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Nanoporous materials (e.g., activated carbon, zeolite and metal-organic 

framework) have attracted great interest in recent years because of their excellent 

structural and chemical properties including large specific surface area, good mechanic 

strength and tailorable pore size and local chemical environment. Such materials are 

promising to serve as better alternatives to conventional materials such as porous 

electrodes in energy storage or adsorbents and membranes in separating molecules with 

similar properties. Because of the almost infinite design space, not only is the 

identification of best nanoporous materials with target performance practically infeasible 

with traditional experimental trail-and-error methods, but also it imposes theoretical and 

computational challenges for the computational modeling of nanoporous materials in gas 

separation and energy storage. 



 viii 

To accomplish the inverse design of nanoporous materials in gas separation and 

energy storage, this dissertation aims to establish physics-based and data-driven models 

that can be used to fast and accurately evaluate the performance of nanoporous materials. 

Toward that end, I developed classical density functional theory (cDFT) to predict the 

adsorption of multicomponent gas mixtures in nanoporous materials. The adsorption 

isotherms predicted by cDFT were in excellent agreement with grand canonical Monte 

Carlo simulation and experimental measurement. In addition, I extended the simplified 

string method to calculate the minimum energy path (MEP) of rigid polyatomic 

molecules in nanoporous materials. The diffusion coefficients predicted from MEP via 

the transition-state theory agreed quantitatively well with those from molecular dynamics 

simulation. Furthermore, I implemented the physics-based models with massively 

parallel GPU-acceleration, which leaded to orders of magnitude speedup compared with 

conventional molecular simulation. Moreover, I combined the data-driven models and 

evolutionary algorithm with physics-based models to case study the inverse design of 

nanoporous materials for the separation of D2/H2 and of C2H4/C2H6. For energy storage, I 

established excellent correlations between the structural and chemical features of 

nanoporous materials and their in-operando electrochemical performance in 

supercapacitors using data-driven models and proposed useful guidelines for the inverse 

design. The computational framework developed in this dissertation demonstrated the 

feasibility for the inverse design of nanoporous materials for gas separation and energy 

storage with the combination of physics-based and data-driven models. 
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Chapter 1. Introduction 

1.1 Scope of Research 

The recent development and advancement of nanoporous materials have attracted 

tremendous research interest in the applications of gas storage, separation, drug delivery 

and energy storage.[1-3] While experimental approach is capable of discovering new 

nanoporous materials with distinct behavior performance such as negative thermal 

expansion and reversible water adsorption at low pressure,[4-6] it is practically infeasible 

to experimentally trail-and-error all the nanoporous materials in the almost infinite 

chemical space of nanoporous materials to find the best candidates with target 

performance. Whereas computational methods not only can provide atomistic details to 

understand and design materials for the applications of interest,[4, 7] but can also provide 

fast and accurate evaluations of materials to identify best candidates in the large 

structural databases, via high-throughput screening, before experimental synthesis and 

testing.[8-10] Compared with forward process that identify the best candidates based on 

given structural database via physics-based models, the backward procedure, viz., inverse 

design, is more of interest but also much more difficult at the same time.[11-13] With 

inverse design, the recognition of excellent material candidates can be much faster and 

more efficient than high-throughput screening in a large chemical space. However, to 

accomplish the inverse design, not only performance properties of materials need to be 

evaluated fast and accurately, but also the mapping from the performance properties to 

molecular structure is needed. 
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This dissertation is focused on the development of new physics-based models and 

its integration with data-driven models to achieve the inverse design of nanoporous 

materials for gas separation and energy storage. For gas separation, we are in particular 

interested in adsorption-based and membrane-based separation process because they are 

much more energy efficient than conventional separation process such as distillation 

separation and have been widely used in industrial separation.[14] In adsorption and 

membrane separation, the adsorption amount and diffusivity coefficient are the most 

essential and important properties to evaluate the performance of nanoporous 

materials.[15-18] Whereas most previous work are only concerned with using 

conventional grand canonical Monte Carlo (GCMC) simulation and molecular dynamics 

(MD) simulation to calculate those properties,[10, 19, 20] one key contribution of this 

work is the development of GPU-accelerated physics-based theoretical models which 

predict adsorption amount and diffusivity coefficient with similar accuracy and orders of 

magnitude speedup compared with conventional GCMC and MD simulation. The 

excellent accuracy and significant speedup of developed physics-based model empowers 

the inverse the design of nanoporous materials, especially for membrane separation, with 

the target performance. Although the developed physics-based models are generally 

applicable to all kinds of nanoporous materials, the discussion of this dissertation is 

mostly based on one particular type of nanoporous materials – metal-organic framework 

(MOF). For energy storage, this dissertation is focused on the supercapacitor due to its 

better power density compared to lithium ion battery and higher energy density compared 

to conventional capacitor.[21-23] While most previous work used physics-based models 
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to investigate the capacitive behavior, redox reaction and quantum capacitance at the 

electrode-electrolyte interface in supercapacitors, those physics-based models are mostly 

only concerned with equilibrium properties due to the limitations in the time and length 

scale.[24-26] Another key contribution of this dissertation is that, for the first time, we 

demonstrated data-driven models can be used to understand and design the structural and 

chemical features of electrode materials in supercapacitors to optimize the in-operando 

performance that is far away from equilibrium. The combination of physics-based and 

data-driven models demonstrated in this dissertation opens up opportunity to customize 

nanoporous materials for gas separation and energy storage system of academic and 

industrial interest. 

1.2 Recent Progress in Molecular Modeling and Inverse Design 

Many attempts have been made in recent years to achieve faster and more 

accurate modeling of modeling system via physics-based and data-driven modeling. 

While physics-based models are developed to consider more complicated molecular 

systems, data-driven models are often used to correlate the features with the physical 

properties of interest and give fast prediction. The databases of molecular properties built 

by either physics-based or data-driven models allow the exploration of a much larger 

chemical space to inverse design molecules with target performance. 

1.2.1 Physics-Based Molecular Modeling 

For gas separation, physics-based models are often used to evaluate the 

performance, such as adsorption amount and diffusivity coefficient, of nanoporous 

materials. In terms of adsorption amount, open source software helps grand canonical 
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Monte Carlo (GCMC) simulation now become a standard tool to study the sorption 

properties for specific material of interest or high-throughput screening. Despite the 

widespread application of GCMC simulation, the theoretical framework of GCMC 

simulation is rather complete[27-30] and most recent advancement of GCMC simulation 

is focused on the extension of developed sampling method to the general applications. 

For example, Witman et al. demonstrated that ‘flat-histogram’ sampling in combination 

with temperature extrapolation of the free energy landscape can be used to efficiently 

provide useful thermodynamic properties in adsorption,[31] while Datar et al. found ‘flat-

histogram’ sampling can also help better predict water adsorption isotherm in nanoporous 

materials.[32] The recent advancement in GCMC simulation has also leveraged the 

progress in computational hardware such as graphic processing unit (GPU). Many open 

source GCMC simulation software has incorporated the GPU-accelerated implementation 

while the speedup factor can be up to 30 compared with the conventional serial 

computing.[33, 34] 

Similar to GCMC simulation in predicting sorption properties, molecular 

dynamics simulation has become a computational routine in predicting the transport 

properties such as diffusion coefficient. In MD simulation, the diffusion coefficient can 

be calculated from the molecular mean square displacement according to Einstein 

equation 

 
( ) ( )

2
01

lim
2t

t
D

n t→

−
=

r r
 (1.1) 

where n represents the number of dimensions, r stands for the cartesian coordinate and t 



 5 

is the simulation time. One drawback of predicting diffusion coefficient with brute-force 

MD simulation is, in order to have reasonably accurate prediction of diffusion coefficient, 

the computational cost is directly related to the scale of diffusion coefficient. For slow 

diffusion at the scale of 1×10-15 m2/s, it is computationally prohibitive for conventional 

MD simulation to predict the diffusion coefficient. Although the incorporation of GPU-

accelerated algorithm in many MD simulation software makes it possible to consider 

relatively slow diffusion (~ 1×10-12 m2/s) with acceptable computational cost,[35-37]  it 

is still computationally challenging for MD simulation to high-throughput screen and 

construct large database of the transport properties of gas molecules in nanoporous 

materials. To overcome the difficulty in the computational inefficiency of MD simulation, 

transition path sampling was introduced to MD simulation by Boulfelfel et al. to predict 

slow diffusion in zeolites[38] and Verploegh et al. applied transition-state theory (TST) 

along with umbrella sampling and weighted histogram analysis method in MD simulation 

to predict the slow diffusion of hydrocarbons in zeolite.[39] It is worth mentioning that 

these methods are applicable not only in rigid nanoporous materials, but flexible 

nanoporous materials as well because of the versatile computational ensemble in MD 

simulation. In addition to MD simulations, other computational methods have also been 

attempted to provide fast and accurate prediction of diffusion coefficient in nanoporous 

materials. While Tian et al. combined TST and simplified string method to efficiently 

predict the gas diffusion coefficients in nanoporous materials,[40] Mace et al. used TST 

along with tunnels and transition states search algorithm to predict the diffusion 

coefficient of simple gas molecules.[41] Although these methods are promising in the 
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high-throughput screening of nanoporous materials for gas separation and construction of 

large database of diffusion coefficient, rigorous tests are still needed in their applicability 

for nanoporous materials with various topologies and physiochemical environments. 

Aside from molecular simulation methods, theoretical methods such as density 

functional theory (DFT) have also been widely used to investigate nanoporous materials 

for gas storage and separation.[42, 43] While quantum DFT (qDFT) is often used to 

investigate the open-metal site in metal-organic framework (MOF) and provide a more 

accurate force field, classical DFT (cDFT) is often used to evaluate the sorption and 

thermodynamic properties of gas molecules in nanoporous materials. For example, 

Kulkarni and Sholl used quantum DFT derived force field to study the adsorption of C2 

and C3 olefins and paraffins in CuBTC where open-metal site exists,[44] Jia et al. used 

cDFT to high-throughput screen nanoporous materials for the potential candidates in 

hydrogen storage,[45] Yun et al. used to entropy calculated from cDFT in combination 

with excess entropy scaling to predict the diffusion coefficient of gas molecules in 

nanoporous materials at finite-loading.[46] Compared with conventional molecular 

simulation methods, quantum DFT are more accurate but more computationally 

expensive because it does not rely on the empirical force field but the electron 

distribution instead, while cDFT is much more computationally efficient with similar 

accuracy and contains much more thermodynamic information. 

1.2.2 Data-Driven Molecular Modeling 

While physics-based modeling has demonstrated its capability to understand the 

physical and chemical mechanism of specific nanoporous materials and even high-
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throughput screen large structural database for gas separation and energy storage, it is 

still practically infeasible for physics-based models to explore the almost infinite 

structural and chemical space of nanoporous materials. Whereas data-driven modeling is 

able to not only offer insights on the design of nanoporous materials with excellent 

performance, but also rapidly predict the performance and inverse design nanoporous 

materials.[47, 48] In general, data-driven modelling can be used for either regression or 

classification. While regression models can provide quantitative prediction of the 

materials’ properties, classification models can help find the common features of 

materials with top performance. 

For gas separation, different data-driven models and molecular fingerprints have 

been used to approach the accurate prediction of sorption and diffusion properties of gas 

molecules in nanoporous materials. Intuitively, structural features of nanoporous 

materials (e.g., pore size, surface area, density and void fraction) and molecular 

properties of gas molecules (e.g., size and energy parameter) can be used to predict the 

adsorption amount of simple gas molecules.[49, 50] Alternatively, the crystal structure of 

nanoporous material have been converted into the SMILES text string and used as an 

input to include more information of nanoporous materials for the prediction of gas 

adsorption.[51] In addition, more detailed information such as energy histogram that 

describes gas-materials interaction at infinite dilution was also used to predict the 

adsorption amount at finite loading.[52] While the better representation/input of 

molecular systems helps improve the prediction accuracy of data-driven models such as 

deep neural networks, the choice of data-driven model would lead to different design 
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insights from the extensive data generated from physics-based modeling. For example, 

random forest model not only can correlate the sorption and transport properties with the 

structural features of nanoporous materials, it can also specify the exact structural criteria 

for the nanoporous materials to achieve the excellent separation performance.[53] Aside 

from the applications of conventional data-driven models in the gas storage and 

separation, advanced data-driven models have also been used for gas storage and 

separation in nanoporous materials. Sun et al. attempted to use the autoencoder to 

represent the comprehensive adsorption space of hydrogen adsorption which allows the 

interpolation/prediction of hydrogen adsorption in nanoporous materials.[54] Although 

the recent development in data-driven models has made them promising alternatives to 

physics-based models for evaluating nanoporous materials in gas separation, there are 

still challenges awaiting for the practical applications of data-driven models for the 

nanoporous materials in gas separation. While the performance of most nanoporous 

materials can be predicted by the data-driven models with the acceptable accuracy, some 

nanoporous materials, especially those with exceptional performance, still suffer a 

significant underestimate from data-driven models, which makes the application of data-

driven models less compelling in the discovery of best nanoporous materials for gas 

separation. Besides, the transferability of trained data-driven models is still limited, 

which hampers their applications in the systems involved new gas molecules and 

nanoporous materials. 

In energy storage, data-driven models have also been used to guide the design of 

electrode materials, electrolytes and fast-charging algorithm.[55, 56] Similar to gas 
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separation, data-driven models are used in energy storage to correlate the structural and 

chemical features of electrode and electrolyte with their electrochemical performance. 

For example, Joshi et al. applied deep neural network to correlate the chemical properties 

and properties derived from element constituents in crystal structures with their electrode 

voltage in metal-ion battery,[57], Zhang and Xu showed that Gaussian process regression 

can be used to well correlate the molecular structure of electrolyte additive with the redox 

potential of electrolyte,[58] and Dave et al. optimize the composition of salt in aqueous 

electrolyte for a better stability via Bayesian optimization and Robotic experiments.[59] 

Different from gas separation, data-driven models, especially machine learning potentials, 

have also been used in energy storage to accelerate physics-based modeling and provide a 

better understanding of the microscopic mechanism, which ultimately leads to the 

optimal design of electrode and electrolyte. While Houchins and Viswanathan used 

machine learning potentials to accelerate the evaluation of open-circuit voltage and 

optimize the cathode composition,[60] Hajibabaei and Kim investigated the diffusivity of 

lithium ion in hundreds of ternary crystals as solid state electrolytes with sparse Gaussian 

process regression (sGPR)-accelerated ab initio molecular dynamics simulation.[61] In 

addition, leveraging the vast amount of battery testing data, Severson et al. and Attia et al. 

showed data-driven methods can be used to make early predictions of failure for fast-

charged batteries and optimize the fast-charging algorithm to balance the charging rate 

and lifespan of batteries.[62, 63] Although the direct mapping from the microscopic 

structure of electrode and electrolyte to the electrochemical performance of energy 

storage device is still missing in data-driven models, the current advancement in data-
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driven models has significantly improved the understanding and accelerated design of 

electrode, electrolyte and charging protocols for energy storage device. 

1.2.3 Inverse Design 

While conventional material design and discover is a forward process where 

materials are modified to achieve target performance after initial synthesis and evaluation, 

the backward process, a.k.a. inverse design, that design the structure based on the target 

performance is of paramount interest from academic and industrial perspective because it 

not only provides significant insights on the structure-property correlation, but also 

significantly cuts the time and financial cost to find the materials with better target 

performance.[11, 12, 64]  

The recent advancement of inverse design in materials science is often inspired by 

the generative models developed in computer vision.[65-67] For example, generative 

adversarial network (GAN) was initially developed to generate ‘fake’ photos.[65] 

However, its application has also now been extended to generate and inverse design 

nanoporous material in gas storage. While Lee et al. first demonstrated GAN can be used 

generate energy landscape in zeolite,[68] Kim et al. further showed GAN framework is 

also capable of being extended to directly design the zeolite for the optimal methane 

storage.[69] However, unfortunately, the computationally complexity of GAN 

significantly increases and it even fails to converge for complicated crystal materials such 

as MOFs with the increasing number of elements considered in the crystal which was not 

a big issue for its original application in computer vision because photos are usually only 

made from red, green and blue (RGB). Whereas variational autoencoder (VAE) can well 
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accommodate the complex topology and molecular structure of the secondary building 

blocks (SBUs) by compressing the MOF structure into a text string and projecting it into 

the latent space.[70] However, VAE requires accurate projection (viz., encode and 

decoder) between the crystal structure and a latent space, and the VAE training would 

become infeasible when a vast number of secondary building blocks are considered for 

the MOF design. Alternatively, evolutionary algorithms, such as the genetic algorithm, 

are promising for the inverse design of complicated nanoporous materials such as MOFs 

because they can accommodate not only a large number of SBUs for MOF design, but 

also find the solution in a nonlinear space consisted of the material topology and SBUs, 

which can be used to de novo design nanoporous materials for gas separation and energy 

storage.[71, 72] Aside from evolutionary algorithm, end-to-end differentiable neural 

networks have also shown its capability to de novo inverse design nanoporous materials 

with target performance with proper descriptors to represent nanoporous materials. 

To sum up, in order to accomplish the inverse design of nanoporous materials for 

gas separation and energy storage, not only physics-based and data-driven models need to 

be developed to provide fast and accurate evaluations for the properties of interest, but 

also the deliberate integration of physics-based/data-driven models and 

generative/searching models is required to identify the structure of nanoporous materials 

with target performance in gas separation and energy storage. 

1.3 Dissertation Organization 

This dissertation is focused on the development of physics-based models and 

utilization of data-driven models to fast and accurately evaluate the performance of 
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nanoporous materials in gas separation and energy storage, and ultimately the inverse 

design nanoporous materials with target performance. There are in total 10 Chapters 

included in this dissertation.  

Following the introduction in Chapter 1, Chapter 2 describes the basic concepts 

and formulations of physics-based used in this dissertation. The emphasis is given to the 

construction of both classical density functional theory (cDFT) formulation, especially 

for the multicomponent gas mixture system, and transition-state theory (TST) with 

simplified string method for the simple gas molecules and rigid polyatomic gas molecules. 

Chapter 3 demonstrates an efficient implementation of graphic processing unit 

(GPU)-accelerated 3D cDFT calculation for gas adsorption. Compared with serial central 

processing unit (CPU) implementation, the GPU-accelerated implementation reduces the 

computational cost of cDFT by more than two orders of magnitude for variety types of 

calculation related in gas adsorption. The GPU-accelerated implementation of 3D cDFT 

for gas adsorption in this work paves the road to inverse design nanoporous materials for 

gas adsorption by providing an efficient computational tool to construct large databases 

of adsorption isotherm with high fidelity. 

Chapter 4 extends the cDFT formulations to accurately predict multicomponent 

gas mixture adsorption in nanoporous materials. Compared with alternative methods such 

as grand canonical Monte Carlo (GCMC) simulation, ideal adsorbed solution theory 

(IAST) and experimental measurements, the developed cDFT formulations give excellent 

prediction of adsorption isotherms for multicomponent gas mixtures over a wide range of 

pressure. This work provides the theoretical basis for the computational design of 
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nanoporous materials in adsorption-based separation process as well as for screening and 

data-driven inverse design of nanoporous materials. 

Chapter 5 presents a fast and accurate computational method to predict the 

diffusivity coefficient of rigid polyatomic gas molecules in nanoporous materials. In this 

work, the simplified string method is extended to calculate the minimum energy path of 

rigid polyatomic molecules in nanoporous materials with the massively parallel GPU-

accelerated implementation. The diffusion coefficients predicted by TST with the found 

minimum energy path agree well with that calculated from MD simulation while 

reducing the computational cost by several orders of magnitude. This work, therefore, 

opens up opportunities for high-throughput screening and inverse design of nanoporous 

materials in the applications that diffusion coefficient is of interest. 

Chapter 6 demonstrates the computational workflow via developed physics-based 

models to identify the ideal material candidates and provide design insights of 

nanoporous materials for the separation of simple gas molecules, more specifically 

hydrogen isotopes. Compared with state-of-art literature, top MOFs identified in this 

work via high-throughput screening with physics-based models have a much higher 

separation selectivity at higher temperature. In addition, the membrane performance score 

is introduced to identify top ranked MOF membranes with the best selectivity and 

permeability. With the extensive data generated from physics-based modeling, this work 

also showcases how physics-based and data-driven models can be integrated to provide 

insights for the inverse design of nanoporous materials in gas separation. 
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Chapter 7 presents the computational framework using the developed physics-

based models to high-throughput screen and inverse design nanoporous materials for the 

separation rigid polyatomic gas molecules. In this work, the separation of C2H4/C2H6 is 

used as the case study because of its paramount importance in the petrochemical industry. 

While high-throughput screening of the computational-ready, experimental (CoRE) MOF 

database leads to materials with exceptionally high ethane-selective adsorption selectivity 

and ethene-selective membrane selectivity, the inverse design enables the exploration of a 

broader chemical space and identification of MOFs with even higher membrane 

selectivity and permeability. In addition, relative membrane performance score (rMPS) is 

formulated to evaluate the overall membrane performance relative to the Robeson 

boundary. The computational framework illustrated in this work is generically applicable 

to materials discovery for gas storage and separation. 

Chapter 8 and Chapter 9 examine the idea of using data-driven models to interpret 

the relationship between structural and chemical features of activated carbon electrodes 

and their in-operando performance in supercapacitors. Not only quantitative correlations 

can be found, via machine learning models, between the pore structures and surface 

chemistry of activated carbon electrodes and their experimental in-operando behavior in 

supercapacitors, but also important characteristics of activated carbon electrodes can be 

identified and used to optimize their efficiency in supercapacitor. This work demonstrates 

that machine learning models are promising alternatives to understand and design 

electrode materials with better performance in energy storage devices. 
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Finally, Chapter 10 summarizes the key conclusions from this dissertation and 

provides perspectives for future work. 
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Chapter 2. Basic Formulations of Physics-Based Models 

In this dissertation, physics-based models are developed to provide fast and 

accurate evaluation of molecular properties in nanoporous materials for gas separation. In 

this chapter, the basic concepts and formulations of physics-based models used in this 

dissertation would be introduced. While classical density functional theory (cDFT) 

provides rapid prediction of sorption properties of gas molecules in nanoporous materials, 

transition-state theory (TST) along with the minimum energy path (MEP) calculated from 

simplified string method is an efficient computational framework to predict the kinetic 

properties (viz., diffusion coefficient) of gas molecules in nanoporous materials. In 

essence, both cDFT and TST are able to provide quantitatively accurate prediction 

compared with molecular simulation methods but with orders of magnitudes reduction in 

computational cost. The significant speedup and excellent accuracy make them appealing 

alternatives compared with conventional methods when constructing large database of 

molecular properties in nanoporous materials for gas separation. 

2.1 Classical Density Functional Theory (cDFT) 

Density functional theory (DFT) is an efficient computational method to study the 

microscopic behavior and thermodynamics properties of electronic properties and 

inhomogeneous fluids via the one-body density profile.[1, 2] While quantum DFT 

(qDFT) use density profiles of electrons to solve Schrödinger equation and investigate the 

electronic properties, density profiles of classical particles (e.g., gas molecules) are used 

in classical DFT (cDFT) to study the properties of fluid. Although the fame of DFT is 

now mostly attributed by the public to the Hohenberg-Kohn theorem and Kohn-Sham 
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equation,[3, 4] the idea of DFT can be traced back to as early as late 19th when van der 

Waals proved the functional minimization of free energy can be used as the criterion of 

liquid-gas equilibrium. In Hohenberg-Kohn-Sham theorem, it states that: 1. The one-

body density profiles is uniquely determined by the one-body external potential. 2. The 

ground state energy is the global minimum of the energy functional, which paves the 

mathematical ground for the application of DFT. 

2.1.1 Density Profile 

In DFT, almost all the properties can be represented in terms of the functionals of 

the molecule/site/electron density profiles. The density profile describes the distribution 

of molecules in the many-body system via the one-body format. For a system containing 

N identical particles, the instantaneous particle density ˆ( ) r , which accounts the number 

of particles at the position r, can be described as 

 ( ) ( )
1

ˆ
N

i

i

 
=

= −r r r  (2.1) 

where δ is the Dirac-Delta function defined as 
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The Dirac-Delta function is also subject to the normalization condition 

 ( ) 1id  − = r r r . (2.3) 

In equilibrium, the density profile is defined as the ensemble average of the instantaneous 

density 
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For single component open system at the temperature T and volume V, the grand 

partition function can be written as 

 ( ) ( )3
1

1
exp ,

!

ex
N

N N

iN
N i

td N V
N
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where Λ represents the thermal wavelength, ( )1/ Bk T = , kB stands for the Boltzmann 

constant, ( )N r  is the total interaction of N particles at configuration ( )1 2, , ,N

N=r r r r , 

and Vext is the external potential. 

The one-body density profile can be related to the grand partition function by 

substituting eq (2.5) into eq (2.4) 
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The right-hand side of the above equation is related to the functional derivative of the 

grand partition function with respect the external potential. The one-body density profile 

can also be written as, after rearrangement, 
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The grand potential Ω is defined in terms of grand partition function 

 ln  −  . (2.8) 

By substituting eq (2.8) into eq (2.7), the one-body density profile can be expressed by 

 ( )
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For one-component system, the intrinsic Helmholtz free energy is defined as 

 ( ) ( )extF A V d −  r r r  (2.10) 

where A represents the Helmholtz free energy. The intrinsic Helmholtz free energy is 

related to grand potential via the following the derivation 
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The intrinsic Helmholtz free energy and grand potential are then the direct functionals of 

the one-body density profiles of molecule/site/electron. This allows one to find 

equilibrium density profiles by minimizing the grand potential 
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where the derivative of intrinsic Helmholtz free energy corresponds to the contribution of 

chemical potential and external potential 
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The functional derivative of grand potential with respect to the one-body density profile 

offers the mathematical framework to investigate and understand the molecular structure 

and relevant thermodynamic properties. 

2.1.2 Intrinsic Helmholtz Free Energy 

While the basic concepts of density profile and DFT are presented in the previous 

section, the following sections discuss the detailed formulations of intrinsic Helmholtz 

free energy, used in the dissertation, for multi-component simple gas molecules in 
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nanoporous materials. For multi-component system, we use ( ) ( ) ( )1 ,..., N =   r rrρ  as 

the shorthand notation to represent the density profiles of different types of gas molecules, 

and ( ), ,x y z=r  is the center-of-mass position for each gas molecule. 

Conventionally, the intrinsic Helmholtz free energy is split into an ideal term and 

excess term 

 ]( ) ( ])[ ] [ ( )[id exF F F= +r r rρ ρ ρ  (2.14) 

The ideal part corresponds to the intrinsic Helmholtz free energy functional of an 

inhomogeneous ideal gas 
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where T represents the system temperature and N stands for number of molecules 

considered in the system. While the ideal part can be analytical derived from statistical 

mechanics, no exact solution is available for the excess part which often requires 

approximation via perturbation theory. One key advantage of DFT is that the excess 

Helmholtz free energy can be explicitly customized at different level of accuracy to 

represent the contributions of different types of intermolecular interactions based on the 

specific system. 

2.1.3 Excess Helmholtz Free Energy 

One essential task of all cDFT calculations is to formulate an excess Helmholtz 

energy functional that is reliable for the specific system under consideration. According 

to the Lennard-Jones (LJ) model which is often used to represent the intermolecular 

interactions between simple gas molecules, the excess Helmholtz energy can be split into 
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contributions due to short-range repulsion and long-range attraction. The former is often 

represented by the hard-sphere model, Fhs, and a perturbation term Fattr can be applied to 

account for van der Waals attractions 

 ]( ) ( [) )] ] ([ [ex hs attrF F F= +r r rρ ρ ρ  (2.16) 

2.1.3.1 Short-Range Repulsion 

As well documented, the excess Helmholtz energy of a hard-sphere system can be 

accurately described by the modified fundamental measure theory (MFMT)[5, 6] 
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In eq (2.19), 
( )

iw 
 are a set of weight functions characterizing the differential geometry of 

each spherical particle:  
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where   denotes the Dirac-delta function,   is the Heaviside step function, and di is the 

hard-sphere diameter for component i. For all gas molecules considered in this 

dissertation, the Barker-Henderson theory is used to calculate the hard-sphere diameter 

from the LJ parameters[7, 8] 
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* *20.001047
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1 0.3316 73
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where 
* /i B ik TT = , εi and σi stand for the LJ energy and size parameters of the gas 

molecule i, respectively. 

2.1.3.2 Mean-Field Approximation 

For the attraction part of the excess Helmholtz energy, one convenient choice is 

that from the mean-field approximation (MFA) 
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and the cross parameters are calculated from the Lorentz-Berthelot mixing rule. Whereas 

MFA is commonly used in cDFT calculations including characterization of porous 

materials by gas adsorption, it reduces to an equation of state for bulk systems similar to 

the van der Waals equation. While more accurate formulations are available for one-

component LJ fluids,[9] extension of those formulations to multicomponent systems is 
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theoretically challenging due to the lack of analytical expressions for the bulk correlation 

functions. 

2.1.3.3 Weighted-Density Approximation 

Alternatively, the attraction part of excess Helmholtz energy can be more 

accurately described with the consideration of correlation effect via weighted density 

approximation (WDA)[10, 11] 

 [ ] [ ] [ ]( ) ( ) ( )cattr MFA orF F F= +r r rρ ρ ρ  (2.24) 

where Fcor corresponds to the local correlation Helmholtz energy 

 
1

[( )[ ] ( d)] 
N

cor

i

cor

BF k T 
=

=  rr rρ . (2.25) 

The reduced local correlation Helmholtz energy per volume, cor , is approximated by 

that corresponding to the bulk phase at weighted density 
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In the bulk phase, cor  can be written in the following form 
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where ( )LJ

bulkF   stands for the excess Helmholtz energy of a bulk LJ fluid calculated from 

the MBWR equation of state,[12] ( )hs

bulkF   denotes the hard-sphere Helmholtz energy 

according to the Carnahan-Starling equation of state,[13] ( )MFA

bulkF   represents the mean-

field Helmholtz energy for the one-component fluid. Explicit expressions are available 
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for the hard-sphere and mean-field excess Helmholtz energies shown in eq (2.28) and eq 

(2.29), respectively: 
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where 
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6
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d 
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r
. To take advantage of the well-established bulk properties, van der 

Waals one-fluid theory (vdw1) is used to estimate the dx, εx and xi which stands for the 

hard-sphere diameter, the LJ energy and size parameters for the mixture, respectively:  
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Combing eqs (2.12) ~ (2.15) leads to the following Euler-Lagrange equations 
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From eq (2.33), one can calculate the density profiles of individual species for an N-

component gas mixture adsorption in nanoporous materials. With an explicit expression 

for the excess Helmholtz energy functional as given by eqs (2.16) ~ (2.32), we can solve 

the density profiles using conjugate gradient descent method.[14] In comparison with 



 31 

cDFT for single-component systems, the computational cost scales linearly with the 

number of chemical species in the gas mixture. With the massively parallel algorithm via 

graphic processing unit (GPU)-acceleration, the computational cost of multi-component 

gas mixture adsorption in nanoporous materials using cDFT can be drastically reduced to 

the scale of few seconds for each cDFT calculation. 

2.1.4 Molecular System 

Although the above discussion is focused on the formulations of cDFT for simple 

gas, the applications of cDFT can also be extended to molecular system with proper 

formulations for the ideal and excess Helmholtz energy term. For example, for rigid 

polyatomic gas molecules, the external potential depends on the position of molecular 

center-of-mass and orientation and the external potential at r is determined by 

 ( ) ( )
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,
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ext extV V d 
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= r r  (2.34) 

where ω represents molecular orientation. For the adsorption at relatively low pressure, 

the adsorption amount would linearly increase with the increase of pressure according to 

Henry’s constant. The Henry’s constant for rigid polyatomic molecules can be expressed 

as: 
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For the contribution of ideal Helmholtz energy, the formulation depends on the choice for 

the excess Helmholtz energy. For small polyatomic molecules, the intermolecular 

potential can still be fitted into single Lennard-Jones potential. And the formulations 

discussed above are directly applicable for the ideal and excess Helmholtz energy terms. 
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For more complicated molecules, the excess Helmholtz energy can be accurately 

described by well-developed equation of state for molecular systems such as variations of 

statistical associating fluid theory (SAFT) while the formulations for the ideal Helmholtz 

energy need to be tailored to fit the equation of state of choice.[15, 16] 

2.2 Transition-State Theory (TST) 

Transition-state theory (TST) has been widely used in predicting the essential 

properties in chemical reaction and transport phenomenon.[17] As stated by transition-

state theory (TST)[18], the self-diffusion coefficient for a guest molecule inside a 

nanoporous materials can be calculated by 

 2
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2
D ka=  (2.36) 

where D0 is the self-diffusion coefficient, k is the hopping rate (i.e., transmission rate), 

and a is the hopping distance between two neighboring cages. At infinite dilution, the 

hopping rate can be obtained from the minimum energy path (MEP) for the molecular 

diffusion following the Bennett-Chandler approach[19] 
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where m represents the molecular mass, Vext is the potential energy due to the interaction 

of the guest molecule with the porous material. In the TST, the minimum energy path is 

described in terms of a dimensionless variable s, which represents the normalized 

reaction coordinate for the molecular transition between neighboring cages. In general, s 
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depends on the molecular configuration and the center-of-mass (COM) position for the 

guest molecule. 

2.2.1 Simplified String Method for Simple Gas Molecules 

For simple gas molecules, the molecule is often described as single Lennard-Jones 

(LJ) site for its van der Waals (vdW) interaction and its interaction with the nanoporous 

material can be described as 
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where Nf is the number of atoms in nanoporous materials, ε stand for the LJ energy 

parameter, σ represents the LJ size parameter and rij is the interatomic distance between 

atom i and atom j. Because the external potential is only the function of molecular COM 

position for simple gas molecules, in this case the dimensionless variable can be 

represented by ( )s s= r  where ( ), ,x y z=r  represents the position of the molecular COM. 

Therefore, the original simplified string method is directly applicable to find the MEP for 

simple gas molecules. In each iteration, the string is evolved according to the gradient of 

external potential with respect to cartesian coordinate 
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where t is the fictitious time used in the iteration to search for the MEP, and si represents 

the image I on the string. The images along the string can then be evolved according to 
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where the superscript ‖  represents the evolved string. After the string evolution, images 

along the string are redistributed via linear interpolation 
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 is the string arc length for spatial coordinates (x, y, z) at image i 

after evolution, Lr

‖
 is the entire string arc length for molecular COM position after 

evolution, and N is the number of images used in the string. It is worth mentioning 

although simplified version of string method is used, it is more stable and accurate 

compared with the original string method and nudged elastic band method. 

2.2.2 Simplified String Method for Rigid Polyatomic Gas Molecules 

While the original simplified string method can be directly applied to find the 

MEP for simple gas molecule, modifications are needed in the simplified string method 

for rigid polyatomic gas molecules. For the rigid polyatomic gas molecules, the reaction 

coordinate needs to be defined by six collective variables ( )1 6,...,s   . The first three 

variables are related to the molecular position and the other three variables represent the 

Euler angles of the guest molecule, i.e., ( ) ( )1 6,..., ,s s  = r , where ( ), ,x y z=r  

represents the position for the molecular center of mass (COM), and ( ), ,   =  

describes how a polyatomic molecule is oriented relative to its original input structure. At 

each point/image, the dimensionless variables s can be evaluated in terms of r and ω 
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= −  are the string arc lengths for the spatial and 

rotational variables at image i, while Lr  and L  are the arc lengths of the entire string for 

r and ω, respectively. 

For polyatomic molecules, the non-bonded intermolecular potential often involves 

short-range repulsion, vdW attraction and electrostatic interactions due to atomic partial 

charges, which can be accurately captured by the combination of LJ potential and 

Coulomb potential. As a result, given the position and configuration of the guest 

molecule, the external potential describing its interaction with nanoporous material is 

given by 
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where Ng and Nf are the number of atoms in each guest molecule and that from the 

nanoporous material, ε and σ stand for the LJ energy and size parameters, respectively, rij 

is the distance between atom i and atom j, ε0 stands for the vacuum permeability and qi 

represents charge for atom i. 

According to the simplified string method,[20] the evolution of the normalized 

reaction coordinate is driven by the full gradient of the external potential  
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where t is a fictitious time used in the iteration to search for the minimum energy path, 

and 
is  represents image i on the string. During each iteration, the guest molecule is first 

updated according to 
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where 
i  represents a molecular coordinate (position or angle) corresponding to image i, 

the partial derivative is evaluated at fictious time t, and the superscript ‖  represents the 

updated string.  

After string evolution in each step, interpolation/reparameterization is needed to 

retain the continuous shape of string through the nanoporous materials. Different from 

simple gas molecules, when the rigid polyatomic molecule diffuses through a nanoporous 

material, the preferred molecular orientation depends on the position of the molecular 

center of mass (COM). As a result, different images have orientations independent from 

each other, and only the molecular COM positions need to be redistributed/interpolated 

according to the arc length 
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 is the string arc length for spatial coordinates (x, y, z) at image i 
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after evolution, Lr

‖
 is the entire string arc length for molecular COM position after 

evolution, and N is the number of images used in the string. To prevent the abrupt change 

of the molecular orientation, a smooth function is used for angular variables between 

neighboring images[21] 

 ( ) ( )1 11
2

i i i i


    − += − + +  (2.47) 

where δ is the parameter to control the degree of smoothness. A small smooth parameter, 

such as 41 10 −=  , can ensure the accuracy of molecular orientation that minimizes the 

external potential and give accurate prediction of diffusion coefficient via TST with the 

converged MEP. 

