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Sustainability-Oriented Evaluation and Optimization for MPSoC Task
Allocation and Scheduling Under Thermal and Energy Variations

Mingsong Chen, Member, IEEE , Xinqian Zhang, Haifeng Gu, Tongquan Wei, Member, IEEE ,

and Qi Zhu, Member, IEEE

Abstract—Aiming at high performance, more and more Cyber-Physical Systems (CPSs) adopt Multiprocessor System-on-Chips

(MPSoCs) as computation units. However, due to increasing integration of transistors on a die, the power densities together with

performance variations of MPSoC chips have been increasing dramatically. Consequently, the MPSoC-based CPSs might become

unsustainable and unreliable. Although various Task Allocation and Scheduling (TAS) heuristics have been proposed to minimize the

hotspot time (i.e., duration of thermal emergency) and energy consumption of MPSoC designs, few of them can guarantee the highest

performance yield under process variations without violating energy, thermal and timing constraints. To address these challenges, this

paper proposes a novel energy- and thermal-aware TAS evaluation and optimization framework. Based on statistical model checking

techniques, our approach enables accurate modeling and reasoning of the performance yield of real-time MPSoC designs under joint

energy and thermal constraints. To enable system-level design space exploration, we propose a regression analysis-based method

that can drastically reduce the overall exploration efforts. Experimental results show that our fully-automated approach can not only

allow accurate sustainability-oriented reasoning of TAS solutions under specified thermal and energy constraints, but also enable the

quick search of optimal TAS solutions on different MPSoC architectures with the highest performance yield.

Index Terms—Cyber-Physical Systems, Sustainability, Task Allocation and Scheduling, Statistical Model Checking, Optimization.

✦

1 INTRODUCTION

Due to the increasing demand of interactions between cyber

world and physical environment, there is a trend towards

the development of high-performance Cyber-Physical Sys-

tems (CPSs), e.g., autonomous automobile systems, unmanned

aerial vehicles [1]. To facilitate the simultaneous processing of

heterogeneous tasks (e.g., monitoring, control and communi-

cation), more and more CPS designers adopt Multiprocessor

System-on-Chip (MPSoC) which integrates a collection of

heterogeneous Processing Elements (PEs) such as application-

specific instruction-set processors and hardware accelerators

on a single die [2]. Since MPSoC allows to fully exploit

the capabilities of both hardware and software resources, the

stringent CPS design requirements such as real-time response

and energy efficiency can be accomplished systematically.

As technology scales, to achieve better overall performance,

the number of PEs integrated on an MPSoC chip grows

quickly. Due to increasing integration of transistors on a die,

the power densities together with process variations have been

also increasing dramatically [3], [4]. This brings two big

challenges in MPSoC design. The first one is the high energy

consumption which affects the sustainability of MPSoC-based
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CPS designs, especially for mobile autonomous CPSs which

are driven by batteries. Typically, higher power densities may

lead to higher chip temperature, which not only degrades

the performance and depletes system energy storage, but also

accelerates both the aging process of MPSoC devices and

failure mechanisms (e.g., electro-migration, dielectric break-

down). Consequently, the sustainability of MPSoC-based CPS

designs cannot be guaranteed. Therefore, it is very important to

restrict the overheating time to reduce the energy consumption

and balance the thermal profiles for MPSoC designs. The

second challenge is the uncertain PE performance caused

by process variations, which has a substantial influence on

reliable CPS execution [5]. Due to the difficulty of fabricating

small structures consistently across a die, even for the PEs

of the same type on the same chip, we cannot assume that

they have same performance. In addition to the intrinsic

physical variations (e.g., channel length, gate-oxide thickness

and threshold voltage) [6], [7], the environmental variations

(e.g., temperature, power supply) that depend primarily on

architectural designs and PE operations have substantial im-

pacts on the MPSoC performance. If such variations are not

considered in MPSoC design, we cannot assure the reliability

of the host CPS products [8].

Task Allocation and Scheduling (TAS) plays an important

role in the design of energy and thermal efficient MPSoC

designs. This is because intelligent TAS strategies can im-

prove the utilization of PEs while satisfying various design

constraints (e.g., response time, peak temperature, energy

consumption) [9], [10]. However, due to variations across

identically designed PEs and chips, the required constraints

of MPSoC designs cannot be easily guaranteed [4]. Although

traditional MPSoC TAS approaches adopt worst-case timing

analysis to obtain feasible TAS solutions, due to significant
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performance and power deviations from nominal values in the

design and overly pessimistic performance estimation, such

approaches may no longer provide viable solutions. To mea-

sure TAS strategies under variations, performance yield was

proposed to define the probability of an assigned TAS instance

meeting required MPSoC constraints [11]. Therefore, it can be

used as an effective metric to evaluate the sustainability and

reliability of MPSoC designs.

Since MPSoC TAS is an NP-Complete problem, various

heuristics have been proposed to find a sub-optimal solution

to maximize the performance yield [11], [12]. However, due

to the complexity of correlated variations (e.g., delay, power

and temperature), it is hard for designers to determine which

TAS strategy works best for a given MPSoC TAS problem.

Therefore, making the quantitative evaluation and comparison

among TAS strategies has become an important issue to

guarantee the performance yield in MPSoC design. Although

existing statistical graph analysis-based methods can deal with

simplified execution variations, few of them can accurately

model complex parallel task execution scenarios and corre-

lations between different types of variations [4]. Moreover,

constraint solving-based approaches can only answer whether

a given MpSoC TAS problem satisfies a given constraint. None

of these approaches can quantitatively reason why a required

performance yield cannot be achieved and how to achieve

a better TAS solution with near-optimal performance yield.

Clearly, the bottleneck is the lack of powerful evaluation

and optimization methods that can help MPSoC designers

to make sustainable and reliable TAS decisions.

Based on the Statistical Model Checking (SMC) [13] and

regression analysis [15] approaches, this paper proposes a

novel framework that can effectively conduct performance

yield queries and optimization for energy- and thermal-aware

MPSoC designs under variations. Our framework adopts the

model checker UPPAAL-SMC [16] as the engine of variation-

oriented evaluation. Compared with formal model checking

approaches, UPPAAL-SMC allows approximate evaluation of

complex MPSoC systems, thus it requires far less memory

and validation time. By simulating systems using underlying

statistical methods (i.e., sequential hypothesis testing and

Monte Carlo simulation), UPPAAL-SMC can estimate the

satisfaction probability of a specified performance query (i.e.,

performance yield) under temperature and energy constraints.

Generally, the TAS optimization requires evaluation of a large

set of feasible solutions. Since the evaluation of a single TAS

solution is alreay time-costly, our framework employs regres-

sion analysis to predict the best possible TAS solution based

on the evaluation of a small subset of labelled TAS solutions.

This paper makes two following major contributions:

• We propose a novel UPPAAL-SMC-based approach that

can automatically convert TAS solutions under correlated

energy and thermal constraints into Networks of Priced

Timed Automata (NPTA) [16], which enables accurate

evaluation of corresponding performance yield.

• We develop a regression analysis-based optimization ap-

proach that can quickly find the best possible energy-

and thermal-aware TAS solution for a specific MPSoC

architecture (i.e., floorplan) under variations.

The remainder of this paper is organized as follows. Sec-

tion 2 presents related work on variation-aware task allocation

and scheduling approaches for MPSoC designs. After a brief

introduction to the power and thermal modeling of MPSoCs in

Section 3, Section 4 presents the details of our evaluation and

optimization framework. Section 5 presents comprehensive

experimental results based on a synthetic application. Finally,

Section 6 concludes the paper.

