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ABSTRACT OF THE THESIS 
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Quantitative Sequence Profiling 
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Professor Stephanie Fraley, Chair 

 

High Resolution Melt (HRM) analysis allows for the classification of DNA 

sequences based on the way the sequences melt when exposed to heat in the presence 

of an intercalating dye. While HRM has been shown to be effective in broad-based 

sequence identification, it has remained limited in its sensitivity and is unable to 
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provide information regarding absolute quantification of samples. Here, HRM is 

combined with digital PCR by isolating individual templates into separate wells and 

melting the end-point product, producing a highly sensitive technique capable of 

sequence identification and absolute quantification in multiplexed samples. By 

decreasing the reaction volume by more than 99% and increasing the number of 

reactions to 20,000, this novel platform offers new detection capabilities not 

previously seen in standard qPCR HRM. By optimizing temperature resolution, 

reagent concentrations, sampling rate, and microscope exposure settings, the 

platform’s performance was shown to rival the resolution demonstrated by qPCR 

HRM. This resolution is of particular importance in the identification of bacteria based 

on their sequence-specific melt curves. In a proof of concept, by using the universal 

amplification of the 16s rRNA gene of bacteria, this dHRM platform is demonstrated 

to be capable of differentiating between two strains of bacteria based on the fingerprint 

melt curves generated from single-molecule amplification. By training a machine-

learning support vector algorithm (SVM) coupled with an automated image analysis 

code, the platform successfully classified separate strains within a mixed culture of 

bacteria. These results suggest that this technology may have broad applications for 

sensitively and rapidly profiling bacterial populations, particularly in clinical cases of 

infection.
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INTRODUCTION 

Although there are more than 750,000 cases of sepsis a year in the United 

States (1-7), advances in treatment remain limited and mortality remains relatively 

high at 20-30% (1-7,1-26). Studies point to the importance of rapid treatment in 

patient prognosis (2), but without the identification of the specific strain causing 

infection treatment is limited to broad spectrum antibiotics, which prove largely 

ineffective (3). The problem is compounded by antibiotic resistant bacteria and 

polymicrobial infections, where nonspecific antibiotics may only partially effective 

and leave the bulk infection unaffected. The heterogeneity introduced by the variety of 

microbial infections that lead to sepsis remains the main hindrance in effective 

treatment as a broad-based treatment cannot account for every phenotype (3), but the 

identification of specific strains still relies heavily on blood culture, a slow process 

involving the culturing and phenotypic identification of the colonies on culture plates 

(4). This process takes between 72 and 96 hours, with a successful positive 

identification occurring only 30-40% of the time (4). Since without treatment during 

this time the patient would have died, most clinicians will treat sepsis with broad-

spectrum antibiotics and only use the microbial culture results to fine-tune later 

antimicrobial treatments (4-8). Clearly a more rapid, sensitive method of microbial 

detection and identification is needed to improve patient prognosis. 

Regardless of its limitations, blood culture has remained a “gold standard” of 

sepsis diagnostics due to the inherent difficulties associated with identifying bacteria 

from a blood sample. The vast number of strains with the potential to cause sepsis.
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requires a diagnostic tool to be highly broad-spectrum, able to store and choose from a 

large library of clinically relevant strains. Polymerase chain reaction (PCR) based 

assays have been developed to detect specific strains, based on the principal that 

sequence-specific primers can identify the presence of genes specific to each bacteria. 

The need for a broad-based assay introduces a complication in PCR assays, as they 

require specific primers or probes to be able to detect specific bacterial strains. It is 

prohibitively difficult to design a separate assay for each bacteria potentially causing a 

septic infection, as the amount of bacterial DNA extracted from a septic patient is far 

to low to run a large series of assays on. Indeed, the concentration of bacteria in blood 

leading to a septic response is only 1 to 100 CFU/mL in adults (5) and less than 10 

CFU/mL in neonatal babies (6). This requires that a diagnostic assay be highly 

sensitive and extremely accurate, as retests will not be possible. To further complicate 

the issue, some septic infections are caused by a polymicrobial infection (7), meaning 

an assay needs to be capable of detecting and reporting multiple species of bacteria 

simultaneously. Blood culture assays are able to meet these requirements, explaining 

their widespread use despite the limitations associated with them. 

That said, quantitative PCR (qPCR) is gaining popularity as a diagnostic tool 

for sepsis as universal assays are developed to overcome the need for bacteria specific 

primers/probes. The 16s rRNA gene of bacteria contains conserved regions between 

different strains of bacteria, allowing for the design of primers universal to all bacteria 

(8,9). Within these conserved regions are variable regions, which can be used to 

distinguish between different strains based on variance in the sequences. Already, 16s 
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rRNA universal primers are used in combination with sequencing as a diagnostic tool, 

though again this type of assay cannot differentiate within polymicrobial infections 

(9). The nature of qPCR assays means that the bacteria with the highest starting 

concentration will overtake the reaction and low-level bacteria will not be detected in 

the final sequencing. Furthermore, standard sequencing reads are limited to 

approximately 500 base pairs, which does not encompass the full length needed to 

differentiate between strains of bacteria. 

To combat this, assays using high resolution melt curve (HRM) analysis have 

been developed using 16 ribosomal DNA universal primers (8,10). HRM is not limited 

to short sequence reads, and is relatively inexpensive and fast. These assays are based 

on the principal that minor sequence differences lead to changes in the temperature 

that a DNA sequence melts at when slowly heated. By heating DNA in the presence of 

an intercalating dye, the fluorescence can be measured to generate a relationship 

between fluorescence and temperature; i.e. a melt curve. These melt curves have been 

shown to be capable of differentiating between different strains of bacteria, much the 

same way that sequencing does (8,10). Furthermore, by combining HRM with digital 

PCR, multiplexed detection within polymicrobial infection is possible (8, 10). Digital 

PCR involves the sequestering of individual template molecules into separate 

reactions allowing for absolute quantification and the amplification of pure templates 

even within mixed samples. While a very powerful technique, dPCR relies on 

sometimes faulty thresholds and does not allow for multiplexed detection. This is 

because current dPCR assays provide a final positive-reaction count but provide no 
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information about the sequences that amplified. However, by introducing HRM to a 

dPCR format, absolute quantification and identification within a mixed sample can be 

accomplished. DPCR allows for the amplification of single molecules of bacterial 

ribosomal DNA, while HRM allows for the classification of each positive reaction 

based on sequence differences in their variable regions. 

While this combination, termed Universal digital High Resolution Melt 

(UdHRM), has been demonstrated previously (8,10), the purpose of this thesis is to 

demonstrate a drastic increase in dynamic range through decreasing reaction volume 

by 96% and increasing the number of reactions to 20,000. With this technology, 

thousands of bacteria can be simultaneously profiled and rapid diagnosis of 

polymicrobial septic infections can be achieved in a clinical setting. This thesis 

demonstrates the design of the UdHRM platform, the optimizations used to increase 

the resolution of the platform to the level of a standard qPCR machine, and a proof of 

concept demonstrating the ability of the platform to differentiate between multiplexed 

bacterial strains.
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CHAPTER 1 – BACKGROUND 

Universal digital High Resolution Melt (UdHRM) is based on the well 

established techniques of high resolution melt (HRM) and digital PCR (dPCR). HRM 

has gained popularity as a rapid, inexpensive, closed-tube post-PCR sequence 

characterization technique. By precisely heating and unwinding double stranded DNA 

amplicons in the presence of a fluorescent intercalating dye(12-14) or sloppy 

molecular probes(15, 16), loss-of-fluorescence melt curves are generated that are 

sequence-specific. Several groups have proposed the expansion of HRM from 

screening to profiling technology by preceding it with broad-based PCR(17). Using 

conserved priming sites that flank sites of genetic variation or mutation, sequence 

changes in a genetic locus can be identified by changes in the melt curve signature of 

the gene amplicon. This replaces the need for precise primer or probe hybridization-

based discrimination of small sequence changes and relies only on the intrinsic 

melting properties of the amplified sequence itself.  

