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Abstract 45 
 46 
Background: Prior to the initiation of menopausal hormone treatment (MHT), genetic variations 47 

in the innate immunity pathway were found to be associated with carotid artery intima-medial 48 

thickness (CIMT) and coronary arterial calcification (CAC) in women (n=606) enrolled in the 49 

Kronos Early Estrogen Prevention Study (KEEPS).  Whether MHT might affect these 50 

associations is unknown.   51 

Methods: The association of treatment outcomes with variation in the same 764 candidate 52 

genes was evaluated in same KEEPS participants four years after randomization to either oral 53 

conjugated equine estrogens (0.45 mg/day), transdermal 17β estradiol (50 µg/day), each with 54 

progesterone (200 mg/day) for 12 days each month, or placebo pills and patch.   55 

Results: Twenty SNPs within the innate immunity pathway most related with CIMT after 4 years 56 

were not among those associated with CIMT prior to MHT.  In 403 women who completed the 57 

study in their assigned treatment group, SNPs within the innate immunity pathway were found to 58 

alter the treatment effect on 4-year change in CIMT (i.e. significant interaction between 59 

treatment and genetic variation in the innate immunity pathway; p<0.001).  No SNPs by 60 

treatment effects were observed with changes of CAC >5 Agatston Units after 4 years.   61 

Conclusion: Results of this study suggest that hormonal status may interact with genetic 62 

variants to influence cardiovascular phenotypes, specifically, the pharmacogenomic effects 63 

within the innate immunity pathway for CIMT.  64 

 65 

Key words: atherosclerosis, candidate genes, estrogen, innate immunity, thrombosis 66 

 67 

   68 
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Introduction 69 

 70 
 Controversy surrounding whether or not menopausal hormone treatment (MHT) slows 71 

progression of cardiovascular disease reflects, in part, differences among studies in 72 

experimental design (timing of initiation of hormone treatment, doses and formulations) and co-73 

existing cardiovascular risk factors of the population or study participants (4, 6, 16, 22, 24, 30, 74 

33).  In addition, potential benefit of MHT against development of atherosclerosis is offset by 75 

potential risk of venous thrombosis especially in women with genetic variation in factors 76 

associated with coagulation which may be more pronounced with the use of oral compared to 77 

transdermal estrogen products and the impact of the oral products on liver metabolism (8, 9, 12, 78 

35).  In addition, several studies have implicated genetic variants in estrogen receptors with 79 

progression of cardiovascular disease and venous thrombosis in men and women (1, 23, 34).  80 

However, estrogen receptor polymorphisms were not associated with adverse cardiovascular 81 

outcomes in women randomized to oral conjugated equine estrogens in the Women’s Health 82 

Initiative (31).  Therefore, much remains to be learned about phenotypic expression of 83 

polymorphisms in genes associated with estrogen responsiveness and thrombotic capacity in 84 

evaluating potential benefits and risk of MHT in postmenopausal women.  85 

 The Kronos Early Estrogen Prevention Study (KEEPS) was designed to evaluate the 86 

effects of MHT on progression of cardiovascular disease defined by quantitative changes in 87 

carotid artery intima-medial thickness (CIMT) and coronary artery calcification (CAC), accepted 88 

measures of subclinical atherosclerosis.  A targeted candidate genetic analysis demonstrated 89 

no association of genetic polymorphisms in estrogen receptors α or β with the absolute value of 90 

either CIMT or CAC in women enrolled in KEEPS prior to randomization to treatment.  Of the 91 

polymorphisms of genes within the anticoagulant, procoagulant, fibrinolytic or innate immunity 92 

pathways, only polymorphisms of genes within the innate and humoral immunity pathways were 93 

associated with the baseline absolute value of CIMT or CAC, respectively (26). However, at the 94 
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time of that study, women had transitioned into menopause and were estrogen depleted (serum 95 

17β estradiol <40pg/mL).  Thus, it remains to be determined whether estrogen treatments alter 96 

these associations.  Therefore, associations of genetic variants within the same targeted 97 

candidate genes were evaluated with progression (i.e. change in measures) of subclinical 98 

atherosclerosis following randomization to either active estrogen treatments or placebo for four 99 

years.  Two hypotheses were considered in these analyses: 1) genetic markers would be 100 

associated with change in CIMT or CAC after the 4 years independent of treatment, and, 2) 101 

there would be pharmacogenomic effects of genes with respect to change in CIMT or CAC after 102 

application of treatment or placebo (i.e. genetic markers will modify the effects of the 103 

treatment/placebo on CIMT and CAC progression.)   104 

Methods 105 
 106 
Participants: Women meeting inclusion criteria for the KEEPS (NCT00154180) and who gave 107 

informed consent to have their DNA used for research purposes were included in this study.  108 

There were nine centers participating in KEEPS: Brigham and Women’s Hospital; Columbia 109 

University College of Physicians and Surgeons; the Kronos Longevity Research Institute; Mayo 110 

Clinic, Rochester, MN; Montefiore Medical Center; University of California at San Francisco; 111 

University of Utah, University of Washington; and Yale University.  Each institutional review 112 

board of these participating institutions approved the study.  113 

 KEEPS inclusion/exclusion criteria are detailed elsewhere (15).  Briefly, women were 114 

excluded from KEEPS if they had a history of, or were symptomatic for, cardiovascular disease; 115 

smoked more than ten cigarettes/day; had coronary artery calcification (i.e., >50 Agatston 116 

