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Abstract

Stochastic epidemic models (SEMs) fit to incidence data are critical to
elucidating outbreak transmission dynamics, shaping response strategies, and
preparing for future epidemics. SEMs typically represent counts of individu-
als in discrete infection states using Markov jump processes (MJP), but are
computationally challenging as imperfect surveillance, lack of subject–level
information, and temporal coarseness of the data obscure the true epidemic.
Analytic integration over the latent epidemic process is generally impossible,
and integration via Markov chain Monte Carlo (MCMC) is cumbersome due
to the dimensionality and discreteness of the latent state space. Simulation-
based computational approaches can address the intractability of the MJP
likelihood, but are numerically fragile and prohibitively expensive for com-
plex models. A linear noise approximation (LNA) that replaces the MJP
transition density with a Gaussian density has been explored for analyzing
prevalence data in large–population settings. Existing LNA frameworks are
inappropriate for incidence data and depend on simulation-based methods
or an assumption that disease counts are normally distributed. We demon-
strate how to reparameterize a SEM to properly analyze incidence data, and
fold the LNA into a data augmentation MCMC framework that outperforms
deterministic methods, statistically, and simulation-based methods, computa-
tionally. Our framework is computationally robust when the model dynamics
are complex and can be applied to a broad class of SEMs. We apply our
method to national-level surveillance counts from the 2013–2015 West Africa
Ebola outbreak, modeling within-country transmission and importation of
infections from neighboring countries.

Keywords: Bayesian data augmentation; Ebola outbreak; Elliptical slice sampler;
Non-centered parameterization; Surveillance count data.
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1 Introduction

Incidence count data reported by public health surveillance systems provide critical
information used in preparing for, and responding to, infectious disease outbreaks.
These data are used to inform our understanding of outbreak transmission dynam-
ics, to quantify uncertainty about how an epidemic might evolve, and to assess the
effectiveness of interventions in interrupting transmission. Incidence counts reflect
the number of new cases accumulated in each inter-observation interval, and are dis-
tinct from prevalence counts, which record the number of infected individuals at each
observation time. Imperfect surveillance and the occurrence of asymptomatic cases
result in systematic under-reporting and make it difficult to disentangle whether the
data arose from a severe outbreak, observed with low fidelity, or a mild outbreak
where most cases were detected. The absence of subject-level data and the temporal
coarseness of incidence counts further reduce the amount of available information.

Outbreak data is commonly modeled using mechanistic compartmental models
that prescribe physical laws governing the outbreak transmission dynamics as indi-
viduals transition between discrete infection states. These models can be specified
at varying levels of granularity vis–a–vis the underlying epidemic process, ranging
from agent-based models that track the infection histories of individuals (Jewell
et al., 2009), to population–level models where the epidemic path tracks the num-
bers of individuals in each infection state (Lekone and Finkenstädt, 2006, Dukic
et al., 2012). The parameters that govern the epidemic dynamics are of particular
interest because they are informative about the mechanistic aspects of disease trans-
mission. For example, the basic and effective reproduction numbers, R0 and Reff ,
are measures of the expected number of secondary cases per index case. Respec-
tively, these quantities inform us about the likelihood that an outbreak will take off
and persist. Moreover, these quantities can provide important insights into how an
intervention could be designed to short circuit an outbreak since they are functions
of other parameters that govern susceptibility, infectiousness, and rates of contact.

Stochastic epidemic models (SEMs) explicitly model variability in the epidemic
process via distributions for waiting times between elementary transition events,
such as infections and recoveries. Most commonly, a SEM represents the epidemic
as a simple density–dependent Markov jump process (MJP) that evolves on a dis-
crete state space of compartment counts with times of infection state occupancy
taken to be exponentially distributed (Allen, 2017). The challenge in fitting a SEM
to partially observed incidence is that we must sum over all epidemic paths from
which the data could have arisen. This is difficult since the set of possible paths is
enormous, even in small populations. Hence, the observed data likelihood of a SEM
is intractable when incidence is under–reported.

Computation and inference for SEMs in the presence of under–reporting typically
relies on either simulation–based methods or data augmentation (DA), often in
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combination with an approximation of the target MJP (O’Neill, 2010). Simulation-
based methods generate realizations of the epidemic process that form the basis
for inference. This class of methods has been referred as “plug-and-play” since
inference requires only the ability to simulate epidemic paths (Bretó et al., 2009).
The particle marginal Metropolis-Hastings (PMMH) algorithm of (Andrieu et al.,
2010) stands out as a state-of-the-art method for Bayesian inference with a fast and
robust implementation for fitting epidemic models as part of the pomp R package
(King et al., 2016a). Despite their flexibility, simulation-based methods can be
prohibitively expensive for models with complex dynamics, and may fail entirely in
the absence of an adequate model from which to simulate epidemic paths (Dukic
et al., 2012).