The strength of a HRM platform lies in its ability to differentiate between 

single nucleotide differences between sequences. This relies on the resolution and 

repeatability of both the temperature ramp and the fluorescence intensity 

measurement. Standard HRM platform temperature ramp rates range from 0.005 to 0.3 

°C/s, while sampling rate ranges from 10 to 67 data points/°C (11). A study into the 

genotyping accuracy across multiple HRM platforms determined that there is a slight 

positive correlation between increased ramp rate and genotyping accuracy, with a 

stronger correlation between increased sampling rate and genotyping accuracy (11).
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Heterozygote sequence differences (pyrimidine to purine, or vice versa)  had a 

universally high detection rate at 99.7%, whereas homozygote sequence differences 

(pyrimidine to pyrimidine or purine to purine) were more difficult to detect at 70.3% 

due to the similarity in bond strength and therefore melting temperature (11). 

Regardless, the study demonstrated the strength of HRM in its ability to differentiate 

down to single nucleotide differences under the right conditions and pointed toward 

the importance of ramp and sampling rate in the accuracy of a HRM platform. 

It has been shown that HRM can enable single nucleotide specificity for one of 

the most difficult profiling tasks, the discrimination of microRNA in the Lethal-7 

family(18). In this study, universal tags were ligated to synthetically synthesized  

microRNA to allow for universal primers to amplify all sequences equally. 

Differences in curve shape and melting temperature were used to differentiate between 

sequence differences as small as one nucleotide, demonstrating the potential for HRM 

as a profiling technique. Furthermore, the study showed that UdHRM is capable of 

differentiating between microRNA within a multiplexed sample of multiple sequences 

(18). While a powerful demonstration of this technique, the study is limited in the 

need for ligated tags in order for universal primers to be designed, as well as the use of 

synthetic sequences rather than microRNA extracted from cells. 

Broad-based HRM methods have also been proposed for a variety of other 

applications, for example: to identify oncogenic mutations(19), gene methylation 

patterns(20, 21), and, most relevant for this thesis, for bacterial identification(22-27). 

Although generally reproducible melt curves are obtained, in-run template standards 
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are typically used to overcome run-to-run variability and enable curve matching. This 

has significantly limited the application of HRM by constraining the breadth of 

profiling to only a few sequence variants, forcing user intensive curve identification 

procedures, and reducing specificity since single nucleotide changes often manifest as 

slight temperature or curve shape changes. Likewise, if multiple sequence variants are 

present or when contaminating DNA is present in a high load, as often occurs in real 

samples, individual sequences cannot be identified in the conventional bulk HRM 

format(17, 28).  

These limitations on HRM profiling sensitivity, breadth, reproducibility, and 

specificity have been addressed by adapting and integrating limiting dilution digital 

PCR (dPCR) with universal amplification strategies and temperature calibrated 

HRM(18). This technique involves diluting the sample to the extent that it can be 

safely assumed that at most one template is present in each reaction. As dPCR relies 

on end-point amplification, it is more resilient to variations resulting from different 

primer efficiencies which plague qPCR assays. This same concept prevents variations 

resulting from the use of different master mixes from affecting the copy number 

determined from dPCR. Furthermore, dPCR provides absolute quantification rather 

than the relative quantification given by qPCR. Though a highly useful technique, 

dPCR is limited in that it relies on fluorescence thresholds to differentiate between 

positive and negative reactions, which can be faulty and lead to incorrect counts. Its 

ability to provide information about multiplexed samples is limited to the number of 

differentiable dyes linked to specific probes, which means it cannot be used as a 
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broad-based method of sequence identification. The specificity of dPCR is limited to 

the specificity of the primers and probes as misamplification will be detected as a 

positive reaction with no ability to check whether the correct sample was amplified. 

This problem is compounded by the large number of cycles needed to reach end-point 

amplification, as the more cycles used in PCR the more likely misamplification 

becomes. These limitations are addressed by combining dPCR with the sequence 

analysis of HRM (dHRM). 

DHRM allows for sequence analysis following amplification, which enables a 

more accurate threshold to be applied based on melt curve, minimizing incorrect 

classification  resulting from misamplification. Furthermore, the differentiation of 

multiplexed sample of a much greater magnitude is possible by sequestering the 

individual templates into separate reactions producing pure melt curves. These pure 

melt curves can then be identified based on a previously generated  library. Similar to 

conventional HRM, dHRM is plagued by variations in melt curves due to variations in 

reaction-to-reaction temperature. This has been addressed through temperature 

calibration, which is accomplished through using synthetic sequences of a known 

melting temperature. Slight variations between experimental runs are accounted for by 

aligning the calibrator peaks to the same temperature point. Variations in 

reproducibility are minimized through a series of normalizations based on baseline and 

curve area. This allows for differences in curve shape and melt temperature to be 

maximized while differences in melt curves due to noise are minimized. Separately, a 

machine learning techniques using nested, linear kernel, one versus one support vector 
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machines (OVO SVM) has been developed to automatically identify sequences by 

their melt curve signatures despite inherent experimental variability(29, 30). SVMs 

work by determining the optimal hyperplane to separate data sets, and thereby 

determine whether a new point belongs to one data set or another. The optimal 

separating hyperplane is characterized by maximizing the margin between the training 

data sets. SVMs can be nested within each other to create layers of classification to 

differentiate between more complicated data. This is demonstrated by the multiple 

points that can be used to differentiate between melt curves, such as the peak melting 

temperature or the curve area. A linear kernel SVM defines the separating hyperplane 

as a linear plane, requiring that the data be well differentiated but decreasing 

computational time. A one vs. one SVM trains a separate classifier for each pair of 

classes, which while computationally expensive is able to handle unbalanced or 

complex data sets with more sensitivity. Using these types of SVM, a highly sensitive 

machine learning algorithm has been developed to reliably classify melt curves based 

on their shape and melt temperature. Using this SVM approach, universal digital HRM 

(U-dHRM) has been shown to be capable of automatically identifying multiple distinct 

and even novel genotypes in a mixture with single molecule sensitivity and single 

nucleotide specificity (7).  

Others have also demonstrated the ability of dHRM to sensitively detect rare 

mutants/variants(31, 32) and importantly, novel variants(33). In one study, the 

heterogeneity of methylation in gene silencing was studied using dHRM. Methylation 

can be studied using melt curves due to different base compositions between 
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methylated and unmethylated DNA following bisulphite conversion. The study 

showed that while bulk HRM was useful in studying overall methylation in gene 

silencing, it was incapable of detecting heterogeneously methylated samples as the 

multiple PCR products cannot be differentiated in bulk (31). dHRM allowed for a 

single molecule to be amplified eliminating the competition between alternately 

methylated molecules, and thereby enabling the study of heterogeneous samples. The 

CDKN2B gene in particular was shown to contain a large range of methylation sites 

leading to a diverse spectrum of potential melt curves, which is of importance in the 

study of tumor suppression and malignancy (31). In another study, dHRM was shown 

to be significantly more sensitive than bulk HRM in the detection of gene mutations 

leading to colorectal cancer. They found that the detection limit of their bulk HRM 

was 10%, and so were able to detect single molecule mutations by limiting the number 

of template molecules to at most 10 per reaction (32). In yet another study, novel 

variants of the Lyme-disease bacteria Borelia burgdorferi were discovered by 

detecting abnormal melt curves that did not match the melt temperature and shape 

expected for each serotype. Once identified, the novel samples were sequenced and 

the corresponding phenotype analyzed (33). This demonstrates the powerful ability of 

dHRM as a rapid first level of detection when looking for novel variants, which can 

then be followed up with a deeper level of analysis. These findings suggest that U-

dHRM could outperform microarray, qPCR array, and NGS sequence profiling if 

implemented at full digitization, where each single molecule in a sample could be 
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identified and quantified, while maintaining the ease of use and inexpensive benefits 

of bulk HRM.   