Units), body mass index >35 kg/m2, dyslipidemia (low-density lipoprotein cholesterol >190 117 

mg/dL), hypertriglyceridemia (triglycerides, >400 mg/dL), 17β-estradiol >40 pg/mL; uncontrolled 118 

hypertension (systolic blood pressure >150 mm Hg and/or diastolic blood pressure >95 mm Hg) 119 

or fasting blood glucose >126 mg/dL; or used lipid lowering drugs (15, 25).  Women meeting 120 

inclusion criteria were randomized to treatment: oral conjugated equine estrogens (Premarin, 121 
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0.45mg/day), transdermal 17β-estradiol (via skin patch, Climara, 50μg/day) both with 122 

progesterone (oral Prometrium, 200 mg/day) for the first 12 days of the month, or placebo group 123 

(inactive pills/patch) for four years.  Of women randomized to treatment, 684 consented to allow 124 

analysis of their DNA.  Of these, 606 had clinical data, CIMT, and CAC measurements available 125 

for analysis prior to treatment (baseline).  Follow-up data were available for 565 women at 1 126 

year, 539 women at 2 years, 519 women at 3 years and 512 women at 4 years.  127 

Clinical methodology and genotype quality control.  All blood samples were collected after an 128 

overnight fast, frozen at -70oC on site until they were either processed locally, or sent to the 129 

Kronos Science Laboratory (Phoenix, AZ, USA) for storage or assays.  Genomic DNA was 130 

extracted from whole blood using the QIAamp DNA Blood Midi Kit (Qiagen), and the DNA 131 

concentration was measured by the PicoGreen technique (Invitrogen).  The genotyping panel 132 

for identification of the SNPs for the custom 16,720 bead Illumina Infinium (13,229 SNPs 133 

including 492 ancestry informative markers (AIMs) (32) are described in detail elsewhere (17).  134 

 Clinical phenotypic characteristics, genotyping and quality control were performed as 135 

previously described (26).  CIMT measured by B-mode ultrasound and CAC measured from 136 

non-enhanced cardiac computed tomography scans were quantified at Core reading centers for 137 

KEEPS (14, 15, 26).  All CIMT scans were obtained with high-resolution ultrasonographic 138 

equipment using standardized methods for reproducing transducer angulation and cardiac 139 

gating (18, 19) by personnel at each site who were trained at the central reading center.  The 140 

scans were read by trained personnel blinded to treatment assignment at the central reading 141 

center.  The intima-media thickness of the far wall of the distal common carotid artery was 142 

determined as the average of 70 to 100 standardized measurements between the intima-lumen 143 

and media-adventitia interfaces by automated computerized edge detection software (patents 144 

obtained in 2005, 2006, and 2011).  To determine variability of the readings, two scans were 145 

obtained at separate visits (from 3 days to 6 weeks apart) prior to randomization.  As reported 146 
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previously, the mean coefficient of variation between these two readings was 0.6% (SD, 0.7 147 

[range, 0.0% to 7.7%]) (14)    148 

Statistical analysis: Clinical characteristics were summarized at baseline and 4 years 149 

separately, changes in clinical characteristics between baseline and the 4-year measurement 150 

were tested using Wilcoxon Signed Rank tests.  The analysis consisted of two outcomes, 4-year 151 

change in CIMT as a continuous measure and 4-year change in CAC as a binary measure 152 

[change > 5 vs. ≤5 Agatston Units (AU)].  CIMT was measured at yearly intervals for 4 years, 153 

and modeling all 4-years of measurements yielded similar conclusions (data not shown).  CAC 154 

was measured at baseline and at year 4.  First, the relationships of the two outcomes (CIMT 155 

and CAC) and conventional cardiovascular risk variables were tested using linear regression 156 

and logistic regression, respectively.  None of these variables were significantly correlated with 157 

the outcomes after multiple testing correction (data not shown), and were not adjusted for in 158 

subsequent genetic analyses.  However, percentage of European ethnicity was adjusted for in 159 

subsequent genetic analyses to address possible population stratification.  Previously, we had 160 

established using ancestry informative markers that most KEEPS participants were Caucasian 161 

and we used percentage CEU ancestry from the STRUCTURE program to estimate the 162 

proportion of European ancestry within each individual (26).  STRUCTURE allows for population 163 

admixture and assigns individuals in the sample of interest (the KEEPS sample) population 164 

probabilities.  The technique assumes the loci are unlinked and it assumes Hardy-Weinberg 165 

equilibrium within the populations. 166 

 Two genetic analyses were considered for each outcome, first testing for SNP effects on 167 

the outcomes, and secondly testing for SNP*treatment interactions (i.e., SNP affecting the 168 

relationship of the treatment and outcome, a pharmacogenomic effect).  In both analyses, SNPs 169 

(as count of minor allele) were used to model change in CIMT and change in CAC, via linear 170 

and logistic regression, respectively.  In the case of the pharmacogenomic analysis, a treatment 171 

main effect and treatment*SNP interaction were also modeled with the treatment*SNP 172 
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interaction being tested with a likelihood ratio test.  To correct for multiple testing we estimated 173 

the effective number of independent tests and using the Bonferroni method we set our threshold 174 

of significance at p<7.73E-06 (11). 175 

 To test the overall association of SNPs in each of 4 genetic pathways (anticoagulant, 176 

procoagulant, fibrinolysis, and innate immunity; a complete list of SNPs was published 177 

previously (26)), a global test of the genetic variation in each pathway was conducted modeling 178 

4-year change in CIMT or CAC by pathway SNPs using random effects models and testing all 179 

SNPs in a pathway simultaneously with a likelihood ratio test (13).   180 

 To the test the overall pharmacogenomic effect of pathways of SNPs on change in CAC 181 

and CIMT, the Principle Components (PC)-gamma method was used (3).  Principal components 182 

were formed from SNPs within each gene, and enough principal components were retained for 183 

each gene to explain 80% of the variation in SNPs within that gene.  Then gene level tests were 184 

conducted for each gene using F-tests of all treatment interactions with PCs retained in a 185 

regression model for the continuous change in CIMT; and likelihood ratio test for all treatment 186 

interactions with PCs retained in a logistic regression model of dichotomized change in CAC.  187 

