for output;
these functions can use unrestricted read/write commands supported by C/Unix. The communication between
these input/output functions and the compute functions is restricted to passing a single data structure using a
reference. That is, the input function may read any data; it packages it into a data structure defined by the user;
and 1t returns a pointer to the data structure when it terminates. This data structure then may be passed to a
compute function by reference. When the compute function terminates, it returns its results in an output data
structure, also defined by the user. This is then passed to an output function by reference, which writes it into a
file.

3.1 Bag-of-tasks paradigm

The bag-of-tasks paradigm applies to the situation when the same function is to be executed a large number of
times for a range of different parameters. Applying the function to a set of parameters constitutes a task, and the
collection of all tasks to be solved is called the bag of tasks, since they do not need to be solved in any particular
order. At each iteration, a worker grabs one task from the bag and computes the result.

The bag-of-tasks paradigm has three characteristics. First, the inputs and outputs of the program are usually
represented by large data structures. Since there are potentially many input/output values, they may not fit into
main memory but must be read from and written to files during runtime. Second, all tasks are completely
independent, except that the individual outputs may have to be combined at the end into a single file. Third,
the execution order of tasks does not effect the correctness of the final output. Thus an arbitrary order may be
applied to the task pool.

1. BagOfTasks() {

2. D = InitData();

3. Until (Termination_condition) {
4. T = GenNextTask(D });

5. add T to the bag of tasks BT;
6

7

8

while (BT is not empty) {
. T = remove a task from BT;
9. R = Compute (T);
10. WriteResult(outFile, R);
11. }
12. }

Figure 2: The bag-of-tasks paradigm specification

Figure 2 shows the structure of the bag-of-tasks paradigm. The first step is to initialize the problem data (
line 2). Then the bag of tasks (BT) is created, which is accomplished by the loop in lines 3-5. The termination
condition either represents a fixed number of iterations or is given implicitly by reading input values from a file
until the end of file. The while loop on lines 7-10 represents the actual computation, which is repeated until the
bag of tasks is empty. Multiple workers may execute the loop independently. All workers have shared access to
the task bag and the output data. Each worker repeatediy.removes a task (line 8), solves it by applying the main
compute function f to it (line 9), and writes the result into a file (line 10). Specifying a bag-of-task application
requires specifying four functions:

1. InitData: this is the initialization function that generate the problem data.

2. Termination_condition: this specifies the condition for determining when the bag of tasks is empty, either
explicitly as a fixed integer or implicitly by reaching the end of file.

3. GenNextTask: this is the input function that produces a new task whenever it is called. The state of task
generation might also be recorded in the input problem data.

4. Compute: this is the main compute function that solves a task and generates a result.

5. WriteResult: this is the output function that saves the result R in a file.
In addition, 2 data structure definitions must be provided:

1. The data structure describing a task (7).

2. The data structure describing the result (R).

3.2 Branch-and-bound paradigm

Branch-and-bound search is applicable to various combinatorial optimization problems, and is generally applied
when the goal is to find the exact optimum. A branch-and-bound search is described as a search through a tree,
in which the root node corresponds to the original problem to be solved, and each descendant node corresponds to
a subproblem of the original problem. Each leaf corresponds to a feasible solution. The search tree is constructed
dynamically during the search and consists initially of only the root node. To speed up the search, a subtree
is pruned if it can be determined that it will not yield a solution that is better than the best currently-known
solution.

The basic structure of the branch-and-bound paradigm is presented in Figure 3. Without loss of generality,
we assume the goal of the program is to find the minimum value. We assume D is the initial problem data, which
Is passed as a parameter to certain functions. R is the initial root node. The algorithm maintains a pool L of
tree nodes that have yet to be explored. S is the current best solution, and B is the bounding value of S.

The algorithm starts by setting the bound B to infinity (line 2), initializing the problem data (line 3), and
generating the root node of the branch-and-bound tree, R (line 4). Lines 5-7 are optional: an improved starting
bound B may be generated by generating an initial feasible solution S and the corresponding bound B. The pool
L of problems to be solved is initially set to R (line 9). The following while loop (lines 10-23) then represents
the branch-and-bound search. A node N is selected from the pool L (line 11) and one of the N’s subnodes is
generated(line 12). If all subnodes of N have been explored, then the node N has been completely solved and so
1s removed from the list (line 13). Otherwise, a new bound is computed for the subproblem. Lines 16-20 then
accomplish the pruning: If SN is a partial solution whose bound is lower than the current bound B, it is added
to the pool (line 17); otherwise it is discarded, i.e., the subtree is pruned. If SN is a complete solution and is
better than the currently best solution S, it replaces S and its bound replaces B (line 19-20). After the pool of
subproblems to be solved is drained, the solution to the problem is written (line 24) and the program terminates.
Specifying a branch-and-bound application requires specifying seven functions:

1. GenProblemData: this is the function that initializes the static problem data.
2. GenRootNode: this is the function that generates the root node of the search tree.