Unlike digital PCR, the sensitivity and quantification power of dHRM 

profiling relies on full digitization of the sample, i.e. spreading the sequence mixture 

across so many reactions that each target molecule is isolated from all others. Since 

the process of loading DNA into wells is stochastic at limiting dilutions, the dynamic 

range of single molecule detection follows a Poisson distribution, requiring the total 

number of reactions to be approximately 10 to 100 times the number of sequence 

molecules. That is, the average occupancy (lambda) across all reactions must be 0.1 to 

0.01 copies of DNA per well. The probability of DNA occupancy in any well, i.e. the 

fraction of wells having 1, 2, 3, etc. copies, is given by the Poisson probability 

distribution P=(e-l*ln)/n!, where n is the total number of wells. DHRM is currently 

performed in traditional well plates using HRM enabled qPCR machines. In this 

format only about 9 molecules in a sample can be profiled per 96-well plate (Fig. 1A). 

Therefore, a major challenge to the advancement of dHRM profiling is the need for an 

exponential increase in the number of reactions to achieve scalability for realistic 

sample concentrations. 

To combat this, several commercial platforms have been developed to 

incorporate tens of thousands of parallel PCR reactions. Several reports have 

demonstrated the use of microfluidic chambers or droplets for digital PCR, though 

these platforms have limitations preventing their extension to digital HRM. Fluidigm 

has introduced a series of microvalve-based digital PCR devices, which function 
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through a series of channels and valves embedded within a silicon substrate. The 

silicon is partitioned to allow parallel PCR amplification of up to an impressive 36, 

960 reactions. While this platform further boasts the ability to capture fluorescence 

after each cycle allowing for quantitative dPCR, Fluidigm platforms do not have the 

high resolution heating blocks necessary for high resolution melt curve generation and 

moreover are not programmed to capture fluorescence during heat ramping. 

Microfluidic droplet-based digital PCR devices, such as Bio-rad’s droplet dPCR, are 

based on a water-oil emulsion method of sequestering the PCR sample into 20,000 

droplets. The droplets are then cycled as in conventional PCR, and analysis is 

performed in the form of endpoint PCR detection in a continuous flow format. This 

platform is limited in that analysis is performed without temperature control, one 

droplet at a time, preventing in-situ, real-time monitoring of fluorescence in droplets, 

as is needed by HRM. Moreover the quantitative capabilities of this platform are 

questionable due to the large dropout rate inherent in droplet dPCR. Current 

microfluidic chip-based digital PCR devices, such as Life Technologies’ 20k dPCR 

chip, use wells formed from a silicon substrate with a hydrophilic treatment to draw 

the PCR master mix in with a high efficiency. These chips are then cycled and imaged 

for end-point PCR quantification. Unfortunately, as they are used currently they rely 

heavily on TaqMan probes and do not perform real-time monitoring of fluorescence, 

both of which prevent HRM analysis. DHRM requires a highly repeatable high 

resolution heating set-up as well as the ability to capture fluorescence intensity 

simultaneously with temperature ramping, which has not yet been demonstrated by 
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commercial platforms. 

To address these challenges, this thesis presents a platform for massively 

parallelized microfluidic dHRM and integrated this with a U-dHRM approach and 

machine learning curve identification algorithm, achieving single molecule detection 

and absolute quantification of thousands of DNA molecules in a single sample in 

under 3 hours. DPCR is accomplished using a commercially available dPCR chip 

combined with a modified protocol to achieve consistent, full-length amplification. 

HRM is performed by using a custom built heating set-up coupled with a powerful 

fluorescent microscope to simultaneous heat and image the chip. A proof of principle 

using universal primers for bacterial 16 ribosomal DNA demonstrates that this 

platform enables absolute sensitivity and specific characterization of polymicrobial 

samples with the benefit of absolute load quantification of each species. Importantly, 

this proof of principal is completed at target concentrations relevant to clinical 

scenarios, in particular sepsis. This demonstrates the ability of this UdHRM platform 

as a clinical diagnostic tool for septic patients, as it is able to absolutely identify and 

quantify polymicrobial infections allowing for specific antibiotic treatments within 

hours of sample collection. 
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CHAPTER 2 – EXPERIMENTAL DESIGN 

High-Content dPCR chip 

The first portion of the dHRM platform requires highly reproducible massively 

paralleled PCR reactions. In order to achieve high-content digital partitioning, we 

loaded the sample into a commercially available QuantStudio 3D Digital PCR 20K 

Chip v2 (Applied Biosystems). We chose to use a commercially manufactured chip for 

performance reliability and ease of scalability. The chip contains 20,000 picoliter-

scale wells manufactured from silicon with a hydrophilic treatment to allow the PCR 

master mix to be drawn into each well with a high efficiency. A PCR-grade oil is 

spread over the loaded chip to prevent sample evaporation during cycling. We then 

sealed the chip with an adhesive lid containing an optical window, which allows for 

later imaging and the generation of melt curves. While we found the chips to be highly 

effective, the mastermix suggested by the manufacturer was inadequate for our needs. 

We therefore coupled the dPCR chip with our own custom designed master mix. The 

master mix is optimized to consistently amplify full length ~1,000bp templates of the 

16s gene and produce high fluorescence signal intensity for melt curve analysis while 

maintaining optimal surface tension for easy loading. A 1,000bp template is longer 

than standard qPCR, requiring a higher dNTP to primer ratio in order to have full 

amplification. Furthermore, a polymerase capable of amplifying long templates was 

required. As the dPCR chip relies on hydrophobic/hydrophilic interactions to 

effectively sequester the master mix into separate reactions, the surface tension of the 

master mix must remain optimal. Using a droplet surface tension test our mastermix 
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was compared with the mastermix supplied by the manufacturer, allowing us to 

customize our mastermix while maintaining the required surface tension. The small 

reaction volume further complicates the master mix, as an increase of dye 

concentration is required in order to boost the fluorescent signal strength and decrease 

the signal-to-noise ratio. By using a buffer containing surfactant and increasing the 

concentration of dye, we were able to effectively load, amplify, and visualize the 

sample. We used a flatbed thermocycler (MJ Research PTC-200) for endpoint 

amplification following standard qPCR cycling protocols. The chips are loaded at 

42oC on the thermocycler to increase loading efficiency. The thermocycler is tilted at a 

30-degree angle to collect the bubbles generated at high temperatures in the PCR-oil in 

an air pocket located outside of the chip’s sample region, preventing sample 

evaporation from the small volume reactions. Once amplified, the chip is highly stable 

and can be stored at room temperature without degradation of the amplified DNA 

within. 

Bacterial gDNA Isolation 

In order to demonstrate the efficient amplification of our chip/master mix 

combination and provide a proof of concept for the differentiation of bacterial strains 

within a multiplexed sample, we isolated bacterial gDNA for further amplification. 

We used the Wizard Genomic DNA Purification Kit (Promega) to isolate gDNA from 

an overnight culture of bacteria following the manufacturer’s protocol. Briefly, a 

culture of bacteria was grown up overnight, spun down and lysed, and then purified 

through RNase treatement and protein precipitation. The purity and concentration of 
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the DNA was determined using an Eppendorf Spectrofluorometer. This allowed us to 

estimate an approximate copy number of our sample, giving us the dilution necessary 

to digitize the sample as well as ensure that our sample had a high enough purity to 

prevent inhibition by carry over from the isolation process. The template was diluted 

in PCR water to the desired concentration based on this measured concentration. 