Fisher’s p-value combination method was then used to generate a test statistic for the pathway.  188 

Since genes in a pathway may be correlated to some degree, an asymptotic test was not used; 189 

instead, a parametric bootstrap approach was applied (7) to obtain a pathway level p-value.  190 

Briefly, we fit a null model without the PC*treatment interactions and for each individual 191 

calculated their fitted value.  Next, a bootstrap sample of participants was taken with 192 

replacement, and a set of new CIMT or CAC values was simulated for the individuals in the 193 

sample. This process was repeated to generate 1000 bootstrap samples under the null 194 

hypothesis on no treatment-gene interactions.  Each of these 1000 datasets was analyzed using 195 

the PC-gamma method to obtain an empirical distribution of test statistics for the gene-treatment 196 

interaction at the pathway level under the null hypothesis. The observed pathway test statistic 197 

was then compared to this empirical null distribution, with the p-value being the fraction of 198 
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empirical test-statistic values that were greater than or equal to the observed test-statistic.  All 199 

analyses were performed in R v2.14.0.   200 

Results  201 

 Clinical phenotypic characteristics of women for whom SNP analyses were performed 202 

over the four years of treatment are shown in Table 1. 203 

CIMT 204 

Independent of treatment:  Mean CIMT increased over the four years of the study with variability 205 

increasing with time (Figure 1).  To evaluate these increases two analyses were performed: one 206 

examining only the change in CIMT from baseline to 4 years and the second considering 207 

simultaneously all measures of CIMT over 4 years that included data of women with readings at 208 

multiple time points (longitudinal analysis).  Results of these two analyses were similar, so for 209 

clarity, only changes from baseline to 4 years are presented here.  None of the conventional 210 

cardiovascular risk factors (Table 1) measured at baseline or their change over the 4 years was 211 

found to be associated with changes in CIMT at 4 years (data not shown).  The relationship 212 

between SNPs and the change in CIMT, adjusting for percentage European ancestry for an 213 

individual, did not identify any significant associations after correcting for the number of SNPs 214 

tested (Table 2, and Table 3).  None of the SNPs previously reported to be associated with the 215 

absolute value of CIMT at baseline (i.e. prior to hormone treatment) (21) were here found to be 216 

associated with the change in CIMT after treatment.  Furthermore, adjusting for baseline CIMT 217 

did not affect the outcomes.  218 

Pharmacogenomic effect of SNPs on the relationship of treatment and changes in CIMT at 4 219 

years.  Of women with DNA for analysis, 403 completed the study in their assigned treatment 220 

group.  Based on the P-value cutoff (see Methods), there were no statistically significant signals 221 

for any particular SNP with a pharmacogenomic effect (data not shown); however, SNPs in the 222 

innate immunity pathway had an overall pharmacogenomic effect on 4-year change in CIMT 223 

(interaction of SNPs in the genetic pathway and treatment) in these women (P < 0.001, Table 224 
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3).  We also observed that the SNPs effects on the 4 year change in CIMT varied by treatments 225 

(i.e. presence of common or rare allele within transdermal 17β-estradiol or conjugated equine 226 

estrogens groups) compared to placebo (Table 4 and Figure 2).   227 

CAC 228 

Independent of treatment.  Change in CAC between baseline and 4 years of treatment was 229 

dichotomized as change >5 AU (set by the sensitivity of the measurement) due to the large 230 

number of women with a CAC score of zero at baseline and after 4 years of treatment.  Baseline 231 

clinical parameters showing significant association with the change in CAC were baseline 232 

fasting blood glucose, triglycerides and diastolic blood pressure (Table 5).  However, only 233 

baseline CAC appeared to be associated with change in CAC > 5 AU (P < 0.001) after 234 

correcting for all of the generally accepted risk factors and was included as an adjustment factor 235 

in subsequent genetic analyses.  236 

 Using a stepwise algorithm of clinical variable effects in multivariable logistic models, the 237 

“best” predictive model for change in CAC included baseline CAC>0 AU (P < 2e-16), baseline 238 

triglycerides (P = 0.009), baseline weight (p = 0.03), and change in CIMT (4 yr-baseline; P = 239 

0.04).   240 

 The relationship between SNPs and change in CAC was modeled first using multiple 241 

logistic regression, with adjustment for percentage European ancestry and baseline CAC > 0 242 

(data not shown).  None of the SNPs associated with changes of CAC > 5 AU after 4 years 243 

(Table 6) were among the SNPs of interest based on association with the absolute AU score for 244 

CAC prior to treatment (21).  245 

Pharmacogenomic effect of SNPs on the relationship of treatment to changes in CAC at 4 246 

years.  In those women who completed the trial in their assigned treatment group or placebo 247 

over the 4 years (n=403), and after adjusting for ethnicity and CAC > 0 AU, there was little 248 

evidence for a SNP by treatment interaction effect (Table 7).  Genes not within the innate 249 

immunity pathway that showed nominal significance for a pharmacogenomics effect of 250 
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treatment on CAC were SERAPINE 2 and beta adrenergic receptor 2 (ADRB2), respectively 251 

(Table 7). 252 

 253 

Discussion 254 

 Changes in CIMT and CAC, the main outcomes of KEEPS, were not significantly altered 255 

by either oCEE or tE2 compared to placebo over the 4 years of the study (14).  In the present 256 

study, a targeted candidate gene analysis provides insight into processes contributing to these 257 

main outcomes by identifying significant gene-by-treatment interactions in the progression of 258 