3. GenlInitSol: this is the function that generates _a%;nitial feasible solution, which is used to provide an
initial pruning bound.

1. BranchAndBound() {
2. B = Ho0;

3. D = GenProblemData();

4. R = GenRootNode(D);

5. if (an improved initial bound is to be used) {
6 S = GenlInitSol(D);

7 B = GenBound(S, D);

8

-}
9. L={R};
10. while(L is not empty) {
11. N = SelectNode(L);
12. SN = NextBranch(N, D);
13. if(SNisNil) L = L - {N};
14. else {
15. SB = GenBound(SN, D);
16. if (IsSol(SN))

17. if(SB<B)L =L+ {SN};
18. else if(SB< B) {

19. B = SB;

20. S = SN;

21. }

22. 1}

23. }

24. WriteSol(S);

25. }

Figure 3: The branch-and-bound paradigm specification

4. GenBound: this is the function that computes a value for a particular node in the subtree. For a leaf
node, which corresponds to a feasible solution, the value returned is the value of that feasible solution. For
a non-leaf node N in a minimization problem, the value returned is a lower bound on the value of any
feasible solution corresponding to a leaf node that that is a descendant of N.

5. NextBranch: this is the branching function that defines how to divide a problem into subproblems.
Repeated calls to this function return the subproblems and then the value Nil, with each subproblem being
returned exactly once.

6. IsSol: this is the function that check whether a tree node is a solution or not (i.e., whether it is a leaf node
in the branch-and-bound tree).

7. WriteSol: This is a function that writes the result to an output file.

In addition, the definition of the data structure describing a tree node must be provided.

3.3 Genetic programming paradigm

The genetic programming paradigm also solves optimization problems, but using the Darwinian principles of
survival and reproduction of the fittest, and genetic inheritance [Gol89]. Unlike branch-and-bound, the genetic
programming paradigm is generally applied to find a good but not necessarily optimal solution.

Figure 4 shows the basic structure of a sequential gemetic programming paradigm. The first step generates
the static problem data (line 2) and then randomly creates an initial population P of size S (line 3). The while loop
on lines 4-6 represents the evolution process. In each iteration, a new generation is created by applying genetic

1. Genetic() {

2. D = GenProblemData();

3. P = GenInitPop(S, D);

4. until (Termination_condition) {
5. P = CreateNextGen(P, D);
6

7 }z BestIndividual(P);

8. WriteSol(1);

9

Figure 4: The Genetic programming paradigm specification

operations such as crossover, mutation, and reproduction (line 5). This process continues until a termination
condition holds; typically, the termination condition is either based on the number of iterations completedd or
the quality of the best solution obtained. Finally a result is designated (line 7) and written to a file (line 8).

Our implementation of a distributed version of the genetic programming paradigm is based on the concurrent
modification of the paradigm shown in Figure 5. The population is divided into multiple subpopulations, which
evolve independently but occasionally exchange individuals. This concurrent scheme allows the execution of
genetic algorithms to achieve higher performance through course-grained parallelism, while also providing a good
quality solution by mixing individuals from different subpopulations (so that the effect is that of having one large
distributed population rather than a number of small, unrelated populations).

Figure 5 shows the structure of the concurrent genetic programming paradigm. The population pools form
the nodes of a connected graph, with edges connecting certain pairs of nodes, so that each population pool has
a well-defined set of neighbors. (In our implementation, we support a complete graph, a ring, or a toroidal grid,
but any graph is in principle possible.) The processing for each population pool is shown in the loop on lines
3-19. In addition to the basic genetic operations, each subpopulation selects emigrant individuals to be sent to
its neighbors as shown in lines 9-14; emigrant selection favors individuals with better fitness. Each subpopulation
also receives immigrants from its neighbors and uses them to replace selected individuals as shown in lines 15-17;
the selection of individuals to be replaced is biased towards selecting individuals with bad fitness. Once the basic
loop is complete, each subpopulation determines its best individual; the best of all of these is then computed
(lines 21-28) and written to the output file (line 29). Note that the pseudocode assumes that a minimization
problem is being solved, so a “good” fitness value is actually a low value.