PCR 

The optimum PCR master mix for amplification on a chip combined with 

effective loading and high signal-to-noise ratio contained in a 14.5 uL reaction: 1X 

Phusion HF Buffer containing 1.5 mM MgCl2 (Thermo Fisher Scientific), 0.15 uM 

forward primer 5'-GYGGCGNACGGGTGAGTAA-3' (IDT), 0.15 uM reverse primer 

5'-AGCTGACGACANCCATGCA-3' (IDT), 0.3 uM low temperature calibrator 

(IDT), 0.2 mM dNTPs (Invitrogen, Carlsbad, CA), 2.5x EvaGreen (Sigma), 2x ROX 

(Thermo Fisher Scientific), 0.02 U/uL of Phusion HotStart Polymerase (Thermo 

Fisher Scientific), 1 uL of sample, and ultra pure PCR water (Quality Biological, 

Gaithersburg, MD) to bring the total volume to 14.5 uL. The low calibrator at 0% GC 

was chosen to calibrate the chips as it had the greatest separation from the amplicon, 

minimizing its influence on the amplicon melt curve. The calibrator melts at a known 

temperature so that the melt curves from separate chips could be aligned to the same 

temperature, minimizing run-to-run variation in temperature readings. Phusion was 

chosen due to its ability for continuous amplification of long amplicons and because 

the phusion buffer contains a surfactant lowering the surface tension and enabling easy 

loading. The hot start adaptor on the enzyme allows for the loading of multiple chips 
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without the degradation of the template DNA or primers from the passive activity of 

the polymerase. The concentration of the dyes were chosen based on the highest 

concentration that could provide a strong fluorescent signal while still efficiently 

amplifying the full length template. The dPCR chip was cycled on a flatbed 

thermocycler with the following cycle: an initial enzyme activation (98 degrees C, 30 

s), followed by 70 cycles (95 degrees C, 30 s, 59 degrees C, 30 s, 72 degrees C, 60 s). 

Temperature calibrator sequences with varying GC content used for system 

optimization are as follows: 0% GC 

(TTAAATTATAAAATATTTATAATATTAATTATATATATATAAATATAATA-

C3), 12% GC 

(TTAATTATAAAGGTATTTATAATATTGAATTATACATATCTAATATAATC-

C3), and 76% GC 

(GCGCGGCCGGCACCCGAGACTCTGAGCGGCTGCTGGAGGTGCGGAAGCG

GAGGGGCGGG-C3)(7).  

Chip Heating Device 

After the chip is loaded and amplified, dHRM is performed to generate the 

melt curves for later analysis. DHRM is made possible through simultaneous 

fluorescent imaging and heating of the dPCR chip. The heating device consists of a 

high-temperature peltier chip (TE technology, inc. Traverse city, MI) powered by a 

14V power source controlled via an Arduino UNO-based interface that uses pulse 

width modulation to generate a temperature ramp. Temperature ramp is controlled by 

step-increases in power followed by variable periods of holding at each power setting. 
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The power increases and periods of holding are set by a MATLAB code controlling 

the Arduino UNO. The peltier chip is in direct contact with a copper plate onto which 

the dPCR chips coated with thin layer of thermal paste are clamped. This allows for 

even heat distribution and optimal surface contact. On the reverse side of the peltier, 

another copper plate screwed to an aluminum heat sink is attached to enable fast 

excessive heat dissipation. To measure the temperature at each point during the 

temperature ramping, a type K thermocouple (OMEGA, Stamford, CT) is used. The 

thermocouple is fixed inside a surrogate chip, which is attached alongside the sample 

chip to the copper plate. The temperature readings are acquired by the microscope 

imaging software (NIS Elements) and are attached to the image file metadata for 

offline analysis. The complete chip-heating setup is placed in a custom designed 3D 

printed stage adapter to securely mount the device on the microscope for imaging. 

Fluorescent Imaging 

Fluorescent imaging is accomplished using a Nikon Eclipse Ti platform 

customized for our dHRM system. A Nikon Plan/Fluor 4X objective with a numerical 

aperture of 0.13 and a working distance of 16.5X minimizes the number of images and 

time required to scan the entire chip, while still giving a strong signal and clear image 

of the wells. A Lumencor LED Light Engine capable of producing 3-4W of visible 

white light from the range 380nm to 680nm is used as a light source. Images of the 

loading control dye, ROX, and melt curve intercalating dye, EvaGreen, are captured 

with 488/561nm and 405/488nm excitation/emission filters using an exposure time of 

100 ms. Images are captured using a Hamamatsu digital camera, C11440 ORCA-
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Flash4.0. NIS Elements Software is programmed to automatically image the chip as 

the heating device ramps using the following workflow: define the capture settings for 

the ROX and EvaGreen channels, set the stage area to the chip’s sample area, generate 

points within that stage area to image, and run time lapse to image each location for 

every time point. A Prior NanoScanZ motorized stage is used to scan and image the 

entire chip automatically via the software. For every image, the microscope 

automatically records the temperature registered by our temperature probe within the 

metadata of the image. This allows for continuous scanning of the chip and recording 

of the fluorescence intensity in each well while concurrently heating the chip to 

generate 20,000 melt curves. 

Image analysis & SVM 

In order to generate melt curves from the acquired fluorescent images of the 

dPCR chip, we implement an automated image processing algorithm in MATLAB. 

The algorithm first generates a binary mask for each temperature point to identify the 

centroid corresponding to each digital reaction well in the field. The algorithm then 

records the pixel intensity of the 441 neighboring pixels from the images of both the 

Evagreen channel and the ROX channel. The average pixel intensity for each well is 

plotted against the measured temperature to generate the raw melt curve. Each melt 

curve is normalized to the ROX channel to account for any differences due to unequal 

loading. A threshold is applied to remove negative reactions and all incorrectly 

identified centroids. A Gaussian filter is then applied to smooth the curves and the 

derivative of the curves is taken with respect to temperature to obtain –
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d(Fluoresence)/dT. The curves are normalized through area normalization, exponential 

normalization, and max-min normalization to minimize run-to-run differences. 

Finally, the curves are aligned via a temperature independent melt curve alignment at 

0.1 –dF/dT. This allowed the differences in melt curve shape to be maximized for later 

identification using a previously developed one versus one (OVO) support vector 

machine (SVM) algorithm(30). Briefly, a OVO SVM creates a maximal margin 

separating hyperplane between two data classes (i.e. melt curve signatures) using the 

Least Squares Method. All combinations of OVO SVMs were created with the 

training data generated from melt curves of a known origin. During classification, a 

scoring method is applied and the most frequently called classification is chosen as the 

final melt curve identity. 

Two approaches to thresholding reaction fluorescence for the identification and 

removal of negatives were compared. The typical dPCR approach of thresholding total 

reaction fluorescence proceeded as follows: The total fluorescence intensities, at room 

temperature, of all reactions on a chip were plotted as a histogram in MATLAB, and 

the probability density function (PDF) for a mixture of two normal distributions was 

applied to identify negative and positive reaction distributions. Then a threshold was 

applied at the lowest point of intensity where the two distributions intersected (Fig. 

4B, top). This was performed for each chip individually, such that each chip 

underwent a unique threshold depending on its PDF.  

A second approach was developed to identify a Tm threshold that separated 

off-target amplified reactions from true positives more accurately. First, raw melt 
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curves were converted to derivative melt curves. On fully loaded chips where all 

reactions were positive (2 training chips) all reactions contained 16S amplicons, which 

were observed to melt with an average Tm of 89oC. On digitized chips (3 chips, 

testing data), off-target amplicons were observed to melt at a much lower temperature, 

average Tm of 81oC, while positive 16S amplicons melted reproducibly in the same 

range as the training chips. For thresholding analysis, the maximum peak height (Tm) 

was found for each derivative melt curve between the range of 75oC and 93oC. Then a 

histogram of the Tms was plotted in MATLAB, and the PDF for a mixture of two 

normal distributions was applied (Fig. 4B, bottom). Finally, the Tm threshold was 

chosen at the minima between the two distributions. Reactions melting below this Tm 

threshold were identified as negatives, while those melting above the threshold were 

identified as positives. This threshold was determined using this method for each chip 

individually.     

Cell Culture 

Clinically isolated Streptococcus pneumoniae and Listeria monocytogenes 

were grown separately overnight in Luria-Bertani (LB) broth. Sterile conditions were 

used to ensure uncontaminated growth of each bacteria. 
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CHAPTER 3 – RESULTS 

Digital HRM Device Concept  

In order to determine the number of reactions we would need for our digitizing 

chip, we first considered a model real-world application. In neonatal bacteremia cases, 

clinically relevant bacterial loads are estimated from culture techniques to be between 

1 to ~2,000 cfu per blood sample (1ml), where 76% of samples have <50 cfu (42, 43). 