2 RELATED WORKS

With the advent of the MPSoC architecture in CPS design

[2], various application mapping techniques are proposed to

optimize the design from the perspectives of performance,

temperature and energy [17]. For example, Coskun et al.

[18] proposed an ILP-based approach to minimize hotspots

and balance temperature distribution on the die for a set of

tasks. In [19], Huang and Xu proposed novel task allocation

and scheduling algorithms to minimize the expected energy

consumption of multi-mode embedded systems under perfor-

mance and lifetime reliability constraints. In [20], Chantem

et al. presented a mixed ILP-based solution to optimize peak

temperature under various constraints based on phased steady-

state thermal analysis. Although the above approaches are

promising in optimizing the temperature and energy, none of

them consider the impact of process variations.

Due to the aggressive technology scaling, the effect of

process variations in microelectronic circuits is widely in-

vestigated [4]. Based on the assumption that the execution

time of MPSoC tasks can be approximated with Gaussian

distribution [21], various TAS approaches were proposed to

minimize the impact of process variation while maximizing

the performance. In [11], Wang et al. introduced the concept

of performance yield for MPSoC designs. Assuming that the

task execution time follows the Gaussian distribution [21], they

proposed an efficient TAS algorithm to maximize performance

yield based on statistical task graph analysis. In [22], Chon

and Kim proposed an efficient method to schedule and bind

tasks in an acyclic task graph to MPSoC resources in the

presence of resource sharing. Using simulated annealing-

based scheduling method and clustering-based performance

yield enhancement technique, Huang and Xu [12] took the

spatial correlation of within-die variation into account and

presented a novel quasi-static scheduling approach to improve

the overall performance yield. Although the above approaches

can obtain higher performance yield, few of them investigated

the performance yield involving the temperature- and energy-

based constraints. Moreover, none of the above approaches

considers the floorplan information in their variation-aware

performance yield analyses.

Machine learning-based algorithms are widely investigated

in MPSoC domain for the purpose of design optimization. For

example, Coskun et al. [23] proposed an online learning-based

low-cost temperature management strategy for multicore sys-

tems. Their approach can be used to reduce the adverse effects

of hotspots and temperature constraints. In [24], Tan et al.

presented a novel online power management technique based

on model-free constrained reinforcement learning. Compared
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with other existing power management method, the proposed

approach is capable of exploring the trade-off in the power-

performance design space and converging to a better power

management policy. To reduce the non-recurring engineering

(NRE) costs and time-to-market, Almer et al. [25] proposed

a machine learning-based method which can automatically

generate near-optimal application specific SoC designs within

hours rather than weeks. Although various heuristics were

proposed to improve different kinds of performance, none

of existing machine learning-based approaches considers the

joint energy and thermal constraints under process variations

in MPSoC design.

Statistical model checking has been widely used in eval-

uating system designs under variations [26]. In [27], Chen

et al. presented a variation-aware MPSoC design framework

that supports the TAS evaluation under the power and timing

constraints. However, they did not consider the correlation

between the power and temperature of PEs with different

floorplan layouts. Moreover, the work in [27] only focuses

on TAS evaluation rather than optimization. Although David

et al. optimized energy consumption for smart buildings based

on UPPAAL-SMC [28], their approach strives to optimize the

cost values on a parameterized smart building model, while

our approach targets to find a solution with the best possible

performance yield from a large set of MPSoC design models.

To the best of our knowledge, our work is the first SMC-

based approach that not only can evaluate different perfor-

mance aspects of TAS strategies considering temperature and

energy constraints under process variation, but also can effi-

ciently optimize the floorplan-aware task mapping to achieve

the highest performance yield.

3 BACKGROUND

3.1 UPPAAL-SMC

Relying on the formal models of Network of Priced Timed

Automata (NPTA) [29], UPPAAL-SMC [16] provides a user-

friendly interface to enable the quantitative performance anal-

ysis of complex stochastic systems. NPTA comprises a set of

correlated Priced Timed Automata (PTA) that are synchronized

via broadcast channels and shared variables. Figure 1 shows an

example of an NPTA consisting of two PTAs, i.e., A (id=ida)

and B (id=idb), where each PTA has four locations, two

variables (e.g., t1 indicating the delay time and p1 indicating

the power in location A2 for PTA A) and two local clocks

(e.g., c1 indicating the execution time and e1 indicating the

consumed energy for PTA A), respectively. As a variant of

timed automata, PTA allows clocks with different rates in

different locations. The value of a primed clock denotes the

rate of the clock. For example, e′1 == p1 in PTA A is used to

record the energy consumed by PTA A with a rate of p1. When

dealing with the composite state transition of an NPTA, if a

PTA process is in a commit or urgent location (i.e., a location

marked with the symbol “C” or “U”), the process will have

a zero delay in this location and the next transition should

involve an outgoing edge from one of the commit or urgent

locations (commit locations have higher priority). Otherwise,

after each decision, the PTA process with the shortest delay

will attempt to take a transition and all the continuous variables

will be updated accordingly. In Figure 1, the synchronization

between two PTAs is based on an array of two broadcast

channels, i.e., msg[]. To filter useless messages, we use the

non-deterministic selections e:msg t and the guard condition

e==idb to filter messages which are not sent to PTA B.

Fig. 1. An NPTA, (A | B)

We use the design pattern shown in Figure 1 to enable

the stochastic behavior modeling and evaluation of MPsoC

designs. For simplicity, Figure 1 only presents an example

considering the variations of power and energy. Currently,

UPPAAL-SMC only explicitly supports the uniform and ex-

ponential distributions. However, due to the built-in function

random() and C-like programming constructs, UPPAAL-SMC

can generate constant values following a large set of com-

monly used distributions (e.g., normal distribution, Poisson

distribution). For example, by using the Box-Muller method,

we can derived values following normal distributions. In this

example, functions t dist() and p dist() are used to derive the

random delays (i.e., t1 and t2) and power configurations (i.e.,

p1 and p2) for the PTAs following some specified distributions.

In the pattern, the location A2 sets the upper bound for clock

c1 (i.e., c1<=t1) and its outgoing transition has the guard

condition c1>=t1. Therefore, PTA A must stay in location

A2 with a delay of t1. Meanwhile, the energy consumption

rate of A in location A2 is denoted by the location invariant

e′1==p1. Based on the above template using message-based

synchronization among PTAs, arbitrarily complex stochastic

behaviors of MPSoC designs can be modeled.

To enable the quantitative evaluation of NPTA-based de-

signs, UPPAAL-SMC employs the property-based perfor-

mance queries in cost-constrained temporal logic [29] format.

The query is in the form of Pr[cost <= bound](<> expr),
where [cost <= bound] indicates the bound of cost (e.g., time,

power), and the expression <> expr asserts that the predicate

expr should be hold eventually. If the cost is not specified

explicitly, [<= bound] indicates the bound of system time.

Based on the specified probability of false negatives (i.e.,

α) and probability uncertainty (i.e., ε), UPPAAL-SMC will

generate and execute a fixed number of random runs. By mon-

itoring these runs bounded by either time or design constraints,

the probability range of each query (i.e., [p− ε, p+ ε]) with

a specified confidence degree (i.e., 1−α) will be reported,

where p indicates the success ratio of the given query. The

performance query details will be described in Section 4.4.