CIMT but not CAC.  259 

  CIMT increases with age and time past menopause (38).  The absence of association of 260 

increases in CIMT with conventional risk factors most likely reflects the narrow range for most of 261 

these variables (Table 1) and, in particular, mean systolic blood pressure did not differ 262 

significantly from baseline to year 4 and was within what would be considered clinically a 263 

“normative” range.  Variability in progression of CIMT reflects in part natural aging processes 264 

reflected by chronological and menopausal age, treatment assignment and gene/treatment 265 

interactions.  266 

 Genes of the innate immunity pathway associated with the absolute value of CIMT at 267 

baseline prior to randomization to treatment (26).  Using pathway analysis, the innate immunity 268 

pathway associated with pharmacogenomic effects of the hormone treatments on changes in 269 

CIMT.  Although individual SNPs did not achieve statistical significance with the change in 270 

CIMT, the SNPs altered the treatment effect (Figure 2).  Depending upon the mean allele 271 

frequency in the population, the penetrance of this pharmacogenomic effect would manifest as 272 

increased variance in the phenotype (Figure 1) and reduce the ability to differentiate among 273 

groups, a result consistent with the cumulative analysis of the KEEPS cohort (14).   274 

 Other studies have identified associations of genes related to the immunity pathway with 275 

increases in CIMT (37).  However, some genome-wide association studies fail to identify genes 276 
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associated with increases in CIMT, which may reflect that these studies do not perform 277 

hormone stratified analysis nor account for sex as a dichotomous variable in the analysis. (28).  278 

Apolipoprotein E 4 (ApoE4) was shown to be associated with CIMT in several studies (21) but 279 

unfortunately, this gene/SNP was not tested in the present study.  Examining ApoE4 might be 280 

interesting as this gene/SNP has greater critical risk factor for Alzheimer’s disease in women 281 

compared to men (29) and a sex differential of this gene/SNP in association with other 282 

phenotypes would be interesting to explore.  283 

 Although fasting blood glucose, triglycerides and diastolic blood pressure associated 284 

with CAC in univariate analysis, these conventional cardiovascular risk factors did not remain 285 

significant after correction for multiple testing, which may reflect that the KEEPS participants 286 

were relatively healthy women with conventional cardiovascular risk factors within normative 287 

ranges.  The first two variables relate to energy utilization while diastolic blood pressure may 288 

reflect general arterial stiffening/reduced compliance in post-menopausal women (10, 27, 36) 289 

and may become more relevant with aging.   290 

 One gene not within the innate immunity pathway that showed nominal association with 291 

CAC, SERPINE2, may impact the coagulation cascade as this gene encodes a protein that 292 

inhibits thrombin and urokinase plasminogen activator type 2.  In addition, the adrenergic 293 

system may impact CAC as changes in beta adrenergic receptors are associated with changes 294 

in total peripheral resistance in women after menopause and variants in the receptor are 295 

implicated in response to beta adrenergic blockers used in the treatment of hypertension (2, 20).  296 

Conventional risk factors such as hypertension, hypercholesterolemia and Type 2 Diabetes 297 

(T2D) exacerbate accumulation of calcium in the coronary arteries.  In expression of complex 298 

traits, and despite the weak genetic effects, certain genetic variants in metabolic or immune 299 

pathways may become more important mechanisms of disease progression.  For example, 300 

persons with T2D, CAC negatively correlated with variants in CD40 (5).  Also, in women 301 
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screened for KEEPS, 14% were excluded based on CAC without other risk factors (25), 302 

suggesting that in women, at least, coronary calcification may have several etiologies.   303 

 This study has several limitations.  The study included a small number of mostly 304 

Caucasian women who were at low risk for cardiovascular disease.  It would be interesting to 305 

observe these women over a longer time-course, even in the absence of hormone treatment, to 306 

determine whether the same or different SNPs associate with disease progression with aging.  307 

Serum levels of hormones were not consistently above that defining menopause for women 308 

randomized to treatment and different associations might be found if serum levels of estrogen 309 

were increased further.  As in the previous analysis, polymorphisms in estrogen receptors did 310 

not associate with either phenotype.  Estrogen response elements reside in the promoter 311 

regions of many genes and affect gene expression, which was not measured in the present 312 

study.  Influences of MHT on gene expression would be expected to differ among formulations 313 

given that the metabolites of estrogen have differing binding affinity for estrogen receptors.   In 314 

the present study, the differential expression of genes with the SNPs of interest in response to 315 

estrogen determined the contribution of those including perhaps those regulated by estrogen 316 

and the phenotype.  Additional work is needed to understand how polymorphisms in estrogen 317 

receptors contribute to development of cardiovascular disease in women. 318 

 The magnitude of the pharmacogenomics effects differed by type of MHT.  It is unlikely 319 

that methodological variability in measurement of CIMT contributed to the pharmacogenomic 320 

effects as methods to obtain the ultrasound scans were standardized, performed by trained 321 

personnel and coefficient of variations between two scans obtained prior to randomization was 322 

<1%.  Power to detect pharmacogenomic effects on change in CAC was limited by the small 323 

number of women with changes of CAC >5 Agatston Units, as the approach that was used to 324 

assess significance of treatment-by-gene interactions at the pathway level (PC-Gamma method 325 

with the parametric bootstrap) is expected to have low power for evaluating association with 326 

dichotomous outcomes when the number of cases is small.  Finally, the study used a candidate 327 
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gene approach specifically to investigate genes related to coagulation and immunity to evaluate 328 

the genetic components of MHT and thrombotic risk.  Other pathways may have been 329 

discovered with a genome wide association approach.   330 

 In spite of these limitations, the results of this study emphasize that in genetic 331 

association studies of complex disease traits, it is critical to account for sex and hormonal status 332 

of the study participants.  In addition, this analysis provides value to the scientific community as 333 

it is the first study to identify pharmacogenomic effects of MHT on vascular remodeling and 334 

thus, provides insight into why there is variability in cardiovascular effects of MHT in women.   335 

