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Identification of novel blood biomarker panels to detect ischemic stroke in
patients and their responsiveness to therapeutic intervention
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H I G H L I G H T S

• We used a multiplex panel of 37 molecules to identify the changes in human plasma proteins after stroke.

• We identified eight key molecules that were altered within the blood of stroke patients as compared to controls.

• Levels of sIL-6Rβ/gp130, MMP-2, osteopontin, sTNF-R1 and sTNF-R2 were higher in stroke patients compared to controls.

• Multivariate logistic regression identified a stroke biomarker panel with high specificity and sensitivity.

A R T I C L E I N F O
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A B S T R A C T

The use of blood biomarkers for stroke has been long considered an excellent method to determine the occur-
rence, timing, subtype, and severity of stroke. In this study, venous blood was obtained from ischemic stroke
patients after stroke onset and compared with age and sex-matched controls. We used a multiplex panel of 37
inflammatory molecules, analyzed using Luminex MagPix technology, to identify the changes in plasma proteins
after ischemic stroke. We identified eight key molecules that were altered within the blood of stroke patients as
compared to controls. Plasma levels of interleukin 6 signal transducer (sIL-6Rβ/gp130), matrix metalloprotei-
nase-2 (MMP-2), osteopontin, sTNF-R1 and sTNF-R2 were significantly higher in stroke patients compared to
controls. Interferon-β, interleukin-28, and thymic stromal lymphopoietin (TSLP) were decreased in plasma from
stroke patients. No other immunological markers were significantly different between patient groups. When
stroke patients were treated with tissue plasminogen activator (t-PA), plasma levels of interferon-α2 significantly
increased while interleukin-2 and pentraxin-3 decreased. The discriminatory power of the molecules was
evaluated by receiver operating characteristic (ROC) analysis. According to ROC analysis, the best markers for
distinguishing stroke occurrence were MMP-2 (AUC=0.76, sensitivity 62.5%, specificity 88.5%), sTNF-R2
(AUC=0.75, sensitivity 83.3%, specificity 65.3%) and TSLP (AUC=0.81, sensitivity 66.7%, specificity 96.2%).
Multivariate logistic regression, used to evaluate the combination of proteins, identified a biomarker panel with
high specificity and sensitivity (AUC=0.96, sensitivity 87.5%, specificity 96.2%). These results indicate a novel
set of blood biomarkers that could be used in a panel to identify stroke patients and their responsiveness to
therapeutic intervention.

1. Introduction

Stroke is a debilitating neurological condition with limited treat-
ment options (Heron, 2016). Imaging techniques (e.g., computed to-
mography (CT) and Magnetic resonance imaging (MRI)) are useful in

detecting the occurrence, type and severity of strokes. However, there is
a need to develop rapid, accessible, affordable, and easy to use diag-
nostic tools to identify and treat stroke symptoms in conjunction with
imaging techniques. The use of blood biomarkers for stroke has been
long considered an excellent method to determine the occurrence,
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timing, subtype, and severity of strokes (Foerch et al., 2009; Jensen
et al., 2009; Laskowitz et al., 2009). Blood biomarkers can also be used
to determine the efficacy of existing and novel stroke treatment stra-
tegies. Panels of multiple biomarkers have been shown to predict stroke
diagnosis with high sensitivity and specificity (Jickling and Sharp,
2015).

The existing body of stroke research suggests inflammation is an
important part of the pathophysiology of cerebral ischemia (Iadecola
and Anrather, 2011). Many cytokines, including interleukin-1β (IL-1β),
interleukin-6 (IL-6), interleukin-10 (IL-10) and tumor necrosis factor-α
(TNF-α) have been studied extensively within the context of stroke
(Foerch et al., 2009; Kim et al., 1996; Dziedzic et al., 2002; Ormstad
et al., 2011; Zeng et al., 2013). This concentration on general compo-
nents of the immune response makes it difficult to identify unique
immunological properties for stroke. Our increasing understanding of
the complexities of the immune system advances the utility of probing
multiple immunological factors in stroke patients seeking unique and
useful biomarker signatures or panels to aid in stroke diagnosis, guide
patient treatments, and track prognosis or recovery.

Previous published studies showed promising results in human pa-
tients when using genomic tools to screen for novel biomarker sig-
natures of large vessel stroke (Barr et al., 2010; Stamova et al., 2010;
Jickling et al., 2010). However, the use of RNA for biomarker analysis
may not be clinically practical in a limited time frame. For this study,
we collected blood plasma from stroke patients and age-matched con-
trols to examine the levels of multiple immunological proteins in
plasma samples. We used a panel of 37 immunological molecules and
examined their levels in plasma taken from patients ∼24 h after con-
firmed stroke events. We identified eight potential stroke biomarkers,
several of which are novel (not previously associated with stroke).
These biomarkers were used to develop a multi-protein panel with high
specificity and sensitivity for detecting stroke occurrence. We also
identified potential markers for patients who received tissue plasmi-
nogen activator (t-PA) treatment following stroke.