Specifying a concurrent genetic programming application requires specifying nine functions:

1. GenproblemData: This is a function that generates the initial problem data.
2. GenInitPop: This is a function that generates the an initial population pool of a specified size.
3. Termination_condition: This is a predicate that specifies the termination criterion.

4. CreateNextGen: This is a function that takes a population pool as a parameter and applies genetic
operations to create a next generation of the population pool.

5. SelectGoodIndividual: This is a function that selects an emigrant from a population, typically by random
selection biased towards individuals with good fitness values.

6. Replace: This is a function that, given an immigrant, either selects an individual to be replace by the
immigrant or discards the immigrant. The selection of the individual to be replaced is typically done by
random selection biased towards individuals with bad fitness values.

7. BestIndividual: This is a function that designategzthe best individual of a population as the result.

8. Fitness: This is a function that measures the fitness of an individual.

1. ConGenetic() {

2. D = GenProblemData();

3. for(each subpopulation pool) {

4. P = GenlInitPop(PopulationSize, D);
5. until (Termination_condition) {

6. for(EmigrationInterval iterations) {
7 P = CreateNextGen(P, D);

8

-

9. for(each neighbor N of this polulation pool) {

10. for(EmigrationRate iterations) {

11. I = SelectGoodIndividual(P);
| 12. send Ito N;
| 13. }

14. }

15. for(all the immigrants M) {

16. P = Replace(P, M);

7.}

18. 1}

19. }

20. BF = 4o

21. for(each subpopulation pool P) {
22. I = BestIndividual(P);

23. F =Fitness(I, D);

24. if(F < BF) {

25. BF = F;

26. BR = I

27. }

28. }

29. WriteSol(BR);
30. }

Figure 5: The concurrent genetic programming paradigm specification

9. WriteSol: This is a function that writes the result to an output file.

The definition of the data structure describing an individual (/) in the population pool must be provided. Also,
several controlling parameters must be specified: the size of a subpopulation (PopulationSize), the number of
new generations to be created between sending out a wave of emigrants (EmigrationInterval), and the number of
emigrants to be sent out in a wave (EmigrationRate).

In the concurrent genetic programming paradigm, the functions SelectGoodIndividual and Replace are
optional. If the user does not provide these two components, each subpopulation will evolve independently and
there will not be any exchanging of individuals among subpopulations.

4 Problem Specification and the User Interface

Users interact with PODC through a graphical interface. There are two phases to the interaction. In the first
phase, the user specifies and starts the application through a submission window. In this window, the user
specifies application-specific program components. This allows the user-specified program to focus on the key
application-specific computational functions; the coordination and distribution of the computation is left to the
system. In the second phase, the user can monitor and interact with the running application through a feedback
window, which shows the current status of the system. The programming environment is paradigm oriented, so
the details of the submission and feedback windows depend on the specific paradigm. In this section, we illustrate
the process of specification and interaction in the context of the branch-and-bound paradigm.

4.1 Component Specification: The Submission Window

Figure 6 shows the graphic interface used to specify a branch-and-bound problem. At the top of the window, the
user provides the location of sequential source programs, header file(s), and program file(s). Below that, the user
specifies the goal of optimization (whether to find the maximum solution or minimum solution), the branching
rule, the bounding rule, the procedure to determine whether a tree node represents a complete solution, the data
structure describing a tree node, and initialization functions. The procedure to generate an initial feasible solution
is optional; if it is not provided, the pruning bound is set to a default value of 400 for a minimization problem
of —oco for a maximization problem. An output procedure for a task needs to be specified so that we can write
the solution to a file. Note that the above components correspond exactly to those indentified for this paradigm
in Section 3.2. Finally, the user can specify a recommended number of machines to use in the computation.

4.2 Interaction with the Running Application: The Feedback Window

While the application is running, the user and the running application are able to interact. Figure 7 shows the
feedback window of a branch-and-bound application, which communicates the running status of the application
to the user.

At the very top of the window, a moving icon indicates that the application is still running. Below that is
a graph showing the history of generated optimal solutions. The x-coordinate represents elapsed time, and the
y-coordinate represents the best solution achieved at the corresponding point in time. This graph allows the user
to assess the progress that the application is making. The feedback window also displays the number of machines
currently being used by the distributed application, a bar showing the estimated fraction of the total work that
has been currently completed (computed: by estimating the number of leaf nodes in the branch-and-bound tree
that have currently either been visited or pruned away),'"f"'éit describing the currently optimal solution, and any
eIror/success messages.

10

Brnch & Bound

p:Mp.ics.uci. edwpubihikuangitsp!