3.2 Power and Thermal Modeling

It is important to note that our TAS evaluation and optimiza-

tion framework itself is independent of the power and thermal
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models used. In other words, users may define their own

power and thermal models by modifying the functions which

calculate new power and new temperature, and these models

can be easily converted to corresponding NPTA templates in

a similar way as presented in Section 4.3. To illustrate the

usage of our framework, this subsection presents a general

power and thermal model, which can model the correlation

between power consumption and temperature of PEs.

Assume that there are m PEs in an MPSoC design. For each

PE, the power consumption consists of two parts: dynamic

power Pdyn and leakage power Pleak. Since dynamic power

consumption is weakly coupled with temperature variation,

we consider the value of Pdyn as a constant. Note that leakage

power consumption is a strong function of temperature. Thus

the overall power of the ith PE can be formulated as:

Pi(t) = Pleak,i(t)+Pdyn,i. (1)

Since our framework takes the temperature impacts among

PEs into consideration, we adopt the well-known RC thermal

model [32], [35] to investigate the temperature correlation

among PEs. In the RC model, Ci denotes the thermal capac-

itance of the ith PE, and Ri, j indicates the thermal resistance

between the ith PE and the jth PE. The temperature of the ith

PE can be formulated as:

Ci ·
dTi(t)

dt
+

Ti(t)−Tamb

Ri,i
+∑

j 6=i

Ti(t)−Tj(t)

Ri, j
= Pi(t) (2)

where Tamb indicates ambient temperature. Note that, although

Equation (2) is a first order Ordinary Differential Equation

(ODE), it does not need to be solved within our framework.

This is because UPPAAL-SMC allows location invariants in

the form of ODEs with primed clocks [16].

4 OUR SMC-BASED EVALUATION AND OPTI-
MIZATION APPROACH

This section presents our TAS evaluation and optimization

framework in details. Our approach focuses on how to improve

the performance yield under energy and thermal constraints

considering the variations of time and power.

4.1 Notations and Problem Definition

Besides the two types of variations (task execution time and

power) addressed in this paper, our approach can be easily

extended to model other types of variations, based on the tem-

plate shown in Figure 1. To accurately describe the stochastic

behaviors of MPSoC designs, we adopt the distribution-based

methods for modeling variations. The MPSoC TAS evaluation

and optimization under variations studied in this work is

formulated as follows.

• Let G = (V,E) be a task graph in the form of directed

acyclic graph (DAG), where V = {v1, . . . ,vn} denotes the

task set and E indicates precedence constraints between

tasks.

• Let F be the floorplan of an MPSoC design which

consists of a set of PEs PE = {p1, . . . , pm} with specific

placement. Let PT = {pt1, . . . , ptk} be the set of PE types

of F . We use the PE type function TPE : PE → PT to

specify the type of an PE pi (pi ∈ PE), and use the task

type function Ttask : V → PT to denote the type of PEs to

which task v j (v j ∈V ) can be allocated. A task v j can be

assigned to pi only if Ttask(v j) = TPE(pi).
• Let the function ET :V ×PT →R

+ be the nominal execu-

tion time function for tasks, where ET (vi, pt j) represents

the nominal execution time of task vi running on a PE of

type pt j. Let DIST be the set of probability distributions.

We use ET D : V ×PT → DIST to specify the execution

time variation of tasks, where ET D(vi, pt j) = dist denotes

the execution time of task vi running on a PE of type pt j

following the distribution dist.

• Let the function PD : PT → DIST specify the power

variations of PEs, where PD(pti) = dist indicates that

the power consumption of PEs of type pti follows the

distribution dist. Considering the PE power variations

and temperature influence among PEs, we use the func-

tion Power : PE ×R
+ → R

+ to denote real time power

consumption of PEs, i.e., Power(pi, t) denotes the power

consumption of pi at time t.

• Let the function Energy(t) =
∫ t

0 ∑
m
i=1 Power(pi, t)dt de-

note the overall energy consumed by the MPSoC design

till time t.

• Let the function Hotspot : R+ → {0,1}, denote whether

there exists a PE on F with a temperature higher than

the specified hotspot temperature at time t. The function

Thotspot(t) =
∫ t

0 Hotspot(t)dt is a metric that denotes the

overall MPSoC overheating time till time t.

• Let mp, rt, thotspot , me, and fu be design constraints,

which denote the power limit, response time, overheating

time limit, energy limit, and available function units,

respectively.

• A TAS solution tassx is a 2-tuple in the form of

(<vx,1, . . . ,vx,n>, <vpx,1, . . . , vpx,n>) indicating that the

task vx,i is assigned to a PE virtually indexed by vpx,i ∈
N
+
≤m without violating the constraint f u. The schedule

sequence <vx,1, . . . , vx,n> is a permutation of tasks of V

in an order such that vx, j cannot be dispatched earlier than

vx,i if i<j.

• Let FP : N+
≤m → PE be a PE mapping function, where

FP(vpi) indicates the real PE virtually indexed by vpi.

Considering the floorplan F , a mapped TAS solution

mtassx is mapping from tasks to real PEs. It is a 2-tuple

(<vx,1, . . . ,vx,n>, <FP(vpx,1), . . . , FP(vpx,n)>) where

FP(vpx,i) indicates the assigned PE running the task vx,i.

• Let mtass be a mapped TAS solution, and END(vi,mtass)1

be the finish time of task vi when executing mtass.

Under the variations (i.e., execution time variation ET D

and power variation PD) and design constraints (i.e.,

mp, rt, thotspot , and me), the performance yield PY(mp,

rt, thotspot , me, mtass) of the MPSoC with mtass de-

notes the probability that the design meets the con-

straints such that ∑
m
i=1 Power(pi, t) ≤ mp for any t,

Maxn
i=1END(vi,mtass) ≤ rt, Thotspot(rt) ≤ thotspot , and

1. Note that END(vi,mtass) is affected by ET D, and Power(pi, t) is affected
by PD and temperature influence among PEs.
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Energy(Maxn
i=1END(vi,mtass))≤ me.

Note that TAS solutions do not take floorplans into ac-

count. The exploration of a TAS solution is to assign tasks

to corresponding indexed virtual PEs only considering the

task precedence relations (denoted by E) and constraint of

available function units (denoted by fu). Although there may

exist multiple feasible TAS solutions for the given MPSoC

design constraints, for each TAS strategy our approach only

adopts the one that is found first. The difference between

distinct mapped TAS solutions using the same strategy is

that they are based on different floorplan-based PE mapping

functions. Given a set of mapped TAS solutions generated by

different TAS strategies with different PE mapping functions,

the TAS evaluation process is to figure out which mapped TAS

solution has the best performance under variations. Unlike

evaluation, the optimization process will try to evaluate all

possible TAS solutions for the same strategy with the same

design constraints but different PE mapping functions. The

goal of optimization is to find one mapped TAS solution with

the highest performance yield under variations.