This load requires ~20,000 reactions to provide a dynamic range of detection up to 

1,810 bacterial genomic DNA (gDNA) molecules at the single molecule level (Fig. 

2A, pg 24). A digitizing chip fitting this scale is commercially produced for single 

target dPCR applications (see Methods), and as such was chosen as a robust and 

reliable digitizing device.  

To identify digitized bacterial gDNA, universal primers targeting the 16S 

rRNA gene were used. The 16S harbors conserved sequence regions (priming sites) 

flanking hypervariable regions that are unique to different genus and species of 

bacteria(44) (Fig. 1). This gene was targeted to generate bacteria-specific amplicons  

 

Figure 1: Bacteria 16s rRNA Gene. Regions conserved and therefore universal 
between all bacteria are shown in grey, with the primers marked as black arrows. The 
variable regions are colored and numbered to demonstrate the amplicon. This allows 

for universal amplification leading to amplicons specific to each bacterial strain. 
 
 

for HRM profiling. Specifically, our long amplicon (~1,000bp) 16S bulk HRM 

assay(38) was adapted (see Methods) to enable successful digital amplification and 
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reliable dHRM in each of the 725 picoliter reactions on-chip, a 99.995% volume 

reduction compared to the typical qPCR format. To enable massively parallel dHRM 

across the 20,000 reactions, we developed a custom high resolution heating device and 

imaging system. A schematic of our design is shown in Figure 2B. Precise chip 

heating for HRM was accomplished using a thermoelectric peltier with arduino 

controller, power supply, and heat sink. A copper plate was attached between the 

peltier and the chip and between the heat sink and the peltier to evenly distribute heat. 

A custom adapter was designed to secure this chip-heating setup onto a microscope 

stage for imaging. Figure 2C shows an image of the integrated heating device, chip, 

and stage adapter. The microscope was equipped with a 4x objective, red and green 

fluorescence channels, and an automated x,y stage such that the 20,000 reactions could 

be rapidly imaged as four tiles stitched together at each temperature point during the 

dHRM heat ramp. An image analysis program was developed to stitch tiled images, 

align reaction centroids to overcome image drift due to thermal expansion, and extract 

raw fluorescence data from each reaction simultaneously (Fig. 2D). Our previously 

developed support vector machine algorithm (SVM) was adapted to classify and 

quantify dHRM curves after being trained on melt curves generated on-chip. The 

digital chip, chip heating device, fluorescent imaging system, control electronics, and 

analysis algorithms for image processing and SVM melt curve identification were 

integrated to enable massively parallel dHRM for absolutely quantitative bacterial 

profiling.  
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Figure 2: Massively Parallel Digital HRM Device. (A) Poisson distribution of 
gDNA in a 96-well plate versus a 20,000 well digital PCR chip, showing the 

distribution of molecules per well. (B) Schematic of the digital HRM platform. (C) 
Image of the actual dHRM platform. (D) Fluorescent image of a small portion of chip 
where background dye (red) and intercalating dye (green) are overlaid. 3D intensity 

plot of the green channel is shown in inset. 
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System Characterization & Optimization 

The challenge of generating highly resolvable dHRM curves in picoliter-scale 

reactions was first approached by maximizing fluorescent intercalating dye 

concentrations to maximize signal. An Evagreen concentration of 2.5X was found to 

be the highest concentration that did not inhibit amplification on-chip. Next, the 

simultaneous imaging and heating process of melt curve generation (Fig. 3A) was 

tuned using three synthetic DNA sequences containing 0% GC, 12% GC, and 76% GC  

with known melting temperatures (Tms) (Fig. 3B). The greater the GC content, the 

higher the temperature required to melt the DNA due to higher bond strength. After 

loading mixtures of these three sequences onto a chip, we performed preliminary 

calibrations of our device, optimizing exposure time to minimize photobleaching 

while maintaining the highest possible signal to noise ratio. We also used these initial 

readings to develop our image analysis algorithm (see Methods). Figure 3B shows the 

normalized fluorescence versus temperature and derivative melt plots for the three 

calibrator sequences in qPCR and dHRM formats. The temperature calibrators are 

predicted to melt at 57.3°C, 62.8oC, and 92.9oC by melt curve prediction software, 

uMELT(22). The average Tms given by qPCR HRM were 56.9oC, 67.4oC, and 90.5oC 

respectively, while the dPCR Tms were 55.5oC, 64.6oC, and 83.4oC. These readings 

indicated that further temperature ramp optimization was necessary. Improved 

temperature resolution was achieved by varying the heating ramp rate until a linear 

and repeatable relationship between voltage and temperature could be maintained 

throughout our temperature ranges of interest, 45-95oC. For highest accuracy, 
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Figure 3: On-Chip dHRM Characterization and Optimization. (A) Image of a 
portion of the chip. Upon controlled heating, fluorescence is lost as the DNA 

denatures. (B) Melting of three synthetic temperature calibrator sequences containing 
different GC content at optimized ramp rate on-chip compared to bulk qPCR HRM. 
(C) A plot of the relationship between voltage and temperature for 5 runs, showing it 

to remain linear throughout the range of our temperature profile. The standard 
deviation has a maximum of 1.22 °C at 91.6 °C. 
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temperature was monitored during the ramp by placing a thermocouple inside a 

dummy dPCR chip and placing this chip beside the calibrator loaded chip. A ramp rate 

of 0.02 degrees/sec optimized the linearity and repeatability of our voltage and 

temperature relationship, with maximum standard deviation of 1.22°C occurring at a 

temperature of ~91.6°C over 5 runs (Fig. 3C).  

Next, bacterial gDNA from clinical isolates of Listeria monocytogenes and 

Streptococcus pneumoniae, two common pathogens causing neonatal bacteremia(45), 

were used to further optimize signal to noise and melt curve shape (i.e. temperature) 

resolution. In the standard qPCR format, melt curve shape, a key discriminating 

feature of bacterial 16S melt curves(38), was found to be highly dependent on imaging 

rate. A low imaging rate averaged out key melt curve shape features (Fig. 4A, circle), 

but a faster imaging rate captures the small shape difference unique to this organism 

(Fig. 4B, circle). Using the heat ramp rate previously optimized for linearity and 

repeatability, we varied the imaging rate on-chip (Fig. 4, B and D). The low calibrator 

sequence (first peak from left in Fig. 4 melt curves) was included in all amplification 

reactions to align curves and overcome temperature variation across qPCR wells and 

digital chip wells. The on-chip imaging rate was adjusted such that it approximated the 

optimum imaging rate of the qPCR machine, which produces curves that are 

identifiable by our machine learning algorithm(38). In a standard qPCR machine, 

default settings typically generate HRM imaging data points every ~0.3 degrees. On 

our dHRM platform, imaging the chip every 15 sec at the optimal heat ramping rate of 

0.02 degrees/sec allowed us to achieve this imaging rate. Melt curves generated from 
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these settings constitute our low imaging rate data in Figure 4A and 4B. With these 

settings, the average peak-to-baseline ratio of the 16S amplicon derivative melt curves 

(after min-max normalization of raw melt data) was 0.1096 ± 0.0024 on the qPCR 

machine versus 0.0660 ± 0.0034 for the dPCR. We then optimized the qPCR ramp rate 

to achieve the slowest ramp that maximized the signal to noise ratio: 0.05 degrees/sec 

with imaging data taken every ~0.1 degrees (Fig. 4C). Increasing the imaging rate on 

our dHRM system to match this gave our high imaging rate data, shown in Figure 4D.  

