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ARTICLE

Short-channel field-effect transistors with 9-atom
and 13-atom wide graphene nanoribbons
Juan Pablo Llinas 1,2, Andrew Fairbrother3, Gabriela Borin Barin3, Wu Shi2,4, Kyunghoon Lee 1,2,

Shuang Wu1,2, Byung Yong Choi1,5, Rohit Braganza1,2, Jordan Lear1, Nicholas Kau4, Wonwoo Choi4, Chen Chen4,

Zahra Pedramrazi4, Tim Dumslaff6, Akimitsu Narita 6, Xinliang Feng7, Klaus Müllen6, Felix Fischer2,8,9,

Alex Zettl2,4,9, Pascal Ruffieux 3, Eli Yablonovitch1,2,9, Michael Crommie2,4,9, Roman Fasel 3,10 &

Jeffrey Bokor1,2

Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures

have promising electronic properties for high-performance field-effect transistors and ultra-

low power devices such as tunneling field-effect transistors. However, the short length

and wide band gap of these graphene nanoribbons have prevented the fabrication of

devices with the desired performance and switching behavior. Here, by fabricating short

channel (Lch ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm)

armchair graphene nanoribbon as the channel material, we demonstrate field-effect

transistors with high on-current (Ion> 1 μA at Vd= −1 V) and high Ion/Ioff ~ 105 at room

temperature. We find that the performance of these devices is limited by tunneling through

the Schottky barrier at the contacts and we observe an increase in the transparency of

the barrier by increasing the gate field near the contacts. Our results thus demonstrate

successful fabrication of high-performance short-channel field-effect transistors with bottom-

up synthesized armchair graphene nanoribbons.
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The electronic, optical and magnetic properties of graphene
nanoribbons (GNRs) can be engineered by varying
their width and edge structure1–13. However, traditional

methods to pattern GNRs, such as unzipping carbon nanotubes
or lithographically defining GNRs from bulk graphene, yield
GNRs with rough edges that degrade electronic transport14.
Recent experiments have demonstrated bottom-up chemical
synthesis of ultra-narrow (< 2 nm) GNRs with uniform width
and atomically-precise edges, in which the width and edge
structure of the GNR is determined by the oligophenylene used in
the polymerization step1, 2, 4, 7, 9, 10. This synthetic uniformity
produces GNRs with high structural and electronic homogeneity,
which is required for integration of GNR field-effect transistors
(FETs) into large-scale digital circuits15. However, the wide band
gap and short length of bottom-up synthesized GNRs have pre-
vented the realization of high-performance FETs16–19.

Here, we show FETs with 9-atom and 13-atom wide armchair
GNRs (9AGNRs and 13AGNRS, respectively). The band gap of
ultra-narrow GNRs is very sensitive to its dielectric environment.
For instance, the band gap of 7AGNRs obtained via scanning
tunneling spectroscopy can vary by as much as 1 eV, depending
on whether the substrate is conductive or insulating8. Since our
GNR devices are on an insulating substrate, the band gap of the
GNRs will be closest to the density functional theory band gap
with GW correction8, 12. With a predicted band gap of 2.10 eV for
the isolated 9AGNR and 2.35 eV for the 13AGNR12, these are
the narrowest band gap GNRs that have been synthesized on a
surface with useful length for device fabrication (5AGNRs have
a smaller band gap but are only ~ 10 nm long with current
synthetic methods6). Thus, we were able to demonstrate high
on-current (Ion> 1 μA at Vd= −1 V) and high Ion/Ioff ~ 105 FETs
at room temperature by using 9AGNRs as the channel material
and a thin high-κ gate dielectric.

Results
Synthesis and transfer of GNRs. To synthesize the GNRs, the
requisite monomer was evaporated onto a Au(111) surface under
ultra-high vacuum and heated until it polymerized. Heating
the substrate further causes individual polymers to planarize
into GNRs (cyclodehydrogenation). The high quality of the GNRs
is verified by high-resolution scanning tunneling microscope
(STM)1, 2 imaging as shown in Fig. 1a, b.