2. Results

2.1. Study population demographics

Plasma samples used in this study were obtained from peripheral
blood drawn from consenting patients admitted to the Grady Memorial
Hospital Emergency Room presenting stroke symptoms and age-mat-
ched participants from an out-patient clinic. The average time between
stroke and blood draw was 22.9 ± 4.5 h (mean ± SE). Demographic
data for the 24 stroke patients and 26 control patients analyzed in this
study are shown in Table 1. Patient age ranged from 39 to 100; control
samples were selected to be age-matched, resulting in a similar spread

of ages. (i.e., stroke patients spanned the entire 39 to100 year range
with median age of 58 and an interquartile range from 51 to 74 years;
control participants ranged from 40 to 85 years with a median of 61 and
interquartile range from 51 to 76). The gender breakdown of both
groups was also similar, with the 24 stroke patients consisting of 15
males and 9 females and the 26 controls including 16 males and 10
females. Overall, the subjects in this study displayed no significant
differences in age or sex distribution between stroke and control
groups. We were able to obtain additional demographic information on
all of the controls and 17 of the 24 stroke patients, including risk fac-
tors, stroke subtypes and thrombolytic treatment.

2.2. Immunological profiling of plasma in total study population

Of the 37 inflammatory proteins probed using the multiplex ELISA
assay, 19 were detected in all samples, resulting in 26 control and 24
stroke measurements. Levels of four proteins (IL-27, IL-32, IL-34, and
LIGHT/TNFSF14) were below detection limit levels in all samples and
were eliminated from further analysis. The remaining 14 protein bio-
markers yielded at least one stroke and one control measurement, with
the exception of Pentraxin-3 which was detected only in a sub-set of
stroke samples and no control samples. Protein concentrations of all 37
proteins with individual n numbers available for analysis are shown in
Table 2.

Statistical analysis indicated that eight of the 33 detectable proteins
in our samples were significantly different between stroke and control
samples Fig. 1 and Table 2. The eight biomarkers were IFN-β, IL-28, sIL-
6Rβ/gp130, MMP-2, osteopontin, sTNF-R1, sTNF-R2 and TSLP. Plasma
levels of sIL-6Rβ/gp130, MMP-2, osteopontin, sTNF-R1 and sTNF-R2
were significantly higher in stroke patients compared to controls, while
IFN-β, IL-28, and TSLP were significantly lower in plasma from stroke
patients. None of the other immunological markers significantly dif-
fered among groups.

2.3. Effects of rt-PA treatment on immunological profile

Thirteen of the 24 stroke patients in this study received recombinant
tissue plasminogen activator (rt-PA) treatment after arriving at the
hospital. To investigate the possible effects of this treatment on blood
immunological profiles, we compared protein levels between rt-PA
treated and untreated stroke patient samples. Statistical analysis iden-
tified IFN-α2, IL-2, and Pentraxin-3 as significantly different between
rt-PA treated and non-treated groups Table 3). Pentraxin-3 was notable
because in the majority of samples (9) the levels were below the de-
tection limit of our assay. However, all of the detectable pentraxin-3
samples were those of stoke patients, which might suggest elevated
pentraxin-3 in stroke. Further evaluation of these nine samples showed
that pentraxin-3 levels were an order of magnitude higher in those
patients that did not receive rt-PA treatment compared to those that did
receive treatment. While the sample size is small, our statistical analysis
shows that the difference in pentraxin-3 levels between treatment and
untreated patients is statistically significant. None of these factors du-
plicated those found to be significantly different between stroke and
control samples, suggesting that the eight biomarkers previously iden-
tified could be of use in all stages of stroke diagnosis and monitoring,
regardless of patient treatment status.

2.4. Univariate analysis of significant immunological profile for stroke

ROC curves were generated for the eight biomarkers identified as
having significantly different concentrations between stroke and con-
trol samples Fig. 2). Table 4 shows AUC, sensitivity, specificity and
accuracy calculated at the optimal cut-off value for each of the eight
proteins. Sensitivity and specificity of the test are inversely related and
change depending upon the cutoff level chosen to assign positive and
negative testing results. Table 4 lists the sensitivity and specificity

Table 1
Demographic information about patients.