Figure 6: Interface for submitting task

The user can also interact with the running application. For example, if the most recently found solution is
satisfactory, the user can stop the execution rather than wait for it to find an exact optimal solution. The user
can also modify certain parameters through the feedback window. In the current implementation, there are no
run-time modifiable parameters in the branch-and-bound paradigm. However, the genetic programming paradigm
does have certain parameters that can be modified at run-time, such as the frequency at which emigrants are
generated.

5 Distributed Implementation of Paradigms

In this section, we discuss the distributed implementation of the paradigms in the agent-based MESSENGERS
system. One important feature of the MESSENGERS system is that it allows a Messenger to navigate through a
logical network, carrying its own state and behavior. The mapping of a logical network to the underling hardware
network can be done explicitly by the messenger script or implicitly by the system. As a result, the Messengers can
adapt to the changing network. Fault tolerance and load balancing are provided at the system level, transparently
to the user as described in [GBD99]. For the purpose of describing the distributed implementation of each of
the paradigms, we first describe the logical network for each paradigm, and then discuss the behavior of each
messenger.

5.1 Bag-of-Tasks Paradigm

The logical network used to implement the bag-of-tasks paradigm using MESSENGERS is a star topology as shown
in Figure 8(a). The “Meeting Room” node is a central node where the bag of tasks is stored, while the “Office”
node is where a worker solves a task. Since each task can be executed independently, no information needs to be
exchanged between workers, and therefore no link exists between office nodes.

- G

Multiple worker Messengers (w) work concurrently in the system. Each of them hops back and forth between

11

e
e

SRNRR T R
e S
Tan e G

Figure 7: Feedback window for branch-and-bound paradigm

Meeting room Meeting room

Office Office Office

12

System

the meeting room and its office, as shown in Figure 8(b). On each trip, it brings a new task to its office to work
on. After it finishes executing the task, it carries the result back to the meeting room, and pulls another task
from the bag of tasks. Because no new tasks are added dynamically to the bag of tasks, a worker terminates
when the bag of tasks becomes empty.

Because the number of tasks in the bag-of-tasks paradigm may be large, it is useful to allow the tasks to
be generated “on-the-fly”, rather than explicitly at the beginning. A task-generation messenger denoted as g in
Figure 8(b) exists for this purpose. The task-generation messenger stays at the central node. When the number
of tasks in the task pool falls below a certain threshold, the task-generation messenger generates additional new
tasks. When the number of results rise above a threshold, the task-generation messenger writes the available
results to the output file. In this way, I/O operations are performed concurrently with the execution of tasks. |
The task-generation messenger terminates when all the results have been written to the output file, thus effecting |
global termination.

The number of “office” nodes (i.e., the number of workers) is not fixed, but can be dynamically changed to
adapt to changes in the availability or workload of machines in the network. It is easy to implement this feature in
the MESSENGERS system. Adding a worker is done by injecting a worker messenger into the system: the worker
adds an office node and a link to the meeting room to the logical network, and then starts to work. If a machine
is to be removed from the system, a control Messenger is injected, informing the system of the change. The office
node residing on the machine to be removed is deleted, and the worker Messenger will die as it has no office to
work at. The non-preemptive scheduling policy of MESSENGERS [BFDY6] ensures that if the worker is in the
middle of a task, it will complete the task before the control Messenger removes the node.

One implementation detail worth noting is the approach to random number generation. In computations
using random numbers, it is useful for the computation performed by each task to be repeatable. This requires
that sequence of random numbers used by any given task is the same over multiple runs. The usual approach
to generating random numbers in distributed computation is using a different random number seed on each
machine. Since the assignment of tasks to machines may vary over multiple runs, this will not result in a
repeatable computation.

In the PODC implementation of the bag-of-tasks paradigm, each task is associated with a different seed.
When a worker takes a task to its office, it takes the seed along with it and sets the seed for the local random
number generator before executing the task. The computation will be repeatable provided the seed associated
with each task is the same over multiple runs. One simple way to ensure this is to make the seed for each task
be a function of the task number (i.e., of its position in the list of generated tasks).

5.2 Branch-and-Bound Paradigm

The logical network supporting the distributed implementation of the branch-and-bound paradigm is presented
in Figure 9(a). The “Meeting room” node is a central node where the initial task pool is stored, while the “Office”
node is where each worker is exploring a portion of the search space. When a worker finds a solution that is
better than the best previously-known solution, the new pruning bound is communicated to other workers. The
process of notifying the other workers of the new pruning bound is facilitated by fully connecting the office nodes
in the logical network. Note that the communication of the new pruning bound to other workers is an example
of non-essential information exchange as defined in Section 3: each task would successfully complete without
this information exchange, but using an improved pruning bound discovered by another task can improve its
performance significantly.