DA facilitates Bayesian inference by targeting the joint posterior distribution
of the latent epidemic process and SEM parameters. Historically, DA algorithms
for fitting SEMs have relied on data–agnostic trans-dimensional proposals to sam-
ple subject-level disease histories (Gibson and Renshaw, 1998, O’Neill and Roberts,
1999). These proposal distributions are inefficient in the absence of subject–level
data since the fraction of missing information is large (Roberts and Stramer, 2001).
Modern DA algorithms that sample SEM paths conditionally on the data, rather
than simulating unconditioned paths from the model, can be more computationally
robust than simulation–based methods, especially in the absence subject–level data
or when the SEM dynamics are complex (Pooley et al., 2015, Fintzi et al., 2017).
However, the MJP representation of a SEM is itself a barrier to the application
of DA machinery in large population settings since repeatedly evaluating the MJP
likelihood, which is a product of exponential waiting time densities, at each itera-
tion of a Markov chain Monte Carlo (MCMC) algorithm is prohibitively expensive.
Hence, it is often necessary to approximate the MJP with a process whose likelihood
is more tractable.

Commonly used MJP approximations broadly divide into two categories, those
that approximate the epidemic discretely in time and preserve the discreteness of
the MJP state space, and those where the time is treated continuously but where
the state space of the approximating process is continuous. Discrete–time approxi-
mations include chain–binomial models (Lekone and Finkenstädt, 2006) and condi-
tional Poisson/negative binomial count models (Bjørnstad et al., 2002, Held et al.,
2005), both of which are attractive for their relatively low computational cost and
have been used to fit models with complex spatio–temporal dynamics (Held et al.,
2005, Wakefield et al., 2019). However, care must be taken with the choice of time
step, particularly when the periodicity of data acquisition is misaligned with the av-
erage time between infection of a primary and secondary case, and when transition
rates vary over the course of an outbreak (Glass et al., 2003). Moreover, the ap-
proximations underlying discrete time models can limit their applicability in many
settings. For example, the commonly used TSIR framework developed in Bjørnstad
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et al. (2002) depends on having a reasonable estimate of the number of susceptible
individuals in each observation interval.

Among continuous–time approximations, the most common are ordinary and
stochastic differential equations (ODEs, SDEs) (Allen, 2017). Deterministic ODE
models, that can be viewed as infinite–population functional limits of MJPs, are
attractive for their computational tractability, which is particularly important in
outbreak settings when time is of the essence. These models also lend themselves to
analytic characterizations of the outbreak dynamics, e.g., relating the final outbreak
size to the basic reproductive number, which is useful when parameterizing complex
models and incorporating prior information, especially in complex settings where
certain aspects of a model might be poorly determined. However, deterministic
models are known to underestimate uncertainty about the epidemic process (King
et al., 2015), and moreover, are unable to address questions that are inherently
stochastic, e.g., distributional questions about the size or duration of an outbreak.
SDEs can reasonably approximate the stochastic aspects of the MJP in large popu-
lation settings. However, SDE transition densities are typically unavailable in closed
form, hence statistical inference requires simulation-based methods or simplification
of the SEM for computation.

In this work, we develop a computational framework for fitting SEMs to par-
tially observed incidence based on a linear noise approximation (LNA) for transition
densities of a MJP over inter-observation intervals. The LNA replaces the MJP tran-
sition density with a Gaussian density whose moments are obtained by numerically
solving systems of ODEs, derived by a Taylor expansion of the diffusion approxima-
tion for a density-dependent MJP around its deterministic ODE limit. The LNA
has been a fixture in the biochemical reaction network literature on approximations
of density–dependent MJPs since at least the 1970s (Kurtz, 1970, 1971). Reviews
of the LNA, along with related approximations that derive from various system size
expansions of the MJP Kolmogorov forward equation, can be found in (Wallace
et al., 2012) and (Schnoerr et al., 2017). The LNA has found applications in the
analysis of gene regulatory networks (Komorowski et al., 2009, Finkenstädt et al.,
2013) and in outbreak modeling (Ross et al., 2009, Ross, 2012, Fearnhead et al.,
2014). However, to our knowledge, the LNA has not been used to analyze incidence
data. Rather, its application to outbreak modeling has been limited to either the
analysis of prevalence or cumulative incidence data under an assumption of normally
distributed disease counts, or has relied on simulation-based methods to allow for
non-Gaussian emission distributions, as in Golightly et al. (2015).