Figure 4: Sampling and Ramp Rate Optimization on the dHRM Chip.  (A),(B) L. 
monocytogenes melt curves generated with a low sampling rate on qPCR and dPCR 

platforms respectively. (C),(D) L. monocytogenes melt generated using a high 
sampling rate on qPCR and dPCR platforms respectively. The synthetic temperature 

calibrator sequence melting temperature mean and standard deviation are shown in all. 
Black circle highlights key melt curve shape feature unique to L. monocytogenes 16S 

sequence that is dependent on sampling rate. 
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At the high imaging rate, the average peak-to-baseline ratio of the 16S amplicon 

derivative melt curves was 0.1759 ± 0.0073 on the qPCR machine versus 0.1225 ± 

0.0066 for the dPCR, demonstrating that with these optimized settings, our device 

achieves comparable signal to noise performance. Importantly, these settings also 

enable a key feature of this particular bacterial melt curve to be observed (circled 

region of melt curves, Fig. 4). This feature is critical for the discrimination of L. 

monocytogenes from other bacterial 16S melt curves using our SVM algorithm. It is 

also important to note that Tm reproducibility was almost identical between the two 

optimized platforms, as demonstrated by the Tm standard deviation (~0.3oC, Fig. 4) of 

the temperature calibrator sequence. Because this deviation still exists under optimized 

conditions, temperature calibrator sequences are included in all reactions for aligning 

melt curves prior to analysis.  

Identification and Absolute Quantification of Single Cells in Polymicrobial 

Samples 

We next integrated our automated OVO SVM melt curve identification 

approach with our dHRM platform to assess the sensitivity, specificity, and 

quantitative power of our technology within the range of clinical concentrations 

expected for neonatal bacteremia samples. A training database of bacterial melt curves 

was generated on-chip to enable automatic curve identification. Bacterial gDNA from 

L. monocytogenes and S. pneumoniae were loaded onto separate chips in excess, l of 

223 and 141 respectively as calculated from spectrometer readings, such that each of 

the 20,000 reactions would be positive for amplification and could generate a unique 
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training melt curve for the bacterial isolate. Hypervariable regions 1-6 of the 16S gene, 

~1000bp, were amplified on chip and underwent dHRM using the optimized ramp and 

imaging rates described above. Figure 5A shows the dHRM training curves generated 

on-chip for S. pneumoniae and L. monocytogenes after processing with our image 

analysis, normalization, and alignment algorithms (see Methods). The processed 

curves were then entered into our OVO SVM algorithm as training data (see 

Methods). Leave One Out Cross Validation (LOOCV) using 1,500 training curves for 

each organism resulted in a classification accuracy of 99.9% within the training 

dataset.  

Next, we confirmed that our cycling protocol reached endpoint amplification 

for low values of l, to ensure that single molecules were fully amplified for absolute 

quantification. A ten-fold dilution series of monomicrobial gDNA samples of L. 

monocytogenes were applied on-chip and underwent dPCR for 70 cycles followed by 

dHRM and enumeration of the total number of positive and negative reactions at each 

dilution. Negative reactions were removed based on a total fluorescence threshold, 

according to typical dPCR protocols (see Methods). However, observation of the melt 

curve data above and below this threshold revealed a Type I (false positive) error rate 

of 22.6% and Type II (false negative) error rate of 1.19% (average across 3 chips), 

resulting in a lower limit of detection of ~238 with the standard approach. A no 

template control (NTC) chip was also run to confirm the melting patterns of off-target 

amplification (not shown). One reason for the total fluorescence threshold method 

performing poorly in our case could be that we thermocycle significantly longer than 



	
  

	
  

31 

most dPCR protocols recommend. Typical dPCR cycle number is kept to ~35, but we 

find that 70 cycles ensures full endpoint amplification from single molecules(15). 

While this extended cycling improves accuracy of single-molecule target detection, it 

also allows off-target amplification to fluoresce more prominently in negative 

reactions. We noted that those reactions which were identified falsely as positive 

based on a fluorescence intensity threshold displayed melt curves arising from off-

target amplicons that melted much sooner during dHRM than our targeted 1,000bp  

amplicon. As such, we developed a new negative thresholding approach by identifying 

a Tm threshold (Fig. 5B) (see Methods), which is uniquely enabled by our platform. 

With this approach, the Type I and II error rates improved dramatically to 0.07% and 

0.00% respectively (average across 3 chips), resulting in true single copy sensitivity. 

Tm thresholding resulted in a linear relationship across the monomicrobial gDNA 

dilution series having an r2 value of 1 and high measurement precision demonstrated 

by the low sample standard deviations at each dilution (Fig. 5C). 

We then compared the number of curves quantified by our Tm threshold with 

the sample gDNA concentrations calculated from spectrometer readings and qPCR 

cycle thresholds. Standard dilution qPCR curves generated for S. pneumoniae and L. 

monocytogenes gDNA samples in Figure 6, show that linearity and thus quantitative 

power are lost in the digital regime (below data point circled in red), where ~0-55 

genomes are estimated to be present based on initial spectrometer readings. Although 

the slope of the standard curve is low, indicating low amplification efficiency, 

efficiency is inconsequential dHRM because endpoint cycling is used and
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Figure 5: SVM Classification of L. monocytogenes and S. pneumoniae. (A) 2000 
normalized S. pneumoniae (top) and L. monocytogenes (bottom) dPCR melt curves 

aligned to 0.1 –dF/dT, respectively. These curves are used to train the SVM to classify 
each bacteria. (B)(top) A histogram showing the fluorescence intensity values with the 

PDF overlayed and the intensity value chosen to classify positive from negative 
marked. (B)(bottom) A histogram showing the Tm of the peaks with the PDF 

overlayed and the Tm value chosen to classify positive from negative marked. (C) A 
dPCR dilution series of L. monocytogenes with the actual vs. predicted counts. The 

strong linearity of the relationship demonstrates the strong amplification of our 
amplicon down the single molecule level.  The sample mean and sample standard 

deviation are reported. (D) In blue: qPCR melt curve generated from a 1:1 mix of 20 
ng/µL of S. pneumoniae and L. monocytogenes. In red: qPCR melt curve generated 

from a 1:1 mix of 0.02 ng/µL of S. pneumoniae and L. monocytogenes. This 
concentration is the same as that used on a digital chip. In grey: qPCR melt curve 

generated from a negative template control (NTC) with no bacterial gDNA added. (E) 
SVM classification of L. monocytogenes and S. pneumoniae mixed at two 

concentrations on a chip, demonstrating the capability of the SVM to correctly identify 
multiplexed samples. 
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Figure 6. qPCR dilution series for S. pneumoniae and L. monocytogenes 
respectively. The primer efficiency slope is shown in black. A red circle marks the 

approximate Ct and concentration used on the dPCR chip. 
 

quantification relies on counting melt curves. For highly multiplexed sequence 

profiling with U-dHRM, long sequence amplicons are more information rich(27) and 

as such are preferred, but their amplification efficiency is expected to be low. 

Regardless, Table 1 shows that our U-dHRM platform detects total DNA  

concentrations at similar levels as the other two technologies, but is capable of 

distinguishing target DNA from background/contaminant DNA. In the case of the S. 

pneumoniae sample, our results show that qPCR and spectrometry overestimated the 

target concentration by 5.5 and 4.8 fold respectively compared to the U-dHRM and 

OVO SVM confirmed amplicon count. Likewise for L. monocytogenes, overestimates 

were 4.8 and 4.1 fold respectively. 

Next, mock samples of polymicrobial infection, which cannot be evaluated 

using standard HRM, were created by mixing L. monocytogenes and S. pneumoniae 

gDNA at two different ratios, 3:2 and 3:10. These were applied to the chip at  
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Table 1. Genome concentrations determined by 3 different quantification 
methods.The concentration of genomic DNA isolated from both S. pneumoniae and L. 

monocytogenes was measured using first an Eppendorf Biospectrometer, then 
estimated based on a qPCR standard curve, and finally directly quantified using dPCR. 
 