Demographic Factor Stroke (n= 24) Control (n=26)

Age 58 (51–74) 61 (51–76)
Female Gender 9 (36%) 10 (38.46%)
Prior stroke or TIA1 0 0
Hypertension1 9 (53%) 26 (100%)
Coronary artery disease1 3 (18%) 0
Congestive heart failure1 4 (24%) 0
Diabetes mellitus1 4 (24%) 1 (4%)
Atrial fibrillation1 1 (6%) –
MCA stroke1 17 (100%) –
Atherogenic stroke1 12 (71%) –
Cardioembolic stroke1 5 (6%) –
Thrombolytic therapy1 11 (65%) –

All samples were from patients who were self-determined as African-American.
Age shown as median (quartile 1 – quartile 3).

1 Data from all control and 17 of the 24 stroke patients.
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proportions for the “optimized” cut-off point, determined by the highest
combined sensitivity and (1-specificity) values. Four of the eight iden-
tified proteins Fig. 2, IL-28, MMP-2, sTNF-R2 and TSLP were de-
termined acceptable discriminators (AUC≥ 0.7) between stroke and
control conditions when used individually and only TSLP qualified as a
“good” discriminator (AUC≥ 0.8). While decreased IL-28A/IFN-λ2
level is specific for stroke, the sensitivity of this measure is relatively
low compared to other proteins assessed. Increased sTNF-R2 and MMP-
2 and decreased TSLP levels were predictive of stroke with a high de-
gree of sensitivity, specificity and accuracy.

2.5. Multivariate analysis of biomarker panels

In addition to using biomarkers individually to discriminate be-
tween stroke patients and healthy controls, we also examined whether
multiple biomarkers could be combined into diagnostic panels. We di-
vided our eight biomarkers into two panels and evaluated each for its
ability to discriminate between stroke and healthy samples. For the first
panel, we combined the top univariate performers Fig. 2, IL-28A/IFN-
λ2, MMP-2, sTNF-R2, and TSLP, using a logistic regression analysis to
predict the outcome (i.e., “disease” or “healthy”). Combining these four
molecules, each of which achieved only “acceptable” or “good” dis-
crimination between groups assessed individually, we were able to
achieve an AUC of .955, which is considered excellent, with sensitivity
and specificity of .875 and .962 respectively Table 5).

In a second panel we combined the least successful univariate

performers, Gp130/sIL-6Rb, IFN-β, Osteopontin (OPN), and sTNF-R1,
none of which could be used individually to successfully discriminate
between stroke and healthy samples. The resulting panel showed
greatly improved diagnostic value, with an AUC of .926, sensitivity of
.870 and specificity of .962.

3. Discussion

The goals of this study were to identify candidate stroke biomarkers
in the blood of patients and develop a panel of biomarkers to detect
stroke with high specificity and sensitivity. We identified eight im-
munologically relevant proteins present in significantly different
amounts in the plasma of stroke patients compared to age-matched
controls. These eight molecules are diverse in their form and function,
including chemokines (IL-28A/IFN-g2, IFN-β, TSLP), metalloproteases
(MMP-2), transmembrane receptor domains (sTNF-R1, sTNF-R2,
gp130/sIL-6RB) and extracellular structural proteins (OPN). The di-
versity of molecules suggests the complexity of the systemic im-
munological environment that is triggered as a result of ischemic
stroke. Of these eight molecules, to our knowledge only sTNF-R1 and
MMP-2 had previously been identified as biomarkers of stroke (Zhang
et al., 2011; Greisenegger et al., 2015).

Among the biomarkers that we identified as being significantly al-
tered in the blood of stroke patients were factors that play important
roles in both the innate and adaptive arms of the immune response.
Gp130/sIL-6RB, IFN-β, IL-28A/IFN-g2 and MMP-2 are involved in

Table 2
Immunological Profile.