 336 

337 
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Figure Legends 568 
 569 

Figure 1.  Median, standard deviation and 95% confidence intervals of changes in carotid artery 570 

intima-medial thickness from baseline (prior to randomization, n = 606), at 1 year (n = 565), 2 571 

years (n = 539), 3 years (n = 519) and 4 years (n = 512) after randomization but independent of 572 

treatment assignment in women enrolled in KEEPS.   573 

 574 

Figure 2.  Depiction of SNPs on three genes with the lowest p-values of pharmacogenomic 575 

association (interaction of SNP and treatment).with respect to change in carotid artery intima-576 

medial thickness (CIMT) from baseline to 4 year in women who completed the study in each 577 

treatment randomized treatment assignment or placebo (n = 160) transdermal17β estradiol (E2, 578 

n = 119) or oral conjugated equine estrogen (CEE, n = 123).  Data are shown as median, the 579 

box is the 25th and 75th percentile range; vertical lines represent the 1.5 interquartile range 580 

(IQR); points outside the IQR are plotted as is (outliers).  Upper panel: r11466536 for gene 581 

TGFBR2, transforming growth factor beta receptor 2 binding transforming growth factor beta, 582 

the complex phosphorylates proteins and acts as a transcription factor regulating cell 583 

proliferation; Middle panel: r1569723 for gene CD40, a protein of the tumor necrotic factor 584 

superfamily of receptors involved in triggering immunological activation; Bottom panel: r261060 585 

for gene DOCK2, dictator of cytokinesis 2, encodes a protein involved with small G-protein 586 

coupled intracellular signaling. Although these individual SNPs within the innate immunity 587 

pathway did not reach statistical significance, the overall pathway analysis which represents the 588 

collective analysis of all of the genes/SNPS included in this study did reach statistical 589 

significance.  590 



Figure 1  



Figure 2 – Top panel 



Figure 2 – middle panel 



Figure 2 – bottom panel 



Table 1.  Phenotypic characteristics of KEEPS participants in the genetic association analysis.  
   
 Baseline 

(pre-
treatment) 

4-years post 
treatment 

P-value 

Treatment, no. participants    
  A = premarin 188 157 - 
  B = patch 186 161 - 
  C = placebo 232 194 - 
Weight (kg)a 70.6(11.8) 71.1(12.5) <0.01 
Body mass index (kg/m2) 26.3(4.3) 26.6(4.62) <0.01 
Waist circumference (cm) 84.9(11.7) 85.1(11.5) 0.20 
Systolic blood pressure  

(mm Hg) 
119(15.1) 118(13.9) 0.95 

Diastolic blood pressure 
(mm Hg) 

75.1(9.26) 73.7(9.1) 0.02 

C-reactive protein (pg/mL) 2.18(3.38) 3.05(4.38) <0.01 
Fasting blood glucose 

(mg/dL) 
79.7(9.57) 81.3(9.28) <0.01 

Total cholesterol (mg/dLl) 208(34.5) 210(35.7) 0.11 
High density lipoprotein 

cholesterol (mg/dL) 
72.1(14.6) 73.1(15.1) 0.08 

Low density lipoprotein 
cholesterol (mg/dL) 

111(28.4) 111(30.7) 0.65 

Triglycerides (mg/dL) 86.3(54.9) 90.8(52.3) <0.01 
Insulin (pmol/L) 6.01(7.65) 5.23(6.38) 0.01 
HOMA-IR score 1.23(1.74) 1.07(1.28) 0.09 

 

aData are shown as mean (Standard Deviation); P values depict difference between baseline 
and year 4 independent of treatment by Wilcoxon signed ranks test. HOMA-IR = Homeostasis 
Model Assessment of Insulin Resistance  
 



Table 2.  20 SNPs with the smallest P-values of longitudinal association with changes in carotid intima medial thickness (CIMT) at 4 years of 
treatment in women enrolled in KEEPS. 
 

SNP gene chromosome position (bp) common 
allele 

rare 
allele MAF SNP call 

rate 

Estimated 
Effect on 

change in CIMT 
(difference in 1 

minor allele) 

SE of estimate p-value 

rs6884061 TNFAIP8 5 118711330 G A 0.204 1.000 1.184E-02 3.177E-03 2.164E-04 

rs12848910 CYBB 23 37551189 A G 0.065 0.990 -1.992E-02 5.432E-03 2.711E-04 

rs4896243 LOC100131120//IFNGR1 6 137556483 A G 0.447 1.000 -9.243E-03 2.545E-03 3.098E-04 

rs1860545 TNFRSF1A//SCNN1A//PLEKHG6 12 6317038 G A 0.352 0.979 -1.003E-02 2.834E-03 4.402E-04 
rs4850994 IL1R2 2 102020660 G A 0.139 0.995 -1.234E-02 3.578E-03 6.088E-04 

rs11954573 F2R 5 76070823 G A 0.288 0.985 9.789E-03 2.894E-03 7.743E-04 

rs17027013 IMMT 2 86263580 T A 0.458 0.998 -8.620E-03 2.587E-03 9.270E-04 
rs2341746 COLEC12 18 495472 A C 0.232 0.998 1.019E-02 3.063E-03 9.465E-04 

rs17037397 MTHFR//CLCN6 1 11784750 C A 0.045 0.998 1.985E-02 5.969E-03 9.474E-04 
rs2274976 MTHFR//C1orf167 1 11773514 G A 0.046 0.995 1.964E-02 5.915E-03 9.623E-04 
rs1027702 DUSP12 1 159979481 G A 0.409 1.000 9.138E-03 2.768E-03 1.031E-03 
rs264846 DOCK2 5 169059316 A T 0.369 0.998 9.133E-03 2.768E-03 1.039E-03 