Three types of Messengers are used to implement the branch-and-bound paradigm. Their behaviors are
shown in Figure 9(b). An initialization Messenger (g), which stays in the meeting room, generates the static

problem data, the initial pruning bound, and the initial sk pool. Multiple worker messengers (w) exist in the
system, one per office node. Each worker repeatedly attempts to find a task to perform, as described below. If

13

L

Meeting room Meeting room Mecting room

Offi

Office

Office Office Office Office Office2 Office3

(a) (v) (c)

Figure 9: Logical network for branch and bound search paradigm in MESSENGERS System

a worker successfully finds a task, it hops to its office to work on the task. When a worker is unable to find a
task, it sets a flag in the meeting room and then terminates. Global termination is detected when the last worker
becomes idle. When a worker messenger finds a better solution, runner messengers (r) are created. These runner
messagers hop to the other office nodes to update the pruning bound.

Balancing the workload among the workers requires some care. The effect of pruning makes it difficult to
predict the load of a task in advance. We use a two-part strategy to try to keep all active workers busy. First,
tasks are obtained on demand from the meeting room. When a worker is looking for a new task, it first hops to
the meeting room and attempts to obtain a task from the initial task pool. If this pool is not empty, it takes the
task to its office and explores the corresponding portion of the problem space locally. As the worker generates
new subproblems, it keeps them in a local subproblem pool. When its subproblem pool becomes empty, it once
again looks for a new task.

The second part of the load-balancing strategy ~omes into play when a worker goes to the meeting room and
finds that the initial task pool is empty. The worker chooses another worker at random and attempts to “steal”
a task from the chosen worker’s local task pool as shown in Figure 9(c). If the chosen worker has a nonempty
task pool, the worker executes the “stolen” task, storing generated subproblems in its own local task pool as
above. Otherwise, the worker randomly chooses another worker to steal a task from. After a certain number of
unsuccessful attempts (currently set at half the number of active workers), the worker terminates.

One issue related to the load balance and pruning bound updating is the stalling of worker messengers.
Because the MESSENGERS system uses a nonpreemptive scheduling mechanism, a worker messenger has to occa-
sionally voluntarily relinquish the processor (“stall”) to allow a runner messenger or a worker messenger trying
to steal a task to run on its node. The frequency of stalling is an important factor affecting system performance.
If a worker stalls too frequently, it will add system overhead because of the cost of context switching. On the
other hand, if a worker stalls too infrequently, it may perform work that would have been unnecessary if it had
allowed a runner to update its pruning bound or another worker to steal one of its tasks. We experimented with a
very simple stalling strategy: the worker stalls after processing a fixed number of subproblems. Our experiments
suggest that an appropriate stalling frequency is once every 100-150 subproblems.

Another design consideration is management of the subproblem pool, which in turn is closely related to the
selection rule. Task pool organizations as a last-in-first-out stack, a priority queue, or a first-in-first-out queue
correspond, respectively, to depth-first, best-first, and breadth-first selection rules. In our present implementation,
selection from the initial task pool is done using breadth first, and selection from the local task pool is done using
a depth-first strategy. Using breadth-first selection on the initial task equalizes the granularity of the initial tasks,
while using depth-first on the local task pools keeps local search fast and minimizes memory use by the workers.

-4

14

5.3 The Genetic Programming Paradigm

Meeting room Meeting room

(2) (b)

Figure 10: Logical network for the genetic programing paradigm in MESSENGERS System

Figure 10(a) illustrates one possible logical network for the implementation of the genetic programming
paradigm in the MESSENGERS system. The “meeting room” node is where workers exchange global information,
while an “Office” node is where a worker executes the evolution process with a distinct subpopulation pool. The
office nodes can be connected using various network topologies: we presently support fully connected, toroidal
mesh, and ring topologies. The topology affects the speed at which a good solution arising in one population pool
will be disseminated to other population pools. It also plays an important role in determining the communication
cost: a more highly connected topology will mix individuals better, but at the time it will result in higher
communication cost. At the other extreme, it is possible to specify that no pairs of office nodes are connected.
In this case, no individuals will be exchanged among office nodes. In the example of Figure 10, the office nodes
are connected by a ring topology.

Three types of messengers exist in the system, as illustrated in Figure 10(b). The worker messengers (w)
execute the basic genetic algorithm, one per office. Because the genetic algorithm is probabilistic, each worker
messenger starts with setting a different seed at the node and randomly generates an initial population pool.
It then repeatedly applies genetic operations to create subsequent generations until the termination condition is
satisfied. Whenever an individual is generated that is better than the previous best in the entire system, a runner
(r) messenger will send it to the meeting room node and report it to the user. When all the worker messengers
finish the specified number of generations or one of them satisfies the termination predicate, the entire application
is terminated.