5

1

(B, 8, 0.4)

3

(C, 3, 0.3)

2

(B, 10, 0.5)(A, 3, 0.2)

4
(A, 9, 0.6)

(a) Task graph

PE1

PE6 PE8

PE2 PE3

PE4 PE5

PE7

(b) MPSoC floorplan

Fig. 2. An example of floorplan-aware MPSoC TAS

As an example shown in Figure 2, we are trying to

schedule the tasks shown in Figure 2(a) onto an MPSoC

design with the floorplan specified in Figure 2(b). In

Figure 2(a), each task is labelled with the information of

allocated PE type and execution time variation. For example,

task v1 is labelled with a setting (A,3,0.2) indicating

that this task will be assigned to PEs of type A and its

execution time follows the Gaussian distribution N(3,0.22).
Assume that TPE(PE1) = TPE(PE2) = TPE(PE3) = A,

TPE(PE4) = TPE(PE5) = B, and TPE(PE6) = TPE(PE7) =
TPE(PE8) = C. Let tass= (<v1,v2,v3,v4,v5>,<1,5,6,4,1>)

be a TAS solution of the problem. Assume that we

have a PE mapping function indicates the binary

relation of virtual indexed PEs to real PEs, i.e.,

{(1,v1),(2,v2),(3,v3),(4,v5),(5,v4),(6,v6),(7,v7),(8,v8)}.

Based on such PE mapping function, we can get a mapped

TAS solution mtass1 = (<v1,v2,v3,v4,v5 >,< PE1,PE4,
PE6,PE5,PE1 >) for tass. Note that mtass2 = (<v1,v3,
v2,v4,v5 >,< PE1,PE5,PE6,PE4,PE3 >) is not a mapped

TAS solution generated from tass, since v1 and v5 are not

mapped to the same PE. Under the execution time and power

variations coupled with the energy and thermal constraints, it

is difficult for existing approaches to determine which mapped

TAS solution (mtass1 or mtass2) has a better performance

yield. Furthermore, it is a major challenge to answer whether

mtass1 or mtass2 has the highest performance yield among all

the feasible mapped TAS solutions for the given task graph

and MPSoC platform.

4.2 Our Framework

Figure 3 presents our proposed UPPAAL-SMC-based TAS

evaluation and optimization framework. Based on the MPSoC

design information (i.e., a task graph with task execution

information and the specification of the adopted MPSoC

platform) and the TAS strategy, our framework can generate

one TAS solution and figure out all the corresponding mapped

TAS solutions. By combining the power model, thermal model

and platform variation information of the MPSoC design,

our framework automatically transforms the mapped TAS

instances into corresponding executable NPTA models. Mean-

while, the specified design constraints can be converted to

properties to enable the quantitative evaluation of the mapped

TAS instances. By checking the generated NPTA models and

properties using the UPPAAL-SMC model checker, we can

compare among the mapped TAS solutions. For the purpose

of optimization, it is required to evaluate all the possible

mapped TAS solutions, which is time-consuming. To reduce

the optimization time, our framework employs the regression

analysis that only needs to check a small subset of the sampled

mapped TAS solutions. By using the Back Propagation Neural

Network (BPNN)-based approach [33] on the evaluated NPTA

models in the regression set, we can predict and rank the

performance yield of the remaining NPTA models in the

prediction set. Finally, the selected top-ranking NPTA models

will be evaluated using UPPAAL-SMC to validate the pre-

diction results. Since only a small part of the mapped TAS

solutions are evaluated, the overall TAS optimization time

can be significantly reduced. The following sub-sections will

describe the major components of our framework in detail.

4.3 NPTA Model Generation

Aiming at evaluating mapped TAS instances using SMC, we

need to first covert the mapped TAS instances into executable

NPTA models. In our approach, we adopt six kinds of PTAs:

task, PE, power monitor, temperature monitor, hotspot mon-

itor, and hotspot timer. The task PTA models the execution

of a single task. The PE PTA presents the behavior of a

single PE dealing with multiple assigned tasks. The power

monitor, hotspot monitor and hotspot timer PTAs monitor the

power usage and overheating time of the whole chip, while

the temperature monitor models the temperature change for a

single PE. To facilitate the model construction, we decouple

an NPTA model for MPSoC designs into two parts: i) front-

end models which describe the common behaviors of MPSoC

designs, and ii) back-end configuration which consists of

necessary data structures (e.g., thermal models, task graph

DAG, variation information, synchronization, etc.) to guide the

stochastic simulation for the specified TAS solution. Note that

in our approach, all TAS solutions share the same front-end

models. To simplify the model and property generation, we

introduce a dummy task (i.e., a task whose execution time is

0) with tid = 0 to merge all the tasks without any successors.

In our approach, we assume that there are T + 1 tasks (with

tid ∈ [0,T ]) and P PEs (with pid ∈ [0,P−1]).
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Fig. 3. Our TAS strategy evaluation and optimization framework

4.3.1 Back-end Configuration Generation

According to the semantics of the task graph, a task can be

executed only when its precedent tasks are all completed.

As an example shown in Figure 2, for mtass1, task v4 can

start execution only when both of its predecessors v1 and v2

are finished. To model the concurrent execution of tasks, we

adopt a precedence matrix PM[T+1][T+1] to indicate the task

precedence relations (indicated by both the elements of the

2-tuple tassx as defined in Section 4.1), where PM[i][j]=1

indicates that task v j can start its execution immediately when

task vi is finished. Note that besides the task precedence

relations posed by the edges of a task graph, PM also contains

the task precedence relations derived during the task allocation

and scheduling. For example, assume that < .. . ,vi, . . . ,v j, . . . >
is a schedule sequence, where vi and v j are parallel tasks, i.e.,

there is no path from vi to v j in the task graph. If vi and v j

are mapped to the same PE, we need to set PM[i][ j] to 1.

Based on this precedence matrix, each task should be aware

of the status of its predecessors and successors. In our back-

end configuration, we define two arrays pre count[T+1] and

post count[T+1] to denote the number of predecessors and

successors for each task. Both arrays are initialized based on

the precedence matrix.

To model the variation information of MPSoC platforms, we

use two multi-dimensional arrays tvar and pvar in the back-

end configuration to specify the distributions of execution time

and power consumption for each PE. Note that our framework

supports a wide range of widely used distribution models

which facilitate the modeling of time and power variations.

For example, if designers select the Gaussian distribution to

model the power consumption variation, a two dimensional

array pvar[T+1][2] will be used to specify the mean value

and standard deviation of power for each PE. Based on

such distribution information, the arrays real time[T+1] and

real power[P] in the back-end configuration will be initialized

to denote the real execution time for each task and the real

power for each PE at the beginning of simulation.

Due to the correlation between the power and temperature

of PEs as introduced in Section 3, to accurately model the

TAS execution, our approach allows the RC modeling as

presented in Section 3. In the back-end configurations, we

use two matrices R[P][P] and C[P][P] to denote the thermal

resistance matrix and thermal capacitance matrix with constant

coefficients, respectively. Both matrices can be either obtained

from MPSoC producers or generated by floorplanning tools.

To enable the PTA synchronization, our framework adopts

the messages of different types to conduct the synchronization

for specific purposes. For example, in our approach, task PTAs,

PE PTAs, and the power PTA can only accept messages of type

msg task t, msg proc t and msg power t, respectively. For

the communication between task PTAs, the back-end configu-

ration contains a broadcast channel array t notify[T+1], where

t notify[i] indicates a private channel for the ith task to receive

notifications from predecessor tasks. With respect to task allo-

cation, the array assignp[T+1] in the back-end configuration

is used to indicate the floorplan-aware task-to-PE mapping

relation (i.e., the PE mapping function defined in Section 4.1),

and the broadcast channel array assign proc[(T + 1)× (P)]
is used to enable the dispatching of tasks to PEs, where the

channel assign proc[e] is used to assign a task with tid = e/P

to a PE with pid = e%P. When a PE finds that the current task

v j finishes its execution, the PE will notify v j via its private

channel pt noti f y[ j] about its completion. To model the real-

time power of MPSoC designs, the back-end configuration

consists of two channel arrays requestP[P] and freeP[P]

which can dynamically update the power consumption status

of currently running PEs. Since each PE has an associated

temperature monitor, to enable the switch of monitoring states,

PE pi needs to send notification messages via the channels

m task start[i] and m task finish[i]. The back-end configura-

tion also defines four urgent channels (temp high, temp lower,

hotspot timing start, hotspot timing stop), which can trigger

transitions immediately when their associated guards satisfy.