2.2.3 Simplified String Method for Flexible Gas Molecules 

For flexible gas molecules, the straightforward way for the string evolution is by 

directly differentiating the molecular coordinate with respect to the combination of 

external potential and intramolecular potential 
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where j stands for atom j in the molecule. However, this formulation often leads to 

extremely slow converge of string because the strong intramolecular interaction often 

holds atoms together from moving towards the converged position. To speed up the string 

evolution, the movement of molecular COM and molecular flexibility could be split. 
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More specifically, in each iteration the molecular COM would be updated according to 

the external potential assuming the gas molecule to be rigid 

 ( )
( ) ( ) ( )ext ext ext

i i iexti
i

V s V s V sds
V s

dt x y z
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Then, the molecular structure of each image would be updated according to the external 

potential and intramolecular interaction as eq (2.48). It is also worth mentioning here 

because the energy barriers between molecular conformations often lead to molecular 

structures constrained within local minima within the framework of simplified string 

method. In order to find the molecular conformation minimizing the external potential 

and intramolecular potential, different molecular conformations need to be tested in each 

iteration 

  ( )  ( )1 1min , , , ,..., , , , ,...,ext intra

N NM M
V x y z V x y z V +

 
r r r r  (2.50) 

where M represents the number of conformations for the gas molecule and N stands for 

the number of atoms in the gas molecules. 
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Chapter 3. A GPU Implementation of Classical Density Functional Theory for 

Rapid Prediction of Gas Adsorption in Nanoporous Materials 

Nanoporous materials are promising as the next generation of adsorbents for gas 

storage and separation with ultrahigh capacity and selectivity. The recent advent of data-

driven approaches in materials modeling provides alternative routes to tailor nanoporous 

materials for customized applications. Typically, a data-driven model requires a large 

amount of training data that cannot be generated solely by experimental methods or 

molecular simulations. In this chapter, we propose an efficient implementation of 

classical density functional theory with a graphic processing unit (GPU) for the fast yet 

accurate prediction of gas adsorption isotherms in nanoporous materials. In comparison 

to serial computing with the central processing unit, the massively parallel GPU-

accelerated implementation reduces the computational cost by more than two orders of 

magnitude. The proposed algorithm renders new opportunities not only for the efficient 

screening of a large materials database for gas adsorption but it may also serve as an 

important stepping stone towards the inverse design of nanoporous materials tailored to 

desired applications. 

3.1 Introduction 

Nanoporous materials such as zeolites, metal-organic frameworks and covalent 

organic frameworks are excellent candidates as the next generation of absorbents to 

achieve ultrahigh adsorption amount and separation selectivity.[1-3] To harness the data 

revolution and inverse design of nanoporous materials for specific applications, we need 

large databases to gauge materials performance which can hardly be met only by 
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experiment and molecular simulations.[4-7] Semi-analytical methods, such as classical 

density functional theory (cDFT), offer an alternative for rapid prediction of gas 

adsorption in nanoporous materials.[8-10] 

Recent increase in computational power can be attributed not only to the enhanced 

performance of arithmetic logic units (ALUs) but also to advances in more efficient and 

convenient programming interface for parallel computations. The library of parallel 

computing, such as message passenger interface (MPI), open multi-processing (openMP), 

compute unified device architecture (CUDA) and open graphics library (OpenGL), saves 

significant effort for software development in scientific computation and allows for the 

computational power to go beyond the performance limit of single threads. Intuitively, a 

large-scale parallel-computing system may be considered as many CPUs running at the 

same time.[11] Although supercomputers equipped with massive CPUs have been widely 

used for parallel computing, conventional CPUs are not designed for high-throughput 

data processing but for fast serial processing. As the number of CPUs increases, the 

performance speedup by parallel computing quickly reaches a plateau because more 

computer time would be needed to communicate among CPUs in order to avoid race 

condition. In comparison to CPU, a graphic processing unit (GPU) is designed to have 

many more threads and higher floating-point operations per second (FLOPS) for parallel 

computing and high-throughput data processing. However, GPU applications are often 

limited by the hardware capacity, especially the memory size.[12] 

GPUs have found broad applications in computational science. Many molecular 

simulation packages (e.g. LAMMPS, NAMD and GROMACS) now include GPU 
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versions to support parallel computing.[13-16] Impressive speedups are often reported by 

implementing various first principles methods with GPU. For example, Jia et al. found 

that GPU can accelerate the computational speed by 20 times for evaluating plane-wave 

pseudopotentials in the Kohn-Sham density functional theory (DFT).[17] Nitsche et al. 

achieved similar improvements in hybrid QM/MM calculations.[18] Stopper and Roth 

demonstrated that the GPU implementation can speed up the cDFT calculation up to 70 

times for systems of hard disks in 2D and 60 times for hard spheres in 3D.[19] 

We demonstrated in previous work that cDFT facilitates fast and accurate 

prediction of gas adsorption in nanoporous materials.[8, 9] Here we propose an efficient 

implementation of cDFT with parallel computation on GPU and test its efficiency for 

predicting gas adsorption in nanoporous materials. With the cDFT functions fully 

parallelized and a minimal memory transfer between the host (CPU) and device (GPU), 

the new algorithm can further speed up the calculation by more than two orders of 

magnitudes (with the speedup factor up to 350) while an accurate prediction of the 

adsorption amount is maintained in comparison to the serial implementation executed on 

CPU. Besides, we find that the conjugate gradient descent method allows for faster and 

more robust convergence for solving the cDFT equation compared to the Picard iteration, 

which also accelerates the computational speed. The excellent performance empowered 

by the GPU implementation highlights the potential application of cDFT to the inverse 

design of nanoporous materials for gas storage and separation. 
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3.2 Methods and Models 

3.2.1 Classical Density Functional Theory (cDFT) 

Classical density functional theory (cDFT) is applicable to gas adsorption in one-, 

two- and three-dimensional systems but the computational cost scales exponentially with 

the dimensionality[20]. Efficient numerical algorithms are essential for its applications to 

high-dimensional systems in particular for the adsorption of polyatomic gas molecules. 

From a practical perspective, the numerical performance of cDFT is mostly evaluated for 

its prediction of gas adsorption in three-dimensional nanoporous materials. 

In this work, we consider the adsorption of small gas molecules such as methane 

and hydrogen in nanoporous materials that have a rigid porous structure. Approximately, 

the interaction between gas molecules and that between a gas molecule and each atom 

from the nanostructure material can be represented by the Lennard-Jones (LJ) 12-6 model. 

Given temperature and pressure of the gas phase in the bulk, the total adsorption can be 

fully specified by the local density, ( ) r , of gas molecules inside the nanoporous 

material: 

 ( )
1

d
V

 =  r r  (3.1) 

where ( , , )x y z=r  stands for the center-of-mass position for a gas molecule and V is the 

system volume. Whereas adsorption amount is conventionally expresed in the units of 

adsorbate volume at the standard condition (1 atm and 25 °C) per adsorbent volume, here 

we use the moles of adsorbed gas per adsorbent volume for simplicity. 
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The cDFT equations for calculating gas adsorption have been reported before.[8, 

9] Here we recapitulate the key equations that are pertinent to numerical implementations. 

According to cDFT, the thermodynamic properties of gas molecules in the micropores of 

a nanoporous material can be derived from the grand potential 

 [ ( ] [ ( ] (  ( d[ ) ]ext

bulkF V    = −+ r) r) r r) r  (3.2) 

where F represents the intrinsic Helmholtz energy functional, Vext denotes the external 

potential, i.e., the potential energy for each gas molecule due to its interaction with the 

nanoporous material, and µbulk stands for the chemical potential of the gas molecule in the 

bulk phase. Throughout this work, the external potential is calculated from the universal 

force field (UFF)[21]. Meanwhile, the modified Benedict-Webb-Rubin (MBWR) 

equation of state is used to calculate the chemical potential of the bulk fluid.[22] 

Conventionally, the intrinsic Helmholtz energy functional is split into an ideal 

term and the excess: 

 ]( ) ( ])[ ] [ ( )[i exdF F F  = +r r r  (3.3) 

The ideal part corresponds to the intrinsic Helmholtz energy functional of an 

inhomogeneous ideal gas at the system temperature 

 
3[ ] {ln[ ] 1( ) ( ) ( d} ) id

BF k T  −= r r r r  (3.4) 

where T is absolute temperature, kB represents the Boltzmann constant and Λ denotes the 

thermal wavelength of the gas molecule. Within the LJ model, the excess Helmholtz 

energy can be further divided in terms of a hard-sphere contribution, Fhs, which accounts 
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for the molecular excluded volume effect, and a perturbation term, Fattr, to describe 

intermolecular attractions[23-26] 

 ( ) ( ) ( )ex hs attrF F F= +r r r  (3.5) 

The modified fundamental measure theory (MFMT) provides an accurate description of 

the hard-sphere free energy[27, 28] 

 [ ( )] dhs hs

BF k T n=  r r  (3.6) 

where 
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where   stands for the Dirac-delta function,   denotes the Heaviside step function, and 

d is the hard-sphere diameter. For gas systems considered in this work, the hard-sphere 

diameter is calculated from the LJ model according to the Barker-Henderson (BH) 

theory[29, 30] 
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where T*=kBT/ ε, ε and σ represent the LJ energy and size parameters of the gas molecule, 

respectively. 

For the attraction part of the excess Helmholtz energy, one popular choice is by 

using the mean-field approximation (MFA)[31] 
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Although MFA is numerically convenient, it underestimates the adsorption amount in 

comparison with the grand canonical Monte Carlo simulation (GCMC). To account for 

correlation effects, we include an additional term by taking the weighted density 

approximation (WDA)[32] 

 ( ) ( ) ( )attr MFA corF F F  = +          r r r  (3.13) 

where Fcor is a local correlation Helmholtz energy 

 ( ) ( )  dcor cor

BF k T   =    r r r  (3.14) 

The local reduced Helmholtz energy per volume, cor , is approximated by that 

corresponding to the bulk phase at a weighted density ( ) r  defined as 
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 ( ) ( ) ( )3

3
' '  d '

4
r d

d
  


= − − r r r r  (3.15) 

For the bulk system, cor can be written in terms of an analytical form  

 ( )
( ) ( ) ( )LJ hs MFA

bulk bulk bulkcor F F F

V

  
 

− −
=  (3.16) 

where ( )LJ

bulkF   is the excess Helmholtz energy of the bulk fluid calculated from the 

MBWR equation of state, ( )hs

bulkF  represents the hard-sphere contribution as calculated 

from the Carnahan-Starling equation of state, and ( )MFA

bulkF   denotes the corresponding 

mean-field Helmholtz energy for the bulk fluid. Compared with MFA, WDA predicts a 

more accurate adsorption isotherm for gas adsorption by nanoporous materials. However, 

it is also computationally more expensive because WDA takes an extra convolution in 

evaluating the weighted density and the local correlation Helmholtz energy. 

At equilibrium, the density profile of gas molecules is found by minimizing the 

grand potential  
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 (3.17) 

leading to the self-consistent Euler-Lagrange equation: 
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where ( )1/ BTk = .  

The equations above demonstrate how the adsorption amount can be calculated 

from the intermolecular potential and the interaction energy between each gas molecule 



 49 

and the nanoporous material. Even for a simple fluid, different levels of accuracy and 

numerical efficiency can be achieved by formulating the excess Helmholtz energy. In 

principle, the above procedure is applicable to more complicated gas molecules by using 

either coarse-grained or atomistic models. In that case, cDFT must account for the 

configurations of polyatomic molecules that involve a higher dimensionality and often 

requires additional term to describe thermodynamic nonideality (viz., excess Helmholtz 

energy) due to both intra- and intermolecular interactions.[33] While adsorption of 

polyatomic molecules is beyond the scope of this work, we expect that parallel 

implementation of cDFT would have even more advantages in comparison to 

conventional CPU-based numerical methods. At present, direct implementation of 

molecular cDFT for polyatomic systems is still computationally prohibitive to generate 

extensive thermodynamic data that can be used for training machine-learning algorithms 

as required for the inverse design of nanoporous materials. 
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3.2.2 GPU Implementation 

 

Figure 3.1. (A) Schematic computer architectures for CPU and GPU. (B) Calculation 

steps for the GPU implementation of classical density functional theory (cDFT). Solid 

rectangles represent operations on CPU, rounded rectangles stand for operations executed 

with GPU, and the dashed rectangles are for the data transfer between CPU and GPU. 

 

CPU (central processing unit) and GPU (graphic processing unit) have different 

computer architectures, which dictate how they handle computational tasks and what 

types of computation they are particularly good at. As shown in Figure 3.1(A), CPU is 

designed for low latency (viz. low response time) operations and is equipped with a few 



 51 

arithmetic-logic units (ALUs) to process mathematical and logical operations. By 

contrast, GPU is designed for high-throughput operations. In comparison to CPU, GPU 

often has many more ALUs but requires higher response time. As a result, CPU is good 

at serial computations while GPU has advantages in parallel computations. For gas 

adsorption in nanoporous materials, we need construct three-dimensional grids and 

calculate the numerical values for a large number of cDFT functions (Section 2.1) at each 

grid point. Because evaluation of these functions can be executed independently during 

the cDFT iterations (viz., in solving eq [3.6]), we can significantly reduce the 

computational cost by a massively parallelized computational scheme. In our 

implementation of cDFT, we maximize the GPU performance by parallel calculations of 

all local properties. 

In applications of cDFT to gas adsorption in nanoporous materials, one repeated 

operation is the evaluation of the convolution integrals. Both the hard-sphere and 

attractive components of the excess Helmholtz energy involve of several weighted 

densities. The functional derivatives of these Helmholtz energies need to be calculated in 

terms of the convolution integrals with different weight functions. For numerical 

integration in three dimensions, the computational cost for each convolution scales as

( )2O N , where N represent the number of total points. By utilizing the Fast Fourier 

Transformation (FFT), we can express the convolution as 

 ( ) ( ) ( ) ( ) 1

1 22 1' 'f f d f f−− =        r r r r r r  (3.19) 
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where  and 1−  stand for the forward and backward Fourier transforms, respectively. 

Application of FFT reduces the computational cost to ( )logO N N . 

In this work, we have implemented the FFT convolution for both CPU and GPU 

versions of cDFT calculations. Specifically, fftw3 is used for the CPU implementation 

while cuFFT library, which is designed for high-performance FFT on Nvidia GPU, is 

used in GPU implementation.[34, 35] All nanoporous materials considered in this work 

are crystals with known atomic composition and configuration. As a result, the density 

profiles satisfy periodic boundary conditions and can be easily implemented with fast 

Fourier transformation. The computational domain includes several unit cells of the 

crystalline material such as the length of each axis is more than two times the cutoff 

distance. The single-site Lennard-Jones (LJ) 12-6 model is used to describe the 

intermolecular potential between gas molecules and their interactions with individual 

atoms of the nanoporous materials. 

All nanoporous materials investigated in this work are crystalline solids. Each 

material has known atomic composition and the configuration is assumed to be rigid. The 

Lorentz-Berthelot mixing rule is used to calculate the binary parameters for different 

species. Table 3.1 lists the Lennard-Jones (LJ) parameters for different gas molecules 

considered in this work. For all atoms from the nanoporous materials, the force field 

parameters are obtained from the universal force field (UFF).[36] A cutoff of 12.9 Å is 

applied to the calculation of all intermolecular interactions. The intermolecular potential 

is truncated and shifted to zero at the cutoff distance. The computational domain consists 
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of several duplicated crystal unit cells such that each axis is more than two times the 

cutoff distance. 

In all cDFT calculations, the grid size (step length) is set to be around 0.2σ. As 

demonstrated in our earlier publications[8-10], the cDFT predictions showed good 

agreement with the results from the grand canonical Monte Carlo (GCMC) simulation.  

Table 3.1. The Lennard-Jones parameters and grid size for gases considered in this work 

adsorbate ε/ kBT (K) σ (Å) grid size (Å) 

H2 36.7 2.96 0.6 

N2 93.98 3.572 0.7 

CH4 148 3.73 0.75 

 
3.2.3 Conjugate Gradient Descent Method 

Most cDFT calculations are implemented by using the Picard iteration to solve the 

self-consistent Euler-Lagrange equation or for the direct minimization of the grand 

potential.[37, 38] While the Picard iteration is straightforward to use in serial computing, 

the computational efficiency depends on the judicious choice of the mixing parameter, 

which is used to update the density profile. The mixing parameter can be tricky to 

optimize, depending on the grid resolution and formulation of the Helmholtz energy 

functional. A large mixing parameter can help the grand potential rapidly descent at the 

beginning of iteration but may never lead to convergence due to bouncing back and forth 

around the minimum. While a small mixing parameter would almost guarantee the 

convergence, it would sacrifice the computational efficiency because it requires many 

iterations. The conjugate gradient method provides an alternative to minimize the grand 

potential. Because the density profile is updated according to its gradient at each step, the 

conjugate gradient method is often more efficient than the Picard iteration albeit the 
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evaluation of the gradients requires additional calculations. In this work, we use 

CG_DESCENT in both CPU and GPU implementations of cDFT.[39] 

Figure 3.1(B) shows the overall computational flow chart in our new 

implementation of cDFT. As the memory on GPU (device) is physically separated from 

CPU (host), certain variables need to be transferred from CPU to GPU in order for the 

GPU kernels to conduct calculations. In general, the bandwidth of data transfer between 

the device and the host is much smaller than that within the device or the host.[4, 19] As 

a result, excellent GPU performance can be achieved by minimizing host-device data 

transferring, i.e., only for the essential input variables, the density profile, the grand 

potential and its functional derivative. The input variables must be transferred between 

the host and the device as GPU is not able to access the input file on the hard disk 

directly. The density profile, the grand potential, and the derivative of grand potential 

must be transferred in each iteration step because these variables are used in the 

CG_DESCENT package. The time consuming step could be avoided if CG_DESCENT 

could be executed on GPU. To achieve better performance, we allocate pinned memory 

for those variables that are frequently transferred between the host and the device. It is 

worth mentioning that a reduction sum kernel can be implemented for the grand potential. 

Because only the sum instead of its local value at every grid point needs to be transferred, 

the sum kernel method also helps achieve a better performance. All the variables are 

declared as double precision to achieve a better numerical accuracy. 

In the GPU implementation of cDFT, we set the maximum threads per block 

(1024 for Nvidia Tesla P100 GPU). The initial density profile for all cDFT calculations is 
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generated from the ideal Boltzmann distribution. For the conjugate gradient descent 

method, the convergence criterion is set as the gradient to be 1×10-3
 for both CPU and 

GPU implementations. For the Picard iteration, we assume that the procedure is 

converged when the difference between two density values at all grid point is smaller 

than 1×10-6 (#/Å-3). The mixing parameter is set to be 0.01 for the Picard iteration, which 

is the largest mixing parameter would guarantee the convergence for all materials over 

the range of pressure considered in this work. 

3.3 Results and Discussion 

In this section, we compare the CPU and GPU implementations of classical 

density function theory (cDFT) for predicting gas adsorption in terms of both 

computational performance and numerical quality. Here the computational performance 

is evaluated by the time cost of calculation, while the numerical quality is referred to the 

accuracy of the adsorption amount predicted by CPU and GPU calculations. The speedup 

factor is calculated from the GPU time divided by the CPU time. For simplicity, we use 

the mean-field approximation (MFA) for the excess Helmholtz energy due to 

intermolecular attraction unless other specifications are given. Whereas cDFT 

calculations yield the same results for the same implementation, the initialization time for 

the CUDA program can vary significantly thus affect the speedup factor. Except for cases 

related to high-throughput screening, all calculations are repeated five times to minimize 

the variance of GPU initialization latency. For most results reported in this work, the 

standard deviation is much smaller than the mean value, and the error bar is within the 

 



 56 

symbol size. For the case study of hydrogen and nitrogen adsorption, we use one 

particular metal-organic framework (MOF-5) as adsorbent material.[40] 

3.3.1 Case I: H2 Adsorption in MOF-5 

We first benchmark the numerical results for predicting hydrogen adsorption in 

nanoporous materials as hydrogen storage represents an important topic of ongoing 

research. Despite extensive computational and experimental investigations over the past 

decade, no material has been found to meet the hydrogen-storage target set by the US 

Department of Energy.[41-44] The inverse design of nanoporous materials requires 

efficient computational tools for accurate and rapid evaluation of hydrogen adsorption. 

Here we use MOF-5 as an example because it is a model nanoporous material that has 

been extensively studied in the literature.[4] 

Figure 3.2 shows the adsorption isotherms for hydrogen adsorption in MOF-5 at 

cryogenic and room temperatures and the related computational time for GPU and CPU 

implementation of cDFT. In both conditions, the GPU implementation shows excellent 

numerical quality in comparison to the CPU implementation. In our earlier work, we 

demonstrated that the CPU implementation of cDFT is much faster than conventional 

simulation methods (e.g. Monte Carlo) for predicting gas adsorptions.[8] The GPU 

implementation can further raise the computational speed by about 40 times. As shown in 

Figure 3.1(C) and (D), it takes less than 2 seconds for a Tesla P100 GPU to calculate the 

adsorption amount in MOF-5 for hydrogen in a given bulk state over a broad range of 

pressure at both 77 K and 298 K. Interestingly, the computational time is virtually 
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independent of pressure in GPU implementation of cDFT but it fluctuates and slightly 

increases with pressure in CPU implementation. 

 

Figure 3.2. Hydrogen adsorption in MOF-5 calculated with Nvidia Tesla P100 GPU and 

Intel Xeon E5-2640 CPU versus the gas pressure in the bulk at (A) 298 K and (B) 77K. 

The computational time with Nvidia Tesla P100 GPU and Intel Xeon E5-2640 CPU 

versus pressure at (C) 298 K and (D) 77K. Also shown here are the GPU speedups 

compared with CPU. 

 

Nanoporous materials cover a broad range of unit cell sizes and pore volumes. 

With a fixed grid distance, the computational cost increases linearly with the system 

volume. In addition, the system size would also depend on different kinds of adsorbates 

and different types of gas-solid interactions. For systems involving long-range 

interactions, we may consider a supercell that contains multiple unit cells such that the 
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long-range interactions can be accurately evaluated. Besides, a large supercell is often 

required for amorphous systems with crystalline materials with defects. To compare how 

the GPU and CPU implementations of cDFT scale with the system size, we consider 

hydrogen adsorption in MOF-5 by changing the grid distance at pressure of 1 bar and two 

temperatures discussed above (77 K and 298 K). As shown in Figure 3.3, the time cost 

increases cubically with the system size (viz., the number of grid points) for both CPU 

and GPU. With the increase of system size, the parallel overhead becomes insignificant 

compares to the time used for calculations. 

 

Figure 3.3. Computational time for predicting hydrogen adsorption in MOF-5 calculated 

with Nvidia Tesla P100 GPU and Intel Xeon E5-2640 CPU versus the system size (i.e., 

the total number of grid points). In call cases, the pressure is fixed at 1 bar and 

temperature is (A) 298 K and (B) 77K. The blue lines correspond to the speedup of GPU 

compared to CPU. 

 

Massive parallelization has no obvious advantage when the system size is small 

because not all the threads in GPU are put into operation. For a small system, not only is 

the time saved in calculation of convolutions via massive parallel on GPU not significant, 
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GPU implementation also comes with the extra burden to transfer the memory, which 

slows down the speed of computation. Figure 3.3 shows that the speedup factor increases 

monotonically with the system size and reaches almost 300 when the number of grid 

points is around 5×106. This number is typically used in our cDFT prediction of gas 

adsorption in nanoporous materials. The speedup factor at 77 K is higher than that at 298 

K because the density profile deviates much further from the ideal Boltzmann distribution 

at lower temperature, requiring more iterations toward convergence. When we consider a 

more complicated functional for the excess Helmholtz energy, such as the weighted-

density approximation (WDA) for van der Waals attraction, the GPU implementation 

leads to a slightly higher speedup factor at different system sizes due to the adoption of 

more complicated mathematical operations in WDA (shown in Figure 3.4). 

 

Figure 3.4. Computational time for hydrogen adsorption in MOF-5 at 77 K and 1 bar 

calculated with Nvidia Tesla P100 GPU and Intel Xeon E5-2640 CPU. The system size is 

defined in terms of the total number of grid points. Here cDFT is formulated with the 

weighted-density approximation, and the GPU speedup is compared to the computational 

time with CPU. 

 

Figure 3.5 shows the percentage of computational time used in the system setup 

and in iteration for CPU and GPU implementations of cDFT at pressure of 1 bar and 
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temperatures 77 K and 298 K. At both the cryogenic temperature and room temperature, 

the percentage of time used in iteration and memory usage (shown in Figure 3.6) 

increases with the system size. Within each iteration step, the most expensive operation is 

devoted to calculating the convolutions affiliated with the local density and the local 

excess chemical potential. As shown in Figure 3.5, the computational cost of calculating 

the convolution integrals rises rapidly when the system size increases. With the help of 

massive parallelization on GPU, the computational cost is significantly reduced. For 

systems pertinent to gas adsorption in nanoporous materials, the GPU implementation 

results in a factor of more than 300 speedup on Nvidia Tesla P100 GPU in comparison 

with the serial implementation on Intel E5-2640 CPU. 

 

Figure 3.5. Percentage of computer time used for initialization and iteration during the 

cDFT calculation of hydrogen adsorption in MOF-5 versus the system size. In all cases, 

the gas pressure is 1 bar and temperature is (A) 298 K and (B) 77 K. 
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Figure 3.6. Memory usage for hydrogen adsorption in MOF-5 at 77 K and 1 bar 

calculated with Nvidia Tesla P100 GPU. The system size is defined in terms of the total 

number of grid points. 

 

3.3.2 Case II: N2 Adsorption at 77K 

Nitrogen adsorption at 77 K is a routine procedure for experimental 

characterization of porous materials in terms of both the surface area and pore size 

distribution, and cDFT calculation is instrumental for the data analysis.[45] From the 

computational perspective, the existence of micropores (< 2 nm) and mesopores (2 to 50 

nm) would induce vapor-liquid transition which makes the cDFT calculation much more 

expensive and challenging to find the density profiles at equilibrium.[38, 46, 47] 

Therefore, nitrogen adsorption at 77 K provides another good system to benchmark the 

advantages of GPU implementation in comparison to CPU. 
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Figure 3.7. The nitrogen adsorption isotherm for MOF-5 calculated with Nvidia Tesla 

P100 GPU and with Intel Xeon E5-2640 CPU. The blue lines show the GPU speedup 

compared to CPU. Different numerical schemes are used in grand potential minimization 

(A) the conjugate gradient descent method, and in (B) the Picard iteration. 

 

Figure 3.7 shows nitrogen adsorption isotherm in MOF-5 at 77 K where the 

coexistence of vapor-liquid is expected. Figure 3.7 (A) and (B) are calculated with the 

conjugate gradient descent and Picard iterations, respectively. In terms of the adsorption 

amount, the numerical quality of GPU implementation is as good as CPU implementation 

for both minimization schemes. However, the Picard iteration takes many more iterations 

to converge than the conjugate gradient descent iteration (shown in Figure 3.8). For the 

Picard iteration, more numerical iterations are needed when the system is near the vapor-

liquid transition inside the pores and high loadings of adsorbent. The speedup factor 

between GPU and CPU for the Picard iteration is almost a constant (around 80) because, 

within each iteration step, the same calculation is executed and the speedup factor only 

depends on the system size. For the conjugate gradient descent method, CG_DESCENT 

has the options to evaluate the grand potential or the derivatives of grand potential or 

both variables within each iteration step, which results in the fluctuations of the speedup 
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factor. Evaluation of the derivatives of the grand potential requires more time for memory 

transfer than that only for the grand potential. As the conjugate gradient descent method 

takes a smaller number of iteration steps to converge, the parallelization overhead 

diminishes the advantages of the GPU implementation at low loading. With the increase 

of the gas pressure, GPU implementation may lead to a speedup more than two orders of 

magnitude (Fig. 5A). 

 

Figure 3.8. The number of iterations to predict nitrogen adsorption in MOF-5 at 77 K 

with the conjugate gradient descent method and with the Picard iteration. 

 

3.3.3 Case III: High-Throughput Screening 

In the final case study, we compare the difference between GPU and CPU 

implementations of cDFT for massive computations of gas adsorption in porous materials. 

In recent years, high-throughput screening has been widely used to identify the best 

candidates in a given structural database for a specific application.[48-50] In comparison 

to trial-and-error or the combinatory approach, high-throughput computational modeling 
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could save enormous experimental effort for materials discovery. For gas adsorption in 

nanoporous materials, high-throughput screening requires efficient predictions of the 

adsorption amount for a large set of materials over a broad range of conditions. The task 

could be computationally prohibitive if one considers a wide variety of thermophysical 

properties important for practical applications. 

 

Figure 3.9. Distributions of computational time for the cDFT predictions of CH4 and H2 

adsorption in 800 CoRE metal-organic frameworks. (A) Intel Xeon E5-2640 CPU, and (B) 

Nvidia Tesla P100 GPU. 

 

Figure 3.9 shows the distributions of computational time for the cDFT predictions 

of methane and hydrogen adsorptions in 800 nanoporous materials from the 

Computation-Ready, Experimental (CoRE) metal-organic frameworks Database.[51] 

Compared with the CPU implementation of cDFT, implementation with GPU can 

significantly reduce the computational cost. For all three cases tested here, more than 50% 

of calculation can be accomplished within two seconds with GPU. For methane 

adsorption, the calculation becomes more computationally expensive when the system is 

further away from ideality (5.8 bar versus 65 bar), which is consistent with our previous 
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report.[8] However, the scale of difference for the computational cost in different 

conditions is almost negligible for the GPU implementation of cDFT. Empowered with 

the massively paralleled implementation of cDFT on GPU, we expect that the 

computational procedure will be valuable for more comprehensive evaluation of the 

diverse properties of nanoporous materials for gas adsorption. 

3.4 Conclusions 

In this work, we have implemented a massively parallelized algorithm for 

classical density functional theory (cDFT) calculations with graphic processing unit 

(GPU) and tested its performance for predicting gas adsorption in nanoporous materials. 

The GPU implementation leads to significant improvements in terms of both numerical 

quality and performance speedup in comparison to the serial implementation with central 

processing unit (CPU). For all the cases considered in this work, the GPU 

implementation shows outstanding accuracy for predicting the adsorption amount 

compared to the CPU implementation. For most calculations, the speed of cDFT 

calculation with GPU is more than two orders of magnitude higher than that with the 

CPU implementation. The acceleration becomes more significant as the system size 

increases independent of the specific formalism of the excess Helmholtz energy 

functional. We expect similar accelerations for more complicated systems such as 

multicomponent mixtures, polymeric fluids, and systems with electrostatic interactions 

that are typically much more time consuming for cDFT calculations. 

In addition, we showed that the conjugate gradient descent method is more 

efficient (less iterations) and more robust (less dependent on the choice of mixing factor) 
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than the Picard iteration for the minimization of grand potential. The difference is evident 

especially when gas adsorption is accompanied by vapor-liquid transition within the 

micro and mesopores. For high-throughput screening, the massively parallelized GPU 

implementation of cDFT is able to predict gas adsorption at different conditions (viz., 

temperature and pressure) within seconds for most nanoporous materials tested. The GPU 

algorithm renders accurate and extremely fast prediction of gas adsorption in nanoporous 

materials thus accelerates martials screening and construction of more comprehensive 

properties database. Development of the more efficient computational methods will 

eventually pave the way for the inverse design of nanoporous materials for gas storage 

and separation. 
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Chapter 4. Modeling Multicomponent Gas Adsorption in Nanoporous Materials 

with Two Versions of Nonlocal Classical Density Functional Theory 

In this chapter, two versions of nonlocal classical density functional theory (cDFT) 

have been proposed to predict multicomponent gas adsorption in nanoporous materials by 

using the Lennard-Jones model for gas mixture and the universal force field for the 

adsorbents. With the modified fundamental measure theory to describe the short-range 

repulsions or volume-exclusion effects, one version of cDFT adopts the mean-field 

approximation for van der Waals attraction (here referred to as cDFT-MFA) as 

commonly used in porous materials characterization, the other version accounts for long-

range correlations through a weighted-density approximation (cDFT-WDA). For a 

number of gas mixtures in MOF-5 (without sub-pores inaccessible to gas molecules), the 

adsorption isotherms predicted from cDFT-WDA are quantitatively consistent with 

results from grand canonical Monte Carlo simulation, while cDFT-MFA systematically 

underestimates the adsorption due the neglect of correlation effects. Nevertheless, both 

versions of cDFT outperform the ideal adsorbed solution theory (IAST) at high pressure. 

Because IAST predicts mixture adsorption using only single-component data, it fails to 

capture the selective behavior arising from asymmetric interactions among different 

chemical species. The cDFT calculations are implemented with massively parallel GPU-

accelerated algorithms to achieve rapid yet accurate predictions of multicomponent 

adsorption isotherms with full atomistic details of the adsorbent materials. This work thus 

provides a theoretical basis for the computational design of adsorption-based separation 

process as well as for screening and data-driven inverse design of nanoporous materials. 
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4.1 Introduction 

Selective adsorption represents one of the most important industrial separation 

processes, with widespread applications such as desulfurization in petroleum refining, H2 

and CH4 purification and CO2 capture.[1-5] As chemical separation takes about half of 

the industrial energy use in the US, development of more efficient separation processes is 

desired to reduce the energy cost.[6] Conventionally, adsorption-based separation 

processes are categorized into pressure swing adsorption (PSA) and temperature swing 

adsorption (TSA). In both cases, the adsorbent material is a dominating factor 

determining the separation efficiency and operation cost. Therefore, adsorbent design is 

of great importance in optimizing industrial separation processes. 

Nanoporous materials, such as metal-organic frameworks (MOFs) and covalent-

organic frameworks (COFs), are promising for adsorption separation because of their 

excellent mechanic stability, large surface area and adjustable pore geometry.[7-9] More 

importantly, both adsorption capacity and selectivity can be tailored for specific 

applications by altering the secondary building blocks of such materials.[10, 11] 

Compared with trial-and-error syntheses, a data-driven approach enables the inverse 

design of nanoporous materials over a much larger chemical space.[12-14] However, data-

driven methods require a large set of data for multicomponent adsorption isotherms. Such 

data are scarce due to the time-consuming experimental procedures and technical 

difficulties in controlling adsorption over a wide range of thermodynamic conditions.[15, 

16] 
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Thermodynamic modeling of multicomponent adsorption isotherms is mostly 

based on the ideal adsorbed solution theory (IAST).[17-20] Although IAST adopts ideal 

gas and ideal solution models for the bulk and adsorbed phases, respectively, it is able to 

predict the adsorption isotherms of many gas mixture systems (e.g., CH4/C2H6, C2H4/CO2 

and CO/O2) with pure component adsorption isotherms up to moderate pressures. Many 

attempts have been made to modify IAST by considering surface heterogeneity and the 

distinct properties of gas molecules such as polarity, size and interaction energy.[21-23] 

Although the modified IAST models account for more realistic gas-absorbent interactions 

and improve the numerical performance for specific systems, they often entail extra 

fitting parameters thus hamper transferability. Moreover, the modified models do not 

provide a consistent description of the thermodynamic non-ideality of gas mixtures in the 

bulk and inside the adsorbent materials, which also hinders their applications at high 

pressure. 

Molecular simulation and statistical-mechanical methods, such as grand canonical 

Monte Carlo (GCMC) simulation and classical density functional theory (cDFT), are 

main alternates to IAST for predicting mixture adsorption in nanoporous materials.[24-27] 

For single-component adsorption, adsorption isotherms predicted by GCMC and cDFT 

are generally in good agreement with each other.[28-31] In contrast to the IAST models, 

GCMC and cDFT are able to predict adsorption isotherms for single- and multi-

component systems alike. More importantly, they offer atomistic details useful for the 

computational design of adsorbent materials. From a practical perspective, neither 

GCMC nor cDFT is perfect. In addition to intrinsic errors introduced by the atomistic 
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models, GCMC is not suitable for massive calculations due to the excessive 

computational burden. Conversely, cDFT is often less accurate because it relies on the 

formulation of the excess Helmholtz energy functional.[32-34] While highly reliable 

models for the excess Helmholtz energy functional have been developed over the past 

few decades to describe single-component adsorption isotherms,[35] application of cDFT 

to adsorption in gas mixtures is mostly limited to slit pores[36, 37] and virtually 

nonexistent for three dimensional structures and materials even though they are most 

relevant to practical applications. To bridge the gap, this work introduces two versions of 

cDFT for gas mixtures represented by the Lennard-Jones (LJ) model. The LJ model is 

often used to represent the thermodynamic properties of gas mixtures and relevant to 

industrial applications such as adsorption-based separation of noble gases and methane 

purification.[26, 38] Both versions of cDFT are based on the modified fundamental 

measure theory (MFMT) that is naturally applicable to systems containing particles of 

different sizes.[39] With the short-range repulsions or volume-exclusion effects described 

by MFMT, one version of cDFT adopts the mean-field approximation (herein referred to 

as cDFT-MFA) to represent the excess Helmholtz energy due to van der Waals 

attractions, and the other accounts for the correlation effects with a weighted density 

approximation (herein referred to as cDFT-WDA). For single-component systems, cDFT-

MFA is essentially equivalent to nonlocal DFT (NLDFT) that is conventionally used for 

the characterization of porous materials by gas adsorption. Both versions of cDFT are 

able to generate mixture adsorption isotherms in good agreement with GCMC simulation 

for a wide variety of systems, while cDFT-WDA yields slightly better numerical 
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performance because it considers correlation effects. Compared with IAST, both versions 

of cDFT predict more accurate adsorption isotherms especially at high pressure where 

gas-gas interactions and correlation effects become more significant. Because cDFT 

contains atomistic details for adsorbent materials and can be implemented through 

massively paralleled GPU programming, it empowers the rapid construction of large 

database potentially useful for the inverse design of nanoporous materials for gas 

separation. 