After a fixed interval of generations, where the frequency is specified by the user, a worker exchanges individ-
uals with neighboring workers. A certain number of emigrants are selected and distributed. Exporter messengers
(e) are generated, carrying emigrants to the neighbors and using them to replace individuals of lower fitness in
the neighbors’ population pools. Two parameters (in addition to the network topology) control the migration of
individuals. These parameters are set by the user and may be modified at runtime through the feedback window.
One is the emigration interval (the number of generations between erhigra,tions), and the other is the emigration
rate (the number of emigrating individuals). Increasing the emigration rate or decreasing the emigration interval
causes more population mixing but increases the communication cost.

6 Performance

This section describes the performance of distributed programs running in the PODC system. All the experiments
are performed on 85 MHz SPARCstation 5 workstations.connected by a 10 Mbit Ethernet.

The bag-of-tasks paradigm is widely used in many scientific computation. Our experiments with this

15

paradigm were based on a Monte Carlo simulation of a model of light transport in organic tissue [PKIW89].
The simulation runs as follows. Once launched, a photon is moved a distance where it may be scattered, ab-
sorbed, propagated undisturbed, internally reflected, or transmitted out of the tissue. The photon is repeatedly
moved until it either escapes from or it is absorbed by the tissue. This process is repeated until the desired
number of photons has been propagated. The sequential program was provided by the Beckman Laser Institute

and Medical Clinic at UC, Irvine.

Because the model assumes that the movement of each photon in the tissue is independent of all other
photons, this simulation fits well in the bag of tasks paradigm. To offset the cost of communication, each task
simulates the movements of 1000 photons. The number of photons simulated is 1,000,000. The experiment results

are shown in Figure 11. The graph presents a near-linear speedup.

Nembar of workers

Figure 11: Speedup for the bag-of-tasks paradigm experiments

We tested the branch and bound paradigm on a well-known combinatorial problem, the Traveling Salesman
Problem (TSP). In the sequential TSP program, the bounding rule is based on a minimum spanning tree [HK70]
of the unvisited cities in a partial tour. We used data for 24 cities.

During our experiments, we observed nondeterministic performance behavior of the distributed branch-and-
bound program [LS84]. Therefore, we executed both the sequential and distributed programs ten times, each with
different input data. The experiment results in Figure 12 represent the average speedup from ten runs. These
show a near-linear speedup for the distributed branch-and-bound program.

Speedup

] 2 4 B 8
Number of Workers

i

Figure 12: Speedup for the branch-and-bound paradigm experiments

16

The nondeterministic behavior of the distributed branch-and-bound search is partly due to the fact that the
distributed branch-and-bound program implicitly changes the search order as a result of exploring the problem
space concurrently. To explore how the search order effects the performance, we conducted another type of
experiment. We ran both sequential and distributed programs ten times, each time is with the same input data,
but with a different permutation of the initial task pool. The experiment results are shown in Figure 13. The
horizontal axis represents permutations of the initial task pool, while the vertical axis represents the execution
times of the programs in seconds. These experiments show that the program execution time is greatly influenced
by the search order. For example, for the sequential program, the minimum execution time is 241.2s, while
the maximum execution time is 4877.6s depending on the search order. The graph also shows that introducing
multiple workers working simultaneously has a significant smoothing effect on the execution time, making the
execution time much more predicable.

6000

5000

4000 A -
A I{ i —4— sequential

3000 L L4 i 3 workess

2000 ff’ \. \ - -~ & workears

1000 / \ *. fl \ PN ;/

NS

Figure 13: Execution time of branch-and-bound program with different permutation of search order

We tested the the genetic programming paradigm using also the travelling salesman problem. The size of
the TSP was 30 cities. The original sequential program was downloaded from the Web [LaL.96]. We restructured
the source code to fit into our paradigm and also added a mutation operator. In this program, the tours are
encoded as a 2-dimensional array (a NxN matrix) of bits that store city adjacencies in both directions. For each
iteration, a tournament selection method is used to choose a list of tours, the best two of which are combined
to produce two offspring using crossover, and one of which is mutated. The crossover operation places the edges
that are shared by the parent in both children. The mutation operation takes a reciprocal exchange strategy that
swaps two cities. The distributed programs were run on a network of four workstations, each of which contains
an office node. All the office nodes are connected as a ring. Because genetic programs are probabilistic, we ran
each program 10 times,

To describe the performance of genetic programs, we define a term, called a quality ratio, which shows how
close a solution is to the best solution. In case of minimization , the quality ratio of a given solution is defined as

fitness(optimal solution)/fitness(solution)

where the fitness function evaluates a given solution. The range of quality ratio is (0.0, 1]. The bigger the quality
ratio, the closer is the solution to the optimal solution. The sequential program attained a quality ratio of 99.4%
after running for an indefinite period of time. We then used this ratio as termination condition for the distributed
programs, so that all solution would yield the same quality of solution.