Our contributions in this work are threefold. First, we demonstrate how SEMs
should be reparameterized, in general, to properly analyze incidence data. In doing
so, we aim to correct an unfortunately common error in transmission modeling
where incidence counts are wrongly conflated with prevalence data. Second, we
demonstrate how the LNA can be folded into a computationally robust Bayesian
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data augmentation framework that leverages cutting edge MCMC algorithms and
can be used to fit a broad class of SEMs. Critically, we are able to leverage tools
that absolve us of the de facto requirement that observed disease counts follow a
Gaussian distribution for the sake of computational efficiency, the alternative being
computationally intensive particle filter methods. Finally, we provide guidance on
optimal parameterizations that massively improve MCMC sampling efficiency for
LNA paths and model parameters. In particular, we introduce a non–centered
parameterization (NCP) for LNA transition densities that enables us to sample
LNA paths using the elliptical slice sampling, which is a simple, computationally
robust, and efficient MCMC algorithm free of tuning parameters. This enables
us to fit models with complex dynamics that would otherwise be impossible to fit
without compromising the model, even with cutting edge computational tools such
as particle MCMC.

2 Stochastic Epidemic Models for Incidence Data

For clarity, we present the LNA framework in the context of fitting a susceptible–
infected–recovered (SIR) model to negative binomial distributed incidence counts.
The SIR model describes the transmission dynamics of an outbreak in a closed,
homogeneously mixing population of P exchangeable individuals who are either
susceptible (S), infected/infectious, (I), or recovered (R). The infection states relate
to transmission, not disease. Thus, individuals are recovered when they no longer
have infectious contact with others, not when they clear the infection. Note that
our framework can easily be generalized beyond the SIR model and used to fit
more complex SEMs. We will later consider a more complex multi-country model
for the spread of Ebola in West Africa with country-specific susceptible-exposed-
infected-recovered (SEIR) dynamics. This model adds an exposed (E), infected,
but not yet infectious, compartment for latent infection, and allows for cross-border
transmission.

2.1 Measurement Process and Data

Incidence data, Y = {Y1, . . . , YL}, are counts of new infections in time intervals,
I = {I1, . . . , IL : I` = (t`−1, t`]}. The observed incidence may reflect a fraction of
the true incidence due to imperfect surveillance or asymptomatic cases. Or, cases
may be over–reported if non–specific symptoms lead to over–diagnosis. Let Nc =
(N c

SI , N
c
IR) denote the counting process for the cumulative numbers of infections

(S → I transitions) and recoveries (I → R transitions), and let ∆Nc(t`) = Nc(t`)−
Nc(t`−1) denote the change in cumulative transitions over I`; so, ∆N c

SI(t`) is the
incidence over (t`−1, t`]. Heterogeneities in case detection rates could lead to over–
dispersion in the reporting distribution. Hence, we model the number of observed
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cases as a negative binomial sample of the true incidence with mean case detection
rate ρ and over–dispersion parameter φ:

Y`|∆N c
SI(t`), ρ, φ ∼ Neg.Binom.(µ` = ρ∆N c

SI(t`), σ
2
` = µ` + µ2

`/φ). (1)

2.2 Latent Epidemic Process

The SIR model describes the evolution of compartment counts, Xc = {Sc, Ic, Rc},
in continuous time on the state space

ScX = {(l,m, n) : l,m, n ∈ {0, . . . , P}, l +m+ n = P} ,

where P is the population size. We take the waiting times between state transitions
to be exponentially distributed, which implies that Xc evolves according a MJP.
Now, if our data had consisted of prevalence counts, we could approximate the
MJP transition densities of Xc as in Ross et al. (2009) or Fearnhead et al. (2014).
However, incidence data reflect the new infections in each inter–observation interval,
and so the emission density (1) is expressed in terms of the change in N c

SI , not I,
over (t`−1, t`]. Hence, it is here that we first diverge from the approaches previously
taken in the literature. It would be simply incorrect to treat incidence as though
it were a change in prevalence. For instance, there could be a positive number of
infections but prevalence might not change due to an equal number of recoveries
over the inter–observation interval. To correctly specify an emission distribution
for incidence data, we must construct the LNA that approximates the transition
density of Nc.