Biomarker Stroke (pg/ml) [n=24] Control (pg/ml)[n= 26] p-value

APRIL/TNFSF13 108,387 (70178–155143) 81,108 (58714–108851) 0.093
BAFF/TNFSF13B 4096 (2989–5934) 3473 (2840–3980) 0.10
Chitinase 3-like 1 10,588 (8248–13716) 8736 (5466–12061) 0.20
Gp130/sIL-6Rβ 29,933 (18999–39481) 22,285 (18367–29580) 0.046
IFN-α2* 6.868 (3.495–9.48) (Kim and Koh, 2000) 6.705 (5.22–11.15) 0.52
IFN-β 25.4 (20.45–33.59) 29.52 (25.27–38.36) 0.033
IFN-γ 8.389 (4.336–11.27) 9.36 (8.42–12.18) 0.066
IL-2* 1.14 (0.79–1.39) (Jickling et al., 2010) 0.79 (0.41–1.64) (Bell et al., 2013) 0.86
IL-8* 10.04 (6.377–13.95) (Nayak et al., 2009) 10.36 (8.11–14.38) 0.51
IL-10* 0.2895 (0.24–1.09) (Laskowitz et al., 2009) 0.128 (0.128–0.128) (Heron, 2016) n/a
IL-11 0.9975 (0.7171–1.184) 0.81 (0.645–1.07) 0.22
IL-12 (p40) 16.22 (13.44–17.45) 16.87 (14.46–19.89) 0.58
IL-12 (p70)* 0.17 (0.06369–0.2575) (Iadecola and Anrather, 2011) 0.24 (0.065–0.44) (Kim et al., 1996) 0.53
IL-19* 3.105 (0.89–11.79) (Laskowitz et al., 2009) 4.9 (1.05–23.86) (Jensen et al., 2009) 0.69
IL-20* 18.82 (10.54–23.38) (Sensitivity, 2008) 19.48 (15.96–27.52) 0.12
IL-22* 2.42 (2.42–2.42) (Heron, 2016) 31.37 (1.44–444.4) (Jickling and Sharp, 2015) n/a
IL-26 3.319 (2.259–4.232) 3.385 (2.52–3.92) 0.92
IL-27 (p28)† none none n/a
IL-28A/IFN-λ2 14.01 (9.525–17.56) 18.12 (15.31–22.79) 0.0059
IL-29/IFN-λ1* 3.35 (2.715–12.57) (Ormstad et al., 2011) 10.25 (6.33–12.22) (Zeng et al., 2013) 0.32
IL-32† none none n/a
IL-34† none none n/a
IL-35* 20.87 (16.4–28.93) (Greisenegger et al., 2015) 27 (16.4–39.81) (Sezer et al., 2014) 0.31
LIGHT/TNFSF14† none none n/a
MMP-1* 614.8 (169.8–1044) (Zhang et al., 2011) 721.2 (217.24–843.43) (Greisenegger et al., 2015) 0.96
MMP-2 4268 (2129–5787) 2033 (1233–3535) 0.0011
MMP-3* 3872 (2370–5782) (Nayak et al., 2009) 3944 (2276.08–6348.75) 0.87
Osteocalcin 560.6 (383.3–838.9) 575.7 (413–685.4) 0.90
Osteopontin (OPN) 6931 (2768–10827) 4316 (2037–5867) 0.020
Pentraxin-3* 6.342 (1.426–73.43) (Ormstad et al., 2011) none n/a
sCD163 623.4 (473–771.4) 530.8 (394.39–759.43) 0.44
sCD30/TNFRSF8 218.5 (142–271.7) 168.8 (137.22–277.63) 0.37
sIL-6Rα* 6.868 (3.495–9.48) (Kim and Koh, 2000) 6.705 (5.22–11.15) 0.59
sTNF-R1 1055 (783.7–1230) 807.3 (629.43–970.58) 0.033
sTNF-R2 7688 (5866–11642) 4422 (2913.77–7074.6) 0.0019
TSLP 11.14 (9.401–15.75) 17.2 (13.61–20.27) 0.0001
TWEAK/TNFSF12 129.4 (106.9–166.3) 119.3 (96.95–154.92) 0.41

Median values and interquartile ranges (IQR) shown.
* Only expressed in a subset of samples, n # shown italicized in square brackets.
† Biomarker is below detection level in stroke and control samples.
Significant p-vales bold.
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innate immune cascades (Zheng et al., 2013; Kim and Koh, 2000). On
the other hand, IL-28A/IFN-g2 plays an active role in directing adaptive
immune responses as a co-stimulatory factor in T cell activation, in-
hibiting Th2 responses (Khalaj et al., 2016). In addition, many of these

biomarkers are involved in multiple, sometimes overlapping and in-
tersecting, molecular signaling cascades. Specifically, IL-28A/IFN-g2
and TSLP regulate the transcription factor STAT5, which is critical for
immune cell development (Bell et al., 2013). OPN (also known as

Fig. 1. Significantly different immunological
profiles of stroke and control patients. Levels
of 37 immunological proteins in the plasma of
stroke patients and age-matched controls were
determined using a multiplexed ELISA.
Recorded fluorescence intensities were con-
verted to concentrations using standard curves
for each protein. Plasma concentrations, in
picograms per milliliter (pg/ml), of the eight
proteins that were significantly different be-
tween stroke and control populations are
shown here as box and whisker plots. All
concentration values are shown. Whiskers
extend from minimum to maximum con-
centration. Box encloses the range between
the first and third quartiles with horizontal
line at median value. P-values calculated
using post-hoc pairwise non-parametric
Mann-Whitney U test. *p≤ .05 **p≤ .01
***p≤ .001.
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secreted phosphoprotein 1, or SPP1) regulates MMP2. Therefore this
regulatory pathway might be a significant feature of the stroke-induced
immune response (Zhang et al., 2011). Finally, sTNF-R1 has been
identified as biomarker associated with mortality not only in stroke, but
also sepsis (Greisenegger et al., 2015; Mikacenic et al., 2015), in-
dicating that this molecule may be indicative of immune dysregulation
leading to negative outcomes or complications.