 

concentrations nearing the low and high end of the typical clinical pathogen load for 

neonatal bacteremia (50-2,000 copies), a dynamic range that cannot be assessed by 

any current HRM format (Fig. 2A). This is further demonstrated by Figure 5D, which 

shows the same 3:2 mixtures analyzed by qPCR HRM. Here, the resulting ensemble 

average melt curves fail to indicate the presence of two distinct species (blue curve) 

or, in cases of very low gDNA input, the presence of any bacteria at all (red curve) due 

to overwhelming background amplification that results in a melt curve matching the 

NTC melt curve. Figure 5E shows the melt curves resulting from U-dHRM of the two 

heterogeneous samples followed by automated Tm thresholding and OVO SVM 

Bacteria Method of Quantification Number of Genomes/µL 

S. pneumoniae 

Eppendorf Biospectrometer 5780 
qPCR Ct Calculated 6554 
dPCR Specific Curve 

Count 1200 

dPCR Nonspecific Curve 
Count 4260 

L. monocytogenes 

Eppendorf Biospectrometer 9160 
qPCR Ct Calculated 10839 
dPCR Specific Curve 

Count 2260 

dPCR Nonspecific Curve 
Count 5320 
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analysis. Yellow melt curves represent those identified by the OVO SVM as L. 

monocytogenes and blue as S. pneumoniae. Table 2 enumerates the bacterial  

composition of the sample reported by the OVO SVM output of total number of 

curves classified into each bacterial identity category. 

 
Table 2. SVM classification of mixed genomic DNA samples from S. pneumoniae 

and L. monocytogenes.Two dPCR chips were loaded with mixed genomic DNA 
containing two different ratios of S. pneumoniae and L. monocytogenes. The predicted 
ratios were determined using an Eppendorf Biospectrometer, while the actual counts 
were determined using an SVM classifier on dHRM curves generated from a dPCR 

chip. 

 

In order to demonstrate the correct amplification of our amplicon as well as the  

misamplification generated by NTCs, we ran a gel comparing qPCR amplification of 

both the correct template and the NTCs (Fig 7). The correct amplicon is shown at 

approximately 1000 bp, while the NTCs generate bands at around 100-500 bp, as the 

lower melting temperature shown on the melt curves suggests. When template DNA is 

present the there is no misamplification present, but without a template to work off of 

the polymerase will sometimes generate shorter length misamplifed DNA. The 

presence of misamplification at high cycle numbers demonstrates the necessity for a  

Ratio Bacteria Predicted Count Actual Count 

2:3 S. pneumoniae 289 60 

L. monocytogenes 458 113 
10:3 S. pneumoniae 1445 238 

L. monocytogenes 458 119 
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 Figure 7. Gel Image of 16s Bacteria Amplicon. M: DNA ladder markers. 1: 
Correctly amplified DNA is shown as a band at 1000 bp. Calibrator sequences are 
shown as a band at 60 bp. 2: The NTC is loaded to show slight misamplification at 
approximately 100 bp, just above the calibrator sequences. 3: The template is again 
shown as a band at 1000 bp, but calibrator sequences are not loaded. 4: The NTC is 

loaded to show very faint misamplification bands at approximately 100 bp and 150 bp. 
 
 

dPCR platform to distinguish between misamplification and the correct template, as 

the melt curve analysis of our platform uniquely allows with high accuracy. The gel in 

Fig. 7 is shown with and without calibration sequences to emphasize the bands due to 

misamplification as opposed to those due to the calibration sequences (seen at 60 bp). 
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CHAPTER 4  - DISCUSSION 

The absolute quantification and identification of numerous genotypes in a 

heterogeneous sample at realistic clinical sample concentrations is made possible with 

our chip-based U-dHRM, Tm thresholding, and OVO SVM system. This technology 

advances broad-based HRM profiling by accomplishing high resolution melt curve 

generation in reaction volumes that are 0.005% of the traditional HRM volume, and by 

massive parallelization, where curve generation occurs simultaneously in 20,000 

reactions. Nucleic acid samples are partitioned across the 20,000 picoliter-scale 

reactions such that each reaction holds only one or zero microbial genomes. Reduction 

in the size of reactions allows less reagents to be used while maintaining optimal 

reagent concentrations. This overcomes the problem of reagent and environmental 

microbial DNA contamination by spatially diluting, i.e. contaminating DNA and target 

cells/DNA are partitioned from each other to enable discrimination (45). Subsequent 

amplification and dHRM yield singular products and distinct melt profiles for each 

digital reaction. Incorporating reference temperature calibrator sequences into each 

reaction normalizes against reaction condition variations, allowing highly robust 

sequence-specific melt curves to be obtained. This enables accurate identification to 

the species level by matching to database melt curves using our custom SVM machine 

learning algorithm (46,47). Building on the concept of digital PCR, which allows 

single molecule sensitivity and eliminates template amplification competition bias, 

dHRM confers single nucleotide resolution, enabling highly specific identification and 

quantification of all species in a mixed population (45). 
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Our novel dHRM platform achieves a clinically relevant dynamic range of 

detection while simultaneously reducing reagent costs. It also permits the generation 

of an exponentially larger SVM training curve database for each genotype with only a 

single chip run. This high-throughput format in combination with the single nucleotide 

specificity of our universal HRM technique(26, 38) will allow for rapid expansion of 

HRM databases of identifiable genotypes. The integration of universal dPCR for 

single molecule amplification, U-dHRM sequence fingerprinting with generic 

intercalating dye, and melt curve processing and identification with machine learning 

completes a inexpensive system for rapidly, automatically, and accurately identifying 

a large number of genotypes in under 3 hours with minimal hands-on time and 

technical skill. The low cost of the chips and reagents and the use of generic 

intercalating dye as a universal reporter yield a total materials cost per sample of 

approximately $10. 

The combined capabilities of universal dHRM could offer significant 

advantages over qPCR, microarray, and even NGS profiling approaches, especially for 

infectious disease detection where breadth of detection, timing, and cost are critical 

factors. The ability to quantify even low level organisms in polymicrobial samples 

within hours could significantly impact clinical microbiology diagnostic practice, 

where patients suspected of bloodstream infection suffer from an hourly increase in 

mortality risk due to lack of diagnostic information and inaccurate treatments. 

Moreover, retrospective studies suggest that absolute quantification of bacterial 

genomic load in patients may be useful to assess severity of infection and to predict 
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prognosis in sepsis cases(46). Detection of microbial DNA in clinical samples like 

blood poses unique challenges(46-48). In this case, human DNA often vastly 

outnumbers that of the infecting microbe, necessitating targeted microbial DNA 

amplification. Since a vast array of pathogens can cause infection, a broad-based 

approach for amplifying all microbial DNA and a high level of specificity in post-PCR 

sequence characterization techniques are required. Highly related organisms may have 

few DNA sequence differences, requiring single nucleotide specificity(44). Moreover, 

the number of microbial genomes present in the sample may be extremely low and/or 

the sample may be comprised of several different microbes, a polymicrobial infection, 

necessitating single cell level analysis. These requirements challenge the abilities of 

current molecular detection technologies(15, 41), including NGS. Recent studies 

report that several NGS sequencing platforms for microbial detection approach the 

analytical sensitivity of standard qPCR assays(15).  

Our U-dHRM platform meets or exceeds each of these critical factors at 

bacterial concentrations relevant to clinical scenarios, in particular, neonatal sepsis. 

Standard blood culture methods require 3-10 mL from two or more sites in older 

children and adults and 1 mL from a single site in neonates(42). Sample limitations 

secondary to blood volume restrictions, particularly in very low birth weight 

premature infants, can cause false negative test results when bacteremia is low or if the 

infant was exposed to intrapartum empiric antibiotics. DHRM resolves these common 

problems through its single molecule sensitivity and ability to identify both replicating 

and non-replicating bacteria in minimal blood sample volume. Further work to 
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automate DNA extraction and couple it to automated chip loading would result in a 

nearly hands-free process that is down-scalable for portability. Improved chip design 

could reduce the chip’s thermal mass to generate results at an even faster pace.  

The ability to accomplish dHRM on chip also enables our platform to overcome 

detection limitations of traditional dPCR that arise from false positive and negative 

reactions, where off-target background amplification produces fluorescent intensity 

near that of a true positive reaction. The typical approach of applying an intensity 

threshold to remove false positives but retain all true positives left a significant 

number of reactions as false positive and false negative based on melt curve 

observation. Our approach using Tm thresholding to identify positive versus negative 

reactions led to a significant improvement in the Type I and II error rate of dPCR such 

that true single molecule sensitivity was attained for optimal lower limit of detection.  