Figure 14(a) compares the average performance of three programs. The population size of a worker mes-
senger in the first program is 1250. The other two are sequential programs with population size 1250 and 5000
respectively. From the figure we can see that the messengeg-program finds the solution fastest, which is four times
as fast as the sequential program with population size on 5000.

17

B

imey
@lutonoptima b
g

?;
5
|

We also selected a representative run of three programs and illustrate the evolution process in Figure 14(b).
The grey line is the sequential program with population size 1250. The white line is the sequential program
with population size 5000 whose population includes that of the first sequential program. The black line is the
worker messenger with the initial population the same as the first sequential one, but which exchanges immigrants
periodically during the evolution. The horizontal axis represents time in seconds, while the vertical axis shows

the quality ratio.

The graph shows that initially the genetic program with the smaller population size can find good solutions
the fastest. However, after it finds a solution with a quality ratio 97.1%, it takes much longer time to improve
this solution. The sequential program with the larger population performs better after this point. The worker
messenger combines the benefits of the two sequential programs. Initially it behaves as the sequential program
with the smaller population. Later it converges slightly slower because of the greater diversity of individuals
resulting from exchange of immigrants. In the final stage, it beats both sequential programs and finds the near

nmus_r.n‘ promm

n‘ﬂ o o e a s a T h:o] =m m
Rl)

@ ®)

Figure 14: Speedup for the genetic programming paradigm experiements

optimal solution with the quality ratio of 99.4% in shortest time.

7 Related Work

The paradigm-oriented approach has been employed to build parallel computation models in which programmers
do not have to be aware of parallelism at all. One example of this approach was developed by Murray Cole, who
presents an algorithmic skeleton approach to controlling parallelism [Col89]. The algorithmic skeletons, which
are conceptually the same as our paradigms, encapsulate control structures. In [Col89], four skeletons (divide
and conquer, interactive combination, cluster, and task queue) are specified, and their possible implementation
in grid based parallel architecture are discussed. Similar work using paradigms for reduction and mapping
over pairs, pipelines, and farms, has been done by Darlington’s group at Imperial College [DFH93]. The Pisa

Parallel Programming Language (P3L) [Pel93] uses a set of parallel paradigms such as pipeline, worker farms,
and reductions as basic constructs to implicitly express parallelism. They discuss a parallel implementation

on a massively parallel architecture. Other related workzncludes Rabhi’s that describes some of the common
parallel programming paradigms which explains the basic principles behind a paradigm-oriented programming

18

approach [Rab95]. Gorlatch studies extensively the parallel implementation of divide-and-conquer paradigm and
its application to the FFT computation [Gor98].

The major drawback of the above approaches is that they use functional languages to formally specify the
paradigms, because the functional languages allow higher order functions as parameters. However, while the
functional languages elegantly abstract a paradigm, they generally produce inefficient programs [BK96]. The Skil
language [BK96] developed at Aachen University of Technology represents a step away from purely functional
solutions, by integrating functional features with an imperative (C-based) language, but the paradigms are still
expressed by functions. Qur approach allows the user to program application-specific components in C language,
and it allows the user to specify those components via a graphical interface. This Web-based interface eliminates
the difficulty in specifying an application using a not commonly used language. The supporting C language
provides the desired flexibility and it also ensures the efficiency of the running code.

Many programming tools and environments have been developed to support paradigm oriented programming,.
In [SSG91], Singh et al. describe a template-based programming environment; the major templates studied
are pipeline and contractor (replicated process). Siu et al. describe the concept of design patterns which are
implemented as reusable code skeletons [SSGS96]. These two systems differ from our paradigm approach in
that the templates or patterns are common structures in parallel programs. Therefore, the user needs to be
aware of parallelism as part of the programming task, and takes some responsibility for dividing the problem.
ParAgent [KM97] is a tool to parallelize legacy code. The approach uses high-level knowledge of parallelization,
with the user providing a roadmap for the parallelization. The kinds of problems supported are programs applying
mathematical techniques, such as finite difference, boundary element, and finite element methods. The parallel
code is executed on multiprocessor machines. In contrast, our system supports distributed computing over a
network of workstations. Using a mobile agent infrastructure, we make the paradigm-oriented computing feasible
in a dynamic heterogeneous computing environment.