ROC curves are commonly used to measure the predictive power of
medical tests (Florkowski, 2008). Specificity is a measure of the pro-
portion of patients negative for the condition who accurately test as
negative. Therefore, high specificity is an ideal property for tests de-
signed to “rule in” patients as having some condition. Sensitivity is a
measure of the proportion of patients positive for the condition who
accurately test as positive, so high sensitivity indicates high negative
predictive power which would be ideal for tests to “rule out” patients as
having a particular condition. While many individual inflammatory
molecules have been shown to be regulated following stroke, none have
shown sufficient specificity to be used clinically as diagnostic tools for
stroke. (Foerch et al., 2009; Jickling and Sharp, 2015). Here, we
identified eight molecules as statistically different between stroke pa-
tients and controls, but only four proteins (IL-28, MMP-2, sTNF-R2 and
TSLP) were determined acceptable to discriminate between stroke and
control conditions when used individually based on our AUC criteria.
While our analysis showed that Gp130, IFN-β, OPN and sTNF-R1 levels
were significantly different between stroke and control samples, these
proteins alone could not accurately determine stroke occurrence.

The levels of some biomarkers are tightly controlled, but clinical
practice has long established a wide variation between individuals as
normal. Potential biomarkers can be present in the plasma of normal
individuals over a wide range of concentrations. While the average
levels of an individual biomarker among individual stroke patients are
different than in controls, there may be overlap in the distribution of
protein levels. Therefore, rather than selecting rigid cutoffs for single
biomarkers, it can be beneficial to look at levels of many biomarkers
and establish clusters of relative elevation or depression that may be
more widely useful as indicators of disease. Following this reasoning,
we designed diagnostic tests that include combining the eight single
tests into two panels of biomarkers. We used a simple logistic model as
proof of concept that looking at the relative ways proteins cluster into
high and low expression can be more predictive of disease than simple
univariate tests with rigid cut-off levels. For the first panel, we com-
bined the four biomarkers determined acceptable or good (i.e., IL-28A/
IFN-λ2, MMP-2, sTNF-R2 and TSLP) using a logistic regression analysis
to predict stroke or control samples. Using this four biomarker panel,
we were able to achieve an AUC of .955, which is considered excellent,
with high sensitivity and specificity. In a second panel, we chose the
four biomarkers that were not shown to individually discriminate be-
tween stroke and control samples based on AUC criteria (i.e., Gp130/
sIL-6Rb, IFN-β, OPN and sTNF-R1). This four marker panel showed an
excellent AUC of .926 with high sensitivity and specificity, indicating
the improved potential of biomarker panels compared to tests of in-
dividual proteins. Overall, both panels performed as well or better on

Table 3
Immunological profile of stroke patients who did and did not receive rt-PA treatment.