2.3 Cumulative Incidence of Infections and Recoveries

The cumulative incidence of infections and recoveries, Nc, is a MJP with state space

ScN = {(j, k) : j, k ∈ {0, . . . , P},X(Nc(j, k)) ∈ SX} ,

which is the set of non–decreasing cumulative incidence and recovery counts that do
not lead to invalid prevalence paths (e.g., if there more recoveries than infections).
Let β denote the per–contact infection rate, and µ the recovery rate. Then the rate
at which Nc transitions from state n to n′ is

λn,n′(Xc) =


λSI = βSI, n = (nSI , nIR), n′ = (nSI + 1, nIR),
λIR = µI, n = (nSI , nIR), n′ = (nSI , nIR + 1),
0, for all other n and n′.

(2)

We seek to infer the posterior distribution of Nc and the parameters, θ, that
govern its dynamics along with those of the emission distribution. By the Markov
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property and standard hidden Markov model conditional independence assump-
tions, the complete data likelihood is a product of emission densities and transition
densities,

π(θ,Nc | Y) ∝ L(Y | Nc,θ)π(Nc | θ)π(θ)

=
L∏
`=1

[Pr (Y` | ∆Nc
SI(t`),θ)× π (Nc(t`) | Nc(t`−1),θ)]π(θ), (3)

where π(θ) denotes the prior distribution of the model parameters. The challenge in
sampling from this posterior is that the transition densities of Nc are intractable due
to the dimensionality of its state space. Moreover, we cannot analytically integrate
over the latent epidemic process, except in trivial cases that are of little practical
interest. In the following subsections, we use the LNA to approximate transition
densities of Nc, turning (3) into a more tractable product of Gaussian transition
densities and emission densities. This will facilitate the use of efficient algorithms
for sampling from the approximate posterior.

2.4 Diffusion Approximation

We approximate the integer–valued MJPs, Xc and Nc, with the real–valued diffu-
sion processes, X and N, that satisfy an SDE, referred to as the chemical Langevin
equation (CLE), whose drift and diffusion terms are chosen to match the approxi-
mate moments of MJP path increments in infinitesimal time intervals (Wilkinson,
2011, Golightly and Gillespie, 2013). Additional details regarding the diffusion ap-
proximation are given in Web Appendix A, and we refer to Gillespie (2000) and
Fuchs (2013) for comprehensive discussions.

The state space of X for the SIR model is

SRX = {(l,m, n) : l,m, n ∈ [0, P ], l +m+ n = P},

and the state space of N is

SRN = {(j, k) : j, k ∈ [0, P ], X(Vjk) ∈ SRX}.

In words, the state space of X is the real–valued set of compartment volumes that
are non–negative and sum to the population size, while the state space of N is the
real–valued set of non–decreasing and non–negative incidence paths, constrained so
that they do not lead to invalid prevalence paths (e.g., where there are more recover-
ies than infections and hence negative number of infected individuals). Let λ(X(t))
be the vector of transition rates at time t, e.g., λ(X(t)) = (βS(t)I(t), µI(t)), and
Λ(X(t)) = diag(λ(t)) For now, we ignore the constraints on SRN and SRX , and approx-
imate changes in cumulative incidence of infections and recoveries in an infinitesimal
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time step with the CLE,

dN(t) = λ(X(t))dt+ Λ(X(t))1/2dWt, (4)

where the vector Wt is distributed a bivariate Brownian motion with independent
components.

Following Bretó and Ionides (2011) and Ho et al. (2018), we reparameterize X(t)
in terms of N(t), conditional on the initial conditions X(t0) = x0 and N(t0) = 0.
Let A denote the matrix whose rows specify changes in the compartment counts
per infection or recovery:

A =

[ S I R

S→I −1 1 0
I→R 0 −1 1

]
. (5)

Now, X is coupled to N via

X(t) = x0 + ATN(t). (6)

For the SIR model,  S(t)
I(t)
R(t)

 =

 S0 −NSI(t)
I0 +NSI(t)−NIR(t)

R0 +NIR(t)

 , (7)

so we rewrite (4) as

dN(t) = λ(x0 + ATN(t))dt+ Λ(x0 + ATN(t))1/2dWt. (8)