4.2 Methods and Models 

4.2.1 Classical Density Functional Theory (cDFT) 

In principle, classical density functional theory (cDFT) is able to predict the 

thermodynamic properties of any macroscopic system at equilibrium.[40-42] In its 

application to multi-component gas adsorption with the Lennard-Jones (LJ) model, the 

grand potential is minimized with respect to the density profiles 
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where F is the intrinsic Helmholtz energy functional, 
ext

iV  stands for the external 

potential for component i, i.e., the potential energy on a molecule of species i due to its 

interaction with the absorbent, and 
,bulk mixture

i  represents the chemical potential for 

component i in the bulk phase. In this work, we use the universal force field (UFF) to 

describe gas interaction with nanoporous materials.[43] For the gas molecules considered 

in this work, the force-field parameters are provided in Support Information (SI). The 

modified Benedict-Webb-Rubin (MBWR) equation of state is used to calculate the 

chemical potentials of all species for the gas mixture in the bulk phase.[44] The intrinsic 

Helmholtz energy can be divided into an ideal part and an excess: 

 ]( ) ( ])[ ] [ ( )[i exdF F F= +r r rρ ρ ρ  (4.3) 

With the gas molecules represented by the LJ model, the ideal part is exactly known 
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where kB stands for the Boltzmann constant, T is the absolute temperature, and 
i  

represents the thermal wavelength of component i. 

One essential task of all cDFT calculations is to formulate an excess Helmholtz 

energy functional that is reliable for the specific system under consideration. According 

to the LJ model, the excess Helmholtz energy can be split into contributions due to short-

range repulsion and long-range attraction. The former is often represented by the hard-

sphere model, Fhs, and a perturbation term Fattr is applied to account for van der Waals 

attractions 

 ]( ) ( [) )] ] ([ [ex hs attrF F F= +r r rρ ρ ρ  (4.5) 



 77 

As well documented, the excess Helmholtz energy of a hard-sphere system can be 

accurately described by the modified fundamental measure theory (MFMT)[32, 45] 

 [ ] [ ( )]( )  dhs hs

BF k T n=  rr rρ  (4.6) 
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In eq (4.8), 
( )

iw 
 are a set of weight functions characterizing the differential geometry of 

each spherical particle: 
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where   denotes the Dirac-delta function,   is the Heaviside step function, and di is the 

hard-sphere diameter for component i. For all gas molecules considered in this work, the 

Barker-Henderson theory is used to calculate the hard-sphere diameter from the LJ 

parameters[46, 47] 
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where 
* /i B ik TT = , εi and σi stand for the LJ energy and size parameters of the gas 

molecule i, respectively. 

For the attraction part of the excess Helmholtz energy, one convenient choice is 

that from the mean-field approximation (MFA) 
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and the cross parameters are calculated from the Lorentz-Berthelot mixing rule. In this 

work, the excess Helmholtz energy given by eqs (4.5) to (4.12) is referred to as cDFT-

MFA. Whereas MFA is commonly used in cDFT calculations including characterization 

of porous materials by gas adsorption, it reduces to an equation of state for bulk systems 

similar to the van der Waals equation. While more accurate formulations are available for 

one-component LJ fluids,[48] extension of existing formulations to multicomponent 

systems is theoretically challenging due to the lack of analytical expressions for the bulk 

correlation functions. 

In this work, we account for the correlation effects using van der Waals one-fluid 

theory (vdW1) and the weighted density approximation (WDA)[33, 34] 
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where Fcor corresponds to the local correlation Helmholtz energy 
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The reduced local correlation Helmholtz energy per volume, cor , is approximated by 

that corresponding to the bulk phase at weighted density 
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In the bulk phase, cor  can be written in the following form 
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where ( )LJ

bulkF   stands for the excess Helmholtz energy of a bulk LJ fluid calculated from 

the MBWR equation of state,[44] ( )hs

bulkF   denotes the hard-sphere Helmholtz energy 

according to the Carnahan-Starling equation of state,[49] ( )MFA

bulkF   represents the mean-

field Helmholtz energy for the one-component fluid, and ( )1/ BTk = . Explicit 

expressions are available for the hard-sphere and MF excess Helmholtz energies shown 

in eq (4.16): 
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where 
3( )

6
xy
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=

r
. According to the vdw1 approximation, dx, εx and xi stand for the 

hard-sphere diameter, the LJ energy and size parameters for the mixture: 
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Combing eqs (4.1) ~ (4.4) leads to the following Euler-Lagrange equations 
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From eq (4.22), we can calculate the density profiles of individual species for an N-

component gas mixture adsorption in nanoporous materials. In comparison with cDFT for 

single-component systems, the computational cost scales linearly with the number of 

chemical species in the gas mixture. With an explicit expression for the excess Helmholtz 

energy functional as given by eqs (4.5) ~ (4.21), we can solve the density profiles using 

conjugate gradient descent method.[50] As explained in our previous work,[51] the cDFT 

calculations can be implemented with massively paralleled algorithm through graphic 

processing unit (GPU). The GPU-accelerated parallel implementation drastically reduces 

the computational cost thereby empowering potential industrial applications. In this work, 

all cDFT calculations are carried out with an Nvidia Tesla P100 graphic card. The time 
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cost is at the scale of few seconds for each cDFT calculation. More information on the 

computational details is given in Support Information. 

4.2.2 Ideal Adsorbed Solution Theory (IAST) 

The basic concepts and numerical procedure of ideal adsorbed solution theory 

(IAST) have been well documented.[17-19] Here, we recapitulate only the key equations 

for easy reference. With an N-component gas mixture inside an adsorbent represented by 

a two-dimensional system, pure reference states are defined for all chemical species that 

share the same spreading pressure of the mixture 

 
1 2 N  = = =  (4.23) 

For each pure component i in equilibrium with its pure bulk phase, the spreading pressure 

at pressure 
0

ip  can be written as: 
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where A is the surface area, R stands for the gas constant, T represents temperature, and 

0

in  is the adsorption amount for pure component i at its own reference state. In analogy 

with the Lewis fugacity rule, IAST assumes an ideal solution for the two-dimensional 

system of adsorbed gas molecules. The adsorbed phase would be in equilibrium with a 

gas mixture following the adsorption analog of Raoult’s law 

 
0

i ii iP y P x p= =  (4.25) 

where y is the composition in the bulk phase, x represents the composition of the two-

dimensional system (viz., the adsorbed gas mixture). With adsorption isotherms for 

single-component systems as the input, eqs (4.23) ~ (4.25) can be used to determine the 
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spreading pressure and, consequently, the corresponding adsorption amount for each pure 

reference state as well as the compositions of the adsorbed phase. If the adsorption 

isotherm is fitted into a specific adsorption model (e.g. Langmuir adsorption model), eqs 

(4.23) ~ (4.25) can be solved analytically. Otherwise, it requires iteration to find 
0

ip  for 

each chemical species such that eqs (4.23) and (4.25) are satisfied. An interpolation 

scheme would be needed to approximate the adsorption amount between the existing 

points on the adsorption isotherm. The total adsorption amount nT for gas mixture is 

finally calculated from the ideal solution assumption 

 
0

1

1 N

i i

i

T

x

n n=

=   (4.26) 

At low pressure, Henry’s law predicts the adsorption selectivity 

 i i i

j j j

x K y

x K y
=  (4.27) 

where K represents Henry’s constant. In this work, single-component adsorption 

isotherms from GCMC simulations are used as the input for the IAST prediction of multi-

component adsorption isotherms. Instead of fitting the adsorption isotherm into a specific 

adsorption model, the direct interpolation of single-component adsorption isotherm 

(shown in Figure 4.1) is used when calculating adsorption isotherm for mixtures in order 

to preserve the accuracy of adsorption isotherm at low pressure. 
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Figure 4.1. Adsorption isotherm for individual gases calculated from GCMC in MOF-5 

for Kr and Ar at 297 K and H2, CH4, CO2 at 313.15 K. 

 

4.3 Results and Discussion 

In this section, we first compare adsorption isotherms for gas mixtures and the 

selectivity predicted by the two versions of cDFT along with those from IAST and 

GCMC simulations. Table 4.1 lists the Lennard-Jones (LJ) parameters for gas molecules 

considered in this work.[52-56] The grid size in all cDFT calculations is 0.5 Å. The 

potential is truncated and shifted to zero at 12.9 Å. One unit cell of MOF-5 with periodic 

boundary condition is used in the calculation. CG_DESCNT package is used to minimize 

the grand potential with the convergence criteria set as the gradient to be 1×10-3.[50] For 

the calibration of the excess Helmholtz energy functions, these comparisons are discussed 

in the context of one particular metal-organic framework (MOF) material – MOF-5. 

Different from other MOFs, MOF-5 does not contain sub-pores inaccessible to small gas 

molecules, which may lead to an inaccurate prediction of adsorption by IAST.[26, 57] 
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Table 4.1. The Lennard-Jones parameters for gas compounds considered in this work 

adsorbate ε/kB (K) σ (Å) 

CO2 236.1 3.75 

CH4 148 3.73 

H2 34.2 2.96 

Ar 119.5 3.41 

Kr 165.2 3.66 

 

4.3.1 Gas Mixtures Adsorption at Low to Moderate Pressure 

We first calibrate the cDFT predictions for binary mixtures because they provide 

a good benchmark for the theoretical description of mixture adsorptions. Besides, binary 

mixtures are important to understand the physics underlying adsorption selectivity. 

Figure 4.2A shows the adsorption isotherms for an equimolar mixture of Kr and Ar in 

MOF-5 at 297 K over a range of pressure up to 50 bar. The symbols are from GCMC 

carried out in this work, and the lines are predicted from IAST and the two versions of 

cDFT. Because Kr and Ar molecules are similar in terms of both size and interaction 

energy (viz. the LJ parameters), unsurprisingly, IAST shows near quantitative 

performance for the adsorption amounts of both species. Previous comparisons also 

indicate excellent agreement between IAST and GCMC at low to moderate pressure.[20] 

The good agreement may be attributed not only to the similarity between different 

species but also to the dominant effects of adsorbate-adsorbent interactions. For cDFT, 

both the mean-field approximation (cDFT-MFA) and weighted density approximation 

(cDFT-WDA) predict the adsorption isotherms in fair agreement with GCMC. While 

cDFT-WDA achieves a numerical performance slightly better than IAST, cDFT-MFA 

underestimates the adsorption amount for both Kr and Ar due to the neglect of correlation 

effects. In comparison with IAST, one major advantage of cDFT is that it does not 
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require single-component adsorption isotherms as the input. Besides, it contains atomistic 

details that are helpful for the computational design of adsorbent materials. 

 

Figure 4.2. Adsorption amounts (A) and selectivity (B) for MOF-5 in contact with an 

equimolar mixture of Kr and Ar in the bulk at 297 K. In panel B, the dotted line 

represents the adsorption selectivity at infinite dilution. 

 

Figure 4.2B shows the adsorption selectivity corresponding the adsorption 

isotherms shown in Figure 4.2A. In the limit of infinite dilution (viz, at extremely low 

bulk pressure), the selectivity of Kr/Ar predicted by either cDFT or by IAST converges to 

the ideal adsorption selectivity predicted by Henry’s law. cDFT is able to reproduce the 

exact adsorption selectivity at infinite dilution because the excess Helmholtz energy 

vanishes in the ideal limit. In principle, IAST is also able to reproduce the ideal limit if 

highly accurate data are available for pure-component adsorption isotherms at infinite 

dilution.[26] However, the procedure is numerically problematic and requires much more 

iterations in GCMC simulations because small adsorption amount at low pressure leads to 

large errors in the adsorption selectivity. With the increase of pressure, cDFT-WDA 

predicts the adsorption selectivity still in quantitative agreement with that from GCMC 
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simulation while IAST shows noticeable deviations. In contrast, cDFT-MFA 

underestimates the adsorption amount for Kr and predicts unreasonable adsorption 

selectivity at moderate pressure. For other binary mixtures with more distinct 

physiochemical properties (e.g., CH4/CO2), we observe similar trends in adsorption 

isotherm and selectivity at low to moderate pressures (shown in Figure 4.3). 

 

Figure 4.3. Adsorption isotherms (A) and selectivity (B) for an equimolar mixture of 

CH4 and CO2 in MOF-5 at 313.15 K up to 15 bar. The dotted line represents the 

adsorption selectivity at infinite dilution. 

 

Practical applications of adsorption-based separation processes are often 

concerned with gas mixtures beyond binary systems (e.g., H2/N2/CO/CH4/CO2 in 

hydrogen purification). The adsorbate-adsorbate interactions become more complicated 

when there are more components in the mixture.[38] Therefore, in addition to binary gas 

mixtures, we also calibrate the cDFT methods with a ternary system, H2/CH4/CO2, which 

has distinct size and interaction energy differences among different species. Figure 4.4 

shows the adsorption isotherms at 313.15 K. Similar to that observed for the binary gas 

mixture, both IAST and cDFT-WDA slightly overestimate the simulation data for the 
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highly adsorbed component (viz., CO2) while giving excellent predictions of the 

adsorption amount for the other two components (H2/CH4). However, cDFT-MFA 

underestimates the adsorption amount for both CO2 and CH4. In terms of the adsorption 

selectivity, IAST and both versions of cDFT are able to reproduce the results from 

GCMC simulation. It is also worth mentioning that, compared with experimental 

measurement in literature[15, 58], the adsorption behavior (viz. adsorption amount) of 

gas mixture in MOF-5 are well captured by the force field parameters adapted in this 

work (shown in Figure 4.5), which indicates its direct relevance to the practical 

applications. 

 

Figure 4.4. Adsorption isotherms (A) and selectivity (B) for a ternary mixture of H2, CH4 

and CO2 in MOF-5 at 313.15 K with the molar ratios in the bulk given by 

H2:CH4:CO2=15:42.5:42.5. In panel B, the dotted line represents the adsorption 

selectivity at infinite dilution. 
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Figure 4.5. Adsorption isotherms for (A) equimolar mixture of CO2 and CH4 in MOF-5 

at 297 K and ternary mixture of H2, CH4 and CO2 in MOF-5 at 297 K with different bulk 

concentration: (B) H2:CH4:CO2=15:42.5:42.5 (C) H2:CH4:CO2=42.5:15:42.5. The dashed 

lines are calculated from the classical density functional theory with mean field 

approximation (cDFT-MFA), the solid lines are from the classical density functional 

theory with weighted density approximation (cDFT-WDA) and the symbol are 

experimental measurement from literature[15, 58]. 

 

4.3.2 Gas Mixtures Adsorption at High Pressure 

Industrial applications of adsorption-based separation are mostly operated 

between low and moderate pressures (under 100 bar). Under those conditions, the IAST 

performance has been proven to be reasonable.[17, 20] However, separation of gas 

mixtures from power plants, especially when the process is built on the integrated 

gasification combined cycle (IGCC), is often carried out under higher pressure (up to 200 

bar).[16] Owing to their excellent mechanic stability and thermal stability, many MOFs 

are promising to serve as effective adsorbents for those processes. To facilitate selection 

and computational design of MOFs, computational methods are needed for fast and 

accurate evaluation of adsorption isotherms and selectivity at high pressure. 
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Figure 4.6 shows the adsorption isotherms and selectivity for an equimolar gas 

mixture of Kr and Ar in MOF-5 at 297 K up to 450 bar of the bulk pressure. Although 

IAST shows good performance for the bulk pressure up to 50 bar, with the further 

increase of the bulk pressure, it over- and under-estimates the adsorption amounts of Kr 

and Ar, respectively. It is somewhat surprising that IAST fails to predict the adsorption 

isotherm at high pressure even for gas mixtures of similar molecular size and interaction 

energy. At high pressure, not only does the assumption of ideal solution break down, but 

the two-dimensional model is also problematic due to the significant inhomogeneity of 

gas density inside the pores. Compared with the adsorption isotherms calculated from 

GCMC simulation, both versions of cDFT perform better than IAST at high pressure. 

While the cDFT predictions of the adsorption amount are near perfect for Ar, noticeable 

differences are seen between cDFT-WDA and cDFT-MFA predictions for Kr, which 

slightly over- and under-estimates the adsorption amount, respectively, in comparison 

with the simulation data. Figure 4.6B shows that cDFT-WDA yields a much better 

selectivity than cDFT-MFA while IAST yields only semi-quantitative predictions. 
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Figure 4.6. Adsorption isotherms (A) and selectivity (B) for an equimolar mixture of Kr 

and Ar in MOF-5 at 297 K. In Panel B, the dotted line represents the adsorption 

selectivity at infinite dilution. 

 

For gas mixtures containing molecules with asymmetry in both size and 

interaction energy, the difference of adsorbate-adsorbate interactions is magnified at high 

pressure. As a result, the ideal-solution assumption becomes more problematic as the 

number of components increases. Figure 4.7 compares the adsorption isotherms and 

selectivity calculated from GCMC with those predicted by cDFT and IAST for a ternary 

mixture of H2, CH4 and CO2 (with molar ratios in the bulk H2:CH4:CO2=15:42.5:42.5) in 

MOF-5 at 313.15 K. While cDFT-WDA is able to predict both the adsorption amounts 

and selectivity in quantitative agreement with the simulation results for the entire range 

of pressure, the predictions by cDFT-MFA are mostly semi-quantitative. Similar to the 

adsorption of an equimolar binary gas mixture of CH4 and CO2 (shown in Figure 4.8), the 

increase of pressure reduces the adsorption amount for CO2 beyond a certain value while 

the adsorptions of CH4 and H2 keep on increasing as pressure rises. As CH4 and H2 

molecules are smaller compared with CO2, the favorable adsorption sites (near the 
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corners of the MOF pores) are more likely to be further occupied by CH4 or H2 than CO2 

at high gas pressure (shown in Figure 4.9).[59] The maximum CO2 adsorption amount at 

115 bar is captured by both versions of cDFT but not by IAST. More specifically, cDFT-

WDA quantitatively captures the competitive adsorption behavior while cDFT-MFA 

underestimates the adsorption amount for both CO2 and H2. 

 

Figure 4.7. Adsorption isotherms (A) and selectivity (B) for a ternary mixture of H2, CH4 

and CO2 in MOF-5 at 313.15 K with bulk molar ratios of H2:CH4:CO2=15:42.5:42.5. In 

Panel B, the dotted line represents the adsorption selectivity at infinite dilution. 
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Figure 4.8. Adsorption isotherms (A) and selectivity (B) for an equimolar mixture of 

CH4 and CO2 in MOF-5 at 313.15 K up to 450 bar. 

 

For the ternary mixture considered in this work, CO2 and CH4 have the same 

composition in the bulk phase. Interestingly, the presence of H2 has different effects on 

the adsorptions of CH4 and CO2. Compared with the equimolar binary gas mixture 

CH4/CO2 (shown in Figure 4.8), H2 has a stronger effect on CH4 adsorption than that on 

CO2 because these gas molecules have different favorable adsorption sites. The favorable 

adsorption site for H2 is closer to that of CH4 than that of CO2 (shown in Figure 4.9). As a 

result, the competition between CH4 and H2 adsorptions is more significant than that 

between CO2 and H2. 
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Figure 4.9. Density iso-surfaces of CH4, CO2 and H2 for a ternary mixture with bulk 

composition (H2:CH4:CO2=15:42.5:42.5) in MOF-5 at 313.15 K and gas pressure 100 bar. 

The red, orange and yellow colors represent the density iso-surfaces of CH4, CO2 and H2, 

respectively. The local density of each iso-surface is taken as half of the maximum local 

density value. The grey, purple, red and white spheres represent carbon, zinc, oxygen and 

hydrogen atoms, respectively. 

 

Compared with the results from GCMC simulation, both cDFT-WDA and cDFT-MFA 

make near quantitative predictions of the selectivity at high pressure. As that for the 

binary system, cDFT-WDA gives a better prediction than cDFT-MFA. In the bulk limit, 

cDFT-WDA reduces to the MBWR equation, which is a well-tested equation of state, 

while cDFT-MFA yields only qualitative results as one may expect from the van der 
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Waals equation. In contrast to cDFT predictions, the results from IAST are not even 

qualitative for the selectivity of CO2/CH4 at high pressure due to the neglect of adsorbate-

adsorbate interactions. 

4.3.3 Adsorption Sites and Density Isosurfaces 

As mentioned above, cDFT gives not only adsorption isotherms and selectivity 

but also full atomistic details useful for adsorbent design. The adsorption sites for 

different adsorbates can be identified from the density isosurfaces. For example, Figure 

4.10 shows the density profiles of CH4, CO2 and H2 predicted by cDFT-WDA for the 

ternary gas mixture with molar composition (H2:CH4:CO2=15:42.5:42.5) in MOF-5 at 

313.15 K and the bulk pressure of 100 bar and 300 bar. At 100 bar, the gas molecules are 

mainly localized on the favorable adsorption sites. The local density of CO2 is much 

higher than those of H2 and CH4, which explains the stronger adsorption of CO2 than that 

of H2 or CH4. When the bulk pressure increases to 300 bar, the densities of CH4 and H2 

extend to the pore centers and that of CO2 declines, indicating that the favorable 

adsorption sites for CO2 are more likely to be occupied by smaller gas molecules (i.e., 

CH4 and H2). In other words, the favorable adsorption sites taken by H2 and CH4 

molecules repel CO2 molecules, resulting in the reduction of the CO2 adsorption in the 

isotherm. 
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Figure 4.10. Density isosurfaces of CH4, CO2 and H2 in MOF-5 for the adsorption of a 

ternary mixture with bulk molar composition (H2:CH4:CO2=15:42.5:42.5) predicted by 

cDFT-WDA at 313.15 K and the gas pressure of 100 bar (top) and 300 bar (bottom). The 

red isosurfaces in (A) and (D) are for CH4 with the local density of 0.017 molecules/Å3. 

The orange isosurfaces in (B) and (E) are for CO2 with the local density of 0.09 

molecules/Å3. The yellow isosurfaces in (C) and (F) are for H2 with the local density of 

0.0005 molecules/Å3. The grey, purple, red and white spheres represent carbon, zinc, 

oxygen and hydrogen atoms, respectively. 

 

With atomistic information for mixture adsorption available from cDFT, we can 

identify favorable adsorption sites in the complex structure not only for existing 

nanoporous materials, but also for in-silico designed nanoporous materials before 

synthesis. Clearly, the density isosurface is beyond the simple geometry analysis (e.g., 

pore size distribution) yet offers direct insights when designing new nanoporous 

materials for specific applications. For example, to remove even more CO2 from ternary 
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mixture of H2, CH4 and CO2 at high pressure, one may substitute the metal node and 

organic linker in MOF-5 with smaller secondary building blocks that allow for more 

adsorption of CO2 according to favorable adsorption sites identified from Figure 4.10. 

 

Figure 4.11. (A) Computation time of GCMC, cDFT-MFA and cDFT-WDA versus 

system pressure for equimolar binary mixture of Kr and Ar. (B) The speedup factors of 

cDFT-MFA and cDFT-WDA are based on the computation time of GCMC. 

 

Finally, it is worth emphasizing that the main advantage of cDFT over GCMC is 

the computational efficiency. For example, Figure 4.11 shows the computation time of 

GCMC, cDFT-MFA and cDFT-WDA for equimolar binary mixture of Kr and Ar. Also 

shown in Figure 4.11 are the speedup factors of cDFT-MFA and cDFT-WDA compared 

with GCMC simulation. The computational time and speedup factor for ternary mixture 

of H2, CH4 and CO2 are shown in Figure 4.12. All the cDFT calculations are executed 

with massively paralleled GPU-accelerated implementation on Nvidia Tesla P100 

graphic card with one CPU core on Intel Xeon E5-2620 v4 while all the GCMC 

simulations are carried via RASPA with one CPU core on Intel Xeon E5-2640 v4. With 

massively paralleled GPU-accelerated implementation, both cDFT-MFA and cDFT-
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WDA are 2~3 orders of magnitude faster than serial GCMC simulation for typical binary 

and ternary mixtures at moderate pressure, and the speedup becomes even more 

noticeable at higher pressure. The detailed discussion of this implementation can be 

found in our previous work.[51] Even compared with parallel GCMC code with GPU 

acceleration such as GPU Optimized Monte Carlo (GOMC)[60], massively paralleled 

GPU-accelerated cDFT is still much faster. For GOMC, the speedup factor is up to 30 

while massively paralleled GPU-accelerated cDFT can achieve speedup factor up to 

several hundreds. Compared with cDFT-MFA, cDFT-WDA takes correlation effect into 

account and the extra correlation term needs to be re-evaluated in each iteration, which 

results in a slight increase of the computation time. Although the computational cost of 

cDFT increases proportional to the number of components, all the calculations can be 

finished within few seconds even for ternary mixture. The rapid and accurate evaluation 

of multicomponent adsorption isotherms is essential for the construction of large database 

for data-driven materials design. 
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Figure 4.12. (A) Computation time of GCMC, cDFT-MFA and cDFT-WDA versus 

system pressure for ternary mixture of H2, CH4 and CO2. (B) The speedup factors of 

cDFT-MFA and cDFT-WDA are based on the computation time of GCMC. 

 

4.4 Conclusions 

In this work, we propose two versions of classical density functional theory 

(cDFT) for describing adsorption of multicomponent gas mixtures by nanoporous 

materials. Their main difference lies in the formulation of the excess Helmholtz energy 

due to van der Waals attraction. One is based on the mean-field approximation (cDFT-

MFA), which is commonly used in cDFT calculations and has been adopted in porous 

materials characterization. The other accounts for the correlation effects by using the 

weighted density approximation (cDFT-WDA). The two formulations of the excess 

Helmholtz energy have been tested for both binary and ternary systems. Compared with 

the results from grand canonical Monte Carlo (GCMC) simulations, cDFT-WDA is able 

to predict both the adsorption isotherms and selectivity near quantitatively. However, 

cDFT-MFA significantly underestimates the adsorption amount due to the absence of the 

correlation contribution to the excess Helmholtz energy. Compared with the ideal 
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adsorbed solution theory (IAST), both versions of cDFT show substantial improvements, 

especially at high pressure where adsorbate-adsorbate interactions and correlation effects 

become more significant. At low pressure, both two versions of cDFT and IAST can 

quantitatively predict the adsorption isotherm and selectivity of gas mixture in MOF-5. 

Moreover, cDFT offers atomistic details revealing the underlying mechanism of 

competitive adsorption in gas mixtures, which well explains the peak adsorption in CO2. 

The microscopic insights are helpful to design nanoporous materials for more efficient 

separation of multicomponent gas mixtures by adsorption. In addition, with the massively 

parallel GPU-accelerated implementation, both cDFT calculations can be accomplished 

at the scale of few seconds for each thermodynamic condition, which is a few orders of 

magnitude faster than GCMC simulation. Therefore, cDFT may be used as an alternative 

to IAST or GCMC for constructing a large and accurate adsorption database for 

multicomponent gas mixtures that are required for the data-driven inverse design of 

nanoporous materials. 
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Chapter 5. Massively Parallel GPU-Accelerated String Method for Fast and 

Accurate Prediction of Molecular Diffusivity in Nanoporous Materials 

The diffusivity of guest molecules in nanoporous materials is instrumental for 

practical applications ranging from gas separation to catalysis and energy storage. 

Conventional methods to predict diffusion coefficients are computationally demanding, 

in particular for polyatomic molecules with small diffusivity in nanoporous materials. In 

this chapter, we have implemented a massively parallel graphic processing unit (GPU)-

accelerated string method to calculate the minimum energy path for the diffusion of 

polyatomic molecules in nanoporous materials. The GPU parallelization enables fast 

prediction of molecular diffusivity in nanoporous materials, speeding up the computation 

by a factor of over 500 in comparison with serial CPU calculations. The massively 

parallel GPU-accelerated string method yields diffusion coefficients in excellent 

agreement with results from molecular dynamics while reducing the computational cost 

by several orders of magnitude. It will thus open up opportunities for high-throughput 

screening and inverse design of nanoporous materials. 

5.1 Introduction 

Recent years have seen the rapid development of nanoporous materials with a vast 

variety of building blocks.[1-6] Nanoporous materials (e.g., metal-organic frameworks) 

can now be designed and synthesized by assembling organic ligands and metal cluster 

with appropriate topology. As a result, large materials databases become commonplace 

promising data-driven applications via high-throughput screening and computational 

design.[7-9] Transport properties such as diffusion coefficient are closely related to many 
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important applications. For example, diffusivity dictates the performance of nanoporous 

materials, including zeolites, metal-organic and covalent organic frameworks, for gas 

separation and ion sieving.[10-13] Efficient computational methods for fast yet accurate 

prediction of transport properties are always in great demand for searching the best 

nanoporous materials in a structural database and/or for the inverse design.[10, 14] 

For guest molecules in a nanoporous material, the diffusion coefficients can be 

measured using experimental techniques such as quasi-elastic neutron scattering (QENS) 

and pulsed-field gradients-nuclear magnetic resonance (PFG-NMR).[15, 16] Such 

experiments are laborious and not suitable for high-throughput operations due to the 

time-consuming nature of sample preparation and measurement.[17, 18] As a result, 

experimental data are rarely available for molecular diffusion coefficients of chemical 

species in large libraries of nanoporous materials. Alternatively, diffusion coefficients 

can be predicted from a number of theoretical methods.[14, 19-21] Among them, 

molecular dynamics (MD) simulation has been most widely used to investigate the 

diffusion of gas molecules in nanoporous materials. Despite its popularity, construction 

of a diffusion-coefficient database by ‘brute force’ MD simulation is computationally 

prohibitive. The task is challenging in particular when one is concerned with the 

separation of organic molecules (e.g., paraxylene/orthoxylene and benzene/cyclohexane) 

using nanoporous materials due to the slow diffusivity (less than 10-12 m2/s). 
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Figure 5.1. Minimum energy path for the center of mass (green line) of ethene in MOF-5. 

Molecular configuration of ethene at different position along the minimum energy path is 

also shown. The size of atoms is rescaled and for the purpose of illustration only. Grey, 

white, ice blue and purple represent carbon, hydrogen, oxygen and zinc, respectively. 

 

Many theoretical attempts have been made to circumvent the computational limit 

of MD simulation in predicting diffusion coefficients.[10, 11] A well-established 

alternative is by using the transition-state theory (TST).[21] While diffusivity is typically 

calculated from the Einstein equation via mean-square displacement (MSD) over long 

equilibrium steps in MD simulation, TST predicts diffusion coefficients based on a 

minimum energy path (MEP) that is solely determined by the energy landscape of guest-

host interactions (shown in Figure 5.1). Mathematical tools such as nudged elastic band 

(NEB) and string methods have been commonly used to calculate the MEP.[22-26] While 

NEB is mostly used in quantum-mechanical calculations of transport properties such as 

ion diffusivity, the string method is more suitable to obtain the highly curved MEP 

dictating gas diffusion in nanoporous materials.[27-31] More specifically, the string 
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method is able to identify the diffusion pathways based on the energy gradients such that 

each path follows an exactly minimum energy route. Besides NEB and string methods, 

other mathematical tools, such as tunnel and transition-state search, cluster analysis and 

grid searching, are also promising.[11, 32] Computationally, TST is able to predict 

diffusion coefficients much more efficient than molecular simulation because it entails no 

thermal fluctuations or atomic motions. Regrettably, existing applications of TST 

methods are mostly limited to the diffusion of simple gas molecules as represented by the 

single-site Lennard-Jones (LJ) potential. Not only is the extension of the MEP calculation 

to polyatomic molecules mathematically challenging, but the computational efficiency is 

severely compromised due to the rapid increase of dimensionality in representing MEP 

for polyatomic molecules. 

In a previous work,[33] we demonstrated that, given a fine-enough three-

dimensional potential grid, the string method can be used to accurately assess the 

minimum energy path (MEP) for the diffusion of simple gas molecules in nanoporous 

materials. However, the same procedure is not directly applicable to polyatomic 

molecules because the memory of a typical desktop computer is infeasible to handle the 

external potential using a multi-dimensional grid with a sufficiently fine resolution 

essential in MEP calculations. If the external potential is calculated on-the-fly as the 

string evolves, it would be an enormous computational burden for serial implementation 

with conventional central processing unit (CPU). Different from CPU, a graphic 

processing unit (GPU) has many more arithmetic logic units (ALUs, a.k.a. threads) 

thereby it is capable of high-throughput data processing. Inspired by recent progress of 
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massively parallel GPU-acceleration of simulation methods with excellent 

performance,[34-36] we have implemented in this work a massively parallel GPU-

accelerated string method for predicting the diffusivity of polyatomic molecule in a large 

library of nanoporous materials. The algorithm speeds up the theoretical predictions of 

diffusion coefficients with the string method by a factor of ~500 in comparison with 

serial CPU implementation. Importantly, the theoretical results are in excellent agreement 

with MD simulation data for a number of materials. We also benchmark the 

computational efficiency for high-throughput screening of metal-organic frameworks 

(MOFs) for ethane/ethylene separation. More than 90% of calculations of the diffusion 

coefficient in the nanoporous materials can be completed within 30 seconds. By 

analyzing over 3080 structures from the CoRE MOF 2019 library, we are able to identify 

promising materials and desirable structural features leading to the highest membrane 

selectivity. We expect that the expanded computational capability will likely open up 

avenues for the construction of a large computational database for molecular diffusivity 

thus empowering data-driven approaches to the inverse design of nanoporous materials. 

5.2 Methods and Models 

5.2.1 Transition-State Theory 

According to the transition-state theory[21], the self-diffusion coefficient for a 

guest molecule inside a nanoporous material can be calculated from 
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where D0 is the self-diffusion coefficient, k is the hopping rate (i.e., transmission rate), 

and a is the hopping distance between two neighboring cages. At infinite dilution, the 
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hopping rate can be obtained from the minimum energy path (MEP) for the molecular 

diffusion following the Bennett-Chandler approach 
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where kB is the Boltzmann constant, T stands for the absolute temperature, ( )1/ BTk = , 

m represents the molecular mass, Vext is the potential energy due to the interaction of the 

guest molecule with the porous material. In the transition state theory, the minimum 

energy path is described in terms of a dimensionless variable s, which represents the 

normalized reaction coordinate for the molecular transition between neighboring cages. 

In general, s depends on the molecular configuration and the center of mass of the guest 

molecule. 

In this work, we assume that both the nanoporous material and the guest molecule 

have fixed structures. As a result, the reaction coordinate can be uniquely defined by six 

collective variables ( )1 6,...,s   . The first three variables are related to the molecular 

position and the other three variables represent the Euler angles of the guest molecule, i.e., 

( ) ( )1 6,..., ,s s  = r , where ( ), ,x y z=r  represents the position for the molecular center 

of mass (COM), and ( ), ,   =  describes how a polyatomic molecule is oriented 

relative to its original input structure (as shown in Figure 5.2). 
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Figure 5.2. Definition of orientation variables (viz., Euler angles) for an ethene molecule 

relative to the material frame. 

 

To implement the string method numerically, we describe the minimum energy 

path by using a series of discrete points referred to as images. At each point/image, the 

dimensionless variables s can be expressed in terms of r and ω 
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= −  are the string arc lengths for the spatial 

and rotational variables at image i, while Lr
 and L  are the arc lengths of the entire 

string for r and ω, respectively. 

In this work, we use atomistic models for both nanoporous materials and guest 

molecules. As in a standard molecular force field, the non-bonded interactions are 

described by the Lennard-Jones (LJ) potential. In addition to the short-range repulsion 

and van der Waals (vdW) attraction, the electrostatic interactions due to atomic partial 

charges are accounted for with the Coulomb potential. For atoms in the framework 

materials, the universal force field (UFF) is adopted for the LJ parameters, while the 

charge equilibration method from the RASPA software package is used to assign the 
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point charges of individual atoms.[37-39] The unit cell of each framework material is 

duplicated along the axis so that the edge length is more than two times the cutoff 

distance. Whereas the diffusion path may vary with the loadings due to gas-gas 

interactions, we expect that the effect is relatively insignificant because the free-energy 

landscape is dominated by the external energy. 

For direct comparison with simulation data, we use the force field parameters for 

polyatomic molecules and nanoporous materials the same as those used in molecular 

dynamics simulations. For most polyatomic molecules considered in this work, the 

simulation results were based on the united atom force field (TraPPE-UA) without 

electrostatic interactions.[40, 41] For nitrogen and carbon dioxide, each atom is modeled 

as a single Lennard-Jones (LJ) site with the point charge the same as that used in the 

TraPPE force field.[42] To balance the charge neutrality, a positive charge is placed in 

the center of nitrogen molecule. The DFT-derived force field is used for benzene.[43] 

Table 5.1 shows the force-field parameters for all molecules considered in this work. 