Analyte No rt-PA (pg/ml) [n=9] rt- PA (pg/ml) [n= 13] p-value

APRIL/TNFSF13 119,079 (90590–208421) 93,130 (66009–148935) 0.21
BAFF/TNFSF13B 4558 (3471–6308) 4551 (2912 – 5913) 0.30
Chitinase 3-like 1 13,597 (9719 – 1445) 9770 (7778 – 11844) 0.21
gp130/sIL-6Rβ 36,834 (16714 – 38900) 26,096 (20324 – 42258) 0.90
IFN-α2 8.93 (7.78 – 11.09) (Kim et al., 1996) 5.53 (3.14 – 7.169) (Zeng et al., 2013) 0.031
IFN-β 26.25 (22.53 – 37.18) 23.13 (20.23 – 31.13) 0.29
IFN-γ 10.88 (5.765 – 13.18) 8.357 (5.458 – 9.67) 0.23
IL-2 1.14 (0.97 – 1.8) (Kim et al., 1996) 0.79 (0.3163 – 1.14) (Iadecola and Anrather, 2011) 0.047
IL-8 13.66 (6.968 – 20.02) 9.41 (7.432 – 13.66) (Barr et al., 2010) 0.49
IL-10 0.25 (0.23 – 0.27) (Foerch et al., 2009) 0.8295 (0.309 – 1.35) (Foerch et al., 2009) 0.33
IL-11 1.13 (0.9595 – 1.625) 0.9621 (0.7554 – 1.12) 0.13
IL-12(p40) 17.45 (14.47 – 22.11) 15 (13.49 – 17.21) 0.23
IL-12(p70) 0.17 (0.085 – 0.4125) 0.1225 (0.06492 – 0.18) 0.93
IL-19 3.105 (0.89–11.79) (Laskowitz et al., 2009) none n/a
IL-20 25.27 (12.61 – 31.27) (Dziedzic et al., 2002) 16.13 (10.54 – 20.14) (Barr et al., 2010) 0.10
IL-22 n/a n/a n/a
IL-26 3.586 (2.259 – 4.815) 3.317 (2.195 – 3.86) 0.64
IL-27(p28) n/a
IL-28A/IFN-λ2 16.25 (11.62 – 23.35) 14.01 (9.525 – 17) 0.20
IL-29/IFN-λ1 8.995 (2.558 – 15.69) (Iadecola and Anrather, 2011) 3.35 (2.08 – 3.35) (Jensen et al., 2009) 0.25
IL-32 n/a n/a n/a
IL-34 n/a n/a n/a
IL-35 25.95 (19.24 – 30.35) (Dziedzic et al., 2002) 17.79 (4.881 – 20.87) (Kim et al., 1996) 0.067
LIGHT/TNFSF14 n/a n/a n/a
MMP-1 771.2 (484.7 – 1138) (Jickling and Sharp, 2015) 304.5 (169.8 – 917.5) (Dziedzic et al., 2002) 0.12
MMP-2 4334 (4216 – 5317) 2571 (1548 – 6242) 0.56
MMP-3 3872 (2830 – 6253) (Dziedzic et al., 2002) 3889 (1692 – 5352) (Stamova et al., 2010) 0.58
Osteocalcin 572.7 (411.1 – 829.1) 459.9 (349.6 – 1187) 0.60
Osteopontin (OPN) 7737 (2730 – 10029) 6125 (3421 – 10572) 0.74
Pentraxin-3 73.43 (26.82 – 406.5) (Laskowitz et al., 2009) 1.426 (0.2529 – 5.232) (Laskowitz et al., 2009) 0.029
sCD30/TNFRSF8 229.1 (163.5 – 359.7) 221.1 (160.8 – 275.8) > 0.9999
sCD163 613.3 (487.1 – 935.1) 653 (482.8 – 768.9) 0.90
sIL-6Rα 4951 (3480 – 5986) 3987 (3351 – 4899) 0.19
sTNF-R1 1202 (823.5 – 1535) 931.6 (718.7 – 1184) 0.36
sTNF-R2 7878 (4431 – 12026) 8002 (6558 – 11497) > 0.9999
TSLP 12.72 (9.209 – 19.8) 10.26 (9.849 – 12.46) 0.36
TWEAK/TNFSF12 133.8 (110 – 164.6) 127.8 (99 – 160.1) 0.44

Median values and interquartile ranges (IQR) shown; all values in pg/ml.
* Only expressed in a subset of samples, n # shown italicized in square brackets.
† Biomarker is below detection level in stroke and control samples.
Significant p-vales bold.
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Fig. 2. ROC curves of Individual Immunological factors. ROC curve analysis was based on 24 stroke patients and 26 control participants. Optimal cut-offs were
defined as the point where the sum of sensitivity and specificity were maximized. Utility in discriminating stroke and control samples is indicated by area under the
curve. Classification performance: AUC≥ 0.7= acceptable, AUC≥ 0.8= good, AUC≥ 0.9= excellent.
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all measures than any individual biomarker.
In addition to identifying biomarkers that differ in stroke patients as

compared to controls, we further divided the stroke patients into those
that received rt-PA treatment and those that did not receive this
treatment. We did not find that any of the previously discussed stroke
biomarkers were significantly affected by the rt-PA treatment.
However, found that rt-PA treatment resulted in significant differences
between three of the analytes in patients that received treatment
compared to those that did not, including IFN-α2, IL-2, and pentraxin-3.
To our knowledge IFN-α2 has not been explored as a biomarker for
stroke, but it has been identified as a prognostic indicator in other
conditions including viral infections with HIV, herpes, and hepatitis,
autoimmune conditions such as lupus, and certain cancers. IL-2 is a pro-
inflammatory cytokine that has been examined in a variety of in-
flammatory contexts, including stroke. One study suggested IL-2 as a
useful prognostic indicator in acute ischemic strokes, as IL-2 levels that
decreased over the week following stroke was predictive of survival
(Nayak et al., 2009). Pentraxin-3 has been indicated as a stroke bio-
marker, but reports in the literature are mixed with some studies con-
cluding that elevated pentraxin-3 is positively correlated to stroke oc-
currence (Sezer et al., 2014) or mortality (Ryu et al., 2012) while others
report no such relation (Ceylan et al., 2015).