Changes in compartment volumes have multiplicative effects on transition rates,
and hence on increments in incident infections and recoveries. Therefore, we would
like perturbations about the drift in (8) to be symmetric on a multiplicative, not

an additive scale. This leads us to log transform (8). Let Ñ = log(N + 1), so

N = exp(Ñ)− 1. By Itô’s lemma (Øksendal, 2003), the SDE for Ñ is

dÑ(t) = diag
(

exp(−Ñ(t))− 0.5 exp(−2Ñ(t))
)
× λ

(
x0 + AT (exp(Ñ(t))− 1)

)
︸ ︷︷ ︸

η(x0,Ñ(t))

dt +

diag
(

exp(−Ñ(t))
)

Λ
(
x0 + AT (exp(Ñ(t))− 1)

)1/2

︸ ︷︷ ︸
Φ(x0,Ñ(t))1/2

dWt. (9)
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2.5 Linear Noise Approximation

The LNA for SDEs having the form (9) is derived by decomposing Ñ into its de-
terministic ODE limit and a stochastic residual (Wilkinson, 2011). The SDE (9) is
Taylor expanded around its deterministic limit, discarding higher order terms, to
obtain a linear SDE for the stochastic residual term. This linear SDE has an ex-
plicit solution as a Gaussian random variable. The LNA reasonably approximates
the stochastic aspects of a density dependent MJP over short time horizons when
conditions (18) and (19) are satisfied (Wallace et al., 2012). Over longer time pe-
riods the approximation may deteriorate as stochastic perturbations to the system
accumulate. The approximation can be substantially improved by phase–correcting
the LNA via a time–transformation (Minas and Rand, 2017), or by using the LNA to
approximate the one–step conditional transition densities of the MJP and restarting
the approximation at the beginning of each inter–observation interval (Fearnhead
et al., 2014). We adopt the latter strategy for its simplicity and ease of interpreta-
tion, although both strategies for improving the LNA over long time periods could
be applied.

The LNA for (9) approximates the transition density of Ñ over the interval
(t`−1, t`] is

Ñ(t`) | ñ(t`−1),x(t`−1),θ ∼MVN (µ(t`) + m(ñ(t`−1)− µ(t`−1)),Σ(t`)) , (10)

where µ(·), m(·), and Σ(·) are solutions to the coupled, non–autonomous system of
ODEs,

dµ(t)

dt
= η(µ(t)), (11)

dm(t)

dt
= F(t)m(t), (12)

dΣ(t)

dt
= F(t)Σ(t) + Σ(t)F(t)T + Φ(t)1/2

(
Φ(t)1/2

)T
, (13)

with respect to initial conditions N(t`−1) = 0, X(t`−1) = x(t`−1), m(t`−1) = 0, and

Σ(t`−1) = 0, and where η(t) and Φ(t) are given in (9) and F(t) =
(
∂ηi(µ(t))
∂µj(t)

)
i,j∈1,...,|Ñ|

is the Jacobian of η(t) evaluated along the solution to (11). Note that we never solve
(12) since m(t0) = 0 implies that m(t`) = 0 ∀ l = 1, . . . , L.

The LNA posterior factorizes as a Gaussian state space model,

π(Ñ,θ | Y) ∝ L(Y | Ñ,θ)π(Ñ | θ)1{N∈SRN}1{X∈SRX}π(θ)

=
L∏
`=1

Pr(Y` | ∆N(t`),θ)π(Ñ(t`) | ñ(t`−1),x(t`−1),θ)× 1{N(t`)∈SRN}1{X(t`)∈SRX}π(θ).

(14)

9



The emission densities in (14) depend on the incidence, not the log–incidence.
Hence, we exponentiate LNA sample paths when computing emission densities. We
also explicitly include indicators for whether the LNA path respects the positivity
and monotonicity constraints of the original MJP. We do this for two reasons: first,
to more faithfully approximate the MJP, and second, to avoid numerical instabilities
that arise when N or X are negative.

2.6 Inference via the Linear Noise Approximation

We will sample LNA paths using the elliptical slice sampling (ElliptSS) algorithm
of Murray et al. (2010), which is an efficient and computationally robust MCMC
algorithm free of tuning parameters. ElliptSS can be used to sample a latent variable
of interest, Z, when the posterior decomposes into a Gaussian prior for Z and an
arbitrary likelihood, L(Y|Z,θ), i.e.,

π(θ,Z|Y) ∝ L(Y|Z,θ)MVN(Z;µZ,ΣZ). (15)