Structural properties of nanoporous materials, such as pore diameters and void fraction, 

are calculated with Zeo++.[44] Images and videos of atomistic molecular structures 

presented in this work are rendered from visual molecular dynamics (VMD) and 

Mercury.[45, 46] 
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Table 5.1. LJ parameters and partial charge for polyatomic molecules considered in this 

work 

 σ (Å) ε/kB (K) charge (e) 

CH4 (methane) 3.730 148  

CH3- (ethane) 3.760 108  

CH2- (ethene) 3.680 92.8  

C- (xylene) 3.850 20.0  

CH- (xylene) 3.695 50.5  

CH3- (xylene) 3.750 98.0  

C- (benzene) 3.470 47.81 -0.15 

H- (benzene) 2.850 7.55 0.15 

C- (carbon dioxide) 2.80 27 0.4 

O- (carbon dioxide) 3.05 79 -0.2 

N- (nitrogen) 3.31 36 -0.482 

COM (nitrogen) 0 0 0.964 

 

Given the position and configuration of a guest molecule, the external potential 

accounts for its interaction with the nanoporous material and is given by 
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where ε and σ stand for the LJ energy and size parameters, respectively, ε0 stands for the 

vacuum permeability, Ng and Nf are the number of atoms in each guest molecule and that 

from the nanoporous material. In calculation of Vext, we use the Ewald summation 

method for electrostatic interactions, and the Lorentz-Berthelot mixing rule is used for 

the energy and size parameters between different atoms. The periodic boundary 

conditions are applied to all directions with the vdW interactions truncated and shifted to 

zero at 12.9 Å. 
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5.2.2 Simplified String Method 

Within the framework of the transition-state theory (TST), both the computational 

cost and accuracy are critically dependent on the construction of the minimum energy 

path (MEP). In our previous work,[33] we demonstrated that the string method provides 

an efficient way to identify MEPs, leading to an accurate prediction of self-diffusion 

coefficients for simple gas molecules in nanoporous materials. In principle, the string 

method is equally applicable to more complicated polyatomic molecules with the 

minimum energy path obtained by evolving discrete points (a.k.a. images) along “a string” 

towards the direction of decreasing the external potential. As the number of atoms in the 

guest molecule increases, the minimum energy path becomes much more difficult to 

calculate due to the drastic increase of pairwise interactions and the images in the 

reaction coordinate. In this work, we employ a simplified yet more accurate version of 

the string method to obtain the minimum energy path.[23] Compared with the original 

string method, the simplified string method is numerically more stable and accurate, yet it 

is computationally more efficient.[23] 

According to the simplified string method,[23] the evolution of the normalized 

reaction coordinate is driven by the full gradient of the external potential 
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where t is a fictitious time used in the iteration to search for the minimum energy path, 
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and 
is  represents image i on the string. During each iteration, the guest molecule is first 

updated according to 

 ( ) ( )
( )

, , | ,       1,...,6
ext

i

i k i k t

k

V s
t t kt 




= − =



‖
 (5.6) 

where 
i  represents a molecular coordinate (position or angle) corresponding to image i, 

the partial derivative is evaluated at fictious time t, and the superscript 
‖

 represents the 

updated string. Throughout this work, the forward Euler method is used to calculate the 

derivative of the external potential with respect to 
i , and t  is set as 1×10-4. 

To identify the diffusion path, we first calculate the energy landscape for the guest 

molecule at the entrance plane via a discrete grid. The position and orientation of the 

guest molecule that minimize the external potential are used as the starting image of the 

string. Due to the periodic boundary conditions, the guest molecule has the configuration 

at the starting and ending images. Their difference lies only in the reaction coordinate, i.e., 

parameter s along the direction of the minimum energy path. The initial string is 

generated by positioning the images evenly between the starting and ending points. After 

that, each iteration updates the position and orientation of the guest molecule according to 

the normalized reaction coordinate s (eq [5.6]). After string evolution in each step, 

interpolation/reparameterization (eq [5.7]) is needed to retain the continuous shape of 

string through the nanoporous materials. 

When a guest molecule diffuses through a nanoporous material, the preferred 

molecular orientation depends on the position at the molecular center of mass (COM). As 
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a result, different images have orientations independent from each other. We only need to 

interpolate the molecular COM position of the evolved images according to the arc length 
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 is the string arc length for spatial coordinates (x, y, z) at image i 

after evolution, Lr

‖  is the entire string arc length for molecular COM position after 

evolution, and N is the number of images used in the string. To prevent the abrupt change 

of the molecular orientation, a smooth function is used for interpolating between 

neighboring images[22] 

 ( ) ( )1 11
2

i i i i


    − += − + +  (5.8) 

where δ is the parameter to control the degree of smoothness. A small number, 

41 10 −=  , is used in this work to ensure the accuracy of molecular orientation that 

minimizes the external potential. 

5.2.3 GPU Implementation 

In implementing the string method to predict the diffusivity of polyatomic 

molecules in nanoporous materials, the computational cost is mostly affiliated with the 

calculation of the external potential and its derivates. In our previous work where the 

string method was applied to a single LJ particle, the external potential was pre-

calculated by placing the guest molecule in a three-dimensional grid. The external 

potential at any point can be interpolated with a linear scheme. The procedure is not 
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directly applicable to polyatomic molecules because the grid size grows exponentially 

with the dimensionality. The calculation of the external potential as a function of position 

and orientation in a fine grid is not only computationally prohibitive, but it is also 

logistically challenging to store the potential energy data over such a large grid. Without 

the support of a supercomputer with an enormous memory, the external potential has to 

be calculated on-the-fly along with the string evolution. 

In this work, we implement the massively parallel simplified string method with 

the graphic processing unit (GPU). Figure 5.3A shows a schematic procedure. Compared 

with central processing unit (CPU), GPU is designed for high-throughput data processing 

and paralleled tasks. GPU enables the parallel calculation of the external potential on-the-

fly and is much less memory demanding because it involves only the external potential 

related to the images along the string instead of entire energy landscape for the guest 

molecule inside framework material. As the external potential and its derivates are 

calculated for each image on the string independent of each other, a paralleled 

implementation can significantly improve the speed and reduce the computational cost. 
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Figure 5.3. (A) Computational flowchart for the GPU implementation of the simplified 

string method. (B) Schematic illustration of simple and massive GPU paralleled 

algorithms for calculating the external potential for images on the string. Blue box 

represents the GPU thread. 
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We minimize the memory transfer between the host (CPU) and the device (GPU) 

in implementation of the string method. As shown in Figure 5.3, the memory transfer 

takes place only for reading the input information (such as the force-field parameters and 

the atomic structures of the nanoporous material and guest molecule), and for checking 

the convergence and outputting the final string configuration. The calculation is carried 

out only at the GPU device throughout the string evolution. The most expensive step in 

string evolution lies in the calculation of the derivatives of the external potential. Again, 

parallel implementation can significantly reduce the computational cost. As shown in 

Figure 5.3B, two different GPU paralleled algorithms have been implemented and tested 

in this work. To calculate the derivatives of the external potential, we may assign a GPU 

thread for a given set parameters (x, y, z, 𝛼, 𝛽, 𝛾). For a given set model parameters, the 

external potential is calculated on a single GPU thread by the cumulative summation of 

all pair potentials (Vij) between atom i from the polyatomic molecule (guest) and atom j 

from the nanoporous material (host). While this parallel scheme is intuitive and simple to 

implement, it does not utilize all available GPU threads especially when the number of 

images on the string is relatively small. Alternatively, we can assign one GPU thread for 

each pair of the interatomic potential (Vij) and calculate the external potential by the 

summation of Vij for all atomic pairs evaluated via multiple GPU threads. In this work, 

we use the CUDA UnBound (CUB) library, a configurable C++ template library 

developed by Nvidia for Compute Unified Device Architecture (CUDA), to carry out the 

summation of Vij on GPU.[47] With this massively parallel implementation, all GPU 

threads can be fully utilized even when the number of string images is relatively small. 
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One caveat of the massively paralleled implementation is that it leads to a higher demand 

of the memory usage. Because it stores all the pairwise interaction before summation, the 

massive GPU paralleled algorithm limits its capability handling a large set of string 

images. It is also worth mentioning that similar GPU-accelerated algorithms can also be 

developed to calculate the potential energy surface of polyatomic molecule in nanoporous 

materials and we have demonstrated such implementation for molecules modeled by 

single LJ site in our previous work.[34] The thermodynamic quantities would enable a 

rapid evaluation of properties, such as zero-coverage adsorption amount, in nanoporous 

materials for gas storage and separation. 

5.3 Results and Discussion 

5.3.1 GPU Speedup 

To benchmark different GPU-accelerated parallel methods for implementing the 

string method, we take the diffusion of an ethene molecule in MOF-5 as a model system. 

Figure 5.4 compares the computational costs for two implementations of GPU-

accelerated parallel algorithms as a function of the system size as measured in terms of 

the number of Vext calculations (# of Vext) and the number of Vij calculations (# of Vij). 

Here, the speedup factor is obtained by the comparison of the performance for Nvidia 

Tesla P100, which is used for all our GPU calculations, with that for the serial CPU 

implementation on Intel Xeon E5-2640. Both simple and massive paralleled GPU 

implementations outperform the serial CPU implementation regardless of the system size. 

The number of Vext calculations is solely determined by the number of images on the 

string, while the number of Vij calculations for each image depends on the number of 
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atoms at the guest molecule and the number of atoms from the nanoporous material. 

When the number of images on the string (equivalently, the number of Vext calculations) 

increases, the speedup factor rises exponentially for the simple GPU paralleled 

implementation until it reaches a plateau after all GPU threads are utilized. For the GPU 

device tested in this work, the speedup factor approaches an asymptotic limit when it 

processes more than 100,000 images along the diffusion pathway (viz., the string). The 

maximum speedup by the simple GPU paralleled algorithm is about 2500 folds of the 

CPU serial implementation. 

 

Figure 5.4. Comparison of the computational time versus the number of the total 

potential (Vext) and pair potential (Vij) evaluations for predicting ethene diffusion in MOF-

5. The speedup factor is benchmarked with CPU calculations conducted on Intel Xeon 

E5-2640. All GPU calculations are carried out on Nvidia Tesla P100. 

 

For the massive GPU paralleled implementation, the computational cost increases 

exponentially with the number of string images irrespective of the system size. Because 

the fully paralleled algorithm maximizes the usage of all active GPU threads, the speedup 
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factor, which is around 500, is almost independent of the number of string images. As 

mentioned above, the massive GPU paralleled implementation consumes more memory 

space than the simple GPU paralleled implementation (as shown in Figure 5.5). Thus, the 

upper limit for the number images that can be processed by the massive GPU paralleled 

implementation is much lower than that for simple GPU paralleled implementation. For 

most nanoporous materials considered in this work, the unit cell size varies from 10 Å to 

30 Å, such that a string with hundreds of images would be sufficient to preserve all 

atomistic details along the minimum energy path (MEP). As a result, the massive GPU 

paralleled implementation has a better performance and thus used in all the following 

calculations. 

 

Figure 5.5. Percentage of GPU memory usage versus the number of Vext calculations for 

ethene diffusion in MOF-5. 
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5.3.2 Calibration with MD simulation 

We see above that excellent computational performance can be achieved by 

massively parallel GPU-accelerated implementation of the string method. But how 

accurate is the theoretical procedure for predicting diffusivity coefficients in comparison 

with conventional methods? In this section, we compare our theoretical predictions for 

the diffusion coefficients of 8 polyatomic molecules in MOF-5, a well-studied metal 

organic framework (MOF), with those from molecular dynamics (MD) simulations. As 

mentioned before, our theoretical predictions are based on the transition-state theory 

(TST) with the minimum energy path (MEP) calculated from the massive GPU paralleled 

implementation of the string method. 

As shown in Figure 5.6A, the diffusion coefficients calculated in this work agree 

well with those from MD simulation over a broad range of values. The good agreement 

affirms the accuracy of the minimum energy path obtained from the GPU-accelerated 

calculations. Overall, TST predicts the self-diffusivity of various polyatomic molecules in 

MOF-5 slightly higher than that from MD simulation. The systematic error is introduced 

probably because TST neglects the barrier recrossing in molecular hopping.[48] The 

barrier recrossing of gas molecule becomes more significant especially at finite loadings. 

In this case, the dynamically corrected TST (dcTST) can better estimate the hopping rate 

(kdcTST=κkTST) by correcting the recrossing event with the transmission coefficient (κ).[49, 

50] Another possible reason is that most MD simulations are not carried in the single 

molecule limit thus the simulation results are affected by intermolecular interactions 

between the guest molecules. In principle, TST can be used to predict diffusivity 
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coefficients at finite gas pressure if MEP is replaced by the free-energy landscape. 

Alternatively, the self-diffusivity at finite loading can be calculated from the diffusivity 

coefficient at infinite dilution in combination with the excess-entropy scaling method.[33, 

51] It is worth mentioning that, in comparison with MD, one of the most significant 

advantages of TST is computational efficiency. While it takes up to several thousands of 

CPU hours to simulate the diffusion coefficient of CO2 (at the scale of 10-9 m2/s), a 

relatively small polyatomic molecule, the same calculation can be finished in this work 

within 30 seconds for each material by using a single GPU card. Although both gas 

molecules (guest) and framework materials (host) are assumed to be rigid in this work, 

the string method can also be used to obtain the minimum energy path when flexibility of 

gas molecules and framework is significant such as large molecule squeezing through 

tight aperture. In the latter case, the computation will be more demanding because we 

need to consider both the guest-host interactions and the intramolecular potential. 
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Figure 5.6. (A) Comparison of diffusion coefficients for 8 polyatomic molecules in 

MOF-5 predicted by the transition-state theory (TST) and by molecular dynamics (MD) 

simulations. The MD results are from the literature.[16, 52-55] (B) The minimum energy 

paths calculated from the GPU paralleled implementation of the simplified string method 

versus the reaction coordinate. Here the numbers 1-7 stand for images along the 

minimum energy path in MOF-5 for the ethene molecule. (C) The positions and 

orientations of the ethene molecule corresponding to the 7 images labeled in (B). (Ethene 

is modeled as a diatomic molecule according to TraPPE-UA force field. The molecular 

structures of ethene in (C) are only for illustration purpose). 

 

Figure 5.6B presents the minimum energy paths (MEPs) for 8 polyatomic 

molecules tested in this work. For small molecules such as ethane, carbon dioxide and 

propane, their energy landscapes along the diffusion path have a similar shape and exhibit 
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only slightly different potential energy barriers, suggesting a similar hopping pattern for 

the diffusion of small molecules in MOF-5. According to the molecular orientation along 

the MEP shown in Figure 5.6C, the center of mass (COM) for the ethene molecule stays 

close to the metal cluster and organic linker in MOF-5 instead of going through MOF-5 

in the center of pore in order to maintain the minimized hots-guest interactions. When the 

ethene molecule enters across the pore, its orientation also changes so that the smaller 

edge of the molecular plane would be directed toward the angle minimizing the external 

potential. 

Figure 5.6B shows the minimum energy paths (MEPs) for benzene, paraxylene 

and orthoxylene. These paths are significantly different from those for smaller molecules 

such as ethene due to the molecular size. Even when comparing the potential energies 

and molecular orientation along MEPs of large molecules, they are quite different from 

each other because, for large molecules, even slight modifications (add/relocate) on the 

functional group would lead to significant difference in their preferred orientation at the 

energy barrier and rotational and translational activation energy along the reaction 

coordinate. In Figure 5.7, we compare the position and molecular orientation of p-type 

xylene with those corresponding to o-type xylene along the MEP in MOF-5. As 

discovered in NMR studies and by MD simulation,[56] the p-type xylene molecule, 

especially its methyl group, is located around the pore center when the hopping takes 

place between neighboring cages (shown in Figure 5.8). For the o-type xylene, the COM 

position is close to the metal cluster (viz., at the corner of pore) before hoping to the 

neighboring cages. In addition, the molecular orientation of p-type xylene changes much 
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less than o-type xylene along the MEP because p-type xylene has higher activation 

energy due to the rotational move as shown in Figure 5.7. 

 

Figure 5.7. Molecular positions and orientations of p-type xylene (A) and o-type xylene 

(B) in MOF-5 along the minimum energy path. (P-type and o-type xylene are modeled as 

eight united group sites according to TraPPE-UA force field. The detailed guest 

molecular structures are for illustration purpose only). Black, red and blue dashed line 

represents the center of pore in MOF-5, center of mass for p-type xylene when crossing 

the pore and center of mass for o-type xylene when crossing the pore, respectively. 
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Figure 5.8. Molecular position and orientation of p-type xylene (A) and o-type xylene (B) 

in MOF-5 when hopping across pore (along x direction) along the minimum energy path. 

(P-type and o-type xylene are modeled as eight united group sites according to TraPPE-

UA force field. The detailed guest molecular structures are for illustration purpose only). 

 

5.3.3 High-Throughput Screening 

Efficient prediction of diffusivity will likely open up opportunities for high-

throughput screening and, eventually, for the inverse design of nanoporous materials for 

practical applications such as gas separation. Here, we demonstrate the capability of 

massively parallel GPU-accelerated string method for high-throughput screening of 

MOFs useful for ethane/ethene separation, a challenging yet important task in the 

chemical industry. Since ethane and ethene molecules have similar physical 

characteristics such as the size and shape, previous studies indicate that MOFs with pore 

limit diameter (PLD) between 3 Å and 4 Å are most efficient in terms of selectivity.[57] 

We use PLD as an initial criterion to select 3080 candidates from the computational-

ready, experimental (CoRE) MOF 2019 database which covers over 14 000 porous 

structures.[58] 
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Figure 5.9. (A) Distribution of the computational time in high-throughput screening of 

3080 MOF candidates for the separation of ethane/ethene gases at room temperature. 

Distributions of (B) the pore limit diameter (PLD) and (C) largest cavity diameter (LCD) 

of those MOFs with the highest diffusion selectivity. 

 

As shown in Figure 5.9A, the diffusivity calculation for most MOFs (more than 

90%) can be accomplished within less than 30 seconds, which is significantly faster than 

conventional methods such as molecular dynamics simulation (up to hundreds of CPU 

hours per material).[33] The massively parallel GPU-accelerated string method is also 

much faster than emerging methods that search only the tunnel space or the transition 

state with the polyatomic molecules represented by a single-site LJ model, which 

typically cost ~0.5 CPU hour per material.[10] The computational cost of the string 
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method depends not only on how many iterations it would take to identify the minimum 

energy path but also on the number of atoms in the system including those from both the 

guest molecule and the framework material (host). Ethene (3.23×4.18×4.84 Å) and 

ethane (3.81×4.08×4.82 Å) have similar molecular shape and size. Because both are 

modeled as diatomic molecules in the TraPPE force field, the computational costs of 

finding the minimum energy paths for ethane and ethene are almost identical.[40] 

In Figure 6B and C, we present the distributions of the pore limit diameter (PLD) 

and the largest cavity diameter (LCD) for MOFs in the database with top 0.5% diffusion 

selectivity for the separation of ethane/ethene gases at room temperature. Here, the 

diffusion selectivity is calculated from the ratio of diffusivity, ,1/2 0,1 0.2/diffS D D=  and 1 

and 2 refers to ethene and ethane, respectively. For materials in the CoRE MOF 2019 

database, the PLDs are evenly distributed between 3 Å and 4 Å, whereas the distribution 

of MOFs with the highest diffusion selectivity has a notable peak between 3.4 Å and 3.8 

Å. Although the range of the PLD from 3.4 Å to 3.8 Å is significantly smaller than the 

kinetic diameter of ethane (4.443 Å) and ethene (4.163 Å) molecules derived from the 

second virial coefficients, it falls into the perfect range for separating ethene from ethane 

according to the molecular size and shape. The peak value (3.4-3.8 Å) is larger than the 

smallest edge of an ethene molecule (3.28 Å) but smaller than that of ethane (3.81 Å).[57] 

Compared with the LCD distribution of MOFs in the background, which follows 

approximately a normal distribution with the mean between 4.5 Å and 5 Å, MOFs with 

top 0.5% diffusion selectivity has a slightly higher mean, between 5 Å and 5.5 Å, in the 

LCD distribution. According to our previous work,[29, 59, 60] a nanoporous material 
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with the LCD larger than the molecular size would impose more attraction along the 

minimum energy path, which is beneficial to achieve the diffusivity coefficient at the 

scale of practical interest. 

 

Figure 5.10. (A) Energy landscape along the minimum energy path for ethane and ethene 

in YIGFIF, a nanoporous material with the highest diffusion selectivity for the separation 

of ethane and ethene gases at 300 K. (B) The molecular position and orientation of an 

ethene molecule along the minimum energy path in YIGFIF. 

 

In the Table 5.2, we present the diffusion coefficients and structural properties of 

top 10 MOFs with the highest diffusivity. Among all MOFs investigated in this work, 

YIGFIF has a diffusion selectivity of 57.69, which is the highest for the separation of 

ethane/ethene at 300 K. Figure 5.10 shows the energy landscape of ethane and ethene 

molecules along the minimum energy path in YIGFIF. For ethane diffusing along the 

MEP in YIGFIF, the COM position is almost identical to that for ethene. As shown in 

Figure 5.10B, the rotation of an ethene molecule inside YIGFIF is restricted due to strong 

confinement along the MEP in YIGFIF (PLD: 3.38 Å and LCD 5.02 Å). However, the 

nanoporous material exerts a repulsive energy on ethane at the transition state much 
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stronger than that on ethene. The larger diffusion barrier may be attributed to the 

minimum cross-section area of YIGFIF (~3.38 Å ×4.94 Å), which can be utilized to sieve 

ethane and ethene with an excellent diffusion selectivity. Although YIGFIF is the most 

promising MOF candidate for the separation of ethane/ethene as the membrane materials 

according to our screening, it has not yet been experimentally tested for any practical 

applications.[61] Compared with conventional ethene-selective adsorbent materials 

(selectivity up to 48.7), membrane separation with YIGFIF would be much less energy-

intensive for industrial application with around 20% higher separation selectivity.[57, 62] 

For the state-of-art ethane-selective adsorbent materials (selectivity up to 4.4), YIGFIF 

can achieve a much higher separation selectivity of ethane/ethene.[63] 

Table 5.2. Diffusion coefficients and structural properties of MOFs with the highest 

diffusion selectivity for ethane/ethene separation 

Ref Code 
2 4 2 6, /diff C H C HS  PLD 

(Å) 

LCD 

(Å) 

void 

fraction 
2 4C HD  

(m2/s) 

2 6C HD  

(m2/s) 

YIGFIF 57.69 3.376 5.022 0.521 2.12×10-11 3.68×10-13 

SUPSIG02 53.67 3.883 5.892 0.522 2.41×10-12 4.50×10-14 

OGIBOV 50.00 3.663 4.920 0.428 1.45×10-12 2.90×10-14 

WIXRUQ 37.87 3.644 5.220 0.400 4.09×10-12 1.08×10-13 

YAQZEX 34.22 3.356 5.113 0.436 9.17×10-11 2.68×10-12 

WUNTUV 28.85 3.469 5.530 0.476 4.27×10-13 1.48×10-14 

WEDXAG 24.81 3.751 5.270 0.374 2.58×10-12 1.04×10-13 

GAWCUF 24.17 3.203 5.312 0.461 3.19×10-13 1.32×10-14 

YOFXEY 23.86 3.801 5.346 0.463 9.21×10-12 3.86×10-13 

TEWFOS 23.64 3.413 5.270 0.449 1.17×10-11 4.95×10-13 

 

5.4 Conclusion 

In this work, we have implemented a GPU-accelerated string method to calculate 

the minimum energy path (MEP) for polyatomic molecules in nanoporous materials. The 

MEP calculation is essential for predicting diffusivity using the transition-state theory. 
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Both simple GPU parallel algorithm and massive GPU parallel algorithm are tested and 

benchmarked with serial CPU calculations. Compared with the serial CPU 

implementation on Intel Xeon E5-2640, GPU implementations on Nvidia Tesla P100 

may speedup the diffusivity calculation up to ~2500 folds via the simple GPU parallel 

algorithm. The outstanding performance is attributed to massive threads available on 

GPU and the minimized memory transfer between CPU (host) and GPU (device). 

Although the simple GPU paralleled implementation can achieve up to three orders of 

magnitude speedup compared to the serial CPU implementation, the speedup factor 

depends on the number of images on the diffusion pathway (viz. the reaction coordinate 

represented by a string) and is much lower than that could be achieved by massive GPU 

paralleled implementation, especially when the number of images on the string is 

relatively small due to the insufficient usage of GPU threads. For massive GPU parallel 

implementation, a constant speedup factor around 500 is achieved regardless of the 

number of images on the string, an indication of excellent parallelization for MEP 

calculations. Because most nanoporous materials have the largest edge in the unit cell 

less than 30 Å, the massive GPU paralleled implementation of the string method is more 

advantageous for calculation of MEP for polyatomic molecules in nanoporous materials. 

The diffusion coefficients of guest molecules in nanoporous materials can be 

calculated from MEP via the transition-state theory (TST). The results are compared with 

the diffusion coefficients from molecular dynamics (MD) simulation for 8 polyatomic 

molecules in MOF-5. Excellent agreement between theory and simulation is achieved, 

further indicating the accuracy of MEP obtained by the GPU-accelerated string method. 
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Because TST underestimates the diffusion barrier and recrossing of molecular hopping, 

and because most MD simulations are not run in the single-molecule limit, the diffusivity 

from TST is slightly larger than that from simulation. While the diffusion of small 

molecules (e.g., ethene, nitrogen and carbon dioxide) in MOF-5 shares a similar hopping 

pattern, large molecules such as p-type xylene and o-type xylene have significantly 

different trajectories for their positions and orientations along the minimum energy path. 

Different from MD simulation whereby diffusivity is calculated from the statistical 

average of molecular movements in random, the minimum energy path calculated from 

GPU-accelerated massively parallel string method offers the microscopic details of 

molecular hopping that can be utilized to guide the rational design of nanoporous 

materials for the separation of polyatomic molecules. 

Finally, we have demonstrated the capability of massively parallel GPU-

accelerated string method for high-throughput screening MOFs for the separation of 

ethane and ethene, two polyatomic molecules of similar size and shape that are of 

tremendous importance for the chemical industry. In the high-throughput screening 

calculations, 3080 MOFs are selected from computational-ready, experimental MOF 

database CoRE MOF 2019 according to their pore limit diameters (PLDs). The massively 

parallel GPU-accelerated string method is used to calculate the diffusion selectivity for 

ethane/ethene separation. The diffusivity calculation can be completed within 30 seconds 

per material for more than 90% of MOFs, which is significantly faster than MD 

simulation (cost ~ hundreds of CPU hours per material). The GPU calculation 

outperforms even emerging methods such as TuTraSt (cost ~ 0.5 CPU hour for a single 
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LJ site).[10, 33] While the calculation of slow diffusion behavior (less than 1×10-12 m2/s) 

is computationally prohibitive for molecular dynamics, the computational cost for the 

string method does not change with the scale of the diffusion coefficient. According to 

our high-throughput screening calculations, MOFs with the pore limit diameter (PLD) 

from 3.4 to 3.8 Å and the largest cavity diameter (LCD) between 5 and 5.5 Å can 

efficiently separate ethene (with the molecular dimensions of 3.23×4.18×4.84 Å) from 

ethane (with the molecular dimensions of 3.81×4.08×4.82 Å) by their molecular sizes and 

shapes. YIGFIF (PLD= 3.38 Å and LCD=5.02 Å) from the CoRE MOF 2019 database 

has been identified with the highest diffusion selectivity for ethene/ethane separation, 

with a theoretical selectivity that can reach up to 57.69 at 300 K. 

The GPU-accelerated massively parallel implementation of string method enables 

efficient and accurate calculation of diffusion coefficients for polyatomic molecules in 

nanoporous materials. We expect that the computational platform will be generally useful 

for high-throughput screening of nanoporous materials, for example, as the membrane for 

the separation of polyatomic molecules. It can also be used to construct high-fidelity 

properties database for the inverse design of nanoporous materials. 
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Chapter 6. Towards the Inverse Design of MOF Membranes for Efficient D2/H2 

Separation by Combination of Physics-Based and Data-Driven Modeling 

Hydrogen isotopes are useful for scientific research, energy generation and 

medical treatment. However, their industrial production is expensive because 

conventional processes for separation of hydrogen isotopologues are mostly based on 

energy-intensive macroscopic procedures with extremely low separation efficiency. 

Metal-organic frameworks (MOFs) provide a promising route to D2/H2 separation by 

leveraging their well-defined chemical and structural features. In this chapter, we report 

high-throughput screening of 12,723 experimentally synthesizable MOF membranes for 

D2/H2 separation by predicting gas adsorption and transport properties underpinning the 

separation efficiency. A membrane performance score is introduced to identify top 

ranked MOFs with the best selectivity and capacity. The extensive data generated from 

the physics-based modeling enables application of machine learning methods to predict 

desirable features of novel nanoporous materials for more efficient separation of 

hydrogen isotopes. 

6.1 Introduction 

Isotopologues are chemical species with the same molecular structure but a 

different number of neutrons in certain atom types. Because of their unique properties, 

hydrogen isotopologues have been extensively used in scientific research, energy 

production and medical treatment, ranging from neutron scattering[1, 2], isotopic 

tracing[3-5] and nuclear fusion reaction[6], to medical imaging and cancer therapy[7]. As 

the only difference is the number of neutrons, hydrogen isotopologues have virtually 
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identical chemical properties, making their separation at industrial scale exceedingly 

difficult. Conventional processes like cryogenic distillation and thermal diffusion suffer 

from low separation efficiency (e.g., the selectivity of D2/H2 is only about 1.5 at 24 K) 

and intensive energy consumption[8]. Whereas newly proposed technologies (e.g., 

atomic vapor laser isotope separation[9] and magnetically activated and guided isotope 

separation[10]) can achieve higher separation selectivity and consume less energy, their 

capacity for D2/H2 separation is severely limited thus hampering industrial applications. 

Recently, metal-organic frameworks (MOFs) have been proposed for more 

efficient separation of hydrogen isotopes by utilizing quantum sieving effects. The 

mechanism was initially discovered by Beenakker and coworkers in 1995 and can be 

attributed to the disparity in the zero-point energies of isotopologues [11]. For gas 

separation with porous materials, the quantum sieving effect is most pronounced when 

the difference between the pore size and the diameter of gas molecules becomes 

comparable with the molecular de Broglie length. Because a hydrogen isotopologue 

shows a smaller effective size and a higher binding energy as the number of neutrons 

increases, a porous material adsorbs a heavier isotopologue more favorably, and makes it 

diffuse faster, than a lighter isotopologue. By tuning the difference in the zero-point 

energies of adsorbed hydrogen isotopologues, FitzGerald et al. demonstrated that 

quantum sieving could lead to D2/H2 selectivity of 1.5 at a temperature as high as 150 

K[12]. Because the good performance is mainly attributed to the difference between the 

binding energies of hydrogen isotopes, the procedure is also known as chemical-affinity 
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quantum sieving (CAQS). A further improvement of the separation performance could be 

achieved by combing different quantum sieving mechanisms[13]. 

MOFs have been recognized as one of the most promising nanoporous structures 

for gas storage and separation. Compared with alternative nanoporous materials like 

activated carbons or zeolites, MOFs have the advantages of tunable pore size, geometry, 

and local chemical composition[14-17]. Besides, MOFs are particularly promising for 

D2/H2 separation not only because of ultrahigh porosity and large specific surface area 

but also for the wide varieties of metal clusters and organic linkers that can be finely 

tuned to amplify the quantum sieving effects[18]. Previous experimental research and 

molecular dynamics (MD) simulation have shown that MOF structures can be utilized to 

separate D2/H2 with a selectivity up to 41.4 at 20 K[13, 19-21]. In addition, a flexible 

MOF (MIL-53) has been investigated for separation of D2/H2 at 40 K; a selectivity of 

13.6 was achieved by controlling the “breathing effect”[22]. Impressive selectivity for 

D2/H2 separation was also predicted for other sub-nanometer structures such as carbon 

nanotubes (CNTs)[23, 24], albeit they are less promising for industrial applications due to 

difficulties in materials synthesis[18]. 

Whereas quantum sieving effects are sensitive to the microscopic details of gas-

pore interactions, such effects have not been systematically investigated and their 

influence on D2/H2 separation remains largely unknown. Previously[25, 26], we studied 

separation of isotopic methanes by high-throughput screening of both hypothetical and 

experimentally attainable MOF databases based on classical density functional theory 

(cDFT) calculations. In this work, we demonstrate that similar procedures can be 
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generalized to account for the quantum sieving effects by using the Feynman-Hibbs (FH) 

method[27]. Through theoretical prediction of Henry’s constants and self-diffusivity 

coefficients, the physics-based models allow us to evaluate 12,723 experimentally 

synthesizable MOF structures for D2/H2 separation by using the membrane performance 

score. The extensive properties data generated from physic-based modeling provide a 

sound basis for application of machine-leaning methods to identify important features of 

nanoporous materials that may achieve both high selectivity and separation capacity. 

6.2 Methods and Models 

6.2.1 Molecular Model 

We consider D2/H2 separation with various MOFs at 77 K, a cryogenic 

temperature commonly used for characterization of porous materials by nitrogen 

adsorption. The latest computation-ready, experimentally synthesizable MOF database 

(CoRE 2019) is used for high-throughput screening and data generation[28]. Different 

from those in hypothetical MOF databases, all MOF structures in the CoRE database 

have been experimentally synthesized, thus paving the way for experimental verification 

of theoretical predictions. 

 At the cryogenic condition, hydrogen molecules exhibit non-negligible quantum 

effects that cannot be captured with classical methods. In this work, we use the Lennard-

Jones (LJ) model to describe the classical component of intermolecular interactions. The 

quantum effects are accounted for by modifying the pair potential with the 4th-order 

approximation to the Feynman-Hibbs (FH) equation[27] 
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where r denotes the center-to-center distance, LJU  represents the 12-6 LJ potential, 

1/ BTk = , kB is the Boltzmann constant, T is the absolute temperature,  is the reduced 

Planck constant, / ( )i j i jm mm m = +  is the reduced mass for the interacting particles i 

and j with mass im  and 
jm , respectively. In eq (6.1), the number of primes represents the 

order of derivatives of the LJ potential with respect to the distance. The LJ parameters, 

0.296 nm =  and 34.2 K/ Bk = , are the same for H2 and D2[29]; the isotopologues are 

distinguished only by the quantum corrections related to their molecular weights. The 

universal force field (UFF) is used to represent all MOF atoms and a cutoff distance of 

12.9 Å is applied to the LJ potential[30]. The Lorentz-Berthelot mixing rule is employed 

for describing interaction between different atoms. 

Figure 6.1 illustrates the pair potential between hydrogen isotopologues according 

to the quantum-corrected LJ models (Supporting Information). While the 4th order 

approximation of the FH equation is computationally more expensive than the quadratic 

approximation commonly used in molecular simulations, addition of the higher order 

terms is important to fully capture the quantum effect in particular for hydrogen gases in 

a confined space[27]. As temperature falls, we may see more discrepancy among the 

intermolecular potentials for different hydrogen isotopologues because the quantum 

effect becomes more pronounced. Consistent with a previous report by Beenakker et 
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al[11], a heavier hydrogen isotopologue has a smaller size but a higher attractive energy 

than a lighter isotopologue. The size difference can be attributed to the fact that a heavier 

isotope has a narrower translational wave function thus a smaller de Broglie wavelength. 

On the other hand, the energy difference arises from the disparity in the zero-point 

energies of H2 and D2 molecules. 

 

Figure 6.1. Classic and quantum-corrected intermolecular potential for H2, D2 and T2 at 

77 K and 20 K. 

 

6.2.2 Ideal Adsorption Selectivity 

We evaluate the separation efficiency for D2/H2 adsorption in MOF materials 

based on the ideal adsorption solution theory (IAST)[31]. The adsorption selectivity is 

thus defined as the ratio of Henry’s constant for the heavier isotopologue relative to that 

for the lighter isotopologue: 

 
,2 ,1/IM

h hK K =  () 

where superscript “IM” stands for ideal systems, i.e., gas adsorption at extremely low 
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pressure such that interactions between gas molecules are negligible. For gas adsorption, 

Henry’s constant is calculated from 

 ( )
1

exp ext

h

B

K d
k TV

 = −  r r  () 

where r stands for the position of a gas molecule, V  is the system volume, and ( )ext r  

represents the external potential for a gas molecule at r due to its interaction with the 

MOF atoms. With the quantum effects accounted for by the FH equation, we have 

different adsorbate-adsorbent interaction energies for H2 and D2 thereby different Henry’s 

constants. 

6.2.3 Ideal Membrane Selectivity 

MOFs can be used for D2/H2 separation either as an adsorbent or as a porous 

membrane. In Henry’s law region (viz., at low pressure), the membrane selectivity is 

defined in terms of Henry’s constant and the self-diffusivity coefficient of gas molecules 

at infinite dilution[17, 32, 33]: 

 
h,2 0,2 2

h,1 0,1 1

IM
K D P

k
K D P

= =  () 

where permeability P is defined as the product of Henry’s constant, Kh, and the self-

diffusivity coefficient at infinite dilution, D0[33]. Unlike adsorption selectivity, the 

membrane selectivity depends on both the thermodynamic and the transport properties of 

individual gas compounds. 