4.3.2 Front-end Configuration Generation

Based on the global data structures defined in the back-end

configuration, the front-end models can be instantiated to

enable the stochastic simulation. According to the semantics
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of task graphs, all the tasks have the same behavior pattern.

Therefore, we only need to construct one task PTA model

for all the tasks. Figure 4 presents the details of the task

PTA. The Init state initializes the data structures of the whole

NPTA. For example, based on the precedence matrix PM, we

can figure out the successor tasks (saved in the local array

post tasks[T+1]) and the count of predecessor and successor

tasks of the current task (denoted by local variables pre num

and post num). Init state also sets the real execution time

for each task and the real power consumption for each PE

with the randomly generated values based on the specified

distribution information. The Receiving state tries to receive

the notifications from all its predecessors. As soon as all

the predecessors are finished (i.e., pre num =0), the Running

state will dispatch the task to the PE with pid = assignp[tid].
After receiving the execution completion notification from the

PE via channel pt notify[tid] as shown in the Finish state,

the Sending state tries to notify all its successors saved in

post tasks about the completion of the current task.

Fig. 4. Front-end model of a task

PEs have the same behavior pattern as shown in Figure 5. In

our approach, each PE has a task queue to keep the ready tasks

in the dispatching order. The PE PTA model consists of three

major states. The Waiting state tries to receive new tasks when

its task queue is empty. Before entering the Running state,

the PE will notify the power monitor to update the overall

power via channel request p[pid] and notify its temperature

monitor to switch its temperature changing mode via the

channel m task start[pid]. In the Running state, the PE will

choose task vx at the head of the queue for execution and

the execution time is saved in real time[x] which follows the

specified distribution. When task vx completes its execution

(indicated by the Finish state), the PE will notify vx about its

completion, and notify its power and temperature monitors to

conduct the corresponding state switch.

The power monitor is created to monitor the overall real-

time power and accumulated energy consumption for TAS

solutions. As shown in Figure 6, the model has two states. The

Handling state deals with the requests form PEs for increasing

or decreasing the power. The Waiting state waits for new power

requests and records the accumulated consumed energy. It is

Fig. 5. Front-end model of a PE

important to note that, due to the correlation between the PE

temperature and power, we use the function power update() to

periodically update the overall power of all the PEs by using

the formula presented in Equation (1). The value of the latest

overall power is saved in current power.

Fig. 6. Front-end model of the power and energy monitor

During the simulation of TAS solutions, the temperature

of different PEs is different. In order to reflect the real-

time temperature for each PE, we adopt the PTA shown in

Figure 7 for each PE. The model has two states (P idle and

P running) which indicates whether there is a task running

on the PE. When calculating the temperature, the P idle state

only considers the leakage power, while the P running state

takes both dynamic and leakage power into account. The

temperature rate functions temp idle() and temp running() are

created based on the formulas presented in Equation (2).

Fig. 7. Front-end model of the temperature monitor

When evaluating MPSoC temperature, hotspot is an im-

portant factor which contributes to the system reliability and

cooling cost. Based on the PTAs shown in Figure 8, our

approach supports the quantitative analysis of hotspot features.

For each PE, we adopt a PTA shown in Figure 8(a) to

indicate whether the temperature of current PE ppid exceeds
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the threshold temperature, i.e., T threshold. For the overall

MPSoC design, we use one hotspot monitor to record the up-

to-date overheating time Thotspot(t) as defined in Section 4.1.

(a) Hotspot Monitor (b) Hotspot Timer

Fig. 8. Front-end models for hotspot

4.4 Property Generation

To compare the performance yield of generated NPTA models

considering the temperature and power constraints, we assume

that MPSoC designers would like to figure out the problems

like “what is the probability such that the task graph can

be completed under the hotspot time constraint x and energy

constraint y within time z?” or “given a certain amount

of energy/hotspot time x, what is the probability a specific

task graph can be completed under the time constraint y

and hotspot time/energy constraint z?”. In our framework,

the above queries can be automatically converted using the

following property templates:

• Pr[<=z] (<> T(0).End && hotspot time<x &&

energy<=y)

• Pr[energy<=x] (<> T(0).End && hotspot time<=z

&& time<=y)

• Pr[hotspot time<=x] (<> T(0).End && energy<=z

&& time<=y)

Here, T (0).End denotes the completion of the task graph,

time means the overall elapsed time, hotspot time indicates

the overheating time, and energy represents the overall energy

consumption. Based on the monitoring of a large number

of stochastic simulation runs, UPPAAL-SMC will report the

probability distribution of successful simulations after the

check finishes. Such information can be used to evaluate the

performance of TAS solutions.

4.5 TAS Optimization

Since our approach focuses on the evaluation and optimization

of task allocation and scheduling under thermal and energy

constraints, we need to consider the underlying MPSoC floor-

plans and corresponding task-to-PE mappings. After figuring

out a feasible TAS solution for a given task graph and resource

constraints using existing TAS heuristics (e.g., BULB [36],

list scheduling [37]), our TAS optimization tries to figure out

a task-to-PE mapping (i.e., PE mapping function) that can

lead to the highest performance yield for the TAS solution.

To quickly explore such an optimal result, our approach

adopts BPNN [33] as the TAS optimization engine as shown

in Figure 3. The reason why we choose BPNN to perform

regression analysis and prediction of performance yield is

because BPNN outperforms other popular regression models

when reasoning the performance metrics of variation-aware

models [14]. It needs less regression model generation time

but still can achieve the expected prediction accuracy. It

is important to note that BPNN is not the only option to

perform the regression. In fact, other regression methods (e.g.,

Support Vector Regression [34], M5 Model Tree) can be easily

integrated into our framework for the TAS optimization.

Algorithm 1: Our TAS optimization approach

Input: i) A TAS solution tas;
ii) A floorplan of the MPSoC platform f p;

iii) The performance query prop;
Output: An optimized mapped TAS solution with best possible

performance
TASOptimization(tas, f p) begin

1: {FP1, . . . ,FPn}= FloorPlanFuncGen( f p);
2: TAS = {tas1, . . . , tasn}= {FP1(tas), . . . ,FPn(tas)};
3: FV = { f v1, . . . , f vn}=Characterization(TAS);
4: (Reg,Pre) = Sampling(TAS,FV );
5: max py = 0, best tas = /0;
6: reg result = {}, pre result = {};
for each (tas, f v) pair in Reg do

7: model = NPTAGen(tas);
8: py = SMC(model, prop);
9: best tas = max py ≥ py ? best tas : tas;
8: max py = MAX(max py, py);
10: reg result = reg result

⋃
(tas, f v, py);

end
11: predictor = Regression(reg result);
for each (tas, f v) pair in Pre do

12:
pre result = pre result

⋃
(tas, f v, predictor((tas, f v)));

end
13: ranked tas = Rank(pre result);
14: sel tas = Select(ranked tas);
while sel tas.empty() == FALSE do