rs6707029 IMMT 2 86253595 A G 0.459 0.990 -8.448E-03 2.587E-03 1.167E-03 
rs1801131 MTHFR//C1orf167 1 11777063 A C 0.296 0.998 9.029E-03 2.781E-03 1.245E-03 

rs12649582 ANXA5 4 122832341 A G 0.482 0.998 8.473E-03 2.618E-03 1.290E-03 
rs2296135 IL15RA 10 6034700 C A 0.481 1.000 8.092E-03 2.516E-03 1.385E-03 
rs2153875 ITGB1 10 33230573 A C 0.289 1.000 -9.190E-03 2.866E-03 1.429E-03 
rs4951771 KIAA1522//YARS 1 33005810 A G 0.311 0.998 -8.893E-03 2.813E-03 1.667E-03 
rs1360151 C8A 1 57136629 G A 0.141 1.000 1.154E-02 3.683E-03 1.831E-03 
rs2871444 IL1R2 2 101979282 A G 0.315 0.997 -9.049E-03 2.888E-03 1.832E-03 



Table 3: P-values from Pathway analysis of SNPs in 4-pathways for association with CIMT or CAC for direct genetic or 

pharmacogenetic effects. 

 

Phenotype Type of effect Anticoagulant Fibrinolysis Innate Immunity Procoagulant 
CIMT Genetic only 0.381 0.849 0.316 0.051 
CIMT Pharmacogenetic 0.299 0.220 < 0.001 0.062 
CAC>5 Genetic only 0.015 0.808 0.251 0.516 
CAC>5 Pharmacogenetic 0.446 0.835 0.303 0.941 



 



Table 4.  20 SNPs in the Innate Immune Pathway with the smallest p-values of pharmacogenomic association  
(interaction of SNP and treatment with changes in carotid artery intima-medial thickness (CIMT) at 4 years of treatment  
in women enrolled in KEEPS who completed the study in their assigned treatment group. 
 

Estimate (SE) for treatment vs placebo (given genotype) adjusting for ethnicity  

SNP CHR position(bp) 
wild/minor 
allele MAF 

SNP 
call 
rate Gene E2/CC E2/CR E2/RR CCE/CC CCE/CR CCE/RR p.value 

rs11466536 3 30710160 G/A 0.060 1.000 TGFBR2 -0.002(0.005) 0.012(0.013) 0.026(0.026) 0.006(0.005) -0.042(0.014) -0.090(0.029) 1.59E-04 

rs1569723 20 44175471 A/C 0.249 0.970 CD40 -0.005(0.006) 0.006(0.006) 0.016(0.013) 0.012(0.006) -0.013(0.007) -0.039(0.014) 1.81E-04 

rs261060 5 169258640 G/A 0.143 1.000 DOCK2* 0.0104(0.006) -0.031(0.009) -0.072(0.018) 0.004(0.006) -0.019(0.008) -0.042(0.017) 2.26E-04 

rs776514 3 10250475 G/A 0.431 1.000 IRAK2 0.019(0.008) -0.002(0.005) -0.022(0.009) 0.024(0.008) -0.002(0.005) -0.027(0.009) 2.47E-04 

rs7768807 6 353246 A/G 0.267 0.998 IRF4 0.0103(0.007) -0.008(0.006) -0.025(0.012) -0.009(0.007) 0.009(0.006) 0.028(0.013) 2.66E-04 

rs4073829 16 80527689 G/C 0.359 0.997 PLCG2 0.007(0.007) -0.001(0.005) -0.008(0.011) 0.022(0.007) -0.008(0.005) -0.037(0.011) 3.11E-04 

rs138981 22 41927759 G/A 0.151 1.000 SCUBE1 -0.003(0.006) 0.008(0.007) 0.018(0.015) -0.011(0.006) 0.030(0.009) 0.071(0.018) 3.80E-04 

rs4791035 17 62237690 G/C 0.457 1.000 PRKCA -0.0003(0.008) 0.001(0.005) 0.002(0.009) 0.023(0.008) -0.001(0.005) -0.026(0.009) 4.19E-04 

rs261054 5 169261062 G/A 0.137 0.995 DOCK2* 0.009(0.006) -0.031(0.009) -0.071(0.019) 0.004(0.006) -0.019(0.009) -0.043(0.017) 4.44E-04 

rs9378805 6 362727 A/C 0.443 1.000 IRF4 -0.003(0.008) 0.0002(0.006) 0.003(0.009) 0.021(0.008) -0.002(0.005) -0.026(0.009) 5.49E-04 

rs261072 5 169248202 A/G 0.089 1.000 DOCK2* 0.009(0.005) -0.038(0.011) -0.085(0.023) 0.003(0.005) -0.017(0.011) -0.035(0.022) 6.12E-04 

rs8056564 16 80537520 A/G 0.489 1.000 PLCG2 0.007(0.008) 0.0005(0.005) -0.006(0.008) 0.025(0.008) -0.0002(0.005) -0.025(0.008) 7.88E-04 

rs2243191 1 205082580 G/A 0.239 1.000 IL19 0.0122(0.006) -0.012(0.007) -0.037(0.013) 0.013(0.006) -0.015(0.007) -0.042(0.014) 7.91E-04 

rs3774934 4 103646506 G/A 0.089 1.000 NFKB1 0.004(0.005) -0.014(0.011) -0.032(0.022) 0.007(0.005) -0.042(0.012) -0.091(0.024) 8.05E-04 