Integration of our OVO SVM approach for melt curve signature identification 

and absolute quantification enables broad-based, automated identification of bacterial 

organisms in heterogeneous samples. However, some foreseeable limitations of our 

technology exist. Improvements to the temperature ramp reliability in the ~70-95oC 

temperature range will be critical to ensuring that a larger database of melt curves can 

be used reliably for dHRM OVO SVM. Here, temperature data was ignored by 

aligning the melt curves to at their derivative fluorescence value of 0.1 for shape 

comparison. However, temperature shift can be an important feature for melt curve 

discrimination. Insulation from environmental temperatures as well as improved chip 

design with lower thermal mass will likely to overcome this issue. Likewise, there is a 
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need for even more reactions for versatile application of the technology. For example, 

adult bloodstream infection levels can reach 100,000 cfu/ml, requiring millions of 

digital reactions to partition the sample for single organism level identification. 

Moving away from a fixed well chip design towards droplet and flow-based 

processing would also significantly advance dHRM technology by enabling an almost 

unlimited number of reactions to be used and analyzed in a high-throughput fashion. 

Finally, computational approaches for anomaly detection are being explored by our 

group to identify true bacterial melt curves that are not yet represented in our database. 

Currently, a 16S amplicon that melts above the Tm threshold will be automatically 

classified by our OVO SVM as an organism whose melt curve that it most closely 

resembles. For undefined samples, where significantly more organisms may arise and 

even unexpected emerging pathogens could be present, the ability to identify whether 

a melt curve is a poor match to the database curves will be crucial. Indeed, other 

groups have identified novel bacteria by observing alterations in bulk HRM curves by 

eye(30). Automation of this ability would represent a significant advancement for 

dHRM technology, as novel bacteria could be rapidly and inexpensively discovered by 

our universal 16S dHRM and further interrogated by whole genome sequencing 

approaches.  

In summary, our dHRM platform offers a robust means of differentiating 

genotypes in heterogeneous samples and quantifying their absolute abundance based 

on their finger-print melt curves. Many other applications would benefit from such a 

platform, which can even be used to discover novel mutations or novel species. 
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CONCLUSION 

In order to develop our platform for digital HRM, we started by optimizing a 

commercially available dPCR chip with 20k PCR reactions. While the chip itself 

contains highly reproducible wells capalble of taking in PCR mastermix with high 

efficiency, we found the manufacturer supplied mastermix to be ineffective at 

amplifying full-length amplicons with high reliability. To combat this, we developed 

our own mastermix using EvaGreen as the intercalating dye and ROX as the passive 

reference dye, using a PCR buffer containing surfactant to maintain a low surface 

tension for easy loading. We further modififed the manufactuer’s protocol by 

changing the cycling from 40 cycles of a two-step PCR to 70 cycles of a 3-step PCR. 

In this way, we had a highly reproducible way to generate full-length amplification of 

our region of interest using an easily obtainable dPCR platform. 

Having successfully developed the first part of our platform, we moved on to 

building a stable temperature ramp in order to generate reproducible melt curves. We 

controlled a Peltier chip sandwiched between two copper plates, a heat sink, and the 

dPCR chips to uniformly heat our dPCR reactions. We used synthetic sequences of a 

known melting temperature to test the prototype of our dHRM platform, allowing us 

to determine how we could control the temperature ramp rate based on the power we 

fed into the Peltier chip. This let us find what ranges our platform could stably 

produce a linear relationship between voltage and temperature, meaning what ranges 

we could generate a smooth, linear temperature ramp. Furthermore, using the synthetic 

sequences we determined the best microscope objective to use (namely a 4x objective)
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and what settings to program into the microscope’s automated software. Finally, we 

developed the beginnings of our image analysis code using these sequences in order to 

pull the correct melt curves from the microscope images based on both the in silico 

prediction of the synthetic sequence melt curves and the qPCR melt curves.  

With our prototype successfully melting synthetic sequences, we moved onto 

amplifying the bacterial 16s rRNA gene and optimizing the melt curves to match the 

best qPCR melt curves we could generate. We obtained pure genomic DNA and 

amplified it with our optimized mastermix and cycling protocol within the chip. We 

then altered the imaging rate of our microscope while holding our temperature ramp 

rate constant in order to study how sampling rate affected the melt curves we obtained. 

We found that by increasing the sampling rate on our qPCR macine we were able to 

get cleaner, more differentiable melt curves. This translated to our dHRM platform as 

we increased sampling rate by imaging more frequently. We found that 1 data point 

per 0.15 degrees maximized our signal to noise ratio and gave highly differentiable 

melt curves. 

Having optimized our hardware and sampling protocol, we further developed our 

image analysis code. We took the melt curves generated from each well and applied a 

Gaussian smoothing filter to them, before normalizing to area and performing 

exponential normalization. Due to the high number of cycles needed to get end-point 

amplification of a single molecule, some misamplification occurs in the NTCs. We 

were able to separate misamplifiaction from correct amplification using the melting 

temperature of the curves, as the NTC’s melt at a much lower temperature
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than full length amplication due to their shorter length. We then used dPCR 

chips overloaded with pure bacterial DNA from L. monocytogenes and S. pneumoniae 

to generate the melt curves needed to train our SVM code for a proof of concept 

classification. We then applied our SVM code to a chip of mixed L. monocytogenes 

and S. pneumoniae DNA diluted to the single molecule level and found it to be highly 

accurate in differentiating between the two bacterial species and providing correct 

counts of each. 

This proof of concept demonstrates the potential our dHRM platform has to 

detect and classify polymicrobial septic infections. Our platform is demonstrated to 

detect a single molecule of DNA within a microliter of sample, making it sensitive 

enough to detect the low quantity of pathogenic bacterial DNA found in a septic 

patient. Furthermore, we demonstrated that our platform is capable of identifying and 

differentiating between multiple bacterial species, such as is necessary in 

polymicrobial infection. Theoretically this platform could detect up to 2000 different 

bacterial species with one chip at the single molecule level. Given that there could be 

bacteria present within the blood unrelated to the septic response, it is necessary for 

the platform to be capable of pulling out the bacteria of interest. As identification of 

clinically relevant bacteria based on their 16s rRNA gene has already been shown in 

bulk qPCR reactions and the resolution of our dHRM platform has been shown to be 

on par with that of qPCR machines, we believe our platform capable of differentiating 

between many more than the two bacteria that we demonstrated.  
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Future work will focus on expanding our dPCR database. By working with 

clinically isolated strains we can develop a database specific to clinical strains of 

bacteria. This is of particular importance if the 16s sequences of the bacteria differ 

between clinical strains and thus generate varying melt curves. After developing a 

database based on pure clinical samples, we will then test our database on blood 

samples obtained from septic patients. While at first our database will be used as a 

confirmation of standard diagnostic techniques, when the accuracy is confirmed it can 

be tried as a diagnostic tool. 

The platform itself can be improved through increasing the resolution of the 

melt curves, through even more reproducible temperature ramping and by imaging the 

sample more often. This can be done through improving the heat sink to ensure that its 

cooling is more reproducible and less dependent on environmental temperature. 

Insulating the platform would further protect the platform from day-to-day 

temperature variations. The most beneficial improvement to the platform would be to 

export it to a portable system, such that it could be easily transported to hospitals or 

other clinical settings without requiring a large microscope and heating apparatus. 

Improved portability would greatly improve the dHRM platform’s ease of use and 

make its applicability to a clinical setting a reality. 

While this thesis demonstrates that our dHRM platform has great potential as a 

clinical diagnostic tool that overcomes the problems associated with both bulk HRM 

and standard dPCR, it is still early in the work needed to make this accessible in a 

more realistic clinical setting. There is clearly great potential in the ability to pull 
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identifiable melt curves from single molecules of DNA, as well as profile up to 2000 

sequences as once. Once a much larger database has been developed and applied to 

actual clinical samples and the platform is made to be portable, the our dHRM analysis 

could be the next standard in septic diagnostics.
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