Fabrication of GNRFETs requires the transfer of GNRs from
the Au growth surface onto an insulating surface and subsequent

device fabrication steps, as described in the Methods. Unfortu-
nately, standard imaging techniques (atomic force microscopy,
scanning electron microscopy, transmission electron microscopy,
etc.) were not useful in imaging single GNRs on insulating
surfaces due to the GNR’s small dimensions ( ~ 30 nm long, ~ 1
nm wide and< 1 nm thick). Instead, we used Raman spectro-
scopy in order to verify that the structural integrity of the GNRs is
maintained throughout the transfer and device fabrication
process. As shown in Fig. 2a, the Raman spectrum with 785 nm
wavelength excitation of the processed 9AGNRs looks identical to
the spectrum taken of the as-grown 9AGNRs on Au. The
presence of the radial breathing-like mode (RBLM) peak (311.5
cm−1) is evidence that the GNR width and edge structure is intact
throughout device processing20, 21. Unlike 9AGNRs, the RBLM is
not visible for the 13AGNR spectrum for either 532 or 785 nm
excitation wavelengths due to off-resonance of the excitation
(Fig. 2b and Supplementary Fig. 2). Still, the 13AGNRFETs were
processed with the same fabrication steps as the 9AGNRFETs
and both types of devices exhibit similar transport characteristics
(Fig. 3).

13AGNRFETs and 9AGNRFETs with thick gate dielectrics.
First, we fabricated devices with a nominal 20 nm channel length
and a 50 nm SiO2 gate dielectric as illustrated in Fig. 3a. Using
the same fabrication methods we made two different types
of samples: one with 9AGNRs and one with 13AGNRs.
After patterning ~ 300 pairs of electrodes in the transferred
GNR area, each defined channel was biased and tested for gate
modulation of the current to find devices bridged by a GNR.
Of the 300 devices, 28 devices and 29 devices were successfully
fabricated for 9AGNR and 13AGNRs, respectively. Taking
into account the length distribution of GNRs on the surface, this
~ 10% ratio of bridged contacts to open devices indicates that
almost all of the devices found contain one GNR in the channel as
demonstrated by Supplementary Fig. 1 and Supplementary
Note 1. Finally, GNR-GNR transport was ruled out by confirming
that pairs of electrodes with gaps 30 nm or longer showed
no conduction.

These 9AGNRFETs and 13AGNRFETs, as shown in Fig. 3 and
Supplementary Fig. 3, showed similar electrical behavior due to
their similar band gap. The presence of a Schottky barrier (SB) at
the Pd-GNR interface is evident by the non-linear behavior at low
bias in the Id–Vd characteristics22, shown in Fig. 3a, b. To
determine the contributions of thermionic vs. tunneling current

a b c

d

9AGNR 13AGNR
S D
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SiO2

Fig. 1 High-resolution STM GNR characterization and FET structure. a STM image of synthesized 9AGNR on Au with a scale bar of 10 nm (Vs= 1 V, It= 0.3
nA). Inset: High-resolution STM image of 9AGNR on Au (Vs= 1 V, It= 0.5 nA) with a scale bar of 1 nm. b High-resolution STM image of 13AGNR on Au with
a scale bar of 2 nm (Vs= −0.7 V, It= 7 nA). c Schematic of the short channel GNRFET with a 9AGNR channel and Pd source-drain electrodes. d Scanning
electron micrograph of the fabricated Pd source-drain electrodes with a scale bar of 100 nm
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across the SB, we measured the devices in vacuum at 77, 140, 210,
and 300 K. As demonstrated in Fig. 3c, d, there is no significant
change in the characteristics at these different temperatures for
either 13AGNRFETs or 9AGNRFETs and the off-state current is
at the gate leakage level (Supplementary Fig. 4). The weak
temperature dependence in the current-voltage characteristics

suggests that the limiting transport mechanism is tunneling
through the barrier as opposed to thermionic emission over the
barrier at the contacts23, 24. If thermionic emission was a
significant transport mechanism across the SB, the current should
be exponentially dependent on the inverse of temperature.
Furthermore, the ambipolar behavior observed at low tempera-
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tures is only realistically possible with tunneling contacts, since
thermally activated current is suppressed for electrons in a
semiconductor with a band gap of > 2 eV. Tunneling contacts
with weak temperature dependence have been observed for
carbon nanotube FETs and other low-dimensional materials and
verified via simulations23–26. Yet, the Ion ~ 100 nA in the devices
shown in Fig. 3 is too low for high-performance applications, so
the transmission through the SBs must be enhanced to improve
the current.