8 Conclusions

In this paper we presented an approach to distributed computing that uses the concept of well-known paradigms.
Its main features, which differentiate it from other approaches, are the following: (1) It is intended for loosely-
coupled network environments, not spectalized multiprocessors; (2) it is based on an infrastructure of mobile

agents; (3) it supports programmingin C, rather than a functional or special-purpose language, and (4) it provides

a Web-based interactive graphics interface through which programs are submitted, invoked, and monitored.

By implementating three widely used paradigms—bag-of-tasks, branch-and-bound, and genetic programrﬁing—

we have demonstrated the viability of this approach for use in heterogeneous and dynamically changing cluster
of connected commodity workstations or PCs. One of the main reasons for the flexibility and portability of the
PODC environment is the use of mobile agents, which provide a virtual environment within which the given
paradigms can be implemented independently of any specific networking or architectural constraints. The per-
formance tests indicate that, for the chosen paradigms, the resulting overhead is minimal, allowing the system to
deliver nearly linear speedup for many types of applications.

References

[BFD96] L.F. Bic, M. Fukuda, and M. Dillencourt. Distributed computing using autonomous objects. IEEE
Computer, 29(8), Aug. 1996.

[BK96] G. H. Botorog and H. Kuchen. Skil: An imperative language with algorithmic skeletons for efficient
distributed programming. In Proceedings of t__hg Fifth International Symposium on High Performance
Distributed Computing (HPDC-5), pages 243%252. IEEE Computer Society Press, 1996.

19

[Col8Y]

[DFHY3]

[FBD99]

[FBDMYS]

[GBDYY]
[Gol8Y]

[Gor98]

[HK70)

[KMY7]

[LaL96]

[LS84]

[Pel93]

[PKIW89]

[Rab95]

[SSG91]

[SSGS96]

Murray Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. Research
Monographs in Parallel and Distributed Computing. Pitman, 1989.

J. Darlington, A.J. Field, and P.G. Harrison. Parallel programming using skeleton functions. PALE’93,
Parallel Architectures and Languages Europe, June 1993.

M. Fukuda, L. F. Bic, and M. B. Dillencourt. Messages versus messengers in distributed programming.
Journal of Parallel and Distributed Computing, 57:188-211, 1999.

M. Fukuda, L. F. Bic, M. B. Dillencourt, and F. Merchant. Distributed coordination with messengers.
Science of Computer Programming, 31(2), 1998.

E. Gendelman, L. F. Bic, and M. B. Dillencourt. Technical Report 35, 1999.

D. E. Goldberg. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley,
Reading, MA, 1989.

Sergel Gorlatch. Programming with divide-and-conquer skeletons: A case study of FFT. The Journal
of Supercomputing, 12(1/2):85-97, January 1998.

M. Held and R. M. Karp. The traveling-salesman problem and minimum spanning trees. Operations
Research, 18:1138-1162, 1970.

Suraj C. Kothari and S. Mitra. Parallelization agent: A new approach to parallelization of legacy
codes. Eighth SIAM Conference on Parallel Processing for Scientific Computing, 1997.

Michael LaLena. Travelling salesman problem wusing genetic algorithms, 1996.
http://www.lalena.com/ai/tsp/.

T. H. Lai and S. Sahni. Anomalies in parallel branch-and-bound algorithms. Communuications of the
Association of Computing Machinery, 27(9):594-602, June 1984.

S. Pelagatti. A Methodology for the Development and the Support of Massively Parallel Programs.
PhD thesis, Dipartimento di Informatica, Universita’ di Pisa, March 1993.

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch. A Monte Carlo model of light propagation
in tissue. In Dosimetry of Laser Radiation in Medicine and Biology, SPIE Institute Series Vol. IS 5,
pages 102-111. 1989.

Fethi A. Rabhi. A parallel programming methodology based on paradigms. In Transputer and Occam
Developments, pages 239-252. IOS Press, 1995.

Ajit Singh, Jonathan Schaeffer, and Mark Green. A template-based approach to the generation of dis-
tributed applications using a network of workstations. IEEE Transations on Parallel and Distributed
Systems, 2(1):52-66, January 1991.

S. Siu, M. De Simone, D. Goswami, and A. Singh. Design patterns for parallel programming.
PDPTA’96, August 1996.

B
¥

20