We recognize that there are limitations to this study. While we were
able to collect some demographic data on all patients (including stroke
diagnosis, age, gender and t-PA administration), we were only able to
retrieve data related to co-morbidity on a subpopulation of patients.
Although limited by the small sample size and the missing demographic
data from a few of our patients, the findings have shown that analyzing
the levels of immunological factors in blood collected systemically can
be an effective method for identifying patients who have recently had
ischemic strokes. The next step will be to continue this study with a
larger, better characterized sample population. We will also extend our
findings to determine if the blood markers correlate well with stroke
interventions (e.g. t-PA and endovascular thrombectomy) and treat-
ment effect on clinical endpoints such as infarct volume and neurolo-
gical outcomes.

The underlying concept of this study posits that evaluating the
systemic immunological profile of patients can be an effective way to
non-invasively diagnose disease, even for conditions such as stroke in
which damage is isolated mainly in one region of the body. This study
serves as proof of concept that there is a unique and identifiable sys-
temic immunological signature for ischemic stroke, and that it can be
used to diagnose patients from simple blood tests.

4. Experimental procedures

The study was carried out in accordance with The Code of Ethics of
the World Medical Association (Declaration of Helsinki) for experi-
ments involving human subjects. All procedures were approved by the
Institutional Review Boards at Morehouse School of Medicine and
Grady Memorial Hospital. Written informed consent was received from
all participants prior to inclusion in the study. Patient samples were
assigned random numerical identifiers prior to analysis and were a
subset of those collected at Grady Memorial Hospital, described in a
previously published study (Meller et al., 2016). In this study, we
analyzed plasma samples from 24 patients of varied age, gender, and
ethnicity admitted to Grady Memorial Hospital with confirmed strokes
and 26 healthy controls from an out-patient clinic matched for hy-
pertensive profiles without history of stroke. All stroke patients in-
cluded in this study experienced ischemic strokes. For all participants
(patients and controls), ∼8ml of whole blood was collected into va-
cutainer plasma tubes and the resulting plasma was stored at −80 °C
until use. Blood draw from stoke patients was performed the morning
following admission to the hospital. Average time between stroke and
blood draw was 22.9 ± 4.5 h (mean ± SE). Final clinical stroke di-
agnosis was verified by review of the medical records by a panel of
neurologists at Grady Memorial Hospital.

4.1. Immunological/Inflammatory profiling

Prior to experiment, plasma samples were allowed to thaw at room
temperature. All plasma samples were analyzed by multiplex im-
munoassay based Luminex MAGPIX technology (Bio-Rad, Hercules CA,
USA) using a multiplex kit (kits and reagents were purchased from Bio-
Rad, Hercules CA, USA). We used the Bio-Plex Pro™ Human
Inflammation Panel 1, which tests for a panel of 37 biomarkers of in-
flammation, including members of the tumor necrosis factor (TNF)
superfamily of proteins, interferon (IFN) family of proteins, Treg cyto-
kines, and matrix metalloproteinases (MMPs). The full panel included
antibodies to detect the following immunologically relevant proteins:
TNF superfamily 13/a proliferation-inducing ligand (TNFSF13/APRIL),
TNF superfamily 13b/B-cell activating factor (TNFSF13B/BAFF), TNF
superfamily member 8 (TNFRSF8/sCD30), soluble cluster of differ-
entiation 163 (sCD163), Chitinase-3-like 1, interleukin 6 signal trans-
ducer (sIL-6Rβ/gp130), IFN alpha-2 (IFN-α2), IFN beta (IFN-β), IFN
gamma (IFN-γ), interleukin-2 (IL-2), soluble interleukin-6 receptor (sIL-
6Rα), interleukin-8 (IL-8), interleukin-10 (IL-10), interleukin-11 (IL-
11), interleukin-12 p40 (IL-12 p40), interleukin-12 p70 (IL-12 p70),
interleukin-19 (IL-19), interleukin-20 (IL-20), interleukin-22 (IL-22),
interleukin-26 (IL-26), interleukin-27 (IL-27 p28), interferon lambda 2
(IFN-λ2/IL-28A), interferon lambda 1 (IFN-λ1/IL-29), interleukin-32
(IL-32), interleukin-34 (IL-34), interleukin-35 (IL-35), TNF superfamily
14 (TNFSF14/LIGHT), matrix metallopeptidase 1 (MMP-1), matrix
metallopeptidase 2 (MMP-2), matrix metallopeptidase 3 (MMP-3), os-
teocalcin, osteopontin (OPN), pentraxin-3, soluble TNF receptor

Table 4
ROC analysis of significant analytes.