As reported in an earlier work[34], the diffusion coefficient at infinite dilution can 

be predicted by using the transition-state theory (TST): 
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where a stands for the distance between the equilibrium positions of the gas molecule in 

two neighboring cages (the initial and final states of transmission), and v  is the gas 

hopping rate. The latter can be calculated from the potential energy along the diffusion 

path[35] 
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where m denotes the molecular mass, the integral is performed along the reaction 

coordinate of gas hopping, and superscript * represents the transition state of a gas 

molecule hoping between neighboring cages. Similar to our previous work[26], the 

minimum energy path can be calculated by using a simplified string method. Although 

the above procedure is based on the classical theory, it has been shown that the quantum-

corrected potential is able to capture not only the equilibrium quantum sieving effect but 

also the kinetic quantum sieving consistent with experimental observations[36, 37]. 

It should be noted that, in addition to quantum sieving, quantum tunneling may 

also contribute to gas transport at the cryogenic temperature. In principle, we can take 

into account the quantum tunneling effect by adding a tunneling correction factor Q to the 

right side of eq (6.5), 

 ( )e
e

Q e


  
 

− −

−
= −  () 

where a = E / k
B
T , ( )

1/222 2 /mE ha = , E is the energy barrier for gas diffusion, 2a 
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stands for the hopping distance, and h represents the Planck constant[38]. It has been 

shown that quantum tunneling is significant for H2/D2 separation only when the energy 

barrier is much larger than the difference between the zero-point energies[38]. Because 

such condition is rarely met for D2 and H2 in MOF materials, we neglect the correction 

factor affiliated with the quantum tunneling effect for all calculations reported in this 

work. 

6.2.4 Robeson Boundary 

The Robeson boundary provides an empirical correlation between permeability 

and the separation factor (the ratio of permeability). Although there are no empirical 

parameters available for D2/H2, empirical parameters of the Robeson boundary for H2/N2 

are used in this work since they have the closest molecular parameters as hydrogen 

isotopes. These parameters are all obtained from Robeson’s original work[39]. 

The Robeson upper bound can be expressed as following: 

 n

i ijP k=  () 

where iP  is the permeability of spice i , k  is an empirical parameter related to the 

solubility and membrane properties, n  is an empirical parameter related with the 

molecular size, and ij  is the permeability ratio of species i  and j (a.k.a. separation 

factor). In eq (6.8), n  can be calculated in the following way: 

 
1.127916

j i

n
d d

−
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−
 () 

where id  is the molecular size of spice i . The numerator on the right-hand side of eq (6.9) 

is fitted from Robeson’s original work.  
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In this work, we assume that the molecular size is the same as the LJ diameter. 

The value of parameter k  is predicted from the Freeman equation: 
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where S  is the solubility constant, a  has a universal value of 0.64, b  is 11.5 for glassy 

polymers membrane used in this work and f  has a value of 12,600 cal/mol. The 

solubility constant can be expressed: 

 ln 0.023( / )i i BS b k= +  () 

where   is the LJ energy parameter, and b=14.4557 is obtained from Robeson’s original 

work. 

6.2.5 Machine Learning Models 

In addition to physics-based models described above, we use data-based models 

(a.k.a. machine learning methods) to identify the structural features of MOF membranes 

with good separation efficiency. Specifically, we have tested the performance of four 

types of machine learning models that may be able to reveal the desirable features of 

nanoporous materials for H2/D2 separation: support-vector machine (SVM), random 

forest (RF), gradient-boosted trees (GBT) and deep neural network (DNN). SVM is one 

of the most prevailing machine learning models for classification; it projects the original 

data into a higher-dimensional space with the help of hyperplane construction34, 35. In 

comparison with alternative models, SVM is expected to achieve a better distinction of 

different MOFs within the original data because the kernel method is able to well 

recognize data patterns. RF is a machine-learning model consisting of a large amount of 
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decision trees (“if-then” logic consequence) to extract useful information from the input 

data[40, 41]. The final result given by RF is the average vote of all decision trees in the 

model. In general, RF is able to avoid overfitting better than a single decision tree 

because the vote of biased decision trees would be averaged in the end. Similar to RF, 

GBT employs an ensemble of decision trees (weak learners) to achieve a strong learning 

power. Different from RF, decision trees in GBT are shallow trees with high bias and low 

variance instead of fully grown decision trees. Finally, DNN is well known for its 

excellent performance in predicting new features with a large number of input parameters. 

It is based on the idea of artificial neural network (ANN) that mimics the function of a 

human brain[42-44]. While ANN uses only a layer of neurons (transfer functions), DNN 

incorporates multiple layers of neurons thereby having a better interpretation power. 

For all machine learning models considered in this work, we optimize the 

parameters with the k-fold cross-validation method. The procedure has a single parameter 

(k) that is referred to the number of groups that a given data sample is to be split into. In 

this work, we take a k-fold value of 17, the first prime number that is divisible to the 

entire dataset. 

6.3 Results and Discussion 

6.3.1 Adsorption Versus Permeation 

Nanoporous materials can be used as an effective medium for gas separation 

based on either adsorption or permeation. The latter often achieves a higher selectivity 

because permeation in a membrane is related to both thermodynamic and transport 

properties. However, computational studies of MOFs for gas separations are mostly 
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focused on the adsorption behavior because calculation of transport properties renders 

additional challenges. In a previous work[34], we proposed an efficient theoretical 

procedure to calculate the diffusivity by using a simplified string method to calculate the 

minimum-energy path. The theoretical procedure allows us to calculate adsorption 

isotherms and diffusion coefficients with negligible computational cost in comparison 

with conventional methods. 

Figure 6.2 shows the selectivity for a large library of MOF materials (CoRE 2019) 

versus their capacity for D2/H2 separation by adsorption and by membrane permeation at 

77 K. For separation of the hydrogen isotopologues by gas adsorption, the selectivity 

quickly declines as Henry’s constant increases, implying that MOFs with high D2/H2 

selectivity are compromised by a low separation capacity. Approximately, the ideal 

adsorption selectivity falls exponentially with Henry’s constant, and the latter provides a 

direct measure of adsorption capacity. Conversely, membrane separation exhibits no 

negative correlation between the selectivity and capacity. As shown in Figure 6.2B, most 

MOFs are able to achieve an ideal membrane selectivity significantly higher than that 

suggested by the Robeson boundary (details are provided in Supporting Information). 

The high selectivity values indicate that a MOF membrane would have a much better 

performance than a conventional polymer membrane for separating D2/H2. Figure 6.2B 

also shows that most MOFs are able to achieve kIM much higher than the classical limit of 

the Knudsen diffusion (~ 0.7), albeit a few MOFs have kIM around 0.7 because of the lack 

of sufficiently small pores for the kinetic quantum sieving effect to take place. 
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Figure 6.2. (A) Ideal selectivity for D2/H2 separation at 77 K by MOF adsorption versus 

Henry’s constant for H2. The points are calculated from eq (6.2) for 12,723 MOFs from 

the CoRE 2019 library, and the solid line is empirically fitted with 
3694000139.7 1.33IM Ke = + . (B) Ideal membrane selectivity verse permeability of H2 at 77 

K. The points are predicted from eq (6.4) for the same CoRE MOF materials, and the 

solid line represents the Robeson boundary. The color in (B) denotes the percentile of 

Membrane Performance Score (MPS): the red and blue colors represent the highest and 

lowest MPS, respectively, and the green color represents the intermediate MPS. 

 

Table 6.1 lists the properties of top 5 MOFs from the CoRE 2019 library with the 

highest membrane selectivity kIM. In Supporting Information (Table 6.2), the selectivity 

and the structural features of top 3 MOFs identified according to kIM are compared with 

other MOFs that have been reported in the literature for D2/H2 separation. The selectivity 

of MOFs identified in this work is higher than those previously reported nanoporous 

materials by almost one order of magnitude. As discussed later, the top performing MOFs 

significantly enhance the kinetic quantum sieving (KQS) effect owing to their small pore 

limit diameters. 
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Table 6.1. Properties of top MOFs for D2/H2 separation at 77 K identified according to 

their ideal membrane selectivity kIM ranking. 

MOF 
P(D2) 

(barrer) 

D0(D2) 

(m2·s-1) 

Kh(D2) 

(mol·m-3·Pa) 

kIM 

(D2/H2) 

ROQFUA07 1.689×107 5.47×10-18 1.03×109 421.5 

ROQNES05 4.506×107 6.75×10-18 2.23×109 413.6 

ROQFUA08 3.943×107 1.35×10-17 9.77×108 360.6 

ZOJWAY 9.232×105 2.54×10-15 1.22×105 110.7 

ECIVUH 1.057×1010 8.93×10-12 3.96×105 44.4 

 

Table 6.2. Structural features of MOFs with the highest selectivity identified in this work 

and those reported by others. 

MOF PLD (Å) 
LCD 

(Å) 

Void 

Fraction 

Selectivity  

ROQFUA07 2.587 4.936 0.4694 421.5 (77 K) This Work 

ROQNES05 2.607 4.937 0.4758 413.6 (77 K) This Work 

ROQFUA08 2.600 4.954 0.4712 360.6 (77 K) This Work 

SIFSIX-3-Zn 3.787 4.208 0.4230 53.8 (20 K) Literature[45] 

MIL-53 2.6-8.5   13.6 (77 K) Literature[22] 

 

6.3.2 Structural Features of Highly Selective MOF Membranes 

To understand molecular mechanisms underpinning the efficiency of D2/H2 

selectivity, we have calculated the geometric features of the MOFs with top 5% ideal 

membrane selectivity, i.e., the largest cavity diameter (LCD), the pore limit diameter 

(PLD), and the void fraction. All geometry calculations are based on Zeo++ software 

with UFF[46]. As MOF membranes are able to achieve better performance than MOF 

adsorbents for D2/H2 separation in terms of both selectivity and capacity, the top ranked 

MOF adsorbents are not considered in our structural analysis. 

Figure 6.3 shows the distributions of the pore limit diameter (A), the largest 

cavity diameter along the diffusion path (B), and the void fraction (C) of the top ranked 

MOF membranes. Distributions of the void volume and surface area of these materials 
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are presented in Figure 6.4. In Figure 6.3A, we see a significant enhancement on the PLD 

distribution between 2 to 3 Å, suggesting that small pores are a desirable feature for 

D2/H2 separation. Intuitively, MOFs with PLD about 2-3 Å would better sieve D2/H2 at 

77 K because the effective LJ diameter for hydrogen molecules is around 3 Å (see Table 

6.3). As over 90% MOFs with top 5% ideal membrane selectivity have a PLD between 2 

to 4 Å, it is important to replace the background distribution from the CoRE database for 

MOFs with PLD of 2-4 Å to avoid misinterpretation of how the structural features 

correlate with the membrane performance. Figure 6.5 shows the distribution of unit cell 

volumes of the MOF membranes with top 5% ideal membrane selectivity compared with 

the same distribution but for all MOFs from the CoRE 2019 library and for MOFs with 

PLD in the range of 2-4 Å. While modifying the unit cell volume could not improve the 

performance for D2/H2 separation, one might erroneously conclude that the top MOF 

membranes would correlate with the unit cell volume if its distribution for the top 5% 

MOFs is directly compared with that for all MOFs in the CoRE 2019 library. Figure 6.5B 

shows an enhanced distribution of the unit cell volume at 0-2000 Å3 simply because 

MOFs with PLD of 2-4 Å have a relatively small unit cell volume (0-2000 Å3). 
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Figure 6.3. Distributions of the pore limit diameter (A), the largest cavity diameter along 

the diffusion path (B), and the void fraction (C) for MOFs in the CoRE 2019 library with 

the top 5% ideal membrane selectivity for D2/H2 separation at 77 K. 



 157 

 

 

Figure 6.4. Distribution of void volume (A) and surface area (B) for MOFs with top 5% 

ideal membrane selectivity for D2/H2 separation. 

 

 

Figure 6.5. Distribution of unit cell volume for MOFs with top 5% ideal membrane 

selectivity and MOFs in the CoRE 2019 database (A) and MOFs with PLD between 2 

and 4 Å (B). 
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Table 6.3. Effective LJ parameters of D2 and H2 at 77 K and 20 K 

Molecule 
77 K 20 K 

σ (Å) ε/kB (K) σ (Å) ε/kB (K) 

H2 3.1037 29.0823 3.4019 21.1377 

D2 3.0340 31.4524 3.2175 25.6396 

 

Figure 6.3 and Figure 6.5 show that the LCD and void fraction distributions for 

the top ranked MOF membranes are noticeably different from the background 

distributions. While PLD plays a major role in determining the diffusion barrier, LCD 

affects gas permeation along the rest of diffusion coordinate. The smaller the LCD, the 

less favorable would be the minimum energy path for molecular hopping, leading to a 

smaller diffusion coefficient and gas permeability. Over 70% of MOFs with high ideal 

membrane selectivity have LCD in the range of 3-5 Å because the external potential for 

hydrogen molecules is strongly attractive within this range. 

In addition to PLD and LCD, the void fraction is an important parameter to 

characterize the non-occupied space inside the MOF materials. It has been shown that a 

small change in the void fraction would affect the permeability of hydrogen molecules by 

orders of magnitude[47, 48]. However, permeability does not monotonically increase 

with the void fraction but depends also on the lattice type (e.g., fcc, bcc or simple cubic). 

Although a smaller void fraction would lead to a higher ratio of Henry’s constants, it may 

also result in a smaller adsorption capacity. On the other hand, a larger void fraction may 

lead to larger pores but with diminishing quantum sieving effects for D2 and H2 

separation. Figure 6.3C shows that nearly half of MOFs with top 5% ideal membrane 

selectivity have an intermediate void fraction around 0.45. 
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Figure 6.6. (A) Distributions of metal elements in the top 5% MOFs in terms of the ideal 

membrane selectivity and those with PLD in the range of 2-4 Å. All these elements 

exhibit a probability difference by at least 0.5% between the two groups of MOF 

structures. Example structures of MOFs containing metal elements with high (B) and low 

(C) energy parameters. The red circles denote the pore limit diameters. 

 

In addition to the structural features, we have investigated the types of metal 

elements in the top ranked MOFs promising as a membrane for D2/H2 separation and 

their role in determining the separation performance. Figure 6.6 shows the percentages of 
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a few major metal elements in MOFs with top 5% ideal membrane selectivity and in 

those MOFs with PLD in the range of 2-4 Å. The results for all other metal elements are 

listed in Table 6.2. Most metal elements have only minor percentage difference between 

MOFs with top 5% ideal membrane selectivity and MOFs with PLD in the range of 2-4 Å.  

Table 6.4. The LJ parameters for major metal elements in MOFs from the CoRE 2019 

library with top 5% ideal membrane selectivity (elements with bolded fonts are 

considered as metal sites with high energy parameter) 

Element ε/kB (K) σ (Å) Element ε/kB (K) σ (Å) 

Mn 6.54 2.64 Ag 18.11 2.80 

Zn 62.40 2.46 Sr 118.26 3.24 

K 17.61 3.40 V 8.05 2.80 

Cr 7.55 2.69 Sc 9.56 2.94 

 

The metal elements shown in Figure 6.6A have a probability in MOFs with top 5% 

ideal membrane selectivity at least 0.5% higher than that in MOFs with PLD in the range 

of 2-4 Å. Table 6.4 presents the LJ parameters for all these elements. Surprisingly, only a 

few metal elements have the LJ energy parameters higher than those for hydrogen 

molecules. As the Lorentz-Berthelot mixing rule is used to predict attraction between 

different species, metal elements with higher energy parameters would be most favored 

for D2/H2 separation. In other words, a larger energy parameter for the adsorbent is 

preferred because the small difference between the chemical species to be separated 

would be magnified. As each MOF is consisted of metal nodes and organic linkers, a.k.a. 

secondary building units (SBUs), quantum sieving can still be achieved for metal sites 

with lower energy parameter by pairing it with SBUs of appropriate choice. For metal 

sites with a lower energy parameter, a smaller SBU would then be needed to make 

confinement small enough to distinguish H2/D2 and enable effective quantum sieving. 
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Figures 3B and 3C present representative structures of MOF membranes 

containing metal sites with high and low energy parameters, respectively. TEBCEK 

contains cobalt atoms ( ) while KANDIO contains zinc atoms 

( ). These two structures have similar ideal membrane selectivity but 

KANDIO has larger pore sizes (LCD = 6.0 Å and PLD = 4.1 Å) than TEBCEK (LCD = 

3.3 Å and PLD = 2.6 Å). In order to have equivalent membrane selectivity (KANDIO vs. 

TEBCEK, 5.7 vs. 4.6), a smaller pore size is required for MOFs containing metal sites 

with a lower binding energy such that their impacts on gas diffusivity and adsorption 

amount can be compensated with each other. 

6.3.3 Membrane Performance Score 

The adsorbent performance score has been widely used to evaluate porous 

materials for gas separation because it takes into account both selectivity and separation 

capacity. However, a similar metric was missing for membrane separations. Here we 

define the Membrane Performance Score (MPS) according to the membrane selectivity 

and permeability: 

 
/fast slow fastMPS S P=   () 

where 
/fast slowS  is the membrane selectivity of the fast diffusing species over the slow 

diffusing species, 
fastP  is the permeability of the fast specie. As shown in Figure 6.2B, a 

high MPS can be achieved by either a high selectivity or a high permeability. For 

separation of H2 and D2, most MOFs with high MPS can be attributed to high 

permeability but intermediate selectivity. 
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Table 6.5. Top 5 MOFs for D2/H2 separation at 77 K according to the membrane 

performance score  

MOF P(D2) (barrer) D0(D2) (m
2·s-1) kIM(D2/H2) MPS (barrer) 

RUBLEH 2.94×1029 3.97×10-10 8.3 2.44×1030 

ERANAO 9.96×1024 2.40×10-8 1.42 1.42×1025 

YEGKIG 3.71×1022 1.78×10-9 0.77 6.30×1022 

XOPVOO 9.93×1018 2.11×10-8 1.09 1.08×1019 

FEKBED 3.94×1017 5.88×10-12 0.62 1.02×1018 
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Figure 6.7. Distributions of the pore limit diameter (A), the largest cavity diameter along 

the diffusion path (B), and the void fraction (C) for MOFs with top 5% MPS for D2/H2 

separation. 
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Figure 6.8. Distribution of void volume (A) and surface area (B) for MOFs with top 5% 

ideal membrane selectivity. 

 

Table 6.5 lists the theoretical values of permeability, ideal diffusivity, and 

membrane selectivity for top 5 MOFs with the highest MPS values. Figure 6.7 and Figure 

6.8 provide an analysis of the structural features of the top 5% MOFs according to the 

MPS ranking. Compared with MOFs with top 5% ideal membrane selectivity, MOFs 

with top 5% MPS have enhanced distributions for both PLD and LCD at a larger pore 

diameter, and the void fraction distribution shifts to the direction of less confinement. For 

D2/H2 separation, it is much easier to have a high permeability rather than a high 

membrane selectivity. Therefore, MOFs with top 5% MPS have less confined structures 

in order to achieve high permeability. Indeed, all MOFs listed in Table 6.5 have an 

extremely high permeability but with only moderate membrane selectivity. 



 165 

 

Figure 6.9. The energy landscape along the diffusion coordinate and the structures of 

MOFs with the highest ideal membrane selectivity (left panel - ROQFUA07) and those 

with the highest membrane performance score (right panel - RUBLEH). 

 

Figure 6.9 shows the energy landscapes and the structures of MOFs with the 

highest ideal membrane selectivity (ROQFUA07) and with the highest membrane 

performance score (RUBLEH). We may identify significant differences in the energy 

landscapes for ROQFUA07 and RUBLEH. As discussed above, the highest ideal 

membrane selectivity is affiliated with an energy barrier that distinguishes hydrogen 

isotopologues through quantum sieving. However, the highest membrane performance 

score is attributed to high permeability and intermediate membrane selectivity. Not only 

is the difference between the energy barriers for H2 and D2 diffusion in ROQFUA07 
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much higher than those in RUBLEH, but the energy landscape along the minimum 

energy path differs greatly between these two MOF materials as well. RUBLEH is 

strongly attractive to both hydrogen isotopologues along the minimum energy path, 

leading to a high permeability and a high membrane performance score. By contrast, 

ROQFUA07 imposes little attraction at the diffusion barrier, implying that the process is 

dominated by repulsive interactions. The difference in the energy landscape results in the 

permeability of hydrogen isotopologues in RUBLEH much higher than that in 

ROQFUA07. The structural features of MOF with the highest ideal membrane selectivity 

(ROQFUA07) are similar to those recommended by Nguyen et al.[36] In order to achieve 

good D2/H2 separation, PLD (2.587 Å) should be significantly smaller than s
H

2

 while 

LCD (4.936 Å) should be slightly larger than s
H

2

. 

6.3.4 Promising Features of MOF Membrane Predicted by Machine Learning 

While physics-based modelling allows us to analyze the materials behavior based 

on atomistic details, machine learning provides a complementary route to discovering 

new materials that satisfy predefined specific practical needs. A first step toward the so-

called inverse design is to identify patterns or promising features from a large amount of 

data relating materials performance to the atomic constituents. 

As discussed above, structural features, such as PLD, LCD and void fraction, are 

intrinsically related to the performance of MOF membranes for D2/H2 separation. In 

principle, these properties may be directly used as input parameters (viz., descriptors) for 

machine learning. Although the general trend can be captured by regression analysis, we 

found that these structural features are oversimplified and insufficient to establish 
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quantitative correlations between the MOF structures and the physical properties 

underlying their performance for D2/H2 separation (shown in Figure 6.10). Even with 

additional descriptors reflecting the metal elements, a quantitative correlation is still 

beyond the capacity of regression analysis. Therefore, in the following, we use 

classification instead of regression methods for data-based modelling. 

 

Figure 6.10. Ideal membrane selectivity predicted by (A) DNN, (B) RF, (C) GBT and (D) 

SVM versus calculated by physics-based model. Left panel is predicted by input of PLD, 

LCD and void fraction while right panel is predicted by additional percentage of metal 

elements in MOFs. 
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Figure 6.11. Structural features predicted by machine learning models for MOFs with top 

10% ideal membrane selectivity (red color). Here the void fraction is fixed at (A) 0.4, (B) 

0.45 and (C) 0.5. The black lines show conditions where PLD equals to LCD. Because 

PLD must be larger than LCD, the area below the black line is physically impossible. 

 

We have analyzed the structural features of MOFs using support-vector machine 

(SVM), random forest (RF), gradient-boosted trees (GBT), and deep neural network 

(DNN). Table 6.6 compares the accuracy of different machine learning models. All four 

classification models are able to recognize MOFs with top 10% ideal membrane 

selectivity. With additional information on metal elements, DNN shows most significant 

improvement in accuracy. On the other hand, RF, GBT and SVM methods provide 

satisfactory classification with only structural features, e.g., in terms of the PLD, LCD 

and void fraction of each MOF structure. With the kernel method projecting data to a 

higher dimensional space, SVM is able to distinguish small differences between MOFs 

better than RF and GBT, which employ many decision trees of the same dimension. 

Surprisingly, RF, GBT and SVM methods show no improvement of the classification 

accuracy with the extra information for metal elements as the input. Because high-quality 

classification can be readily achieved with SVM, RF or GBT using the structural features 
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as the input, additional information on metal elements might be considered merely as a 

noise. Such information is too discrete and scarce and becomes detrimental to recognize 

the data patterns with SVM, RF or GBT[49]. 
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Table 6.6. Percentage of metal elements in different categories of MOFs 

Element 

2Å< 

PLD 

<4Å 

(%) 

Top 

5% kIM 

(%) 

Element 

2Å< 

PLD 

<4Å 

(%) 

Top 

5% kIM 

(%) 

Element 

2Å< 

PLD 

<4Å 

(%) 

Top 

5% kIM 

(%) 

Cu 12.51 8.54 K 2.07 2.70 Ho 0.68 0.67 

Cd 11.35 10.79 Yb 0.81 0.90 Bi 0.31 0.00 

W 1.35 1.12 I 0.91 0.45 Nb 0.25 0.00 

Na 1.81 1.12 Cr 0.71 3.15 Y 0.66 0.90 

Co 10.51 7.19 Ni 4.34 3.82 Ba 0.93 0.22 

Mn 5.82 8.09 Cs 0.35 0.00 Pt 0.34 0.00 

Tb 2.40 2.70 Si 1.03 0.45 Lu 0.21 0.22 

U 1.32 0.45 Ag 6.53 8.09 Hf 0.01 0.00 

La 2.20 2.02 Ca 1.37 1.12 Ir 0.04 0.00 

In 1.34 1.80 Fe 4.51 4.04 Sb 0.04 0.00 

Ce 1.32 1.12 Ga 1.28 1.35 Au 0.31 0.00 

Pr 1.51 0.67 Dy 1.62 0.90 Sc 0.63 1.35 

Nd 2.22 1.57 Pd 0.09 0.22 Rb 0.29 0.22 

Sm 1.66 1.80 Sr 0.75 1.57 Sn 0.13 0.45 

Eu 3.25 1.57 B 0.90 1.12 Re 0.26 0.00 

Gb 2.15 1.80 Mg 1.41 0.90 Hg 0.21 0.00 

Mo 1.44 0.90 V 1.47 2.25 Rh 0.07 0.00 

Be 0.19 0.67 Al 1.90 2.02 As 0.07 0.22 

Zn 15.77 17.08 Ru 0.60 0.45 Se 0.16 0.00 

Br 0.88 0.00 Ti 0.35 0.22 Ge 0.10 0.00 

Er 1.47 1.57 Th 0.16 0.45 Te 0.07 0.22 

Pb 0.19 0.00 Zr 1.06 1.35 Np 0.09 0.00 

Tm 0.32 0.67 Li 0.78 0.90 Pu 0.01 0.00 
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Among the four classification methods, SVM has the highest accuracy and it is 

thus used to predict structural features for MOFs with the best membrane selectivity. The 

classification accuracy, which is defined as the percentage of MOFs correctly predicted 

by the four machine learning methods for the entire database, is presented in Supporting 

Information (Table 6.7). Figure 6.11 shows the predicted results. Here the red color 

denotes PLD and LCD values predicted by SVM for MOFs with top 10% ideal 

membrane selectivity at three different void fractions. The optimum PLD is 

approximately the same as the LJ diameter of the hydrogen molecules. In other words, 

MOFs with PLD comparable to the molecular size would yield a large difference in the 

energy barriers in H2 or D2 diffusion thus promoting separation. According to SVM, LCD 

should be slightly larger than the molecular size of isotopic hydrogen in order to utilize 

the kinetic quantum sieving effect for D2/H2 separation, and the range of LCD shifts to 

larger diameters when the void fraction increases. While MOFs with PLD comparable to 

the molecular size of hydrogen would impose a nearly repulsive interaction, those with 

LCD slightly larger than the molecular size would be able to provide more attraction 

along the minimum energy path thereby increasing the molecular hopping rate. Because a 

larger LCD would accommodate a larger void fraction, the specific range of LCD 

depends on the void fraction of the MOFs to be designed to achieve optimal membrane 

performance. 

Table 6.7. Accuracy of classification for different machine learning models 

 DNN RF GBT SVM 

Accuracy without 

metal sites (%) 
49.27 60.97 57.03 65.58 

Accuracy with 

metal sites (%) 
56.47 59.39 55.57 64.00 
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6.4 Conclusions 

In this work, we used physics-based models to evaluate the performance of 

12,723 MOFs from the CoRE 2019 database for D2/H2 separation. The selectivity and 

separation capacity were calculated for each MOF when it is used either as adsorbent or 

membrane material. We find that excellent D2/H2 selectivity can be achieved through gas 

adsorption but the MOF performance is compromised by low separation capacity. By 

contrast, MOFs can also be used as a membrane material for D2/H2 separation with a 

good balance of selectivity and capacity. Even at relatively high temperature (77 K), the 

D2/H2 selectivity for best MOF membranes identified in this work (Table 6.1) is almost 

one order of magnitude higher than those previously reported in the literature. Because all 

MOF structures in the CoRE database have been experimentally synthesized, our 

theoretical results are directly testable with experimental measurements. 

An analysis of the structural features and the metal compositions of promising 

MOF membranes indicates that high D2/H2 selectivity can be achieved when the pore 

limit diameter (PLD) is comparable to the Lennard-Jones (LJ) diameter of hydrogen 

molecules. PLD plays an important role in determining the diffusion barrier, which is 

closely affiliated with the kinetic quantum sieving effects. For practical applications, we 

introduced the membrane performance score to evaluate the overall performance of the 

MOF membranes in terms of both selectivity and permeability. While MOFs with high 

membrane selectivity are characterized with extremely small pores, those with high 

membrane performance scores are less confined in order to achieve high permeability. In 

addition to PLD, gas permeation in MOFs depends on the largest cavity diameter (LCD) 
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and the metal composition. The smaller the LCD, the less favorable would be the 

minimum energy path for molecular hopping, leading to a smaller diffusion coefficient 

and gas permeability. For MOFs with different metal compositions, metal elements with 

a lower binding energy would require a smaller secondary building unit in order to 

achieve the same kinetic quantum sieving effect. 

Combination of physics-based models for high-throughput screening and data-

based modelling for identification of useful geometric features facilitates the inverse 

design of MOFs for better separation performance. With the extensive data generated 

from physics-based modelling, we have identified useful features of MOF materials by 

exploring four different machine learning models. Although none of these models gives a 

quantitative correlation of membrane selectivity or the membrane performance scores, 

satisfactory results can be obtained by using support-vector machine (SVM) to reproduce 

the structural features of promising MOF membranes. For effective D2/H2 separation, 

SVM predicts that the kinetic quantum sieving effects are most significant when the PLD 

of MOFs is comparable to, while LCD is slightly larger than, the molecular dimeter of 

isotopic hydrogens. The specific range of LCD depends on the void fraction of the MOF 

materials. Those structural features predicted by integrating physics-based modeling with 

machine learning provide useful insights into the rational design of new MOF structures 

for more efficient D2/H2 separation. 
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Chapter 7. Inverse Design of Metal-Organic Frameworks for C2H4/C2H6 Separation 

Efficient separation of C2H4/C2H6 mixtures is of paramount importance in the 

petrochemical industry. Nanoporous materials, especially metal-organic frameworks 

(MOFs), may serve the purpose owing to their tailorable microscopic structure and pore 

geometry. In this chapter, we propose a computational framework for high-throughput 

screening and inverse design of high-performance MOFs that can be utilized for 

adsorption and membrane separation processes. High-throughput screening of the 

computational-ready, experimental MOF database (CoRE MOF 2019) leads to materials 

with exceptionally high ethane-selective adsorption selectivity (LUDLAZ: 7.68) and 

ethene-selective membrane selectivity (EBINUA02: 2167.3). Moreover, the inverse 

design enables the exploration of a broader chemical space and identification of MOFs 

with even higher membrane selectivity and permeability. In addition, a relative 

membrane performance score (rMPS) has been formulated to evaluate the overall 

performance of MOF membranes relative to the Robeson boundary. The computational 

framework offers useful guidelines for the experimental design of MOFs and is 

generically appliable to materials discovery for gas storage and separation. 

7.1 Introduction 

The efficiency of C2H4/C2H6 separation is important for the petrochemical 

industry because high-purity C2H4 is used as the primary feedstock for the synthesis of 

diverse chemical products including plastics, polyesters and rubber materials.[1, 2] 

Conventional processes for C2H4/C2H6 separation are mostly based on high-pressure 

cryogenic distillation, which requires extensive energy input while suffers from low 
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separation efficiency. To reduce the energy cost and increase the selectivity, it is 

desirable to develop alternative approaches such as adsorption or permeation processes 

based on nanoporous materials.[3-5] 

Metal-organic frameworks (MOFs) are ideal candidates for the efficient 

separation of C2H4/C2H6 because they have good mechanic stability, large specific 

surface area, and tailorable pore structure and geometry.[6-8] In particular, such materials 

show excellent performance for separating molecules with similar size and interaction 

energy, such as the mixtures of H2/D2 isotopes, of noble gases (Ar/Kr/Xe), and of xylene 

isomers.[9-12] For C2H4/C2H6 separation, promising MOF candidates have been 

identified by experiments.[3, 4, 13, 14] Whereas the possible variations of MOFs are 

virtually unlimited and the separation efficiency is sensitive to the atomic details, it is 

practically infeasible to explore the design space only through experiment. Previously, 

computational methods have been used to identify best material candidates for separation 

process through high-throughput screening.[9, 15, 16] While the adsorption isotherms 

predicted by the computational methods are found in good agreement with experimental 

measurement,[17] membrane processes are often considered more efficient to separate 

C2H4 from C2H6 by leveraging the difference in both adsorption affinity and gas 

diffusivity.[18] To the best of our knowledge, previous research on the computational 

screening of MOF database is mostly concerned with the separation of C2H4/C2H6 by gas 

adsorption.[17, 19-22] From the computational perspective, the assessment of MOF 

materials for membrane separation is much more demanding because the evaluation of 

gas diffusivity in confined geometry is typically much more time-consuming than that of 
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gas adsorption. In particular, the strong confinement makes it computationally prohibitive 

to predict the diffusion coefficients of gas molecules in a large library of nanoporous 

materials using conventional methods such as molecular simulation (MD) simulation.[23, 

24] 

Although computational methods (e.g., MD, grand canonical Monte Carlo 

simulation, and classical density function theory) have been well established for the 

accurate prediction of gas adsorption and diffusivity,[25-28] the inverse design of 

nanoporous materials for separation processes remains a theoretical challenge from both 

computational and practical perspectives. While generative adversarial network (GAN) 

shows early success in the inverse design of zeolites for methane storage,[29] its 

computational complexity increases significantly with the number of elements in the 

crystal structure. Besides, GAN easily breaks down and fails to converge for complicated 

crystalline materials such as MOFs because a large number of atomic types need to be 

considered. In contrast, variational autoencoder (VAE) can well accommodate the 

complex topology and molecular structure of the secondary building blocks (SBUs) by 

compressing the MOF structure into a text string and projecting it into the latent 

space.[30] However, VAE requires accurate projection (viz., encode and decoder) 

between the crystal structure and a latent space, and the VAE training would become 

infeasible when a vast number of SBUs are considered for the MOF design. Alternatively, 

evolutionary algorithms, such as the genetic algorithm, are promising for the inverse 

design of MOFs because they can accommodate not only a large number of SBUs for 
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MOF design, but also find the solution in a nonlinear space consisted of the material 

topology and SBUs.[31, 32] 

In previous work,[25, 26] we developed a computational framework with GPU-

acceleration that offers fast and accurate evaluation of sorption and diffusion properties 

of gas molecules in nanoporous materials. Empowered by the new computational 

capability, here we perform high-throughput screening of the computational-ready 

experimental (CoRE 2019) MOF database (over 10k MOFs) for the separation of 

C2H4/C2H6 with adsorption and membrane processes. Compared with the state-of-art 

materials from the literature,[4, 33] the best MOFs identified in this work have much 

higher separation selectivity. The highest ethane-selective adsorption selectivity in 

LUDLAZ is up to 7.68, and the highest ethene-selective membrane selectivity in 

EBINUA02 can reach 2167.3. Leveraging on the high-throughput capability, a genetic 

algorithm (GA) is incorporated into our computational workflow to achieve the inverse 

design of MOF membranes with both high membrane selectivity and permeability. The 

inverse design allows us to explore a broader chemical space in comparison with high-

throughput screening and identify MOFs with even higher membrane selectivity and 

permeability. The structural analyses of top MOFs with excellent separation performance 

provide insights for the experimental design of MOFs for adsorption and membrane 

separation. 
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7.2 Methods and Models 

7.2.1 Molecular Models 

In this work, ethane (C2H6) and ethene (C2H4) molecules are modeled as two 

united-atom groups separated by a fixed bond length.[34] The detailed force field 

parameters can be found in Table 7.1. Metal-organic frameworks (MOFs) are considered 

to be rigid with the universal force field (UFF) for all nonbonded interactions.[35] The 

Lennard-Jones (LJ) 12-6 potential is truncated and shifted to zero at 12.9 Å, and the 

Lorentz-Berthelot mixing rule is used for the energy and size parameters between 

different kinds of atoms. The periodic boundary condition is applied to all cell axes. The 

unit cell is duplicated such that the length along each lattice axis is at least two times the 

cutoff distance. The structural properties, such as the pore limit diameter, the largest 

cavity diameter and the void fraction, are calculated with Zeo++.[36] 

Table 7.1. The Lennard-Jones (LJ) parameters for ethane and ethene[34] 

 σ (Å) ε/kB (K) bond length (Å) 

CH3- (ethane) 3.760 108 1.54 

CH2- (ethene) 3.680 92.8 1.33 

 

7.2.2 Adsorption Separation 

Nanoporous materials have been widely used as adsorbent in industrial 

applications. In the low pressure region, the adsorption selectivity for two chemical 

species can be measured with the ratio of Henry’s constants[37] 
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where Kh,i represents the Henry’s constant of component i. For a gas molecule with a 
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rigid conformation, the Henry’s constant can be calculated via the integration of the 

external potential due to its interaction with the nanoporous material[38] 

 ( )
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where b =1/ (k
B
T ), kB stands for the Boltzmann constant, T is the absolute temperature, 

V represents the system volume, ϕext is the external potential, i.e., the potential energy due 

to the interaction of a gas molecule with all atoms from the porous material, r represents 

the cartesian coordinates for the center of mass of the gas molecule, and ω stands for its 

Euler angles. For each MOF, the Henry’s constants for C2H6 and C2H4 are numerically 

evaluated via midpoint rule with the step size of 1 Å and 45° for spatial and rotational 

variables, respectively. 