Ionic liquid gating of 9AGNRFETs. Ionic liquid (IL) gating
has been previously used to improve the transparency of the
SBs in MoS227. Thus, we used the IL N,N-diethyl-N-(2-methox-
yethyl)-N-methylammonium bis(trifluoromethylsulphonyl-
imide) (DEME-TFSI) to improve the electrostatic coupling
between the gate electrode and the GNR channel, increase the
field at the Pd-GNR interface and improve the transmission
through the barriers. The Id–Vg behavior of a 9AGNRFET with
IL gating is shown in Fig. 4b. This device shows clear
enhancement in the on-current to ~ 200 nA at −0.2 V drain
bias (as opposed to 3 nA at −0.4 V for the 50 nm SiO2

dielectric device presented in Fig. 4a). The transistor also
switches at smaller gate voltages due to the high gate efficiency
of the IL.

9AGNRFETs with a thin gate dielectric. Since solid dielectric
gates must be used for logic device applications, we fabricated scaled
9AGNR devices with a thin HfO2 gate dielectric (effective oxide
thickness of around 1.5 nm) as shown in Fig. 5. Resembling the IL
device, the local HfO2 back gate is more efficient at improving
transmission through the SB than the thick SiO2 global back gate28.
As demonstrated by the Id vs. Vg shown in Fig. 5, the device
exhibits excellent switching characteristics, Ion/Ioff ~ 105, and a high
Ion ~ 1 μA at Vd= −1 V. The SB is still prominent as indicated by
the non-linear Id vs. Vd characteristics at low bias and the large
subthreshold swing (SS) in this device ( ~ 350mV/dec). Even if
tunneling is enhanced by using the thin gate oxide, large SB devices
tend to suffer from SS and Ion degradation22, 24.

Assuming most of the current is transported by an individual
GNR in the channel, the local back gated device performance
corresponds to a 0.95 nm GNR-width (100 nm electrode width)
normalized current drive of ~ 1000 μA/µm ( ~ 10 μA/µm) at −1 V
drain bias. Although some top-down GNRs have higher normal-
ized conductance, the GNRs used here have much larger band
gaps29–32. Therefore, we were able to scale our devices to short
channel lengths without affecting the Ion/Ioff. At the same time,
the impact of the large SBs on Ion was minimized with the
improved gate efficiency of the thin high-k dielectric. The
expected value of > 20 mA/µm in GNR devices with no SB33

could be attainable by integrating bottom-up synthesized GNRs
with smaller band gaps ( ~ 1 eV) and densely aligned GNRs34.
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Discussion
We thus successfully demonstrate short-channel FETs with
bottom-up synthesized armchair GNRs with excellent switching
behavior and on-state performance by aggressively scaling the
gate dielectric. Bottom-up GNR devices are, therefore, good
candidates for high-performance logic applications, especially
with advances in densely aligned GNR synthesis34 as well as
narrow band gap GNR growth6. These results motivate the study
of GNR growth mechanism in order to improve the average
length of GNRs and increase device yield. Our methodology
can be applied to other exotic device structures as well, such
as tunnel FETs, which incorporate atomically precise GNR
heterostructures9, 10, 35.