Biomarker Cut-off AUC (95% CI) Sensitivity Specificity Accuracy

Gp130/sIL-6Rb >35,095 .6651 (.5114 – .8187) .4167 .9615 .7
IFN-β <25.07 .6755 (.5259 – .825) .5 .8077 .66
IL-28A/IFN-λ2 <15.13 .7244 (.5815 – .8672) .5833 .7692 .66
MMP-2 > 4169 .7636 (.6301 – .8972) .625 .8846 .76
Osteopontin (OPN) > 7599 .6907 (.5365 – .8449) .5 .9615 .74
sTNF-R1 >1040 .6763 (.5227 – .8299) .5417 .8846 .72
sTNF-R2 >5335 .7516 (.6119 – .8913) .8333 .6538 .76
TSLP <12.98 .8069 (.6743 – .9404) .6667 .9615 .82

Cut-off values (pg/mL), AUC (95% CI), sensitivity, specificity and accuracy of each analyte different between stroke and control patients. Cut-off values were chosen
as the point of the curve with the highest sum of specificity and sensitivity.

Table 5
ROC for Biomarker Panel.

Panel AUC Sensitivity Specificity

Gp130/sIL-6Rb, IFN-β, Osteopontin (OPN),
sTNF-R1,

.926 .870 .962

IL-28A/IFN-λ2, MMP-2, sTNF-R2, TSLP .955 .875 .962
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superfamily member 1A (sTNF-R1), soluble TNF receptor superfamily
member 1B (sTNF-R2), thymic stromal lymphopoietin (TSLP), TNF
superfamily 12/TNF-related weak inducer of apoptosis (TNFSF12/
TWEAK).

The multiplex assay was performed following the manufacturer’s
instructions: standards were prepared by serial dilution and all plasma
samples were diluted 1:1 with provided sample diluent. Fifty µl of
microbeads conjugated to capture antibodies were loaded into 96 well
plates, to which 50 µl of standards, controls, and experimental samples
were added and incubated for 1 h at room temperature with shaking.
Following incubation, unreacted protein was washed away and bioti-
nylated detection antibodies were allowed to incubate for 30min with
shaking. Excess antibody was washed away and streptavidin, con-
jugated to the fluorescent reporter tag phycoerythrin (PE), was in-
cubated for 10min. Unreacted florescent reporter was washed and the
beads were suspended in 125 µl of assay buffer in preparation for
fluorescence measurements to be read thorough the MAGPIX system.
The ELISA plates were read using a MAGPIX system running Bio-Plex
Manager MP software (Bio-Rad, Hercules, USA).

4.2. Statistical analysis

Statistical analysis was carried out using GraphPad Prism version
7.01 (San Diego, CA, USA). Median values and interquartile ranges
(IQR) for continuous variables or percentages for categorical variables
were calculated. The non-parametric Mann-Whitney test was used to
determine p values between groups, with a probability of < 0.05
considered statistically significant.

4.2.1. Univariate single biomarker analysis
The discriminatory power of statistically significant immunological

proteins was determined via receiver operating characteristic (ROC)
analysis. ROC curves were built and area under the curve (AUC) and
95% confidence interval (CI) were calculated using GraphPad Prism
software. Area under the curve (AUC) is a measure of the ability of the
test to accurately discriminate between two states: in this case, subjects
with stroke versus subjects without stroke. Cut-off values were chosen
to maximize the sum of sensitivity and specificity. AUC above 0.70 was
considered acceptable discrimination and AUC above 0.80 was con-
sidered good (Sarchielli et al., 2013).

Measures of the accuracy of diagnostic tests are based upon how the
test classifies subjects into the true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) groups.

Specifically,
Sensitivity=TP/(TP+ FN), or the proportion of true cases cor-

rectly identified. This can also be called the true positive rate (TPR)
Specificity=TN/(TN+FP), or the proportion of true negative. The

compliment of this measurement, 1-Specificity, is therefore the pro-
portion of false positives correctly identified, also called the false po-
sitive rate (FPR)

The ROC curve plots TPR versus FPR.
Accuracy= (TN+TP)/(TN+TP+FN+FP), or the proportion of

correctly identified cases
Positive predictive value (PPV)=TP/(TP+ FP), or the proportion

of correctly identified positive cases.
Negative predictive value (NPV)=TN/(TN+FN), or the propor-

tion of correctly identified negative cases.
Accuracy, NPV, and PPV are dependent on incidence of disease.

4.2.2. Multivariate biomarker panel analysis
Using R statistical software and the pROC and Epi packages, ROC

curves were constructed and sensitivity and specificity calculated for
these biomarker panels. Multivariate logistic regression was used to
evaluate combinations of biomarkers in panels so that the ROC curve
was based on model based probability of the form:

=

+
− + …e

Outcome 1
1 β β x β x( )i i0 1 1

where β values are coefficients determined from the regression, x values
are protein concentrations, and index i represents the biomarker rank
included in the model.
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