7.2.3 Membrane Separation 

According to the solution-diffusion model, the membrane permeability is defined 

as the Henry’s constant multiplied by the gas diffusion coefficient at infinite dilution. The 

membrane selectivity can thus be calculated from[38] 
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where D0,i stands for the diffusion coefficient of component i at infinite dilution , and Pi 

represent the permeability. In evaluating the membrane selectivity, we use the average of 

diffusion coefficients along the three lattice vectors (viz., x-, y-, z-axis in cartesian 

coordinate if the lattice vectors are mutually orthogonal) 
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Along each direction, the diffusivity can be calculated independently according to 

the transition-state theory (TST) 

 2

0,

1

2
D ka =  (7.5) 

where   stands for the direction of lattice vector, k represents the transmission rate (viz., 

the hopping rate of the gas molecule), and a  stands for the hopping distance between 

neighboring unit cells along the direction of lattice vector . The hopping rate can be 

obtained from the minimum energy path (MEP) via the Bennett-Chandler formula[39, 40] 
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where s is a normalized dimensionless variable along the MEP, and s* represents the 

transition state. The diffusion coefficient predicted by eq (7.5) depends heavily on the 

accuracy of the MEP. The details of accurate MEP calculation for rigid molecules, such 

as C2H4 and C2H6, can be found in our previous work.[25] Here it is suffice to state that 

the diffusion coefficient calculated from the transition-state theory agrees well with that 

calculated from MD simulation. Therefore, all diffusion coefficients reported in this work 

are predicted from the MEP obtained from the GPU-accelerated simplified string method. 

7.2.4 Genetic Algorithm 

For inverse design, we use the genetic algorithm (GA) to construct MOFs with 

desired properties. Because MOFs can be decomposed into the secondary building blocks 

(SBUs), each material may be considered as a “chromosome” of different topologies, 

metal nodes and organic linkers. Because most MOF topologies can only accommodate 
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less than two types of metal node and three types of organic linker, each chromosome 

consists of 6 genes and each gene is represented by an integer which corresponds to 

specific topology, node or linker. The population is set as 2,000 which enables the initial 

generation to have diverse combinations of topologies, nodes and linkers. Three 

evolutions are carried after the initial population and a total of 8,000 combinations of 

topologies, nodes and linkers is explored to find the optimal MOF structure with desired 

properties. Compared with the MOF structural database used in high-throughput 

screening, less MOF structures are used in the GA to benchmark its computational 

performance for the inverse design despite a much larger chemical space is considered. In 

the initial population, the 2,000 chromosomes are generated by the random selection of 

topologies, nodes and edges in the SBU database.[41] In each generation, 10 MOFs are 

used to generate the offspring via single point crossover. The next generation of MOFs 

are selected by stochastic universal selection to avoid bias towards the SBUs with low 

fitness values while 30% MOFs would have a random mutation on their genes. In this 

work, PyGAD library is used for the genetic algorithm.[42] PORMAKE is used to 

construct MOFs when the chromosome values are assigned.[41] 

7.3 Results and Discussion 

7.3.1 Screening CoRE MOF 2019 Database 

We first perform the high-throughput screening of the computational-ready 

experimental (CoRE) MOF 2019 database for the separation of C2H4/C2H6 via adsorption 

and membrane processes. While high-throughput screening has been commonly used to 

find the best material candidate for gas adsorption, the procedure is more challenging for 
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membrane separation because of the steep computational cost in evaluating the diffusion 

coefficients. Figure 7.1 shows the separation selectivity versus capacity for both 

adsorption and membrane separations. As shown in Figure 7.1A, the maximum 

selectivity is less than 30 for ethene-selective MOFs suitable for adsorption separation. It 

decreases exponentially with the increase of the separation capacity (viz. adsorption 

amount) because highly confined pores are needed in order to achieve high ethene-

selectivity. Such materials offer little pore volume to achieve high adsorption capacity. 

Table 7.2 lists the properties of top 5 ethene-selective MOFs for the adsorption separation 

of C2H4/C2H6 at room temperature (300 K). 

 

Figure 7.1. Selectivity vs. capacity for CoRE MOFs used in C2H4/C2H6 separation. (A) 

Adsorption selectivity. The green line is fitted with αIM=0.2522e-0.7397log(K)+1. (B) 

Membrane selectivity. The red line denotes the Robeson boundary, and the color stands 

for the percentile of relative membrane performance score (rMPS): the red, white and 

blue represent the highest, intermediate, and the lowest rMPS, respectively. The grey 

dashed line marks the membrane selectivity of 1. 

 

 

 

 

 

 



 187 

Table 7.2. Henry’s constants (Kh), ideal selectivity (αIM) and self-diffusivity (D0) of top 

ethene-selective MOFs for adsorption separation of C2H4/C2H6 at 300 K. The diffusion 

coefficients are shown only if they are larger than 1×10-20 m2·s-1. 

MOF 

Kh(C2H4) 

(mol·m-3 

·Pa-1) 

Kh(C2H6) 

(mol·m-3 

·Pa-1) 

αIM 

(C2H4/C2H6) 

D0(C2H4) 

(m2·s-1) 

D0(C2H6) 

(m2·s-1) 

PIRYOF 5.5×10-2 2.0×10-3 27.01   

BADHIA 3.5×10-4 1.3×10-5 26.07   

BADHOG 4.2×10-4 1.8×10-5 23.81   

EBINUA02 1.7×10-2 9.8×10-4 17.11 9.3×10-15 7.4×10-17 

FEDKAB 1.0×10-1 6.0×10-3 16.56   

 

 

Figure 7.2. Separation selectivity vs. separation capacity for ethane-selective adsorption 

separation. 

 

Although ethene-selective materials offer a much higher selectivity in adsorption 

separation of C2H4/C2H6, industrial applications desire ethane-selective processes 

because they can significantly reduce the energy cost. Figure 7.2 shows that, consistent 

with the literature,[4, 5, 20] the highest selectivity of ethane-selective MOFs identified in 

this work is much smaller than that of ethene-selective MOFs because the stronger 
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adsorption of smaller molecules (e.g., ethene) yields a large adsorption selectivity of C-

2H4/C2H6 via the ultra-small pores of promising MOFs. It is worth noting that, different 

from ethene-selective MOF for separation of C2H4/C2H6 by adsorption, the selectivity of 

ethane-selective MOFs increases with the capacity and approaches a limiting value 

around 8. 

Table 7.3. Top ethane-selective MOFs for the separation of C2H4/C2H6 at 300 K by 

adsorption. 

MOF 

Kh(C2H4) 

(mol·m-3 

·Pa-1) 

Kh(C2H6) 

(mol·m-3 

·Pa-1) 

αIM 

(C2H6/C2H4) 

D0(C2H4) 

(m2·s-1) 

D0(C2H6) 

(m2·s-1) 

LUDLAZ 4.4×101 3.4×102 7.68 4.4×10-9 6.3×10-9 

EFILUA 1.9×102 1.3×103 6.98 2.0×10-9 1.2×10-9 

XUJSAY 3.4×101 2.1×102 6.27 6.3×10-9 2.1×10-9 

ZAZNUL 2.7×101 1.7×102 6.20 6.6×10-9 2.1×10-9 

KAXQIL 5.7×101 3.5×102 6.12 1.4×10-9 1.1×10-9 

 

Table 7.3 lists the top 5 ethane-selective MOFs with the highest adsorption 

selectivity of C2H6/C2H4 at 300 K. Although excellent MOF candidates for the adsorption 

separation of C2H4/C2H6 have been reported before,[17, 19-22] the materials identified in 

this work yield much higher selectivity for both ethene-selective and ethane-selective 

separations. Previously, the computational screening was carried either on a smaller 

structural database or a subset of large structural library (e.g., CoRE MOF 2019) that is 

restricted by certain structural and chemical criteria. While these criteria would speed up 

the computation by reducing the number of materials to be evaluated, they would also 

ignore promising candidates due to the complex topology and structure. For the 

adsorption separation of C2H4/C2H6, the selectivity declines with the increase of loading 

amount. The reduction in adsorption selectivity can be attributed to the smaller difference 
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between the adsorbate-adsorbate interactions in comparison to that between adsorbate 

and adsorbent interactions. 

 

Figure 7.3. Distribution of the pore limit diameter (A), the largest cavity diameter (B) 

and the void fraction (C) for CoRE MOFs with top 5% ethane-selectivity and ethene-

selectivity in the adsorption separation of C2H4/C2H6. 

 

According to the structural analysis of the promising materials (shown in Figure 

7.3), the ethane-selective MOFs have less confined geometry in terms of the pore limit 

diameter (PLD) and the largest cavity diameter (LCD) in comparison with the ethene-

selective MOFs. The increase in pore size leads to a much higher adsorption capacity for 

those MOFs with higher ethane-selectivity. It is worth mentioning that the highest 
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adsorption selectivity of ethane-selective MOF [LUDLAZ: αIM(C2H6/C2H4)=7.68] 

identified in this work is 60% higher than the best nanoporous material found by the 

previous computational screening[22], a hypothetical zeolite structure 

[αIM(C2H6/C2H4)=4.86]. It is also more than 70% higher than the state-of-art nanoporous 

material reported in the experimental literature[4], Fe2(O2)(dobdc) with C2H6/C2H4 

adsorption selectivity of 4.4. Besides, LUDLAZ has a much larger Henry’s constant 

[Kh(C2H6)=4.6056 cm3·g-1·Pa-1] than Fe2(O2)(dobdc) [Kh(C2H6)=0.0147 cm3·g-1·Pa-1], 

meaning much higher gravimetric adsorption capacity. We note in passing that LUDLAZ 

was originally synthesized by McKellar et al. to examine how ligand exchange affects the 

stability and compressibility of the MOF materials.[43] For the top 5 ethane-selective 

MOFs, their pore size distributions are shown in Figure 7.4. These materials have similar 

micropores between 5 Å and 7 Å, rendering excellent selectivity of ethane over ethene in 

adsorption separation. 
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Figure 7.4. Pore size distribution for top 5 CoRE MOFs with highest ethane-selectivity 

in adsorption separation of C2H4/C2H6. 

 

Compared with adsorption, gas separation via permeation through MOF 

membranes may achieve not only higher selectivity but also larger separation capacity. In 

addition, a membrane splits the feed stream into two purified sub-streams (viz., retentate 

stream and permeate stream) such that it does not require a recovery process even for 

ethene-selective operations. Therefore, the membrane process is often much less energy-

intensive in comparison with adsorption. Figure 7.1B shows the membrane selectivity 

versus membrane permeability in the units of barrer. The red line in Figure 7.1B denotes 

the Robeson boundary, a semi-empirical upper limit summarized by Rungta et al.[2] 

based on the state-of-art polymer membranes for specifically separating ethane and 

ethene. We see that many MOFs in CoRE MOF 2019 database surpass the Robeson 

boundary, indicating their superior performance compared with the polymer membranes. 

The highest membrane selectivity of C2H4/ C2H6 is 2167.3 in MOF – EBINUA02, which 
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was synthesized by Tian et al.[44] with 1D rhombic channel in the 3D diamond topology 

network. The selectivity is several orders of magnitude larger than the state-of-art 

membrane materials discovered by previous computational screening and experimental 

synthesis.[19, 33] Table 7.4 lists the top 5 MOFs with the highest membrane selectivity 

of C2H4/C2H6. 

Table 7.4. Top MOFs for C2H4/C2H6 separation with the highest membrane selectivity 

(kIM) at 300 K. 

MOF 

Kh(C2H4) 

(mol·m-3 

·Pa-1) 

Kh(C2H6) 

(mol·m-3 

·Pa-1) 

D0(C2H4) 

(m2·s-1) 

D0(C2H6) 

(m2·s-1) 

kIM 

(C2H4/C2H6)
 

EBINUA02 1.7×10-2 9.8×10-4 9.3×10-15 7.4×10-17 2167.3 

HAZGOF 9.3×10-4 2.0×10-4 1.4×10-12 4.2×10-15 1649.1 

ALOLES 2.8×10-2 6.7×10-2 8.3×10-15 3.3×10-18 1048.2 

EBINUA 1.0×10-2 7.7×10-4 4.0×10-14 5.6×10-16 960.1 

EBINUA01 2.1×10-2 2.3×10-3 3.0×10-13 6.1×10-15 438.2 

 

In our previous work,[25, 26] we proposed the membrane performance score 

(MPS) to evaluate the overall performance of nanoporous materials by combining the 

membrane selectivity and permeability. Although MPS offers a direct comparison of 

nanoporous materials with different permeability and selectivity, it does not evaluate the 

membrane performance relative to the upper limit of the state-of-art polymer membranes 

(viz., the Robeson boundary). Here, we propose a modified version of MPS. The relative 

membrane performance score (rMPS) is defined as 

 ( )//rMPS fast slow fast

Robeson

fast slowS S P= −   (7.7) 

where S represents the membrane selectivity, P stands for the gas permeability, and the 

fast component refers to the one with higher permeability in the binary mixture. Since 

rMPS evaluates the overall performance of nanoporous materials relative to the Robeson 
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boundary, MOFs with a selectivity below the Robeson boundary would have a smaller 

rMPS compared with MPS. For the separation of C2H4/C2H6, Figure 7.1B shows that a 

high rMPS value favors MOFs with high permeability but intermediate selectivity 

(bottom right) instead of intermediate permeability and high selectivity (top center). 

Because ethane and ethene have similar molecular size and interaction energy, the 

increase of diffusion selectivity from an intermediate value requires a larger energy 

barrier along the minimum energy path (MEP), which leads to a significant reduction of 

the diffusion coefficient and rMPS. Conversely, the increase of diffusion coefficient 

results in the decrease of diffusion selectivity due to the absence of a large energy barrier 

for molecular sieving. As shown in Figure 7.2, only the ideal adsorption selectivity of 

C2H6/C2H4 increases with the capacity. As a result, MOFs with high rMPS are mostly 

ethane-selective, and that the membrane selectivity is mostly attributed to their difference 

in the adsorption amount. Table 7.5 lists the top 5 MOFs with the highest rMPS. 

Table 7.5. Top MOFs with the highest relative membrane performance score (rMPS) for 

the separation of C2H4/C2H6 at 300 K. 

MOF 

Kh(C2H4) 

(mol·m-3 

·Pa-1) 

Kh(C2H6) 

(mol·m-3 

·Pa-1) 

D0(C2H4) 

(m2·s-1) 

D0(C2H6) 

(m2·s-1) 

kIM 

(C2H6/C2H4) 

rMPS 

(barrer) 

×1010 

LUDLAZ 4.4×101 3.4×102 4.4×10-9 6.3×10-9 11.1 5.6 

PARMIG 9.7×101 5.6×102 1.4×10-8 1.3×10-8 5.5 5.4 

BEKSAM 4.5×102 1.9×103 9.1×10-9 4.2×10-9 2.0 1.3 

MIMVEJ 2.9×101 1.4×102 1.3×10-8 1.3×10-8 5.0 1.3 

MORZID 1.8×102 8.2×102 7.6×10-9 6.6×10-9 3.8 1.0 

 

7.3.2 Structural Features of Promising MOF Membranes 

As discussed above, the selectivity of MOF membranes is less compromised and 

much higher at high separation capacity in comparison with MOF adsorbents. To explore 
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the synergetic effects between adsorption and diffusion, we have further examined the 

structural features of top MOFs with the highest membrane selectivity and rMPS. 

 

Figure 7.5. Distributions of the pore limit diameter (A) and the largest cavity diameter (B) 

for all CoRE MOFs and MOFs with top 5% ideal membrane selectivity and relative 

performance score (rMPS) for C2H4/C2H6 separation. 

 

 

Figure 7.6. Distribution of the void fraction for all CoRE MOFs and MOFs with top 5% 

ideal membrane selectivity and relative performance score (rMPS) for C2H4/C2H6 

separation. 
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Figure 7.5 shows the distributions of pore limit diameter (PLD) and the largest 

cavity diameter (LCD) for all MOFs in CoRE MOF 2019 database and MOFs with top 5% 

membrane selectivity and rMPS. Compared with the distributions of PLD and LCD for 

all CoRE MOFs, it is clear that MOFs with top 5% membrane selectivity and rMPS have 

significantly different structural features. The PLD and LCD distributions suggest that 

MOFs with top 5% membrane selectivity have much smaller pores than those with top 5% 

rMPS. However, their void fractions are rather similar, both in the range from 0.4 to 0.7 

(shown in Figure 7.6). For MOFs with top 5% membrane selectivity, the PLD mostly 

distributes between 2.75 Å and 3.5 Å, where the narrow end is even slightly smaller than 

the Lennard-Jones (LJ) diameter of the methylene group in ethene. The selectivity is 

maximized because the extremely narrow pore aperture magnifies the difference between 

C2H4 and C2H6 in the potential energy of the transition state. By contrast, MOFs with top 

5% rMPS have a PLD distribution from 3.75 Å to 4.75 Å. Compared with the MOFs with 

top 5% membrane selectively, the slightly larger PLD for the MOFs with top 5% rMPS 

leads to a smaller difference in the potential energy at the transition state between ethane 

and ethene, and therefore, much higher permeability with intermediate membrane 

selectivity. Similar to the PLD distribution, the LCD distribution for the MOFs with top 5% 

membrane selectivity is mostly localized at the smaller pore size than those with top 5% 

rMPS. For MOFs with top 5% membrane selectivity, the ultra-narrow pore apertures 

contribute to larger membrane selectivity but smaller diffusion coefficient and lower 

permeability. 



 196 

 

Figure 7.7. The position and orientation of an ethene molecule along the minimum 

energy path (MEP) in EBINUA02 (A) and LUDLAZ (B). Here the detailed molecular 

structures are only for illustration. The energy landscape along the MEP for ethane and 

ethene in EBINUA02 (C) and LUDLAZ (D) at 300 K. 

 

Figure 7.7 shows the minimum energy path (MEP), molecular orientation along 

the MEP, and the energy landscape for gas diffusion in MOFs with the highest membrane 

selectivity [EBINUA02: kIM(C2H4/C2H6)=2167.3] and the highest rMPS [LUDLAZ: 

kIM(C2H6/C2H4)=11.1]. For both EBINUA02 and LUDLAZ, only one direction along the 
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lattice vector can accommodate the diffusion of ethane or ethene molecule. Figure 7.7A 

and (B) show that, despite the significant difference between EBINUA02 and LUDLAZ 

in the energy landscape along the MEP, their MEPs inside MOFs are almost identical. 

Both EBINUA02 and LUDLAZ yield near straight trajectories for the molecular center of 

mass on the MEP with a minimal change of the molecular orientation, suggesting that the 

high membrane selectivity is attributed to extremely narrow pores. It is also worth 

noticing here the local chemical environments are very similar along the MEP in 

EBINUA02 and LUDLAZ, and their different pore structures result in the distinct energy 

landscape along the MEP. 

Although EBINUA02 and LUDLAZ have a similar void fraction, their pore 

structures (e.g., PLD and LCD) are very different thus results in different separation 

mechanisms. According to the solution-diffusion theory,[18] the membrane selectivity 

can be improved by increasing the difference in adsorption, diffusion, or a combination 

of both quantities. EBINUA02 has a much smaller pore aperture (PLD: 2.91 Å and LCD: 

3.96 Å) than LUDLAZ (PLD: 4.18 Å and LCD: 5.96 Å), which leads to the preferential 

diffusion and adsorption (viz. solubility in solution-diffusion theory) of C2H4 and the 

extremely high membrane selectivity of C2H4 over C2H6. Whereas in LUDLAZ, its 

interaction with the gas molecules is attractive even at the transition state and the 

difference in energy barrier between C2H4 and C2H6 is almost negligible (Fig. 3D). The 

relatively spacious pore structure in LUDLAZ results in a slightly faster diffusion of 

C2H6 than C2H4 because ethane experiences a stronger van der Waals attraction. As a 

result, the membrane selectivity of LUDLAZ is mostly contributed by the difference in 
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adsorption (viz., Henry’s constant) between C2H4 and C2H6. According to the above 

analysis of the top MOFs with high membrane selectivity and rMPS, a large energy 

barrier (viz., extremely narrow pore aperture) is not preferred for the design of ideal MOF 

membrane (with both high selectivity and permeability) because it also significantly 

reduces the diffusion coefficient and permeability. Therefore, for the rational design of 

ideal MOF membranes for C2H4/C2H6 separation, the selectivity and permeability need to 

be harnessed by the adsorption and diffusion, respectively. 

7.3.3 Inverse Design of MOF Membranes 

Since the membrane process has major advantages in comparison with adsorption 

in terms of both separation selectivity and capacity, our inverse design is concerned only 

with MOF membranes. To find materials with the ideal performance (viz., high 

separation selectivity and capacity) for the separation of C2H4/C2H6, we use a genetic 

algorithm (GA) with the fitness score of 

 0.5 0.5
IMtotal PkF F F= +  (7.8) 

In eq (7.8), the total fitness score, Ftotal, is evenly weighted according to the selectivity 

and permeability. The former, member selectivity fitness score,is formulated as 
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where k IM  stands for the (ethene-selective) membrane selectivity; and the latter, 
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represents the permeability fitness score. The membrane selectivity of 5 and permeability 
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of 100 barrers are used as threshold value because most CoRE MOFs have a permeability 

larger than 100 but few have a membrane selectivity larger than 5. 

 

Figure 7.8. (A) Chromosome representation of MOFs investigated in this work where 

topology, node and edge are treated as genes in the chromosome. (B) Workflow of 

genetic algorithm for the inverse MOF design. Here square boxes represent the secondary 

building blocks (SBUs) used for MOF construction. In analogy to the genes in the 

chromosome, the choice of SBUs directly determines the physiochemical properties and 

separation performance. Black, brown and green boxes represent the topology, node and 

edge, respectively. 

 

Figure 7.8 shows how each MOF is represented as a “chromosome”, i.e., in terms 

of the MOF topology, node and edge. The schematic flowchart elucidates the 
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computational steps in the inverse design of MOF membranes. Compared with CoRE 

MOF database or other existing MOF structural databases, a much larger chemical space 

is explored during the inverse design. In this work, the secondary building block (SB) 

database consists of 1,687 topologies, 648 nodes and 219 edges. As each MOF is defined 

by a topology, two metal nodes and three edges, a total of 1678×6482×2193≈7.4×1015 

combinations are possible for the MOF construction. It is worth mentioning that not all 

chromosomes would lead to a successful MOF design because of the unmatched 

coordination number and bonding distance in the topologies, nodes and linkers. 
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Figure 7.9. (A) Membrane separation selectivity vs. permeability for CoRE MOFs (filled 

dots) and inverse designed MOFs (open symbols). The distribution of membrane 

selectivity (B) and permeability (C) for inversed designed MOFs. The red line denotes 

the Robeson boundary, and color spectrum stands for the percentile of relative membrane 

performance score (rMPS): the red, white and blue represent the highest, intermediate 

and the lowest rMPS, respectively. Brown box, purple circle, green triangle and gold star 

stand for inverse designed MOFs in generation 0, 1, 2, 3, respectively. 
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Figure 7.10. (A) Membrane separation selectivity vs. permeability for CoRE MOFs 

(filled dots) and inverse designed MOFs (open symbols). The distribution of membrane 

selectivity (B) and permeability (C) for inversed designed MOFs. The red line denotes 

the Robeson boundary and color spectrum stands for the percentile of relative membrane 

performance score (rMPS): the red, white and blue represent the highest, intermediate 

and the lowest rMPS, respectively. Brown box, purple circle, green triangle and gold star 

stand for inverse designed MOFs in generation 0, 1, 2, 3, respectively. 

 

Figure 7.9 shows the membrane selectivity and permeability of inverse designed 

MOFs in comparison with CoRE MOFs. Here, we consider materials only in the region 

where the scale of permeability is similar to the experiment results. Figure 7.10 shows the 

same figure with the full range of permeability and selectivity. In both Figure 7.9 and 

7.10, the distributions of membrane selectivity and permeability for designed MOFs in 
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each generation are shown in terms of percentage of total designed MOFs. With the 

evolution of each generation via GA, not only can more MOFs be successfully explored, 

but MOFs with better targeted properties can be designed as well. As shown in Figure 

7.9B and C, the improvement is evident in the increased distribution at higher 

permeability and membrane selectivity. The final generation (gold stars) contains most 

candidates surpassed the Robeson boundary and the threshold values of both membrane 

selectivity and permeability. The best MOF identified by the inverse design (yfk-N379) 

has a much better overall membrane separation performance in terms of both membrane 

selectivity and permeability compared to all existing experimental MOFs. Table 7.6 lists 

the detailed properties of yfk-N379. 

Table 7.6. Properties of designed MOFs with both high membrane selectivity and 

permeability for the separation of C2H4/C2H6 at 300 K. 

MOF 
Kh(C2H4) 

(mol·m-3·Pa-1) 

Kh(C2H6) 

(mol·m-3·Pa-1) 

D0(C2H4) 

(m2·s-1) 

D0(C2H6) 

(m2·s-1) 
kIM(C2H6/C2H4) 

yfk-

N379 
1.682×10-2 9.828×10-4 1.677×10-9 1.467×10-9 20.8 

 

Figure 7.11 shows molecular orientation and energy landscape for the diffusion of 

gas molecules along the MEP. In yfk-N379, the metal node, (CO2-κ
2O)TbO2(μ-CO2-

κ2O)4TbO2(CO2-κ
2O), is connected with the yfk topology network to form a 1D channel 

for the diffusion of C2H4 and C2H6 molecules. The energy landscape along the MEP in 

yfk-N379 is similar to that in LUDLAZ where the intermolecular interaction along the 

MPE is all attractive. Also, like that in LUDLAZ, the difference in the energy barrier 

between C2H4 and C2H6 is relatively small. As discussed above, in order to design an 

ideal MOF membrane with both high membrane selectivity and permeability, the 



 204 

separation selectivity shall be harnessed by the difference in the adsorption (viz., 

solubility), and the high permeability should be obtained by fast diffusion. As shown in 

Figure 7.11B, the 1D channel in yfk-N379 offers strong attraction and relatively 

moderate energy barrier along the MEP, which results in the extremely fast diffusion of 

gas molecules. The distinct difference of adsorption properties (viz., Henry’s constant) 

between C2H4 and C2H6 in yfk-N379 leads to an exceptionally high membrane selectivity 

compared to the CoRE MOFs. As a result, the synergetic effect from adsorption and 

diffusion helps yfk-N379 achieve both high membrane selectivity and permeability at the 

same time.  

 

Figure 7.11. (A) The position and orientation of an ethene molecule along the MEP 

(yellow line) in yfk-N379. (B) Energy landscape along the MEP for ethane and ethene in 

yfk-N379 at 300 K. 

 

Compared with high-throughput screening, the inverse design via GA is 

computationally more efficient. For example, the ideal MOF candidate (both high 

membrane selectivity and permeability) for the membrane separation of C2H4/C2H6 can 

be found with only 8,000 attempts in a much larger chemical space. The computational 



 205 

workflow thus demonstrates that, with theoretical tools for the efficient evaluation of 

materials performance, how the inverse design can significantly accelerate the material 

discovery, especially for the construction of reticular materials (e.g., MOFs and COFs) 

for the gas storage and separation.  

7.4 Conclusions 

In this work, we used both high-throughput screening and inverse design to find 

the best metal-organic frameworks (MOFs) for C2H4/C2H6 separation. Both adsorption 

and membrane processes have been considered in the high-throughput screening of 

computational-ready experimental (CoRE 2019) MOF database. For adsorption 

separation, the separation selectivity of ethene-selective MOF decreases with the increase 

of separation capacity because highly ethene-selective materials have extremely small 

pores with low adsorption capacity. While the selectivity of ethane-selective MOF 

increases with the adsorption capacity, the highest adsorption selectivity 

[αIM(C2H6/C2H4)=7.68] of ethane-selective MOF (LUDLAZ) is smaller than that 

[αIM(C2H4/C2H6)=27.01] of ethene-selective MOF (PIRYOF). Nevertheless, LUDLAZ is 

more than 70% higher than the state-of-art ethane-selective MOF identified by previous 

work. 

Compared with that in the adsorption process, the selectivity of membrane 

process is less compromised by the increase of the separation capacity. Through high-

throughput screening, we find that EBINUA02 yields the highest membrane selectivity 

[kIM(C2H4/C2H6)=2167.3]. To evaluate the overall membrane performance, we introduced 

a relative membrane performance score (rMPS) in terms of the selectivity and 
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permeability with respect to the Robeson boundary. For the separation of C2H4/C2H6, 

high rMPS favors MOFs with high permeability and intermediate membrane selectivity 

because high membrane selectivity requires large energy barrier along the minimum 

energy path (MEP) and leads to the slow diffusion. According to the structural analysis, 

MOFs with top 5% membrane selectivity have a much more confined diffusion path in 

terms of pore limit diameter (PLD) and largest cavity diameter (LCD) than those with top 

5% rMPS, despite their similarity in the distribution of void fraction. The separation 

mechanism is quite different between EBINUA02 and the MOF (LUDLAZ) with the 

highest rMPS. While a small pore aperture (PLD: 2.91 Å and LCD: 3.96 Å) in 

EBINUA02 results in faster diffusion and stronger adsorption of C2H4 over C2H6, the less 

confined diffusion path in LUDLAZ (PLD: 4.18 Å and LCD: 5.96 Å) leads to negligible 

difference in the diffusion. In that case, the membrane selectivity is mostly contributed by 

its ethane-selective solubility.  

The computational efficiency of the theoretical tools for predicting the sorption 

and diffusion properties of nanoporous materials allows us to design MOF membranes 

with both high membrane selectivity and permeability using the genetic algorithm (GA). 

Compared with high-throughput screening, not only can GA explore the material design 

space with targeted properties, but it takes less attempts to identify the most promising 

candidates as well. The best MOF discovered by GA consists metal node - (CO2-

κ2O)TbO2(μ-CO2-κ
2O)4TbO2(CO2-κ

2O) with the yfk topology. The designed material has 

both permeability and membrane selectivity significantly larger than the threshold values 

set in the fitness function. Besides, its overall membrane separation performance is better 
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than all existing experimental MOF candidates. The computational workflow used in the 

work thus demonstrates the capability of inverse design to accelerate the discovery of 

nanoporous materials, especially reticular materials (such as MOFs and COFs) for gas 

storage and separation. 
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Chapter 8. Insights from Machine Learning of Carbon Electrodes for Electric 

Double Layer Capacitors 

Recent years have witnessed the broad use of carbon electrodes for electric double 

layer capacitors (EDLCs) because of large surface area, high porosity and low cost. 

Whereas experimental investigations are mostly focused on the device performance, 

computational studies have been rarely concerned with electrochemical properties at 

conditions remote from equilibrium, limiting their direct applications to materials design. 

In this chapter, through a comprehensive analysis of extensive experimental data with 

various machine learning methods, we report herein quantitative correlations between the 

structural features of carbon electrodes and the in-operando behavior of EDLCs 

including energy and power density. Machine learning models allow us to identify 

important characteristics of activated carbons useful to optimize their efficiency in energy 

storage. 

8.1 Introduction 

Electric double layer capacitors (EDLCs, a.k.a. supercapacitors) have attracted 

tremendous interest in recent years due to their great potential for energy storage with 

long maintenance-free lifetime, high cycle efficiency and high power density[1-3]. 

EDLCs may well bridge the existing energy-storage gap between conventional capacitors 

and electrochemical batteries in terms of energy and power density. It is generally 

believed that EDLCs will play a vital role for energy storage not only in industrial sectors 

but also in consumer electronics such as forklifts, electric vehicles, and memory backup 
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batteries. A critical issue amid many promising applications is low energy density, which 

has been a prominent limiting factor for more widespread usage of EDLCs. 

EDLCs harness electrical energy by reversible adsorption/desorption of ionic 

species. Because electrode materials with large surface areas yield large capacitances, 

porous carbons are an excellent choice for high-density energy storage. In recent years, 

carbon-based materials have been widely used as the EDLC electrodes because of large 

specific surface area, high porosity, high conductivity, low cost, easy availability, and 

environmental friendliness[4, 5]. Despite extensive computational studies[6], yet-to-be-

established are quantitative correlations between the characteristics of carbon-based 

materials (i.e., pore connectivity and size/shape distributions) and the EDLC performance 

at conditions of practical interest. A conventional wisdom is that the higher surface area 

an electrode has, the larger capacitance it would achieve. Accordingly, one might expect 

that micropores (< 2 nm) would be most desirable as they offer significantly more 

specific surface areas than mesopores (> 2 nm and < 50 nm) or macropores (> 50 nm). 

However, it has been well documented that an electrode with only micropores suffers not 

only from poor power density but from low capacitance as well[4, 7-9]. Micropores often 

lead to unsatisfactory power density due to the increased resistance of ion diffusion[4, 9]. 

Besides, the reduction in the capacitance might be attributed to inaccessibility of 

micropores due to sieving and/or transport effects[7, 8]. Because a precise 

characterization of pore size and shape distribution is experimentally challenging for 

amorphous porous materials, inconsistent results have been reported concerning the pore 

size effects on the EDLC performance in particular when the dimension of micropores is 
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comparable to that of ionic species[10-15]. One consensus is, however, that an 

interconnected 3D pore network may lead to both satisfactory capacitance and power 

density by optimizing the surface areas of mesopores and micropores simultaneously[4]. 

To tailor carbon materials for better performance of EDLCs, we need quantitative 

correlations of their structural features with the power and energy density at in-operando 

conditions. 

Equivalent circuit models (ECMs) are conventionally used to describe the kinetics 

of charging and discharging for energy storage devices[16]. While ECMs are appealing 

for their simplicity and effectiveness to correlate experimental data, such models are not 

applicable to electrodes with micropores and provide little insights on the microscopic 

details of physical processes underlying ion transport and energy storage[17]. Conversely, 

molecular models are powerful to describe the ionic behavior, but their applicability to 

EDLCs is severely limited not only by the system size but by near equilibrium conditions. 

In recent years, machine learning (ML) methods are emerging as a powerful alternative to 

physics-based approaches[18-20]. Provided that sufficient training data are variable, ML 

methods allow us to establish useful correlations between materials properties and their 

performance without evoking the physical details. Different from physics-based modeling, 

ML methods hinge on computational algorithms to self-educate and extract quantitative 

relationships between input and output variables from existing data. Although 

justification of a ML algorithm for practical applications often requires physics 

knowledge and, sometimes, trial and error, once calibrated ML methods are able to 

describe complicated physical processes solely based on the input data. 
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Previously, ML methods have been used to predict the performance of porous 

material as effective media for gas adsorption or separation[20-22] and as electrodes for 

energy storage[23-26]. For example, Zhu et al. complied over 10,000 data points for the 

capacitance of carbon-based supercapacitors from more than 1000 publications[23]. A 

useful correlation was established between the EDLC capacitance and the physical and 

chemical features of carbon materials including specific surface area, pore volume, ID/IG 

ratio, and doping elements by using an artificial neutron network (ANN). To identify the 

dependence of the EDLC capacitance on the individual features of carbon materials, Su et 

al. established quantitative correlations using regression trees (RT) and multi-layer 

perception (MLP) models[24]. Although good correlations have been shown, it remains 

unclear how ML methods would lead to a better understanding of the relation between 

the capacitance and the structural features of carbon materials. In particular, the 

performance of EDLCs is dependent on operational conditions but the effect of scan rate 

on the capacitance and power density was not explicitly considered in previous 

investigations. 

In this work, we propose a physics-informed ML method to unravel the structural 

features of carbon electrodes that may have the most significant impacts on the 

capacitance and power density of EDLCs. To minimize the number of input variables, the 

computational analysis is focused on the in-operando performance of EDLCs consisting 

of pristine activated carbon materials and an aqueous electrolyte solution (6 M KOH) that 

is most commonly used in practical applications. 

 



 216 

8.2 Methods and Models 

The EDLC performance depends on, in addition to electrode materials, the 

properties of electrolytes and operational conditions such as the electrochemical potential 

window and charging discharging rates. In order to minimize the number of input 

variables affecting the performance of an EDLC device, our machine-leaning analysis is 

focused on experimental results for the specific capacitance and the power density of 

pristine activated carbon materials. Besides, we consider only the results measured with 

three-electrode cell in 6 M KOH aqueous solution with the voltage window of 1 V. In 

comparison to that in two-electrode measurements, a three-electrode cell provides a more 

precise control of both potential and current, and thus is able to better distinguish the 

electrochemical properties of different electrode materials[3]. Because experimental data 

are scarce for materials with low specific surface areas, we added three points to 

replenish the results at zero surface area. All data points are from the literature[27-33] 

and listed in Table 8.1. The specific integral capacitance is given by 
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where υ is the scan rate (V/s), i is the electrical current, m is the electrode mass, ΔV is the 

potential window, I  is the average current, Δt=ΔV/υ is charging/discharging time, and 

Csp stands for specific integral capacitance of the electrode in a three-electrode system. 