15: tas′ = sel tas.deque();
16: temp py = SMC(NPTAGen(tas′), prop);
if temp py ≥ max py then

17: best tas = tas′;
18: max py = temp py;

end
end
19: Return (best tas,max py);

end

Algorithm 1 outlines the major steps in our TAS opti-

mization approach. For a given floorplan, step 1 enumerates

all possible PE mapping functions. Based on these mapping

functions, we can obtain all the mapped TAS solutions for

a given unmapped TAS solution in step 2. By extracting the

feature vectors of the mapped TAS solutions in step 3, step

4 conducts the sampling to split the mapped TAS solutions

into two separate sets, i.e., the regression set (dented by

Reg) and prediction set (denoted by Pre). The regression

set is used to generate the regression model, which can be

used to predict the performance yield for the mapped TAS

solutions in the prediction set. Steps 5 initializes the best

mapped TAS solution and its performance yield, while steps

6 initializes the regression and prediction results. Steps 7-10

evaluate the mapped TAS solutions in the regression set one by

one and save the evaluation results in reg result. Meanwhile,

the best mapped TAS solution as well as its performance
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yield are saved in best tas and max py, respectively. Based

on the evaluation results of the TAS solutions in regression

set, step 11 generates the regression model, which is used to

predict the performance yield for the mapped TAS solutions

in the prediction set as shown in step 12. Step 13 sorts the

mapped TAS solutions with regard to their performance yield

in a descending order. Step 14 selects three mapped TAS

solutions with the highest predicted performance yield from

the prediction set. Steps 15 and 16 re-evaluate these selected

solutions using the UPPAAL-SMC. If a solution is found

to be better than the best solution searched so far, steps 17

and 18 will record this solution as the new best solution.

Finally, step 19 reports the optimized mapped TAS solution

with the best possible performance yield under the power and

temperature constraints. Note that feature selection (step 3)

and sampling (step 4) are two key steps in our approach, since

they determine the accuracy of the prediction. The following

subsections will describe these two steps in detail.

4.5.1 Feature Selection for TAS Solutions

To guarantee the accuracy of prediction, it is required to

figure out the features which can significantly reflect the

performance of the mapped TAS solutions. Since our approach

focuses on finding PE mapping function for a TAS solution to

achieve the highest performance yield, based on the criteria

of significance, independence and diversity, our approach

investigates the following two kinds of features of each PE for

the given floorplan and TAS solution: i) the physical attributes

of PE pi (i.e., Ri,i and Ci in the RC model [35] as defined in

Section 3.2); and ii) the task to PE mapping information. Due

to the same task dispatching order and same mapped PE types

for all the mapped TAS solutions, we do not consider the task

dependence relation and the PE variation information in the

feature selection. For a mapped TAS solution, there may be

multiple tasks allocated to the same PE. To simplify the feature

representation, we use the following encoding to denote the

tasks assigned to the PE pi:

Mi =
n

∑
j=1

(Xi, j ×2 j) (3)

where Xi, j = 1 indicates that task v j is allocated to the PE

pi., and 0 otherwise. As an example shown in Figure 2, the

TAS solution mtass1 has two tasks (i.e., v1 and v5) assigned

to PE1. Therefore, we can get M1 = 1×21 +1×25 = 34 for

PE1. To calculate the overall running time of a PE, we use

the following formula:

Ti =
n

∑
j=1

(Xi, j ×ET (v j,TPE(pi))) (4)

which indicates the accumulated running time of tasks on PE

pi. For the example of mtass1, we can get T1 = 1×3+1×9 =
12, since the overall nominal running time of tasks v1 and v5

in Figure 2(a) is 12.

In the feature vector, each PE pi is represented by a 4-tuple

in the form of (Ri,i,Ci,Mi,Ti). If there are p PEs in the MPSoC

design, the feature vector will contain p such 4-tuples. As an

example shown in Figure 2, assuming that mtass1 needs to be

characterized, the following shows its feature vector.

<(19.5,0.2,34,12), (2.15,0.25,0,0), (19.5,0.2,0,0),

(19,0.22,4,10), (19,0.22,16,8), (20.2,0.24,8,3),

(20.7,0.27,0,0), (20.2,0.24,0,0)>

4.5.2 TAS Solution Sampling

The goal of sampling is to collect a set of feasible mapped TAS

solutions for the regression model generation. To avoid biased

prediction, such a set should be as representative as possible.

If all the sampled TAS solutions have the same performance

yield value, the prediction will be inaccurate. Therefore, it

is required that the sampled TAS solutions should be evenly

distributed in the whole solution space. Since we focus on

TAS optimization, some observable TAS solutions with high

performance yield should be included in the regression set.

To achieve these two goals, our approach employs a hybrid

sampling method with two strategies. In the first strategy, we

uniformly sample the TAS solutions that are sorted based

on their generation order. Assuming that there are m TAS

solutions in total sorted based on its generation order, and

n TAS solutions to be sampled, we may conduct the sampling

by choosing every other ⌈m/n⌉ TAS solutions. The second

strategy tries to sample as many TAS solutions with high

performance yield as possible. Since allocating tasks to PEs

that are close to the die center can easily result in hotspots,

to avoid such scenarios, our approach assigns each PE with a

bonus coefficient which encourages allocating tasks to border

PEs. The PEs on the die border have higher bonus, while

the PEs far away from the die border have lower bonus.

Assuming that (< vx,1, . . . ,vx,n >,< PEx,1, . . . ,PEx,n >) is a

mapped TAS solution, its overall bonus can be calculated

using the formula ∑
n
i=1 ET (vx,i,TPE(PEx,i))∗Bonus(PEx,i). As

an example shown in Figure 2, assuming that Bonus is

a binary relation {(PE1,0.8), (PE2,0.5),(PE3,0.8),(PE4,0.6),

(PE5,0.6),(PE6,0.7), (PE7,0.4),(PE8, 0.7)}, mtass1 has a bonus

of 3× 0.8+ 10× 0.6+ 3× 0.7+ 8× 0.6+ 9× 0.8 = 22.5. By

using this strategy, if there are n TAS solutions to be sampled,

the n ones with highest bonus values will be sampled.

Note that both sampling strategies have their own strengths.

For the first strategy, it can be used to obtain TAS solutions

with different performance yields. For the second strategy that

selects TAS solutions with highest bonus, the performance

yields of the samples are quite similar. However, from their

feature vectors, the regression analysis process can effectively

learn why the performance yield is high. To guarantee the

prediction accuracy, our approach employs a hybrid approach

that combines the advantages of above two sampling strategies.

By default, the hybrid sampling approach generates the same

number of TAS solutions for the two different sampling

approaches. It also allows designers to specify their own

proportion for samples with different strategies.

5 CASE STUDY

5.1 Experiment Setup

This section presents the experimental results on a synthetic

example using our proposed framework. In this example, we
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model the dynamic power consumption of PEs using the

method presented in [35], and the static power consumption

of PEs using the approach provided by [31]. We adopted the

UPPAAL-SMC (version 4.1.19 with parameters ε = 0.05, α =
0.05) as the engine of variation-aware TAS solution evaluation.

We used the built-in BPNN tool from MATLAB to generate

the regression model (with a setting of 50 neurons in hidden

layer, MSE = 0.001, and a maximum of 50 epoch iterations)2.