It is critical to note that ElliptSS cannot be used to sample LNA paths when
restarting the LNA ODEs as a strategy to improve the approximation. The mean
of N(t`) depends non–linearly on the value of N(t`−1), hence paths of Ñ are not
jointly Gaussian. In order to facilitate the use of ElliptSS, we introduce a non–
centered parameterization (NCP) that maps standard normal random variables,
Z ∼ MVN(0, I), onto LNA paths (see Algorithm 1 for pseudo–code). Let Z(t`) ∼
MVN(0, I), and Ñ(t`) ∼MVN (µ(t`),Σ(t`)), where µ(t`) and Σ(t`) solve the LNA
ODEs over (t`−1, t`]. The NCP is (θ,Z), and maps Z via

Ñ(t`)
L
= W̃(t`), W̃(t`) = µ(t`) + Σ(t`)

1/2Z(t`). (16)

Our MCMC targets the joint posterior of the parameters and non–centered LNA
draws,

π(θ,Z | Y) ∝ L(Y | N(Z,θ, I))π(Z)1{N(Z,θ,I)∈SRN}1{X(Z,θ,I)∈SRX}π(θ), (17)

where N(Z,θ, I) and X(Z,θ, I) denote sample paths obtained by centering the
LNA draws.

The NCP also helps to alleviate issues of poor MCMC mixing that arise when fit-
ting hierarchical latent variable models via DA MCMC. The problem arises in weak
data settings, such as ours (see Web Appendix B and Figure S2), where MCMC
samples can become severely autocorrelated when alternately sampling latent vari-
ables and model parameters (Papaspiliopoulos et al., 2003, Papaspiliopoulos et al.,
2007). In our setting, this can be traced to the use of a centered parameterization

(CP) for the LNA in (14). Under the CP, updates to θ | Ñ,Y are made condition-
ally on a fixed LNA path and are accepted if they are concordant with the data
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and the current path. This limits the magnitude of perturbations that can be made
to the model parameters at each MCMC iteration and results in severe autocor-
relation. In contrast, the NCP locates a sample LNA path within the transition
densities induced by a set of proposed model parameters, thus allowing us to make
more meaningful perturbations to model parameters at each MCMC iteration.

2.7 Parameter updates

In each MCMC iteration, we alternately update Z | θ,Y via EliptSS, and θ | Z,Y
using either a global adaptive random walk Metropolis (GA-RWM) sampler when
fitting SEMs with few parameters and simple dynamics, (Algorithm 4 in Andrieu
and Thoms (2008)) or an adaptive multivariate normal slice sampler (MVNSS)
when the dynamics are more complex (Web Appendix B. The GA-RWM algorithm
is faster per–iteration, though we have found the MVNSS algorithm to be somewhat
more robust in more complex settings. Identifying an estimation scale for the model
hyperparameters is critical to MCMC efficiency and is discussed in detail in Web
Appendix B. When the initial state, X0, is estimated, we assign an informative prior
X0 ∼ TMV NSRX

(
Pp, P (diag(p)− ppT )

)
, which is a truncated multivariate normal

approximation to a multinomial with initial state probabilities, p, constrained to the
state space of compartment volumes. We update X0 via ElliptSS (Web Appendix
B).

3 Motivating the LNA Using Simulated Data

3.1 Comparison with Common SEM Approximations via
Simulation

We benchmarked the LNA against two common approximations of the MJP: its de-
terministic infinite population ODE limit, and a discrete–time approximation where
epidemic paths were simulated within a particle marginal Metropolis–Hastings (PMMH)
framework (Andrieu et al., 2010) using a multinomial modification of the τ–leaping
algorithm (MMTL) (Bretó and Ionides, 2011). The ODE approximation was chosen
for its ubiquity in epidemic modeling, while the MMTL/PMMH approximation was
chosen because of a straightforward and general implementation in the popular pomp
R package (King et al., 2016b). Arguably, the MMTL more faithfully approximates
the MJP vis–a–vis the LNA since it preserves the discreteness of the state space,
while the deterministic ODE is further removed from the MJP.