Following the experimental literature, the energy density is defined as 
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where Ccell is the specific capacitance of a two-electrode symmetrical supercapacitor. 

Accordingly, the power density is calculated from 
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It should be emphasized that none of the quantities calculated above correspond to 

equilibrium values. Nevertheless, these quantities are most relevant to evaluating the 

performance of EDL capacitors under practical conditions. 
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Table 8.1. Data used in this work. 

# 
Csp 

(F/g) 

E 

(Wh/kg) 

P 

(kW/kg) 

SAmicro 

(m2/g) 

SAmeso 

(m2/g) 

υ 

(mV/s) 

1 0 0 0 0 0 0 

2 0 0 0 0 0 5 

3 0 0 0 0 0 10 

4 188.58 6.548 0.118 1990 879 5 

5 232.27 8.065 0.145 636 442 5 

6 222.77 7.735 0.278 636 442 10 

7 202.29 7.024 0.506 636 442 20 

8 185.15 6.429 1.157 636 442 50 

9 155.41 5.396 1.943 636 442 100 

10 185.11 6.428 0.116 713 290 5 

11 170.51 5.921 0.213 457 126 10 

12 101.47 3.523 1.268 457 126 100 

13 160.84 5.585 0.201 429 188 10 

14 115.52 4.011 1.444 429 188 100 

15 175.29 6.086 0.219 481 193 10 

16 141.55 4.915 1.769 481 193 100 

17 253.90 8.816 0.317 1118 504 10 

18 203.05 7.050 2.538 1118 504 100 

19 224.15 7.783 0.056 735 1200 2 

20 202.99 7.048 0.127 735 1200 5 

21 189.89 6.593 0.237 735 1200 10 

22 176.24 6.119 0.441 735 1200 20 

23 144.14 5.005 0.901 735 1200 50 

24 113.60 0.394 0.142 735 1200 100 

25 241.54 8.387 0.151 1506 269 5 

26 212.44 7.376 0.266 1506 269 10 

27 207.12 7.192 0.518 1506 269 20 

28 197.94 6.873 1.237 1506 269 50 

29 198.00 6.875 2.475 1506 269 100 

30 182.58 6.340 0.114 437 10 5 

31 161.70 5.615 1.011 437 10 50 

32 158.97 5.520 1.987 437 10 100 

33 221.86 7.703 0.139 501 25 5 

34 191.76 6.658 1.198 501 25 50 

35 182.59 6.340 2.282 501 25 100 

36 159.09 5.524 0.099 579 83 5 

37 139.68 4.850 0.873 579 83 50 

38 136.66 4.745 1.708 579 83 100 

39 116.85 4.057 0.029 0 24 2 

40 79.11 2.747 0.049 0 24 5 

41 68.03 2.362 0.085 0 24 10 
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42 61.20 2.125 0.153 0 24 20 

43 53.48 1.857 0.334 0 24 50 

44 46.58 1.617 0.582 0 24 100 

45 41.30 1.434 1.033 0 24 200 

46 31.42 1.091 1.964 0 24 500 

47 257.94 8.956 0.064 115 1158 2 

48 244.31 8.483 0.153 115 1158 5 

49 238.34 8.276 0.298 115 1158 10 

50 232.37 8.068 0.581 115 1158 20 

51 224.65 7.800 1.404 115 1158 50 

52 216.90 7.531 2.711 115 1158 100 

53 207.36 7.200 5.184 115 1158 200 

54 187.26 6.502 11.704 115 1158 500 

55 179.60 6.236 0.022 120 216 1 

56 172.40 5.986 0.043 120 216 2 

57 166.30 5.774 0.104 120 216 5 

58 155.00 5.382 0.194 120 216 10 

59 211.60 7.347 0.026 107 315 1 

60 201.60 7.000 0.050 107 315 2 

61 184.20 6.396 0.115 107 315 5 

62 172.60 5.993 0.216 107 315 10 

63 277.00 9.618 0.035 153 553 1 

64 259.60 9.014 0.065 153 553 2 

65 229.50 7.969 0.143 153 553 5 

66 198.10 6.878 0.248 153 553 10 

67 280.10 9.726 0.035 200 900 1 

68 273.5 9.497 0.068 200 900 2 

69 265.2 9.208 0.166 200 900 5 

70 250.1 8.684 0.313 200 900 10 

Note: 4-10[27]; 11-18[28]; 19-24[29]; 25-29[30]; 30-38[31]; 39-54[32]; 55-70[33]; 

 

To analyze the experimental data with ML methods, we have calibrated the 

performance of four regression models through leave-one-out cross validation. One of the 

most elementary ML models is linear regression, which expresses the experimental 

results as a linear function of the model parameters[34]. The generalized linear 

regression (GLR) method contains not only the intercept and linear terms, but also the 

products of different features[35]. Because most features used for data-based modelling 

do not affect the output independently, we expect that GLR is able to better extract 
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correlation between different features from the input data. In the support-vector machine 

(SVM) model, a hyperplane is constructed to map the input data from the original finite-

dimensional space to that corresponding to a higher-dimensional space[36, 37]. By doing 

so, we can better distinguish data with different characteristics because the kernel trick 

used in SVM is able to well recognize data patterns. SVM can be used for both regression 

and classification; it represents one of the most popular classification algorithms. The 

random forest (RF) model is based on the decision tree (DT) model, it employs many 

decision trees (“if-then” logic consequence) to extract useful information from the input 

data[38, 39]. The output of RF is determined by the vote of all decision trees. Compared 

with DT, the RF model can avoid overfitting as every decision tree has an equal weight. 

Finally, the artificial neural network (ANN) mimics neutral cells in a human brain by 

constructing a layer of neurons (transfer function) between input and output[40, 41]. In 

this work, the ANN model is trained with the Bayesian regularization backpropagation 

training function as it avoids overfitting with scarce and sparse data[42]. 

For all ML models, the parameters are optimized with the k-fold validation 

method using a k-fold value of 10. The performance of each ML model is evaluated 

through leave-one-out cross validation. Both coefficient of determination (R2) and root 

mean square error (RMSE) are used as the metrics to benchmark different ML models: 
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where n , iy , iu  and u  are, respectively, the number of data points, the value calculated 

from the ML correlation, the experimental value, and the average of all experimental data. 

Table 8.2. Summary of inputs and outputs used for different ML models 

Inputs Output 

SAmicro Specific Capacitance 

 

Power Density 

SAmeso 

Scan Rate 

 

Table 8.2 summarizes the input and output variables used for different ML 

models. Because we are concerned only with pristine activated carbons, there is no need 

to consider chemical information (e.g. doping element and percentage) explicitly. As the 

EDLC energy is manifested at electrolyte-electrode interface, we conjecture that surface 

area would be more important than pore volume to characterize the porous electrodes. To 

account for the pore-size effect on capacitance, we distinguish surface areas from 

micropores (< 2 nm) and mesopores (> 2 nm and <50 nm). For each type of pores, the 

specific capacitance per surface area is approximately a constant for the same 

electrolyte[43, 44]. For the aqueous electrolyte considered in this work (6M KOH), the 

size of the hydrated ions is comparable to that of N2 molecules[7]. As a result, the surface 

area measured from N2 adsorption isotherm at 77 K can well characterize the surface 

where the ionic adsorption/desorption takes place[11-13]. The BET surface areas of 

micropores and mesopores thus represent a good choice for the input features of carbon 

electrodes. 

In previous ML studies [23, 24], the scan rate was not taken into consideration for 

the correlation between capacitance and materials features. However, the scan rate 

determines the duration of the EDLC charging/discharging and is directly related to the 
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integral capacitance measured by experiments (see eq [8.1]). In general, the EDLC 

capacitance measured by cyclic voltammetry at a low scan rate would be higher than that 

at a high scan rate, and the equilibrium capacitance is achieved only in the limit of 

infinitely slow charging. For example, an increase in the integral capacitance was 

observed experimentally when the scan rate is even below 0.2 mV/s [45]. For better 

comparison of different features of the carbon electrodes influencing the EDLC 

performance, it is critical to include the scan rate as an input variable. This kinetic 

parameter is particularly important for evaluating the EDLC performance at in-operando 

conditions[46]. It should be noted that the scan rate used in cyclic voltammetry 

experiments is not the same as the charging rate as often considered in theoretical studies. 

The former is referred to the duration of EDL charging/discharging during a cyclic 

process while the latter is defined as how fast a voltage change is applied to the system 

without cyclic changes. In terms of charging kinetics, recent MD simulations indicate that 

a rapid charging rate may lead to the formation of an electroneutral ionic liquid region or 

co-ion trapping thereby slow charging kinetics [17, 47]. 

8.3 Results and Discussion 

8.3.1 Model Evaluation 

We first present results for validating the four ML algorithms discussed above: (A) 

generalized linear regression (GLR), (B) support vector machine (SVM), (C) random 

forest (RF), and (D) artificial neural network (ANN). Figure 8.1 shows correlations 

between the experimental data and results from different ML models for the specific 

capacitance of various activated carbons. Here 70 data points were used in training the 
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ML models. In each panel, the diagonal line stands for the perfect correlation between 

experimental and predicted values. 

Figure 8.1 shows that, although all ML methods are able to capture the right 

trends, their efficiency in representing the experimental results is apparently different. 

Among the four ML methods considered in this work, GLR results in the worst statistics 

as is evident from significant deviations of many data points from the diagonal line and 

as indicated by the lowest R2 and highest RMSE values. Apparently, multiplication of 

different features or the quadratic approximation is insufficient to capture the correlation 

between different input parameters. Both SVM and RF can provide much better fittings 

of the experimental data since they both have much higher R2 and lower RMSE values. 

However, they fail to reproduce the experimental results when the capacitance 

approaches zero. Overall, ANN provides the best fitting because it gives the highest R2 

and lowest RMSE values. 
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Figure 8.1. Correlations between experimental and different machine learning models for 

the specific capacitance (Csp, F/g) of activated carbons: (A) generalized linear regression 

(GLR), (B) support vector machine (SVM), (C) random forest (RF), (D) artificial neural 

network (ANN). In each panel, the diagonal line represents the perfect correlation 

between experimental and machine-learning results. 

 

As ANN is able to capture the correlation between the structural features of 

activated carbons and their influence on EDLC capacitance, we further utilize it to 

analyze the power density based on the mesopore surface area, the micropore surface area, 

and the scan rate. Figure 8.2 shows that ANN also provides satisfactory correlation of the 

power density data with experimental measurements. It gives an excellent correlation 

over the entire range of the power density. Correlations using other ML models are 
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provided in Supporting Information (Figure 8.3). It should be noted that ANN yields a 

larger RMSE for capacitance than that for power density because the absolute values of 

the capacitance are larger. If a dimensionless metric was used to benchmark ANN for 

power density and energy density, their performances are rather similar (0.7167 vs 

0.6382). 

 

Figure 8.2. Artificial neural network (ANN) model for correlating the power density of 

activated carbons. The diagonal line represents the perfect correlation between 

experimental and machine-learning results. 
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Figure 8.3. Power density from experiment and different machine learning models (A) 

generalized linear regression, (B) support vector machine, (C) random forest and (D) 

artificial neural network. The diagonal line indicates perfect correlation between 

experimental and machine learning results. 

 

One of the biggest challenges in physics-based modeling of energy storage 

devices is that most theoretical models are valid only for systems at or near equilibrium 

while the device performance depend on properties remote from equilibrium. As a result, 

substantial gaps exist between the scopes of theoretical and experimental investigations. 

For example, the specific capacitance corresponding to the equilibrium value can be 

measured only in the limit of zero scan rate. However, reliable results can hardly be 
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obtained in experiment at an extremely low scan rate. Besides, the charge/discharge 

processes typically take place at high rates in order to fully utilize of the unique 

properties of supercapacitors. Different from physics-based modeling, ML methods can 

be used to correlate input and output variables regardless of physical conditions. As 

shown in Figure 8.4, the ANN model is able to predict the specific capacitance as a 

function of the scan rate once such a correlation is established. We see that ANN can well 

reproduce the experimental data for carbon electrodes over a large range of the scan rate 

(from 2 mV to 500 mV). 

 

Figure 8.4. The specific capacitance versus the scan rate predicted by the ANN model. 

Here black squares are experimental data for an electrode with SAmicro=115 m2/g and 

SAmeso=1158 m2/g, red circles are electrodes with SAmicro=636 m2/g and SAmeso=442 m2/g, 

and blue triangles for an electrode with SAmicro=735 m2/g and SAmeso=1200 m2/g. 

Because an electrode with high mesopore surface area and low micropore surface area 

minimizes the resistance of ion transport, its specific capacitance decays much slower 

with the increase of the scan rate. 
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8.3.2 Prediction of EDLC Performance 

Figure 8.5 shows variation of the specific capacitance with micropore and 

mesopore surface areas at three representative scan rates, 1 mV/s, 50 mV/s and 100 mV/s. 

If charging/discharging is carried out reversibly (i.e., near equilibrium), materials with 

only micropores would be favored to have high specific capacitance, provided that the 

micropores are sufficiently large to accommodate the ionic species. Intuitively, we also 

expect that a large surface area may result in high capacitance because it facilitates more 

ion adsorption on the electrode surface. However, the equilibrium condition can be hardly 

satisfied during charging/discharging, and thus maximizing the surface area of the 

micropores is not necessarily practical for the optimal performance. At a finite 

charging/discharging rate, mesopores are expected to play an important role because they 

allow ionic adsorption/desorption at high speed. Besides, it has been recently shown that 

the presence of mesopores increases the connectivity between micropores and thereby the 

energy storage[48]. Figure 8.5A shows that, even at a relatively small scan rate (1 mV/s), 

active carbons with both moderately high micropore and mesopore surface areas achieve 

the highest capacitance. At a larger scan rate (100 mV/s), the capacitance is mainly 

determined by mesopores because slow ion transport makes small pores hardly accessible. 

We can see from Figure 8.5A to Figure 8.5C a clear transition of different contributions 

to the specific capacitance from micropores to mesopores upon a gradual increase of the 

scan rate. A balance of specific surface area and ion transport resistance effects explains 

why the EDLC capacitance cannot be optimized by increasing the micropore or mesopore 

surface area alone. 
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Figure 8.5. Specific capacitance versus the surface areas of micropores and mesopores 

predicted by the artificial neural network model. The scan rate is (A) 1 mV/s, (B) 50 

mV/s and (C) 100 mV/s. 

 

In accordance with experimental observations[49], Figure 8.5 shows that 

increasing the surface area does not raise the specific capacitance when the total surface 

area exceeds about 1500 m2/g. The decline in capacitance at large surface areas might 

result from the limiting thickness of the micropore surfaces[49]. At large scan rates, the 

EDLC operates further away from equilibrium leading to a drastic reduction of the 

capacitance. Compared to that for mesopores, the capacitance affiliated with micropores 

is more sensitive to the scan rate. It is worth noting that the capacitance does not always 

rise with the micropore surface area even at a relatively low scan rate (1 mV/s). Instead, it 

reaches a plateau and then decreases at extremely high micropore surface area when the 

micropores are no more accessible to ion adsorption[49]. As the surface area per mass 

increases, the thickness of carbon flakes would decrease, regardless of the pore size, 

leading to interactions between electrolytes in neighboring pores [48]. 
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Figure 8.6. The Ragone plot for activated-carbon EDLCs. Here the region enclosed by 

the red solid line is predicted by the artificial neural network (ANN). The symbol star 

represents an electrode with SAmicro=920 m2/g, SAmeso=770 m2/g at the scan rate of 1 

mV/s. The regions enclosed by the dashed lines correspond to the commercial electrical 

capacitors (EC) and lithium ion batteries. 

 

With the scan rate and the surface areas of micropore and mesopore as the input, 

ANN allows us to construct the Ragone plot, i.e., relations between the energy density 

and power density of energy storage devices. As shown in Figure 8.6, activated-carbon-

based EDLCs have a great potential to improve the performance of commercial electrical 

capacitors (EC). By optimizing the micropore and mesopore surface areas, we may have 

an EDLC with the energy density comparable to that of the Li-ion battery while 

exhibiting a much higher power density. The ANN model predicts that the energy density 

can be maximized with SAmicro=920 m2/g and SAmeso=770 m2/g for the micro- and 

mesopore surface areas, respectively. While the optimal characteristics of the carbon 

electrode depends on the scan rate, the EDLC performance may be further improved by 

chemical modifications such as doping with nitrogen or oxygen. 
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8.4 Conclusions 

In this work, we establish quantitative correlations between the structural features 

of activated carbon electrodes and the EDLC performance using physics-informed 

machine-learning (ML) models: generalized linear regression (GLR), support vector 

machine (SVM), random forest (RF), and artificial neural network (ANN). Among the 

four ML algorithms tested, we find that ANN results in the best performance and is able 

to capture the capacitance dependence on micropore and mesopore surface areas over a 

broad range of the scan rate. Besides, it can be used to construct a Ragone plot that 

predicts the desirable features of activated carbons that lead to the highest energy and 

power density. While similar correlations were established before for EDLC capacitance, 

we provide the first comprehensive analysis of the EDLC performance directly relevant 

to practical applications. While the statistics of ML correlations can be further improved 

with more experimental data, we hope that the new insights gained from this work would 

be useful to guide future studies in design and synthesis of carbon electrodes to improve 

the supercapacitor performance. 
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Chapter 9. A Data-Driven Approach to Understanding the In-Operando 

Performance of Heteroatom-Doped Carbon Electrodes 

Doping with heteroatoms such as nitrogen and oxygen has been widely practiced 

to improve the capacitance of carbon electrodes for supercapacitor. However, the role of 

different heteroatoms and their local atomic configurations on the supercapacitor 

performance remains elusive, which hampers the rational design of carbon electrodes to 

achieve high energy density and power density. In this chapter, machine learning models 

are applied to interpret how the surface chemistry affects the in-operando behavior of 

various carbon electrodes with different structural features such as the specific surface 

areas of micro- and mesopores. Quantitative descriptions have been established to predict 

how the configurations of nitrogen-doping and oxygen-doping influence the capacitance 

and retention rate. The machine learning models provide insights into the design and 

possible routes to the synthesis of nitrogen and oxygen co-doped carbon electrodes that 

maximize the energy storage capacity. 

9.1 Introduction 

Supercapacitors have been recognized as a viable approach for energy storage 

with the advantages of high power density and long lifespan in comparison to alternative 

methods such as batteries and fuel cells.[1-3] However, current applications of 

supercapacitors are often impaired by their low energy density. One focal point of the 

ongoing supercapacitor research has thus been directed at improving the energy density 

while maintaining high power density. 
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Porous carbons have been widely used as the electrode material for 

supercapacitors because of high porosity, large surface area, good conductivity, and 

modest cost.[4, 5] As the energy is stored through the formation of electrical double layer 

(EDL) at the electrode-electrolyte interface, the more surface area a carbon electrode has, 

the more energy can be stored in supercapacitor. While the capacitance, and thus the 

device performance, can be in general improved by increasing the surface area, the 

specific capacitance reaches a plateau when the specific surface area is larger than about 

1500 m2/g. The asymptotic behavior arises from the reduction of the electrode 

conductivity and the interference of ion adsorption in neighboring pores.6,7 Besides, the 

increase of surface area through adding more micropores limits ion accessibility and 

transport, which becomes more substantial when the ionic charge needs to be extracted at 

a fast rate. To improve the retention rate at high-speed charging/discharging processes, 

heteroatoms such as nitrogen, oxygen and sulfur, have been routinely introduced into the 

carbon electrodes by using various doping procedures. The heteroatom doping improves 

the electrical conductivity of the carbon electrodes and electrolyte wettability. The 

improved capacitive performance may also be attributed to faradaic reactions and to the 

increased density of states at the electrode surface.[6, 7] Whereas much progress has been 

made explaining the heteroatom effects on the equilibrium properties of carbon 

electrodes, it remains unclear how they boost the supercapacitor performance under 

realistic conditions far away from equilibrium. 

Physics-based models have been used to elucidate the origin of improved 

capacitance due to heteroatom doping.[8, 9] However, existing models are unable to 
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make a quantitative prediction of the capacitance under conditions pertinent to the device 

performance or electrochemical characterization. Unlike equilibrium properties as 

typically described in physical models, the capacitance most relevant to the device 

performance is a dynamic variable depending on the charging/discharging kinetics and, 

for electrochemical characterization experiments, on the scan rate and electrical current. 

Because of limitations in mass transport and reaction kinetics, the dynamic capacitance 

decreases with the increase of charging/discharging rate. The missing link between the 

charging behavior and the microscopic details of ion transport in porous electrodes at in-

operando conditions hampers the direct applications of physics-based methods to the 

rational design of electrode materials. 

In contrast to physics-based modelling, machine learning models allow us to 

establish quantitative correlations between the important features of electrode materials 

and their performance based on extensive data measured experimentally.[10-12] The 

data-driven approach provides an alternative route to theoretical modeling for 

understanding the device performance at conditions far away from equilibrium and for 

the inverse design of materials toward tailored applications. Previously, several studies 

have been reported using machine learning models to study the supercapacitor 

performance.[13, 14] Although good correlations have been established between the 

capacitance and a few selected features of pristine carbon electrodes, the interplay of the 

surface chemistry with the structural features of carbon electrodes remains poorly 

understood. In this work, we employ machine learning models to unveil the relation 

between the dynamic performance of carbon electrodes and heteroatom doping (nitrogen- 
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and oxygen-doping) based on extensive experimental data from the literature. The 

structural features of the carbon materials are characterized in terms of the micropore and 

mesopore surface areas similar to our previous work.[15] To confine the parameter space, 

we consider the supercapacitor performance only for carbon electrodes in a specific 

aqueous electrolyte (6 M KOH) as commonly used in experiments. While similar 

machine learning models are used in this study, our focus here is to explore how the 

chemical composition of carbon electrodes affects the supercapacitor performance. A 

special attend is given to the supercapacitor performance at high scan rates of cyclic 

voltammetry (CV) measurements as such condition is most closely related to real-life 

applications of supercapacitors. With extra descriptors, the machine learning models can 

not only well reproduce the results for pristine carbon electrodes, but also allow us to 

map a much larger chemical space with an explicit consideration of different ways of 

chemical doping. 

9.2 Methods and Models 

All data used in this work is collected from the literature.7, 16-30 Although 

experimental studies have extensively been reported on the capacitance of carbon 

electrodes in aqueous electrolytes, only a few of them provide information with detailed 

pore characterization and chemical composition. After extracting the raw data from CV 

measurements, we calculate the capacitance, energy density and power density of 

electrodes by using the standard equations (eqs [9.1] ~ [9.3]). The specific integral 

capacitance is given by 
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where υ is the scan rate (V/s), i is the electrical current, m is the electrode mass, ΔV is the 

potential window, I  is the average current, Δt=ΔV/υ is charging/discharging time, and 

Csp stands for the specific integral capacitance of the electrode in a three-electrode system. 

Following the experimental literature, we define the energy density as 

 

22

2 8 8

spcell
C VC V I t V

E
m

  
= = =  (9.2) 

where Ccell corresponds to the specific capacitance of a supercapacitor with two 

symmetric electrodes. Accordingly, the power density is calculated from 
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It should be emphasized that none of the quantities calculated above correspond to the 

equilibrium values. Nevertheless, these quantities are most relevant to evaluating the 

performance of supercapacitors under practical conditions. 

The dataset also includes key information of the electrode materials including 

surface areas of micropores (pore diameters less than 2 nm) and mesopores (pore 

diameters between 2 nm and 50 nm) and the detailed percentages of the doping 

configurations for different heteroatoms. All data used in this work is provided in Table 

9.1. 
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Table 9.1. Input and output data used in different machine learning models. 

# 
Csp 

(F/g) 

E 

(Wh 

/kg) 

P 

(kW 

/kg) 

υ 

(mV/s) 

SAmicro 

(m2/g) 

SAmeso 

(m2/g) 

O 

(%) 

N-

5 

(%) 

N-

6 

(%) 

N-

Q 

(%) 

N-

other 

(%) 

1 0 0 0 1 0 0 0 0 0 0 0 

2 0 0 0 300 0 0 0 0 0 0 0 

3 0 0 0 500 0 0 0 0 0 0 0 

4 0 0 0 1 0 0 17 4 3 7 2 

5 0 0 0 300 0 0 17 4 3 7 2 

6 0 0 0 500 0 0 17 4 3 7 2 

7 0 0 0 1 0 0 9 2 2 3 1 

8 0 0 0 300 0 0 9 2 2 3 1 

9 0 0 0 500 0 0 9 2 2 3 1 

10 180 7 0 1 120 216 0 0 0 0 0 

11 172 8 0 2 120 216 0 0 0 0 0 

12 166 8 0 5 120 216 0 0 0 0 0 

13 155 7 1 10 120 216 0 0 0 0 0 

14 212 6 1 1 107 315 0 0 0 0 0 

15 202 5 2 2 107 315 0 0 0 0 0 

16 184 6 0 5 107 315 0 0 0 0 0 

17 173 6 0 10 107 315 0 0 0 0 0 

18 277 4 1 1 153 553 0 0 0 0 0 

19 260 6 0 2 153 553 0 0 0 0 0 

20 230 4 1 5 153 553 0 0 0 0 0 

21 198 9 0 10 153 553 0 0 0 0 0 

22 280 7 3 1 200 900 0 0 0 0 0 

23 274 8 0 2 200 900 0 0 0 0 0 

24 265 7 0 5 200 900 0 0 0 0 0 

25 250 7 0 10 200 900 0 0 0 0 0 

26 224 6 0 2 735 1200 0 0 0 0 0 

27 203 5 1 5 735 1200 0 0 0 0 0 

28 190 4 1 10 735 1200 0 0 0 0 0 

29 176 6 0 20 735 1200 0 0 0 0 0 

30 144 6 1 50 735 1200 0 0 0 0 0 

31 114 6 2 100 735 1200 0 0 0 0 0 

32 143 8 0 10 417 645 6 3 3 2 0 

33 118 7 1 50 417 645 6 3 3 2 0 

34 97 6 2 100 417 645 6 3 3 2 0 

35 36 6 0 400 417 645 6 3 3 2 0 

36 164 5 1 10 219 840 6 2 2 1 0 

37 141 5 2 50 219 840 6 2 2 1 0 

38 123 4 0 100 219 840 6 2 2 1 0 

39 63 3 0 400 219 840 6 2 2 1 0 

40 140 2 0 10 173 944 5 2 1 1 0 
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41 124 2 0 50 173 944 5 2 1 1 0 

42 110 2 0 100 173 944 5 2 1 1 0 

43 65 2 1 400 173 944 5 2 1 1 0 

44 276 1 1 5 1283 764 8 0 0 0 0 

45 250 1 2 10 1283 764 8 0 0 0 0 

46 239 9 0 20 1283 764 8 0 0 0 0 

47 222 8 0 50 1283 764 8 0 0 0 0 

48 204 8 0 100 1283 764 8 0 0 0 0 

49 190 8 1 150 1283 764 8 0 0 0 0 

50 179 8 1 200 1283 764 8 0 0 0 0 

51 168 8 3 250 1283 764 8 0 0 0 0 

52 286 7 5 5 1574 187 12 1 1 1 0 

53 268 7 12 10 1574 187 12 1 1 1 0 

54 249 11 0 20 1574 187 12 1 1 1 0 

55 208 11 0 50 1574 187 12 1 1 1 0 

56 160 10 0 100 1574 187 12 1 1 1 0 

57 131 10 1 150 1574 187 12 1 1 1 0 

58 282 10 2 5 1556 205 12 1 1 1 1 

59 282 10 3 5 1320 621 11 0 0 0 0 

60 205 9 7 5 1072 661 8 0 0 0 0 

61 189 9 16 5 1990 879 0 0 0 0 0 

62 232 6 0 5 636 442 0 0 0 0 0 

63 223 6 0 10 636 442 0 0 0 0 0 

64 202 6 0 20 636 442 0 0 0 0 0 

65 185 5 0 50 636 442 0 0 0 0 0 

66 155 7 0 100 636 442 0 0 0 0 0 

67 185 7 0 5 713 290 0 0 0 0 0 

68 294 6 0 5 971 282 8 1 1 1 0 

69 277 6 0 5 633 1394 5 0 0 0 0 

70 332 10 0 5 1227 1170 8 1 1 1 0 

71 316 9 0 10 1227 1170 8 1 1 1 0 

72 298 8 0 20 1227 1170 8 1 1 1 0 

73 261 7 0 50 1227 1170 8 1 1 1 0 

74 220 10 0 100 1227 1170 8 1 1 1 0 

75 205 10 0 200 1227 1170 8 1 1 1 0 

76 117 9 0 2 0 24 0 0 0 0 0 

77 79 9 0 5 0 24 0 0 0 0 0 

78 68 5 0 10 0 24 0 0 0 0 0 

79 61 2 0 20 0 24 0 0 0 0 0 

80 53 1 0 50 0 24 0 0 0 0 0 

81 47 0 0 100 0 24 0 0 0 0 0 

82 41 3 0 200 0 24 0 0 0 0 0 

83 31 3 0 500 0 24 0 0 0 0 0 

84 258 3 0 2 115 1158 0 0 0 0 0 
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85 244 3 0 5 115 1158 0 0 0 0 0 

86 238 4 0 10 115 1158 0 0 0 0 0 

87 232 4 0 20 115 1158 0 0 0 0 0 

88 225 5 0 50 115 1158 0 0 0 0 0 

89 217 4 1 100 115 1158 0 0 0 0 0 

90 207 3 1 200 115 1158 0 0 0 0 0 

91 187 1 2 500 115 1158 0 0 0 0 0 

92 326 6 0 2 327 1280 7 1 1 2 0 

93 309 5 1 5 327 1280 7 1 1 2 0 

94 302 4 2 10 327 1280 7 1 1 2 0 

95 294 2 3 20 327 1280 7 1 1 2 0 

96 286 5 0 50 327 1280 7 1 1 2 0 

97 278 4 1 100 327 1280 7 1 1 2 0 

98 269 4 1 200 327 1280 7 1 1 2 0 

99 251 2 3 500 327 1280 7 1 1 2 0 

100 142 10 0 10 250 52 12 0 0 0 0 

101 220 10 0 5 275 349 8 0 0 0 0 

102 207 12 0 10 275 349 8 0 0 0 0 

103 180 11 0 50 275 349 8 0 0 0 0 

104 161 10 1 100 275 349 8 0 0 0 0 

105 183 9 2 5 437 10 0 0 0 0 0 

106 162 8 3 50 437 10 0 0 0 0 0 

107 159 7 5 100 437 10 0 0 0 0 0 

108 222 8 0 5 501 25 0 0 0 0 0 

109 192 11 0 50 501 25 0 0 0 0 0 

110 183 10 0 100 501 25 0 0 0 0 0 

111 159 9 1 5 579 83 0 0 0 0 0 

112 140 8 1 50 579 83 0 0 0 0 0 

113 137 7 2 100 579 83 0 0 0 0 0 

114 171 9 0 10 457 126 0 0 0 0 0 

115 101 6 0 100 457 126 0 0 0 0 0 

116 161 8 0 10 429 188 0 0 0 0 0 

117 116 7 0 100 429 188 0 0 0 0 0 

118 254 8 0 10 1118 504 6 0 0 0 0 

119 203 10 0 100 1118 504 6 0 0 0 0 

120 116 9 0 30 454 98 14 3 3 0 0 

121 130 9 1 30 160 497 15 2 2 0 0 

122 218 7 1 10 259 633 17 1 2 0 0 

123 204 6 2 20 259 633 17 1 2 0 0 

124 190 8 0 30 259 633 17 1 2 0 0 

125 169 8 0 50 259 633 17 1 2 0 0 

126 122 7 0 100 259 633 17 1 2 0 0 

127 220 7 0 10 1052 253 8 1 1 1 1 

128 286 7 0 5 1462 327 5 1 1 2 2 
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129 271 7 0 10 1462 327 5 1 1 2 2 

130 253 3 1 20 1462 327 5 1 1 2 2 

131 215 4 1 50 1462 327 5 1 1 2 2 

132 170 3 0 100 1462 327 5 1 1 2 2 

133 243 6 0 10 1133 279 8 1 1 1 1 

134 218 6 1 10 897 233 8 1 1 1 1 

135 211 5 2 10 567 293 8 1 0 1 1 

136 204 4 0 10 824 298 7 2 2 2 2 

137 210 5 0 10 1307 258 6 1 1 1 1 

138 193 8 0 10 1099 182 6 1 1 1 1 

139 132 7 1 10 1412 66 8 3 3 2 1 

140 56 7 1 20 1412 66 8 3 3 2 1 

141 16 6 1 50 1412 66 8 3 3 2 1 

142 6 4 2 100 1412 66 8 3 3 2 1 

143 91 5 0 10 889 51 11 3 2 2 2 

144 79 8 0 10 952 74 8 3 2 2 1 

145 93 7 0 10 1260 41 10 2 2 2 2 

146 93 6 1 10 752 16 13 4 3 2 1 

147 107 6 2 10 2316 115 5 1 1 1 1 

148 110 2 0 10 1534 63 7 1 1 1 1 

149 241 9 0 10 1809 319 12 3 2 3 0 

150 308 9 1 5 1976 403 8 4 2 1 0 

151 287 8 1 10 1976 403 8 4 2 1 0 

152 264 7 2 20 1976 403 8 4 2 1 0 

153 235 5 3 50 1976 403 8 4 2 1 0 

154 199 10 0 100 1976 403 8 4 2 1 0 

155 252 9 0 10 1552 369 8 3 2 1 0 

156 170 8 1 10 562 128 11 3 3 3 0 

157 227 8 1 10 779 1003 8 1 1 2 0 

158 211 7 3 10 443 804 10 1 0 1 0 

159 94 7 4 50 517 61 5 2 3 7 2 

160 128 6 4 50 640 184 6 3 3 2 1 

161 76 6 5 50 563 120 8 2 1 1 1 

162 178 10 0 20 680 641 8 3 2 1 1 

163 163 9 0 50 680 641 8 3 2 1 1 

164 130 9 1 100 680 641 8 3 2 1 1 

165 64 7 1 50 0 1082 0 0 0 0 0 

166 269 6 2 10 1590 1030 15 0 0 0 0 

167 260 5 2 20 1590 1030 15 0 0 0 0 

168 230 10 0 50 1590 1030 15 0 0 0 0 

169 197 10 0 100 1590 1030 15 0 0 0 0 

170 136 7 0 200 1590 1030 15 0 0 0 0 

Note: 10-25[16]; 26-31[7]; 32-43[17]; 44-60[18]; 61-67[19]; 68-75[20]; 76-99[21]; 100-

104[22]; 105-113[23]; 114-119[24]; 120-126[25]; 127-138[26]; 139-148[27]; 149-
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158[28]; 159-164[29]; 165-170[30]; 

 

The selection of features or parameters is key for the application of machine 

learning models. Redundant input parameters would add unnecessary burden for the 

amount of data required to train the machine learning models without improving the 

accuracy, while missing essential features would mislead the training and give 

problematic predictions. In this work, we take the structural properties of carbon 

materials, the chemical compositions of the electrode surfaces, and the scan rate in CV 

measurements as the input parameters. As all experimental data were measured in 6M 

KOH aqueous solution with the three-electrode configuration within the same range of 

the potential window (1V),[7, 16, 18-31] we need not consider parameters such as the 

electrolyte composition, the solution pH, and the potential window that otherwise must be 

included. The supercapacitor performance is measured in terms of the capacitance and 

power density. Since all the data are affiliated with the same potential window, the 

energy density is simply proportional to the capacitance. Table 9.2 lists all input and 

output parameters employed in this work. 

Table 9.2. Summary of the input and output parameters used for training machine 

learning models. 

Input Output 

SAmicro (m
2/g)  

SAmeso (m
2/g)  

Scan Rate (mV/s) 
Specific Capacitance 

(F/g) 

Oxygen (at %)  

Pyrrolic Nitrogen – N-5 (at %)  

Pyridinic Nitrogen – N-6 (at %) 
Power Density 

(kW/kg) 

Quaternary Nitrogen – N-Q (at %)  

Other Nitrogen type (at %)  
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We use the surface areas of micropores and mesopores characterized by N2 

adsorption isotherm as the primary features of carbon electrodes. Similar features were 

used in our previous work for pristine carbon electrodes.[15] The micropore surface area 

provides a reasonable description of the accessible area for electrosorption of hydrated 

ions from the KOH solution because the pore size is comparable to the ion diameters. All 

experimental data for the percentage of heteroatom doping were obtained from X-ray 

photoelectron spectroscopy (XPS) measurements. The XPS data are highly reliable for 

characterizing the surface composition of the heteroatoms doped at the carbon surface.[32] 

For nitrogen doping, several stable atomic configurations have been reported including 

pyrrolic nitrogen (N-5), pyridinic nitrogen (N-6) and quaternary nitrogen (N-Q). As 

different atomic configurations of nitrogen doping could play different roles in 

determining the supercapacitor behavior, we describe the surface chemical composition 

in terms of the percentage of each atomic configuration as an input parameter. Oxygen 

atoms are often co-doped on the carbon surface along with the nitrogen atoms because 

they may preexist in the nitrogen precursors and could be introduced to the carbon 

surface during the activation procedure. While the nitrogen-doping effects are relatively 

well understood, the role of oxygen atoms on the supercapacitor performance in base 

electrolytes is not clear. As a matter of fact, the local configurations of oxygens have 

been rarely reported in the literature. In this work, we consider only the total atomic 

percentage of oxygen atoms doped at the carbon surface as the input parameter. 