For the BPNN regression model generation, we employed the

training function scaled conjugate gradient backpropogation

to update weight and bias values. We used the tan-sigmoid

transfer function in the hidden layer which generates outputs

between -1 and 1. In the output layer, we used the log-sigmoid

transfer function which generates outputs between 0 and 1

indicating the value of performance yields. We implemented

the remaining components of our framework including the

TAS solution generation heuristics, TAS to NPTA converter,

property generator and TAS optimization procedure using the

C programming language. For TAS solution generation, our

framework supports three heuristics (i.e., BULB [36], list

scheduling [37], and PVTS [11]) that can efficiently achieve

feasible TAS solutions. In this experiment, we set the supply

voltage of PEs to 1.1V, the ambient temperature to 35◦C, and

the temperature of thermal emergency (i.e., hotspot) to 85◦C.

All the experiments were conducted on Linux desktops with

4.0GHz CPU and 8 GB RAM.

TABLE 1

Power and Time Variations for MPSoC PEs

Type Power Variation Exec. Time Variation

A N(x, (0.10x)2) N(y, (0.05y)2)

B N(x, (0.13x)2) N(y, (0.07y)2)

C N(x, (0.15x)2) N(y, (0.10y)2)

By using the open source tool TGFF [38] which is designed

to generate pseudo-random task-graphs, we obtained a 22-

node task graph with a maximum input degree of 3 and a

maximum output degree of 2. Beside ID information, each task

node is assigned with its corresponding PE type and execution

time information. Note that the execution time variations of

all the tasks follow the distributions for PEs as specified in

Table 1. For example, if the expected execution time of a task

v running on PEs of type A is 10 time units, its execution

time will follow the Gaussian distribution N(10,0.52), since

the execution time of PEs of type A follows the Gaussian

distribution N(y,(0.05y)2).
In the experiment, we assumed that the target MPSoC

platform consists of 12 PEs, including 5 PEs of type A, 2 PEs

of type B and 5 PEs of type C. To demonstrate the evaluation

capability of our approach, we investigated the performance

2. In this example, we used the MATLAB BPNN tool which has only one
hidden layer by default. Based on the Kolmogorov’s theorem [30], we found
that 50 neurons can effectively generate an accurate regression model with
under the constraint of Mean Square Error (MSE). We set the maximum
number of epoch iterations to 50 in this example, and our approach can find
the regression model within 50 epoch iterations. Note that if within 50 epoch
iterations we cannot obtain a regression model satisfying the given constraints,
we need to increase the maximum number of iterations or tune the other
parameters (e.g., increasing the number of hidden neurons) until a satisfying
regression model is found.

yield of the same TAS solution under different architecture. We

conducted the experiment based on two architectures with the

different floorplans (i.e., MPSoC(5,5,2) and MPSoC(5,2,5)) as

shown in Figure 9. Due to the different floorplan layouts, the

RC models of these two MPSoC platforms are quite different,

which will inevitably affect the evaluation results. For each of

above floorplan, there exists 5!×2!×5! = 28800 different PE

mapping functions. In other words, for a given TAS solution,

there are 28800 different mapped TAS solutions. Note that

both the floorplans shown in Figure 9 have a symmetric

structure. If we want to figure out the best solution for a

TAS problem under variations, we only need to evaluate

28800/2 = 14400 mapped TAS solutions.

A1 A2 A3 A4 A5

B2B1

C1 C2 C3 C4 C5

(a) MPSoC(5,2,5)

A1 A2 A3 A4 A5

B2B1

C1 C2 C3 C4 C5

(b) MPSoC(5,5,2)

Fig. 9. Two MPSoC floorplans

Similar to the work presented in [11], [27], we assume that

the task execution time and power consumption follow the

Gaussian distribution as presented in Table 1. For example,

the power of type A PE follows the Gaussian distribution

N(x, (0.10x)2), where x indicates the real time power (leakage

power + dynamic power) of the PEs of type A. For example,

if the current power of the PE is 10, its real power value at the

same time will follow the Gaussian distribution N(10, (1)2).
The execution time of PEs of type A follows the Gaussian

distribution N(y, (0.05y)2), where y denotes the expected

execution time of a task that can be executed on the PEs of

type A. For instance, if the mean execution time of a task

allocated to some PE of type A is 15, its execution time will

follow the Gaussian distribution N(15,0.752). It is important to

note that, since our framework offers a large set of distribution

models and comprehensive programming constructs, it allows

accurate modeling of variations and correlations of PEs.

5.2 Time-Oriented Evaluation and Optimization

Assume that we want to achieve a TAS solution that can

meet the design constraints such that “with an energy quota

of 12000 Joules, the task graph can be finished within 180

seconds while the max power cannot exceed 82 Watts and the

overheating time cannot be longer than 60 seconds”. Based on

the given power and functional unit constraints, we generated

three TAS solutions based on the following three strategies,

respectively: i) the BULB [36] which is a power-constrained

time minimization method for task allocation and scheduling,

ii) list scheduling method (denoted by List) [37] which is a

promising heuristic to quickly find a near-optimal TAS solu-

tion, and iii) process variation-aware task scheduling approach

(denoted by PVTS) proposed in [11] which can effectively

find near-optimal TAS solutions with highest performance

yield. Note that neither BULB nor List takes the performance
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(c) PVTS [11]
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Fig. 10. Time oriented evaluation results for (5,2,5)
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Fig. 11. Time oriented evaluation results for (5,5,2)

variations into account during the search of optimal TAS so-

lutions. Unlike BULB and List, PVTS adopts a list scheduling

like approach based on dynamic priorities calculated from

unscheduled tasks with uncertain delays. For each obtained

TAS solution with a given floorplan, we generated 14400

mapped TAS solutions. By using our developed tools, all

these mapped TAS solutions can be automatically converted to

NPTA models, and the design constraints can be automatically

transformed to the properties. To enable the TAS optimization,

we sampled 100 mapped TAS solutions in total (50 by using

the first sampling strategy and 50 by using the second sampling

strategy) to construct the regression set. Since the whole

process including the mapped TAS solution generation, NPTA

model/property generation and TAS solution sampling costs

less than 3 seconds, compared with the TAS evaluation time,

such time can be neglected.

Assuming that we want to check the performance yield

from the perspective of completion time, we can use the

property Pr [<=180](<> T(0).End && energy<=12000

&& max power<=82 && hotspot time<=60). Based on

the two given floorplans, Figure 10 and Figure 11 show

the evaluation results of the different mapped TAS solutions

generated by the approaches BULB, List and PVTS. Here,

each figure has four sub-figures. While the first three sub-

figures compare the performance of different mapped TAS

solutions for the same strategy, the last sub-figure compares

the best performance of the mapped TAS solutions for different

strategies. In these figures, original denotes the TAS solution

with the first generated PE mapping function, while manual

indicates that the PE mapping is provided manually by some

experienced MPSoC designer. The optimized PE mapping is

produced by using our TAS optimization approach. Note that

an optimized PE mapping does not mean the real “global

optimal” mapping which can achieve the highest performance

yield. This is because our approach relies on the perfor-

mance yield prediction using regression analysis rather than

evaluating all the TAS solutions. It can be observed that

our approach can visually reflect the relations between

performance yield and response time for the given query.