To better understand how the LNA, ODE, and MMTL/PMMH approximations
would perform in finite population settings, we fit simple SIR models to data from
500 outbreaks with SIR dynamics in three populations of different sizes and num-
bers of initially infected individuals. Each outbreak was simulated from a MJP via
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Gillespie’s direct algorithm (Gillespie, 1976) conditional on parameters drawn from
a set of prior distributions (Table S4). The priors were chosen to reflect outbreak dy-
namics and detection rates that would be typical of many contact driven outbreaks,
while the population sizes were reflective of settings in which the methods might
reasonably be applied, i.e., not so big that the outbreaks would essentially evolve
deterministically, nor so small that the approximations would be unreasonable. We
also assessed how the computational robustness of the methods would hold up when
fitting a more complex multi–country SEIR model to a dataset simulated under the
model presented Section 4. In all simulations, the models were fit under the same
priors from which the parameters were drawn, ensuring that the posterior would be
properly calibrated. The population sizes and initial conditions were fixed at their
true values. Hence, the only model misspecification was in the approximation used
for the latent epidemic process. Additional details and results for the SIR models
are provided in Web Appendix C, and further details regarding the multi–country
SEIR model are provided in Section 4 and Web Appendix E.

3.2 Results

LNA and MMTL point estimates and credible interval widths were similar for all
parameters in each of the three population size regimes, and coverage of credible
intervals were close to the nominal 95% levels. Despite the lack of structure model
misspecification, the ODE models struggle to reliably recover the model parameters,
particularly those governing the sampling process (Figure 1). Coverage of credible
intervals for ODE models was low for all model parameters, and only somewhat
improved as the population size increased. The distributions of LNA and ODE
median absolute deviations relative to MMTL estimates indicate that the ODE es-
timates were less precise, while credible intervals also tended to be narrower than
estimates obtained with the two stochastic approximations. This is in agreement
with King et al. (2015), who found that ODE models tend to underestimate uncer-
tainty in epidemic dynamics. Finally, the computational performance of the LNA
and MMTL/PMMH approximations was comparable fitting simple SIR models,
with the LNA perhaps being slightly faster. This, of course, comes with the usual
caveat that comparisons of computational performance depend on the efficiency of
each implementation and a variety of algorithmic choices (e.g., timestep of MMTL
or number of particles in PMMH).

The parity in computational performance between the LNA and MMTL/PMMH
algorithms vanished when we attempted to fit a more complex multi–country SEIR
model to simulated data. Despite the absence of any structural model misspecifica-
tion, the MMTL/PMMH algorithm failed to yield an MCMC run that adequately
explored the posterior when given a similar computational budget to the LNA DA
MCMC algorithm (Table 1). The computational cost of simulation–based meth-
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P=250,000; I(t0)=25P=50,000; I(t0)=5P=10,000; I(t0)=1

Figure 1: Results for SIR models fit to 500 datasets via multinomial mod-
ified τ–leaping (MMTL) within particle marginal Metropolis–Hastings, the
linear noise approximation (LNA), and deterministic ordinary differential
equations (ODE), shown respectively in that order for each parameter. R0

is the basic reproductive number of an outbreak, µ is the recovery rate, ρ
is the negative binomial case detection probability, φ is the negative bino-
mial over–dispersion parameter. The rows correspond to the proportion of
runs where the 95% Bayesian credible interval covered the true parame-
ter values, posterior median deviations (PMD), and 95% Bayesian credible
interval widths (CIW). The simulation was repeated for three regimes of
population sizes (P = 10, 000; P = 50, 000; P = 250, 000) and initially
infected individuals (I(t0) = 1; I(t0) = 5; I(t0) = 25).
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ods, such as PMMH, increases with model complexity and length of the data since
more particles are required to obtain an estimate of the likelihood and update the
latent path. It might be possible to obtain a working MMTL/PMMH run with even
greater expenditure of time and computational resources. However, our inability
to obtain a valid posterior sample in an ”easy” setting where we knew the true
data generating mechanism led us to abandon PMMH as a reliable computational
strategy for analyzing real–world data from the West Africa outbreak.

4 Modeling the Spread of Ebola in West Africa

We now turn our attention to modeling the 2013–2015 Ebola outbreak in the West
African countries of Guinea, Liberia, and Sierra Leone. Our objective will be to
describe the transmission dynamics of the outbreak, and in particular to estimate the
basic reproductive numbers for each country. The data, shown in Figure 2, consist of
national case counts from the World Health Organization patient database consisting
of weekly confirmed and probable Ebola cases (Organization, 2016). Individuals
were classified as suspected cases if they presented with Ebola–like symptoms and
had contact with a suspected, probable, or confirmed case of a dead or sick animal.
Probable cases were defined as suspected cases who were evaluated by a clinician,
or who had died but were epidemiologically linked to confirmed cases. A confirmed
case was defined as a suspected or probable case testing positive for Ebola virus
RNA or IgM Ebola antibodies (Coltart et al., 2017). For illustrative purposes, we
chose to simplify the model by lumping together confirmed and probable cases.