rs12598402 16 80526349 A/G 0.442 1.000 PLCG2 0.003(0.008) 0.001(0.005) -0.002(0.009) 0.022(0.008) -0.002(0.005) -0.027(0.009) 8.18E-04 

rs8056122 16 31335179 A/G 0.413 1.000 ITGAD 0.006(0.008) -0.001(0.005) -0.008(0.009) -0.015(0.007) 0.004(0.005) 0.026(0.010) 8.42E-04 

rs261071 5 169249624 G/A 0.130 1.000 DOCK2* 0.010(0.006) -0.029(0.009) -0.069(0.019) 0.003(0.006) -0.013(0.009) -0.029(0.017) 9.14E-04 

rs7736549 5 79415294 C/A 0.149 0.998 THBS4** -0.005(0.006) 0.016(0.008) 0.036(0.017) 0.005(0.006) -0.014(0.008) -0.032(0.017) 9.16E-04 

rs518162 11 100505711 G/A 0.104 1.000 PGR 0.009(0.005) -0.033(0.011) -0.074(0.023) 0.001(0.005) 0.001(0.0104 0.0011(0.021) 9.36E-04 

rs264827 5 169054785 A/G 0.332 0.979 DOCK2 0.019(0.007) -0.009(0.006) -0.037(0.011) 0.006(0.007) -0.003(0.005) -0.013(0.011) 9.63E-04 

*next to LOC100131897 
**next to LOC100129870 

Abbreviations:  E2, transdermal 17β estradiol; CEE, oral conjugated equine estrogens; MAF, mean allele frequency 
 



Table 5.  Clinical variables prior to randomization (baseline) and change in CAC > 5 AU* after 4 
years of randomization in women of KEEPS.  
 

Clinical parameter at baseline N 
Odds 
Ratio p-value 

Age 495 1.016 0.76 
Months past menopause 495 1.063 0.283 
Body mass index 495 1.011 0.74 
Systolic blood pressure 495 1.015 0.11 
Diastolic blood pressure 495 1.038 0.01 
Pulse pressure 495 1.001 0.91 
Fasting blood glucose 495 1.029 0.03 
Insulin 495 1.006 0.71 
Total cholesterol 495 1.002 0.54 
High density lipoprotein cholesterol 495 0.990 0.29 
Low density lipoprotein cholesterol 495 1.004 0.36 
Triglycerides 495 1.005 0.02 
Interleukin-6 495 0.982 0.29 
High sensitivity C-reactive protein 494 0.927 0.20 
European Ancestry 495 0.681 0.45 
Baseline CAC  495 1.471 <0.001 

* AU = Agatston Units  
 



Table 6.  20 SNPs with the smallest P-values of association with change in CAC > 5 AU* after 4 years of treatment in women enrolled in 
KEEPS.  

SNP Gene chromosome position(bp) 
common 

allele minor allele 
mean allele 
frequency 

SNP call 
rate 

OR CAC>5 for 1 
Minor allele 
difference SE log OR p-value 

rs762484 F3 1 94776998 A G 0.242 0.998 3.169 0.281 4.05E-05 
rs7761846 ESR1 6 152254201 A G 0.120 1.000 3.612 0.353 2.73E-04 
rs854541 PPP1R9A//PON1 7 94758416 G A 0.443 1.000 0.379 0.273 3.78E-04 
rs3753019 COL18A1//SLC19A1 21 45749213 G A 0.295 1.000 2.478 0.264 5.93E-04 
rs11159198 ESRRB 14 75937134 G A 0.411 1.000 0.352 0.304 6.03E-04 
rs7115100 CADM1 11 114673869 A C 0.114 0.995 2.732 0.296 6.77E-04 
rs7944529 CADM1 11 114657017 A T 0.123 0.998 2.746 0.298 7.11E-04 
rs17686640 PRKCA 17 62048816 G A 0.061 1.000 4.105 0.422 8.10E-04 
rs9623806 SCUBE1 22 42015152 G A 0.141 0.997 0.187 0.503 8.60E-04 
rs2854946 SERPINA5 14 94118132 G C 0.230 1.000 0.325 0.342 1.00E-03 
rs3814415 EDNRA 4 148632039 A G 0.160 0.998 2.918 0.326 1.01E-03 
rs2017424 TNFRSF21 6 47376942 G C 0.470 0.997 2.439 0.272 1.05E-03 
rs2072474 IL1R2 2 102005641 A G 0.200 1.000 2.553 0.290 1.21E-03 
rs3759333 LTBR//SCNN1A 12 6362208 G A 0.257 0.998 2.340 0.263 1.22E-03 
rs6055955 PLCB1 20 8552181 A G 0.479 0.997 2.364 0.266 1.23E-03 
rs11567699 IL7R 5 35894768 G C 0.284 1.000 2.387 0.271 1.33E-03 
rs11719243 IL1RAP 3 191719795 A G 0.254 1.000 2.338 0.269 1.60E-03 
rs3194051 IL7R 5 35912031 A G 0.283 0.998 2.357 0.272 1.65E-03 
rs4876435 COLEC10 8 120156387 G A 0.231 1.000 2.387 0.281 1.93E-03 
rs1885550 SFTPD 10 81702420 G A 0.187 1.000 2.551 0.302 1.95E-03 

 
* AU=Agatston Units 
 
 



Table 7. 20 SNPs with smallest P-values of pharmacogenetic association (interaction of SNP and treatment) with change  
in coronary artery calcification (change in CAC > 5 AU*) after 4 years of treatment in women enrolled in KEEPS who completed the 
study in their treatment.  
 