From Figure 10 we can observe that the performance

yield of all the BULB-based TAS solutions are better than

the performance yield of all the list scheduling-based TAS

solutions. Furthermore, from both figures we can find that in

the first three sub-figures the optimized mapped TAS solutions

generated by our approach achieve the best performance yield

compared with its counterparts produced by the same TAS

strategy. Especially, in Figure 11(a) , by using our optimiza-

tion approach we can obtain a significant improvement of

the solution BULB optimized (with a performance yield of

0.91) over the solution BULB original (with a performance

yield of 0.60). The similar trend can also be observed in

Figure 11(c). From Figure 10(d) and Figure 11(d) we can

find that the mapped TAS solutions generated by both the

BULB strategy and our optimization approach can achieve

the highest performance yield. This is because that the TAS

solutions generated by BULB have the smallest response time

under specified design constraints. Unlike List and PVTS,

the SMC simulation failures against the query in this case

is mainly due to the violation of the expression part of

the query (i.e., <> T(0).End && energy<=12000 &&

max power<=82 && hotspot time<=60) rather than the

time bound (i.e., [<=180]). By using our optimization

approach, the tasks are more likely to be allocated to colder

PEs with few neighbour tasks, which drastically reduces

the chance of performance query violations. Consequently,

the best performance yield can be achieved. Interestingly,

in Figure 11(d) the mapped TAS instances BULB optimized

and PVTS optimized achieve similar performance yield at time

1. However, designers may prefer PVTS optimized, since its

average response time is smaller.
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(c) PVTS [11]
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Fig. 12. Hotspot time oriented evaluation results for (5,5,2)
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Fig. 13. Energy oriented evaluation results for (5,5,2)

To justify the efficacy of our proposed approach, we con-

ducted the full search for the “real” optimal solutions. Due to

the limited time and computer resources, we only investigated

the case of BULB strategy with the floorplan (5,5,2) (i.e.,

the case shown in Figure 11(a)) by checking all the 14400

mapped TAS solutions. It is important to note that the average

evaluation time of a single mapped TAS solution against

the above property needs around one hour. To accelerate the

optimization process, we used four machines with 4 cores each

for the parallel evaluation. We spent around one month to

achieve the “real” optimal mapped TAS solution. In this case,

we found that the “real” optimal solution is the same as the

solution obtained using our approach, which only required 7

hours with the same setting.

TABLE 2

Comparison of Different Regression Methods

SMC Regression Reg. Pred. Pred. Real
Time Method Time Time Value Value

BULB 8859
ε-SVR < 1 < 1 0.980 0.928
BPNN < 1 < 1 0.933 0.937

List 15433
ε-SVR < 1 < 1 0.766 0.770
BPNN < 1 < 1 0.802 0.799

PVTS 7417
ε-SVR < 1 < 1 0.992 0.901
BPNN < 1 < 1 0.947 0.921

To show the effectiveness of our regression analysis based

approach using BPNN, we performed the optimization for

the three TAS strategies with floorplan (5,5,2) using the

well established regression tool ε-SVR from the SVM library

LIBSVM [34]. For the regression model generation in ε-

SVR, we adopted the Radial Basis Function (RBF) kernel

to enable the non-linear regression for the training set, and

employed a 10-fold cross validation. To enable the prediction

of performance yield, we scaled the output of the regression

which can generate an output value between 0 and 1. Table 2

shows the comparison results of the two regression methods.

In this table, column 1 denotes the name of TAS strategies.

Column 2 gives the SMC time (in minutes) for checking

the 100 mapped TAS solutions in the regression set. While

column 3 indicates the two regression methods, columns 4

and 5 present the time (in seconds) for regression model

generation and performance yield prediction, respectively. The

last two columns shows the predicted value and real value for

the best mapped TAS solution obtained using Algorithm 1.

From this table, we can find that both regression methods

can quickly (< 1 second) find an optimized mapped TAS

solution. Especially, in this experiment we can find that the

regression models generated by BPNN outperforms the ones

generated by ε-SVR, since they can find the mapped TAS

solutions with the highest real performance yield in all the

three cases. Furthermore, we can observe that BPNN can

achieve a smaller difference between predicted value and real

value of performance variations. In other words, the prediction

based on BPNN regression is more accurate.

5.3 Hotspot time and Energy Oriented Evaluation

Since the MPSoC platform with layout (5,5,2) can achieve the

best performance yield under the specified design constraints,

based on this architecture we conducted the further hotspot

time and energy-oriented analysis. Hotspot time indicates the

overheating time of a given MPSoC platform, which strongly

affects the reliability and cooling cost of the designed chips.

Therefore, it is required that the hotspot time should be as short

as possible. To further analyze the overheating time of the

achieved mapped TAS solutions as shown in Figure 11, we re-

evaluated the same mapped TAS solutions against the property

Pr [hotspot time<=60](<> T(0).End && energy<=12000

&& max power<=85). Figure 12 shows the evaluation re-

sults. It is important to note that Figure 11 shows the cu-
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mulative probability distribution, while Figure 12 shows the

distribution of the probability density. From Figure 12, we can

find that the optimized mapped TAS solutions may not achieve

the least overheating time. For example, in Figure 12(b), the

List optimized has the largest hotspot time. This is because

that the optimized mapped TAS solutions derived in Figure 11

focus on the optimization of the response time. It only requires

the hotspot time constraint to be satisfied for the mapped TAS

solutions. From the four sub-figures in Figure 12, we can

observe that the solution PVTS optimized has the lowest chance

to be overheated, though its performance yield is slightly lower

than BULB optimized (as shown in Figure 11(d)). Compared

with the solution BULB optimized which has the highest

chance to have a hotspot time of 35 seconds, the solution PVTS

optimized has a lower chance (i.e., 22 seconds at its peak) to

be overheated under variations. In this case, designers may

prefer the mapped TAS solution PVTS optimized, since it has

a higher reliability and needs less cooling cost.

Similarly, we performed the energy oriented evalua-

tion for the design MPSoC(5,5,2) using the property Pr

[energy<=12000] (<> T(0).End && hotspot time<=60

&& max power<=85). Figure 13 shows the analysis results.

Note that Figure 13(d) does not reflect the optimized solutions

for the purpose of saving energy. Interestingly, in Figure 13(a)

we can find that although the mapped TAS solution BULB op-

timized can achieve the highest performance yield, its MPSoC

chips which meet the design constraint have a higher chance

to consume more energy than the mapped TAS solutions

BULB List and BULB manual. If designers care for the energy

consumption much more than the performance yield, they

would like to choose the mapped TAS solution BULB manual.

6 CONCLUSION AND FUTURE WORK

To fully exploit the capabilities of heterogeneous hardware

and software resources, MPSoC chips have been increasingly

embedded in cyber-physical systems. While more and more

PEs are integrated on a die to achieve better performance,

drastically increasing energy consumption and performance

variations are becoming two key challenges in MPSoC de-

sign, which make cyber-physical systems unsustainable and

unreliable. To address these challenges, this paper proposes

an efficient energy- and thermal-aware evaluation and opti-

mization approach for MPSoC TAS. Based on statistical model

checking, our framework enables automated evaluation of var-

ious complex queries to quantitatively reason the performance

of TAS solutions. To reduce the overall optimization efforts,

our framework employs the regression analysis to quickly

explore TAS solutions with near optimal performance yield

considering both temperature and energy constraints. Com-

prehensive experimental results demonstrate the effectiveness

of our approach.

In our approach, the execution of UPPAAL-SMC is based

on the underlying simulation engine using statistical methods.

From our experiments, we can find that for complex MPSoC

TAS problems the evaluation of a single mapped TAS instance

under variations requires a long simulation time. To address

this problem, in future we plan to incorporate the state

space reduction techniques (e.g., model slicing and model

abstraction) in our approach, which may improve the overall

evaluation and optimization time of our approach.
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