To correlate the experimental data for the specific capacitance and the power 

density in terms of 8 input parameters (features) as listed in Table 9.2, we have tested 
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four different machine learning models – generalized linear regression (GLR), support 

vector machine (SVM), random forest (RF), and artificial neural network (ANN). These 

machine-learning models were selected because they are commonly used in supervised 

learning and quantitative analysis. The basic ideas underlying these machine-learning 

models have been discussed in our previous work[15]. In this work, four different 

machine learning models are tested to correlate supercapacitor performance with the 

structural features and surface compositions (Table 9.1). The k-fold validation is used to 

optimize the parameters of all four machine learning models with the k value set as 17. 

The percentages of training, validation and test data are 70%, 15% and 15%, respectively. 

For correlation with generalized linear regression (GLR), the model contains an intercept 

term, a linear term, and a squared term for each input to correlate the capacitance, while 

one addition term consisting of all products of the pairs of distinct inputs is used to 

correlate the power density. The second order polynomial kernel function is used in 

application of support vector machine (SVM) to correlating both the specific capacitance 

and power density. In the random forest (RF) model, we used 40 classification trees to 

correlate the capacitance, and 70 classification trees, with a minimum of 5 observations 

per tree leaf, to correlate the power density. The artificial neural network (ANN) includes 

a layer of six neurons as hidden layer with a hyperbolic tangent sigmoid transfer function. 

The backpropagation employs the Bayesian regularization, which makes the ANN more 

robust and more generalized without overfitting.[33, 34] 

All parameters for the machine learning models are optimized by k-fold validation 

with the k value set as 17. The coefficient of determination (R2) and the root-mean-square 
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error (RMSE) are used to benchmark the performance of different machine learning 

models: 

 
( )

( )
1

2

2

2

1

1
i i

i

n

i

n

i

y u
R

y u

=

=

−
= −

−




 (9.4) 

 
( )

1

2

i

n

i iy u
RMSE

n
=

−
=


 (9.5) 

where n , iy , iu  and u  are, respectively, the number of data points, the value calculated 

from the correlation, the experimental value, and the average of the corresponding 

experimental quantities. 

9.3 Results and Discussion 

9.3.1 Model Evaluation 

We first calibrated the machine learning (ML) models considered in this work. As 

shown in Figure 9.1 and Figure 9.2, ANN has the best overall performance (the highest 

R2 and lowest RMSE) for correlating both the capacitance and power density. ANN 

correlation performance of capacitance and power density is summarized in Figure 9.3. 

Therefore, this method is selected to predict the optimal performance of supercapacitors 

in terms of the pore structure and surface compositions of N/O co-doped carbon 

electrodes. In comparison to the alternative methods, ANN leads to the outstanding 

performance because it employs the Bayesian regularization in backpropagation. As only 

six neurons are used in the hidden layer, ANN provides a robust correlation of the 

experimental data without overfitting. 
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Figure 9.1. Capacitance from experiment and different machine learning models (A) 

generalized linear regression, (B) support vector machine, (C) random forest and (D) 

artificial neural network. The diagonal line indicates perfect correlation between 

experimental and machine learning results. 
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Figure 9.2. Power density from experiment and different machine learning models (A) 

generalized linear regression, (B) support vector machine, (C) random forest and (D) 

artificial neural network. The diagonal line indicates perfect correlation between 

experimental and machine learning results. 

 

With additional data and more input parameters, the four ML models provide 

better correlations of both the capacitance and power density than our previous work for 

pristine carbon electrodes.[15] It has been shown that the dependence of capacitance on 

the percentage of heteroatom doping can be approximately described in terms of a linear 

function.[35, 36] Therefore, ML models with more complicated regression algorithms are 

expected to yield a better performance with more data and additional information on the 

surface chemistry. Among the four ML models tested in this work, only RF results in a 
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correlation for the power density worse than that for the capacitance (equivalently, the 

energy density). Compared to that for the energy density, the distribution of experimental 

data for the power density is much more imbalanced because more than 85% of the data 

is agglomerated in the range between 0 and 2 kW/kg. As a result, RF would be strongly 

biased towards the low values of the power density and systematically underestimates the 

experimental values at high power density.[37] 

 

Figure 9.3. A comparison of the experimental and predicted values based on artificial 

neural network (ANN): (A) specific capacitance (Csp, F/g) and (B) power density 

(kW/kg). In each panel, the diagonal line represents the perfect correlation between 

experimental and machine learning results. 

 

According to cyclic voltammetry (CV) measurements, the capacitance depends 

not only on the structural parameters and surface compositions of carbon materials but 

also on the scan rate. As shown in Figure 9.4 for a few representative carbon electrodes, 

the ANN model is able to capture the dependence of the capacitance on the scan rate 

quantitatively. The excellent correlation indicates that ANN can be used to evaluate the 

supercapacitor performance at in-operando conditions. In general, the apparent 

capacitance declines as the scan rate increases and the retention depends on both the pore 
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configuration and the surface chemistry. Interestingly, Figure 9.4 shows that doping 

heteroatoms on the carbon surface does not always result in an increase of the 

capacitance. In the next section, we discuss the complicated relationship between 

capacitance and the structural features as well as the surface composition related to 

chemical doping. 

 

Figure 9.4. The specific capacitance versus the scan rate predicted by the artificial neural 

network (ANN). Here the black squares are experimental data for a pristine carbon 

electrode with micropore surface area SAmicro=636 m2/g and mesopore surface area 

SAmeso=442 m2/g, red circles are for a pristine carbon electrode with SAmicro=0 m2/g and 

SAmeso=24 m2/g, blue triangles are for a doped carbon electrode with SAmicro=219 m2/g 

and SAmeso=840 m2/g, and the surface composition of O=5.83 at%, N5=2.1518 at%, 

N6=1.6510 at%, NQ=1.3972 at%, green inverted triangles are for a doped carbon 

electrode with SAmicro=1227 m2/g, SAmeso=1170 m2/g, O=7.87 at%, N5=0.9447 at%, 

N6=1.1139 at%, NQ=0.6651 at%. The experimental data are from the literature.[19-21, 

31] 

 

9.3.2 Effect of Nitrogen- and Oxygen-Doping 

To unveil how oxygen and nitrogen doping affects the supercapacitor 

performance, we first consider the correlation between the capacitance and single 
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heteroatom-doping with different local configurations. Figure 9.5 shows the variation of 

the capacitance with the surface areas of micropores (<2 nm) and mesopores (>2 nm and 

<50 nm) at different doping compositions. In all cases, the scan rate is fixed at 1 mV/s. 

Consistent with our previous work,[15] the capacitance of a pristine carbon does not 

always increase with the surface area even at a relatively low scan rate. The positive 

effect of increasing surface area diminishes due to both the reduction of the electrical 

conductivity of the electrode and the inaccessibility of micropore as well as the 

interference of the ionic charging behavior in neighboring pores.[38, 39] For an electrode 

with high micropore surface area, not only does the thickness of carbon flakes decrease, 

but the accessibility between micropores is limited as well. Introducing mesopores in 

pristine carbon would improve the connectivity between micropores and reduce the 

resistance in ion transport, thereby improving the overall capacitance. 

Nitrogen-doping with different local configurations shows different effects on the 

capacitance and power density. At a given scan rate (1 mV/s), both pyrrolic nitrogen (N-5) 

and pyridinic nitrogen (N-6) shift the maximum capacitance to a higher micropore 

surface area compared to that for the corresponding pristine carbon. Nitrogen doping 

increases the maximum capacitance due to the improved surface wettability by the 

aqueous solution and due to the possible introduction of redox reactions and increased 

density of states.[40-42] At the same surface concentration of nitrogen atoms, the effects 

of N-5 and N-6 nitrogen doping are quite different. While N-6 doping leads to a 

significant increase of the maximum capacitance, the effect due to N-5 doping is modest. 

It has been reported that pyrrolic nitrogen plays a relatively insignificant role in 
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improving the density of states of the graphene surface in comparison to N-6 atoms, and 

thus makes little contribution to the quantum capacitance.[8] The difference between N-5 

and N-6 doping may also be attributed to their different contributions to 

pseudocapacitance, i.e., capacitive effects due to redox reactions. In comparison to N-6, 

the binding energy between potassium cation and N-5 is probably too large for an 

effective redox reaction to take place during the charging/discharging cycles.[43] 

Although N-5 doping makes micropores more accessible to hydrated ions, it is not able to 

enhance the capacitance as much as N-6 doping because of the difference in surface 

activity. 
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Figure 9.5. Capacitance versus the surface areas of micropores and mesopores predicted 

by the artificial neural network (ANN) for (A) pristine carbon and carbon doped by (B) 1 

at% pyrrolic nitrogen, (C) 1 at% pyridinic nitrogen, (D) 1 at% quaternary nitrogen, and 

(E) 1 at% oxygen. In all cases, the scan rate is fixed at 1 mV/s. 

 

Another way for nitrogen doping can be achieved by substituting carbon atoms at 

the electrode surface with quaternary nitrogen (N-Q). It has been shown that doping with 

quaternary nitrogen may lead to a much higher conductivity for carbon electrodes.[44] 

However, the general activation method results in defects that could cancel the 

beneficiary effects of N-Q doping.[44, 45] Figure 9.5D shows that the maximum 

capacitance increases only slightly when the pristine carbon is doped with 1 at% N-Q 

nitrogen. 
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Figure 9.5E shows that oxygen doping has only relatively minor effects on the 

capacitance of a carbon electrode. Whereas the chemical reaction between proton and 

quinone-oxygen in an acidic electrolyte solution has been well documented, the local 

configuration of oxygen atoms is unclear for doping the carbon electrode in a base 

electrolyte.[46] According to ANN, 1 at% oxygen doping would slightly increase the 

capacitance in comparison to that for the pristine carbon. 

9.3.3 Supercapacitor Performance at Fast Charging/Discharging 

Whereas the above discussion was mostly focused on how nitrogen- and oxygen-

doping would influence the energy storage near the equilibrium condition (viz., at low 

scan rate), practical applications of supercapacitor involves rapid extraction of the energy 

in order to achieve high power. Understanding how heteroatom doping would help retain 

the capacitance at in-operando conditions (viz., fast charging/discharging or at a high 

scan rate in CV measurement) is important for the rational design of carbon electrodes. 

To address this question, we present in Figure 9.7 the retention rate at 300 mV/s versus 

the micropore and mesopore surface areas at the surface compositions the same as those 

shown in Figure 9.5. The retention rate is calculated with the capacitance at scan rate of 1 

mV/s as the reference. The scan rate of 300 mV/s is chosen because it is most relevant to 

the assessment of supercapacitor performance for practical applications. The average 

power density for the pristine carbon electrode is higher than 3 W/g over the range of 

surface areas considered in this work (shown in Figure 9.6). 
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Figure 9.6. (A) Average power density of pristine carbon electrodes versus the scan rate 

predicted by artificial neural network (ANN). (B) Percentage of pristine carbon 

electrodes (with different surface areas of micropores and mesopores) that yields a power 

density exceeding 3 W/g at different scan rates. 

 

Figure 9.7 presents the ANN prediction of the capacitance retention rates for the 

five representative carbon electrodes. Among the four different strategies of heteroatom 

doping considered in this work, only N-6 doping leads to a significant improvement of 

the retention rate. In this case, the high retention rate can be attributed to the contribution 

of N-6 doping to pseudocapacitance, which can be well maintained even far away from 

the equilibrium due to the fast surface reactions.[47] 
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Figure 9.7. The capacitance retention rate at a scan rate of 300 mV/s versus the surface 

areas of micropores and mesopores predicted by the artificial neural network (ANN) for 

(A) pristine carbon and for the carbon doped by (B) 1 at% pyrrolic nitrogen, (C) 1 at% 

pyridinic nitrogen, (D) 1 at% quaternary nitrogen and (E) 1 at% oxygen. 

 

Figure 9.7B shows a significant loss of the retention rate when the pristine carbon 

is doped with 1 at% N-5. In this case, a large binding energy between pyrrolic nitrogen 

and electrolyte ions prevents reversible charging/discharging.[43] On the other hand, 1 at% 

N-Q doping leads to a retention rate similar to that for the pristine carbon electrode. As 

aforementioned, the improved wettability and conductivity due to N-Q doping is 

counterbalanced by defects generated while introducing quaternary nitrogen atoms. 

Figure 9.7E shows that oxygen doping only slightly increases the retention rate. The 
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modest effect is because oxygen functional groups improve the surface wettability but 

also introduce additional resistance for ion transport.[35] 

9.3.4 Carbon Electrodes with Optimized Features for Supercapacitor Energy 

Storage 

With the quantitative correlations derived from the ANN model, we can now 

explore the best doping conditions for the carbon electrodes and the synergic effects 

arising from different local configurations of heteroatoms. Figure 9.8 shows the highest 

capacitance achieved by pristine and N/O co-doped carbon electrodes at 1 mV/s and 300 

mV/s, respectively. Also shown in this figure are the dependence of the corresponding 

retention rates on the scan rate. For pristine carbon electrodes, the highest capacitance 

occurs when the porous carbon has the specific surface areas of mesopores and 

micropores at Smicro=300 m2/g and Smeso=700 m2/g and the maximum value (250.29 F/g) 

is achieved at a near equilibrium condition (scan rate of 1 mV/s). A larger surface area 

for mesopores (Smeso=1000 m2/g) is required to achieve the highest capacitance far away 

from equilibrium (at the scan rate of 300 mV/s) because the larger pore is able to provide 

more ion accessible surface area during rapid electrosorption. 

The ANN model indicates that, in comparison with those corresponding to an 

optimized pristine carbon, much larger micro- and mesopore surface areas (Smicro=1400 

m2/g and Smeso=1000 m2/g) are required to achieve the highest capacitance for N/O co-

doped carbon electrodes at both low and high scan rate. The shifting to higher surface 

areas can be explained by the fact that heteroatoms (N-6=3 at%, N-Q=6 at% and 

O=11.25 at%) doped on the carbon surface can significantly improve the wettability and 



 260 

offer surface additional active sites for both quantum capacitance and pseudocapacitance. 

It is worth noting that the capacitance cannot keep increasing by increasing oxygen 

doping because oxygen functional groups may block the pore entrance, which is 

detrimental for ion transport at conditions far away from equilibrium.[35] 

 

Figure 9.8. The capacitance versus scan rate predicted by the ANN model for pristine 

and nitrogen- and oxygen-doped carbon electrodes that yield the highest capacitance at 1 

and 300 mV/s scan rates. (A) Carbon electrodes with the highest capacitance at 1 mV/s 

(black solid line, Smicro=300 m2/g and Smeso=700 m2/g) and at 300 mV/s (black dash-

dotted line, Smicro=0 m2/g and Smeso=1000 m2/g), and the optimal electrode with 

heteroatom doping (red line, N-6=3 at%, N-Q=6 at% and O=11.25 at%). The heteroatom 

doping results in the same optimal electrode at 1 and 300 mV/s san rates. (B) The same as 

(A) but in terms of the retention rate. 

 

According to Figure 9.8A, the capacitance retention rate for pristine carbon 

electrodes can be improved by reducing the surface area of micropores while increasing 

the mesopore area. With more mesopores but less micropores, the carbon electrode offers 

a higher capacitance at large scan rates because such a pore architecture can minimize the 

resistance of ion transport induced by micropores while maximizing the surface area for 
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electrosorption. For N/O co-doped carbon electrodes, the resistance is already reduced by 

doping quaternary nitrogen and oxygen. Although decreasing the micropore surface area 

would help improve the retention rate, a smaller surface area means a lower capacitance 

because less surface area is available for electrosorption and faradaic reaction. 

9.3.5 Ragone Plot 

The Ragone plot provides an intuitive benchmark for the comparison of different 

energy storage devices in terms of the energy density and power density. To locate the 

boundary in the Ragone plot for the supercapacitors with N/O co-doped carbon electrodes, 

we use the ANN model to calculate the in-operando capacitance and power density at all 

possible surface areas of micropores and mesopores and surface doping compositions. 

The energy density of a supercapacitor cell is calculated from eq (9.2) with a potential 

window of 1 V (since all the data used in this work were tested with this potential 

window). 

Figure 9.9 shows predictions from the ANN model for the energy and power 

boundaries related to the performance of supercapacitors consisting of pristine and N/O 

co-doped carbon electrodes with 6M KOH aqueous electrolyte. The boundaries for other 

energy storage devices, such as batteries and conventional electrical capacitor are also 

presented in Figure 9.9 for comparison.[48] With the carbon surface doped with nitrogen- 

and oxygen- atoms, the supercapacitor region in the Ragone plot is significantly 

expanded in comparison to that for the pristine carbons. The ANN model predicts that the 

energy density of the best N/O co-doped carbon electrode can catch up with that for a 

commercial battery but with a much higher power density. 
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Figure 9.9. The Ragone plot for supercapacitors consisting of nitrogen/oxygen co-doped 

carbon electrodes with 6M KOH aqueous solution. The red region is predicted by the 

artificial neural network (ANN) model developed in this work. The grey, green, blue and 

black region correspond to the conventional electrical capacitors, batteries,[48] and 

pristine carbon electrical double layer capacitors predicted by an ANN model developed 

in our previous work.[15] 

 

The structural features predicted by the ANN model may be realized by co-

assembling melamine/formaldehyde with silica spheres as shown in Figure 9.10.[28] 

Among all systems considered in this work, carbon electrodes synthesized by the colloid-

templated method achieves the closest doping configuration that maximizes the power 

and energy density. The unique choice of nitrogen precursor provides not only high 

nitrogen content but also adequate local doping configurations. To lower the doping 

percentage of pyrrolic nitrogen, one may reduce the amount of water used to dissolve 

melamine/formaldehyde and adjust activation temperature.[28] A higher mesopore 

surface area can be achieved by adding silica spheres of slightly smaller diameter or by 

using microwave-assisted hydrothermal method to dissolve melamine/formaldehyde into 
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the solution. The former procedure could increase the mesopore surface area by reducing 

the template size while the latter has shown to be successful in increasing the mesopore 

surface as this process helps create more mesopores.[20] 

 

Figure 9.10. Schematic surface of the best N/O co-doped carbon electrode (Smicro=1400 

m2/g, Smeso=1000 m2/g, N-6=3 at%, N-Q=6 at% and O=11.25 at%) predicted by the 

artificial neural network (ANN). Here grey, white, purple and red spheres represent 

carbon, hydrogen, nitrogen and oxygen atoms, respectively. 

 

9.4 Conclusions 

In this work, we have tested four different machine learning (ML) models to 

correlate the dependence of the supercapacitor performance on the structural features and 

surface compositions of N/O co-doped carbon electrodes. By testing with a large set of 

capacitance and power density data from the literature, we find that the artificial neural 

network (ANN) shows the best performance in terms of both energy and power density. 

The ANN model is thus further used to investigate how the surface composition and local 

configurations of heteroatoms, together with the structural features of porous carbon, 
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influence the supercapacitor performance in 6M KOH solution. Consistent with the 

predictions of physics-based models, doping with pyridinic nitrogen (N-6) can 

significantly enhance the capacitance of carbon electrodes. Such effect may be explained 

in term of additional contributions from the quantum capacitance and pseudocapacitance. 

Doping with pyrrolic nitrogen (N-5), however, would be detrimental to the capacitance, 

especially at conditions far away from equilibrium (viz., at high scan rate). The reduction 

in capacitance and retention rate can be attributed to too high binding energy between N-

5 atoms and potassium ions. Both quaternary nitrogen (N-Q) and oxygen doping is able 

to improve the retention rate at fast discharging because the heteroatoms enhance the 

electrical conductivity and wettability of carbon electrodes. 

While the machine learning models tested in this work could be improved if more 

data are available, the ANN model allows us to account for the synergetic effects of 

nitrogen and oxygen doping, and identify the best doping conditions and structural 

features of carbon electrodes with the highest energy density. The data-driven approach 

predicts that carbon electrodes doped with nitrogen and oxygen are able to achieve an 

energy density comparable to that corresponding to commercial batteries but with a much 

higher power density. Carbon electrodes with optimal features for energy storage may be 

synthesized by co-assembling melamine/formaldehyde with silica nanoparticles as the 

template or with microwave-assisted hydrothermal methods. 



 265 

Bibliography 

1. Berrueta, A., et al., Supercapacitors: Electrical Characteristics, Modeling, 

Applications, and Future Trends. Ieee Access, 2019. 7: p. 50869-50896. 

2. Simon, P. and Y. Gogotsi, Capacitive energy storage in nanostructured carbon-

electrolyte systems. Acc Chem Res, 2013. 46(5): p. 1094-103. 

3. Stoller, M.D. and R.S. Ruoff, Best practice methods for determining an electrode 

material's performance for ultracapacitors. Energy & Environmental Science, 

2010. 3(9): p. 1294-1301. 

4. Ghosh, A. and Y.H. Lee, Carbon-based electrochemical capacitors. 

ChemSusChem, 2012. 5(3): p. 480-99. 

5. Zhai, Y., et al., Carbon materials for chemical capacitive energy storage. Adv 

Mater, 2011. 23(42): p. 4828-50. 

6. Xia, J., et al., Measurement of the quantum capacitance of graphene. Nat 

Nanotechnol, 2009. 4(8): p. 505-9. 

7. Zhang, J., et al., Preparation of activated carbon from waste Camellia oleifera 

shell for supercapacitor application. Journal of Solid State Electrochemistry, 

2012. 16(6): p. 2179-2186. 

8. Zhan, C., et al., Enhancing graphene capacitance by nitrogen: effects of doping 

configuration and concentration. Phys Chem Chem Phys, 2016. 18(6): p. 4668-74. 

9. Wang, L., et al., Origin of theoretical pseudocapacitance of two-dimensional 

supercapacitor electrodes Ti3C2T2 (T = bare, O, S). Journal of Materials 

Chemistry A, 2019. 7(27): p. 16231-16238. 

10. Wang, S., et al., Insights into CO2/N2 Selectivity in Porous Carbons from Deep 

Learning. ACS Materials Letters, 2019. 1(5): p. 558-563. 

11. Zhang, Z., et al., Prediction of Carbon Dioxide Adsorption via Deep Learning. 

Angew Chem Int Ed Engl, 2019. 58(1): p. 259-263. 

12. Su, H., et al., Predicting the capacitance of carbon-based electric double layer 

capacitors by machine learning. Nanoscale Advances, 2019. 1(6): p. 2162-2166. 

13. Zhu, S., et al., Artificial neural network enabled capacitance prediction for 

carbon-based supercapacitors. Materials Letters, 2018. 233: p. 294-297. 

14. Su, H., et al., Predicting the Capacitance of Carbon-based Electric Double Layer 

Capacitors by Machine Learning. Nanoscale Advances, 2019. 



 266 

15. Zhou, M., et al., Insights from machine learning of carbon electrodes for electric 

double layer capacitors. Carbon, 2020. 157: p. 147-152. 

16. Wu, H., et al., The effect of activation technology on the electrochemical 

performance of calcium carbide skeleton carbon. Journal of Solid State 

Electrochemistry, 2012. 16(9): p. 2941-2947. 

17. Chen, X.Y., et al., Nitrogen-doped porous carbon for supercapacitor with long-

term electrochemical stability. Journal of Power Sources, 2013. 230: p. 50-58. 

18. Wang, Y., et al., Preparation of novel pigskin-derived carbon sheets and their 

low-temperature activation-induced high capacitive performance. RSC Adv., 

2014. 4(85): p. 45318-45324. 

19. Li, Y.-T., et al., Hierarchical porous active carbon from fallen leaves by synergy 

of K2CO3 and their supercapacitor performance. Journal of Power Sources, 2015. 

299: p. 519-528. 

20. Tan, J., et al., Nitrogen-doped porous carbon derived from citric acid and urea 

with outstanding supercapacitance performance. Electrochimica Acta, 2015. 178: 

p. 144-152. 

21. Jiang, L., et al., Construction of nitrogen-doped porous carbon buildings using 

interconnected ultra-small carbon nanosheets for ultra-high rate supercapacitors. 

Journal of Materials Chemistry A, 2016. 4(29): p. 11388-11396. 

22. Hao, X., et al., Bacterial-cellulose-derived interconnected meso-microporous 

carbon nanofiber networks as binder-free electrodes for high-performance 

supercapacitors. Journal of Power Sources, 2017. 352: p. 34-41. 

23. Yang, W., et al., Template-free synthesis of ultrathin porous carbon shell with 

excellent conductivity for high-rate supercapacitors. Carbon, 2017. 111: p. 419-

427. 

24. Zhang, D., et al., Scalable synthesis of hierarchical macropore-rich activated 

carbon microspheres assembled by carbon nanoparticles for high rate 

performance supercapacitors. Journal of Power Sources, 2017. 342: p. 363-370. 

25. Liu, W., et al., Nitrogen-Doped Hierarchical Porous Carbon from Wheat Straw 

for Supercapacitors. ACS Sustainable Chemistry & Engineering, 2018. 6(9): p. 

11595-11605. 

26. Song, Z., et al., Nitrogen-Enriched Hollow Porous Carbon Nanospheres with 

Tailored Morphology and Microstructure for All-Solid-State Symmetric 

Supercapacitors. ACS Applied Energy Materials, 2018. 1(8): p. 4293-4303. 



 267 

27. Zhu, D., et al., A general strategy to synthesize high-level N-doped porous 

carbons via Schiff-base chemistry for supercapacitors. Journal of Materials 

Chemistry A, 2018. 6(26): p. 12334-12343. 

28. Song, Z., et al., Synergistic design of a N, O co-doped honeycomb carbon 

electrode and an ionogel electrolyte enabling all-solid-state supercapacitors with 

an ultrahigh energy density. Journal of Materials Chemistry A, 2019. 7(2): p. 816-

826. 

29. Xue, D., et al., Template-Free, Self-Doped Approach to Porous Carbon Spheres 

with High N/O Contents for High-Performance Supercapacitors. ACS 

Sustainable Chemistry & Engineering, 2019. 7(7): p. 7024-7034. 

30. Ma, C., et al., Sustainable recycling of waste polystyrene into hierarchical porous 

carbon nanosheets with potential applications in supercapacitors. 

Nanotechnology, 2020. 31(3): p. 035402. 

31. Chen, X.Y., et al., Nitrogen-Doped Porous Carbon Prepared from Urea 

Formaldehyde Resins by Template Carbonization Method for Supercapacitors. 

Industrial & Engineering Chemistry Research, 2013. 52(30): p. 10181-10188. 

32. Mane, A.T. and V.B. Patil, X-ray photoelectron spectroscopy of nanofillers and 

their polymer nanocomposites, in Spectroscopy of Polymer Nanocomposites. 2016. 

p. 452-467. 

33. Burden, F. and D. Winkler, Bayesian regularization of neural networks. Methods 

Mol Biol, 2008. 458: p. 25-44. 

34. Kumar, P., S.N. Merchant, and U.B. Desai, Improving performance in pulse radar 

detection using Bayesian regularization for neural network training. Digital 

Signal Processing, 2004. 14(5): p. 438-448. 

35. Seredych, M., et al., Surface functional groups of carbons and the effects of their 

chemical character, density and accessibility to ions on electrochemical 

performance. Carbon, 2008. 46(11): p. 1475-1488. 

36. Hulicova-Jurcakova, D., et al., Combined Effect of Nitrogen- and Oxygen-

Containing Functional Groups of Microporous Activated Carbon on its 

Electrochemical Performance in Supercapacitors. Advanced Functional Materials, 

2009. 19(3): p. 438-447. 

37. Haibo, H. and E.A. Garcia, Learning from Imbalanced Data. IEEE Transactions 

on Knowledge and Data Engineering, 2009. 21(9): p. 1263-1284. 

 



 268 

38. Kondrat, S., O.A. Vasilyev, and A.A. Kornyshev, Feeling Your Neighbors across 

the Walls: How Interpore Ionic Interactions Affect Capacitive Energy Storage. J 

Phys Chem Lett, 2019. 10(16): p. 4523-4527. 

39. Barbieri, O., et al., Capacitance limits of high surface area activated carbons for 

double layer capacitors. Carbon, 2005. 43(6): p. 1303-1310. 

40. Wang, H., T. Maiyalagan, and X. Wang, Review on Recent Progress in Nitrogen-

Doped Graphene: Synthesis, Characterization, and Its Potential Applications. 

ACS Catalysis, 2012. 2(5): p. 781-794. 

41. Noori, A., et al., Towards establishing standard performance metrics for batteries, 

supercapacitors and beyond. Chem Soc Rev, 2019. 48(5): p. 1272-1341. 

42. Zhang, L.L., et al., Nitrogen doping of graphene and its effect on quantum 

capacitance, and a new insight on the enhanced capacitance of N-doped carbon. 

Energy & Environmental Science, 2012. 5(11): p. 9618-9625. 

43. Jeong, H.M., et al., Nitrogen-doped graphene for high-performance 

ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano 

Lett, 2011. 11(6): p. 2472-7. 

44. Lin, L., et al., Nitrogen cluster doping for high-mobility/conductivity graphene 

films with millimeter-sized domains. Sci Adv, 2019. 5(8): p. eaaw8337. 

45. Zhao, L., et al., Visualizing individual nitrogen dopants in monolayer graphene. 

Science, 2011. 333(6045): p. 999-1003. 

46. Andreas, H.A. and B.E. Conway, Examination of the double-layer capacitance of 

an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs. 

Electrochimica Acta, 2006. 51(28): p. 6510-6520. 

47. Hulicova, D., M. Kodama, and H. Hatori, Electrochemical Performance of 

Nitrogen-Enriched Carbons in Aqueous and Non-Aqueous Supercapacitors. 

Chemistry of Materials, 2006. 18(9): p. 2318-2326. 

48. Mathis, T.S., et al., Energy Storage Data Reporting in Perspective—Guidelines 

for Interpreting the Performance of Electrochemical Energy Storage Systems. 

Advanced Energy Materials, 2019. 9(39). 

 



 269 

Chapter 10. Conclusions and Outlook 

In this dissertation, both physics-based and data-driven models are used to 

accomplish the inverse design of nanoporous materials for gas separation and energy 

storage. One key contribution of this dissertation is the development of physics-based 

models to provide rapid and accurate prediction of gas sorption and transport properties 

in nanoporous materials. More specifically, accurate Helmholtz energy functionals for 

multicomponent gas mixtures are developed in classical density functional theory (cDFT) 

to provide accurate prediction of adsorption amount compared with grand canonical 

Monte Carlo (GCMC) simulation and experimental measurements. In addition, simplified 

string method is extended to find the minimum energy path (MEP) of rigid polyatomic 

molecules in nanoporous materials, which yields accurate prediction of diffusion 

coefficient compared with molecular dynamics (MD) simulation. In combination of 

graphic processing unit (GPU)-accelerated implementation, the developed computational 

theories and tools are orders of magnitudes faster than conventional molecular simulation 

methods. With efficient searching algorithm, the developed physics-based models 

empower, for the first time, the inverse design of nanoporous materials in membrane 

separation. Another key contribution of this dissertation is the demonstration of how 

data-driven models can help understand and inverse design nanoporous materials in gas 

separation and energy storage. For gas separation, data-driven models are used to 

recognize the patterns of nanoporous materials with excellent separation performance. 

For energy storage, data-driven models can well correlate the in-operando performance 

with the structural and chemical features of electrode materials. In collaboration with 
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experimental scientist, the predicted structural and chemical features of activated carbon 

electrodes with ultrahigh capacitance have also been verified experimentally.  

Following the introduction and methodology chapters (Chapter 1 and Chapter 2), 

Chapter 3 and Chapter 4 discuss the development of cDFT for accurate prediction of 

multicomponent gas mixture adsorption in nanoporous materials and the computational 

framework and implementation for the massively parallel GPU-accelerated cDFT. The 

key findings can be summarized as follows: 

1. For a number of gas mixtures in MOF-5 (without sub-pores inaccessible to 

gas molecules), the adsorption isotherms predicted by cDFT, using weighted density 

approximation for correlation effects and van der Waals one fluid theory, are in 

quantitative agreement with that calculated by grand canonical Monte Carlo (GCMC) 

simulation and experimental measurements, but massively parallel GPU-accelerated 

cDFT are two to three orders of magnitude faster. 

2. Even at high pressure/loadings, cDFT still gives excellent prediction of 

adsorption isotherms and selectivity while the ideal adsorbed solution theory (IAST) fails 

to predict the separation selectivity qualitatively due to the missing adsorbate-adsorbate 

interaction and correlation effects. 

3. The massively parallel GPU-accelerated implementation of cDFT can 

reduce the computational cost by more than two orders of magnitude for variety types of 

calculation related in gas adsorption including Langmuir-type adsorption isotherm, 

adsorption with vapor-liquid transition and high-throughput screening. 
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Chapter 5 extends the simplified string method with the massively parallel GPU-

accelerated implementation to calculate the MEP of rigid polyatomic molecules in 

nanoporous materials. The key conclusions are: 

1. The diffusion coefficients of guest molecules, ranging from nitrogen and 

ethane to benzene and xylene in nanoporous materials can be calculated from the MEP 

via the transition-state theory (TST) agree well with those calculated from MD simulation.  

2. When the developed computational tool is used to high-throughput screen 

nanoporous materials for ethane/ethylene separation, more than 90% calculations can be 

done within 30 seconds which is orders of magnitude faster than conventional simulation 

method. 

Chapter 6 and Chapter 7 showcase the integration of physics-based models 

developed in the dissertation and data-driven models to inverse design nanoporous 

materials for the separation of simple gas and rigid polyatomic gas molecules. The major 

findings are as follows: 

1. Membrane separation can better balance the separation capacity and 

selectivity while adsorption separation often suffers from low separation selectivity at 

high separation capacity. The top nanoporous materials identified have much higher 

separation selectivity compared with state-of-art literature. 

2. According to the high-throughput screening, for the membrane separation 

of D2/H2, nanoporous materials with the pore limiting diameter (PLD) ranging from 2 Å 

to 3 Å can achieve excellent separation selectivity of D2/H2 via kinetic quantum sieving 
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effects while for the membrane separation of C2H4/C2H6 nanoporous materials with PLD 

between 2.75 Å and 3.5 Å have the top 5% membrane selectivity. 

3. With the data-driven models, the structural features of nanoporous 

materials with top 10% membrane separation can be identified to guide the inverse 

design of nanoporous materials. Whereas the search algorithm, more specifically genetic 

algorithm, along with developed physics-based model can directly design nanoporous 

materials with much higher membrane selectivity and permeability compared with all 

existing experimental MOF candidates. 

Chapter 8 and Chapter 9 demonstrate data-driven models can be used to 

understand the in-operando performance of electrode materials and inverse design 

electrodes for the optimal performance. The key findings are as follows: 

1. The quantitative correlations between the structural and chemical features 

of activated carbon electrodes and their in-operando performance in supercapacitor can 

be established via data-driven models. 

2. The data-driven models can offer unique insights on how different 

structural and chemical features affect the overall in-operando performance of activated 

carbon electrodes in supercapacitor. While the maximum capacitance can be achieved by 

tuning micro- and mesopore surface area for pristine carbon electrodes, the effects of 

chemical doping, such as nitrogen- and oxygen-doping, depend on the local bonding 

configurations, doping percentage and available surface area. 

3. The data-driven models also allow the direct inverse design of activated 

carbon electrode with optimal/target in-operando performance. The ultrahigh capacitance 
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with the structural and chemical features predicted by the data-driven models has also 

been verified in experiments. 

In summary, this dissertation demonstrates how the inverse design of nanoporous 

materials for gas separation and energy storage can be accomplished by using physics-

based and data-driven models. The theoretical framework and computational tools 

developed in this dissertation provide valuable computational infrastructures for 

molecular modeling and database construction of gas sorption and transport properties in 

nanoporous materials. The combination of physics-based and data-driven models in this 

dissertation opens up opportunities to customize nanoporous materials with the 

optimal/target performance for the gas separation and energy storage system of academic 

and industrial interest.  

In order to leverage physics-based models to inverse design of nanoporous 

materials for a wider spectrum of applications, future development in physics-based 

models is still needed, for example, to describe the “phase transition” of water at 

relatively low saturation pressure in nanoporous materials for water harvesting 

nanoporous materials and flexibility effect of host materials and guest molecules for the 

inverse design of flexible nanoporous materials for more versatile gas separation and 

energy storage. For the future development of data-driven models, in addition to better 

molecular fingerprints to correlate the performance of nanoporous materials, better 

machine learning models need to be developed to efficiently project the design space for 

the search of new promising materials with target performance. While machine learning 

models have been attempted to replace conventional intermolecular potential in 
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molecular simulations, opportunities also exist to examine the integration of data-driven 

models and classical density functional theory (cDFT), more specifically whether 

machine learning models can be used to replace physics-based excess Helmholtz energy 

term in cDFT for the more accurate prediction of gas adsorption in nanoporous materials. 

To sum up, I hope this dissertation demonstrated a clear theoretical and 

computational framework for the inverse design of nanoporous materials for gas 

separation and energy storage and could serve as the cornerstone for the future 

development of physics-based and data-driven models to investigate, understand and 

inverse design nanoporous materials. 