OR(95% CI) for treatment vs. placebo (given genotype) adjusting for 
ethnicity and baseline CAC>0 AU 

SNP gene 
CH
R position(bp) 

wild/minor 
 allele MAF 

SNP call 
rate E2/CC E2/CR E2/RR CCE/CC CCE/CR CCE/RR p-value 

rs3802857 CADM1 11 114583828 C/G 0.357 1.000 0.105(0.021,0.513) 2.01(0.703,5.77) 38.7(4.73,317) 0.19(0.038,0.947) 1.18(0.383,3.61) 7.27(0.683,77.3) 2.42E-04 

rs2250889 MMP9* 20 44075813 G/C 0.080 0.998 0.461(0.156,1.36) NA NA 0.573(0.208,1.58) NA NA 2.87E-04 

rs669607 C3orf68 3 28046448 A/C 0.439 1.000 3.21(0.768,13.4) 0.757(0.283,2.03) 0.178(0.026,1.24) 0.026(0.002,0.447) 0.272(0.072,1.04) 2.84(0.59,13.7) 3.54E-04 

rs10738763 TEK 9 27105768 A/G 0.226 1.000 0.391(0.123,1.25) 6.44(1.15,36.2) 106(2.99,3770) 0.131(0.029,0.596) 3.82(0.702,20.8) 111(3.67,3370) 3.57E-04 

rs615375 TEK 9 27102311 A/C 0.269 0.998 0.337(0.099,1.14) 7.86(1.31,47.3) 184(4.26,7910) 0.129(0.027,0.622) 4.56(0.773,26.9) 161(4.27,6040) 4.16E-04 

rs8083599 COLEC12 18 362837 C/A 0.291 1.000 3.84(1.01,14.6) 0.456(0.142,1.46) 0.054(0.005,0.547) 3.94(0.96,16.2) 
0.224(0.062,0.81
9) 

0.013(0.001,0.19
5) 4.22E-04 

rs343321 PLSCR1 3 147716959 G/A 0.125 1.000 0.802(0.287,2.24) 6.07(0.527,70) 46(0.327,6470) 0.191(0.052,0.708) 19.7(1.71,226) 
2020(12.7,32100
0) 6.36E-04 

rs11583394 IL19 1 205035516 A/G 0.225 1.000 1.02(0.317,3.25) 1.16(0.309,4.35) 1.32(0.0844,20.7) 1.88(0.593,5.93) NA NA 6.75E-04 

rs9276976 HLA-DOA 6 33081772 G/A 0.148 1.000 0.274(0.08,0.944) 10.7(1.97,58.2) 417(11.4,15200) 0.413(0.128,1.34) 2.57(0.36,18.4) 16(0.275,927) 6.83E-04 

rs1983357 LOC730057 3 64969335 A/C 0.223 1.000 2.24(0.66,7.62) 0.39(0.099,1.53) 0.068(0.004,1.15) 2.6(0.755,8.92) 
0.043(0.004,0.42
2) 

7.0e-4(6.0e-
6,0.082) 7.84E-04 

rs2292483 TRAF5 1 209599650 A/G 0.265 0.998 0.243(0.068,0.87) 2.95(0.873,9.96) 35.8(3.07,418) 0.621(0.189,2.04) 0.702(0.151,3.25) 0.792(0.035,18) 8.31E-04 

rs9323910 SERPINA3** 14 94158379 G/C 0.247 0.998 4.75(1.35,16.8) 0.268(0.078,0.917) 0.015(0.001,0.206) 1.61(0.394,6.57) 0.272(0.068,1.08) 
0.046(0.002,0.93
3) 8.61E-04 

rs4252287 IL10RA 11 117373848 G/A 0.095 1.000 1.83(0.672,4.97) NA NA 1.09(0.377,3.17) NA NA 8.63E-04 

rs12654778 ADRB2 5 148185934 G/A 0.374 1.000 0.257(0.051,1.29) 1.15(0.427,3.09) 5.12(0.84,31.4) 1.5(0.404,5.58) 0.307(0.077,1.23) 0.063(0.004,1.13) 9.19E-04 

rs3794660 IRF8 16 84500669 C/G 0.034 1.000 0.972(0.387,2.45) 1.42(0,Inf) NA 0.35(0.112,1.09) NA NA 1.03E-03 

rs10406069 CD22+// 19 40528370 G/A 0.157 1.000 0.507(0.177,1.45) NA NA 0.344(0.104,1.14) NA NA 1.09E-03 

rs10191694 SERPINE2++ 2 224565510 C/A 0.380 1.000 2.08(0.544,7.92) 0.805(0.299,2.17) 0.312(0.046,2.11) 3.52(0.91,13.6) 
0.083(0.009,0.73
6) 

0.002(2.2e-
05,0.174) 1.13E-03 

rs1042713 ADRB2 5 148186633 G/A 0.399 1.000 0.238(0.048,1.19) 1.13(0.422,3.03) 5.36(0.93,30.8) 1.3(0.351,4.78) 0.312(0.078,1.25) 0.075(0.004,1.33) 1.15E-03 

rs13068939 ITPR1 3 4563300 G/A 0.257 1.000 1.42(0.42,4.79) 0.716(0.199,2.58) 0.361(0.024,5.51) 0.115(0.022,0.601) 1.44(0.467,4.42) 18(1.85,175) 1.15E-03 

rs894685 C1QL1 17 40410565 A/G 0.301 1.000 0.369(0.101,1.34) 1.8(0.578,5.61) 8.8(0.992,78) 1.35(0.424,4.28) 0.288(0.052,1.61) 0.061(0.002,2.03) 1.18E-03 

*next to LOC100128028; **next to LOC390503; + next to FFAR1; ++ next to LOC100129171 
NA = no results due to small sample size. 

Abbreviations:  E2, transdermal 17β estradiol; CEE, oral conjugated equine estrogen; MAF, mean allele frequency. 
* AU=Agatston Units 
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