Methods
9AGNR growth. 9AGNRs were synthesized from 3′,6′-dibromo-1,1′:2′,1″-ter-
phenyl precursor monomers7. First, the Au(111)/mica substrate (200 nm Au;
PHASIS, Geneva, Switzerland) was cleaned in ultra-high vacuum by two sputter-
ing/annealing cycles: 1 kV Ar+ for ten minutes followed by a 470 °C anneal for ten
minutes. Next, the monomer was sublimed onto the Au(111) surface at a tem-
perature of 60–70 °C, with the substrate held at 180 °C. After 2 min of deposition
(resulting in approximately half monolayer coverage), the substrate temperature
was increased to 200 °C for ten minutes to induce polymerization, followed by
annealing at 410 °C for ten minutes in order to cyclodehydrogenate the polymers
and form 9-AGNRs.

13AGNR growth. 13AGNRs were synthesized using 2,2′-Di((1,1′-biphenyls)-2-yl)-
10,10′-dibromo-9,9′-bianthracene building blocks2. Similar to the 9AGNR sub-
strate, the Au(111)/mica substrate (200 nm Au; PHASIS, Geneva, Switzerland) is
cleaned in ultra-high vacuum by two sputtering/annealing cycles: 1 kV Ar+ for ten
minutes followed by a 450 °C anneal for ten minutes. The monomer was sublimed
at 222 °C onto the clean substrate held at room temperature. The sample was then
slowly annealed stepwise to 340 °C to form 13AGNRs.

Preparation of 50 nm SiO2 back gates. Using dry oxidation, 50 nm SiO2 was
grown on heavily doped 150 mm silicon wafers. Alignment markers and large pads
for electrical probing were patterned using standard photolithography and lift-off
patterning of 3 nm Cr and 25 nm Pt. The wafer was then diced and individual chips
were used for GNR transfer and further device processing.

Preparation of 6.5 nm HfO2 local back gates. Using dry oxidation, 100 nm SiO2

was grown on 150 mm silicon wafers. The local back gates were lithographically
patterned and dry etched into the SiO2 followed by lift-off of 3 nm Ti and 17 nm
Pt36. 6.5 nm HfO2 was grown in an atomic layer deposition system at 135 °C.
Alignment markers and large pads for electrical probing were patterned using
standard photolithography and lift-off of 3 nm Cr and 25 nm Pt. The wafer was
then diced and individual chips were used for GNR transfer and further device
processing.

GNR transfer and patterning of source-drain electrodes. GNR/Au/mica was
floated in 38% HCl in water, which caused the mica to delaminate with the Au film
remaining floating on the surface of the acid10. The floating gold film was
picked up with the target substrate, with the GNRs facing the dielectric surface.
Subsequent gold etching in KI/I2 yielded isolated, randomly distributed GNRs
with sub-monolayer coverage on the target substrate. After the GNR transfer,
poly-methyl methacrylate (molecular weight 950 K) was spun on the chips at
4 Krpm and followed by a 10 min bake at 180 °C. ~ 300 source drain electrodes
(100 nm wide, 20 nm gaps) were patterned using a JEOL 6300-FS 100 kV e-beam
lithography system and subsequently developed in 3:1 IPA:MIBK at 5 °C. In all,
10 nm Pd was deposited using e-beam evaporation and lift-off was completed in
Remover PG at 80 °C.

Raman characterization. Raman characterization of the 9AGNR was performed
with a Bruker SENTERRA Raman microscope using a 785 nm diode laser with
10 mW power and a 50× objective lens, resulting in a 1–2 micrometer spot size.
No thermal effects were observed under these measurement conditions and an
average of three spectra from different points was made for each sample. Raman
measurements of the 13AGNR were made with a Horiba Jobin Yvon LabRAM
ARAMIS Raman microscope using 532 and 785 nm diode lasers with 10 mW
power each and a 50× objective lens, resulting in a 1–2 micrometer spot size.
No thermal effects were observed under these measurement conditions and an
average of five spectra from different points was made for each sample.

Electrical characterization. Devices were first screened in ambient conditions
using a cascade probe station and an Agilent B1500A parameter analyzer. Vacuum

and variable temperature measurements were then performed in a Lakeshore probe
station. IL devices were measured with a Vg sweep speed of 50 mV/s.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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