Figure 2: Weekly incidence of confirmed and probable cases of Ebola
in Guinea, Liberia, and Sierra Leone. The total incidence was 3,627 in
Guinea, 4,994 in Liberia, and 11,317 in Sierra Leone, and the estimated
population sizes were 11.8 million, 4.4 million, and 7.1 million, respectively
(United Nations, 2017).

We used the LNA and ODE approximations to fit a multi–country model for
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the spread of Ebola in Guinea, Liberia, and Sierra Leone under country–specific
SEIR transmission dynamics, illustrated in Figure 3. Cross–border transmission
was incorporated via virtual migration of infectious individuals and was parame-
terized by extrinsic reproduction numbers, interpretable as the expected number of
secondary cases in a country per index case in another country. Transmission was
assumed to commence in Liberia on March 2nd, 2014, and in Sierra Leone on May
4th, 2014, corresponding to three weeks prior to the first cases in those countries.
The observed incidence in each country was modeled as a negative binomial sample
of the true incidence. The total incidence in each country was small relative to the
population size, suggesting that only a fraction of the population was geographi-
cally or socially linked to ongoing transmission. Hence, we estimated the effective
population size in each country, interpreted as the size of the sub–population within
which the outbreak occurred. The implications of estimating the effective popula-
tion size for identifiability are discussed in Web Appendix D. We assigned priors for
effective population sizes by matching outbreak sizes based on deterministic final
size relations for SEIR models to outbreak sizes computed by inflating the observed
incidence by the case detection rates (Web Appendix E). The priors for other param-
eters were informed by published estimates of Ebola transmission dynamics (Table
S13). We also fit a set of simplified models to data from each country independently
to understand the benefit of explicitly modeling cross–border transmission ( Web
Appendix E). Results from the single–country models did not differ substantively
from results obtained with the joint model (Table S19).

The estimated transmission dynamics under the LNA model (Table S19) were
consistent with published estimates obtained with stochastic models fit to aggregate
incidence data Chretien et al. (2015). The posterior median (95% BCI) basic repro-
duction numbers, adjusted by the estimated effective population sizes, were 1.2 (1.1,
1.5) in Guinea, 1.9 (1.4, 3.2) in Liberia, and 1.3 (1.2, 1.4) in Sierra Leone. Adjusted
basic reproduction numbers estimated under the ODE tended to be higher than
estimates obtained under the LNA (top panel, Figure 4). Posterior distributions
of latent and infectious period durations in Guinea and Liberia largely recovered
the priors, while the estimated durations for Sierra Leone were somewhat shorter,
though not unreasonably so. Estimated latent and infectious period durations un-
der the ODE were longer than under the LNA, especially in Guinea and Liberia,
where they were much longer than expected. Though we allowed for cross–border
transmission, we were not able to resolve its contribution from the data and exactly
recovered the priors for extrinsic basic reproduction numbers between each pair of
countries. Additional results, including diagnostics, are provided in Web Appendix
E.

Compared with the deterministic ODE approximation, the LNA provides a bet-
ter fit to the data and more appropriately accounts for uncertainty about the out-
break. One clear indication of this is that the LNA posterior predictive distribution,
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Figure 3: Diagram of state transitions for a joint model for Ebola trans-
mission in Guinea, Liberia, and Sierra Leone. Dotted boxes denote coun-
tries, nodes in circles denote the model compartments: susceptible but re-
moved from infectious contact (SR), susceptible but exposed to infectious
contact (SE), exposed (E), infectious (I), recovered (R). Compartments
are subscripted with country indicators. Solid lines with arrows indicate
stochastic transitions between model compartments, which occur continu-
ously in time. Dashed lines indicate that infected individuals in one coun-
try contribute to the force of infection in another country. Rates at which
individuals transition between compartments are denoted by λ and are
subscripted by compartments and superscripted by countries, e.g., λL

SEE
is the rate at which susceptible individuals become exposed in Liberia.
Transmission in Liberia and Sierra Leone was assumed to commence at 10
and 19 weeks, respectively. Full expressions for the rates are given in Table
S12.
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which integrates over the joint posterior of the model parameters and latent epi-
demic process, more closely resembles the observed incidence than does the ODE
posterior predictive distribution (bottom panel, Figure 4). ODE posterior predictive
intervals (PPIs) tend to be wider than their LNA counterparts, while ODE posterior
predictive p-values (PPPs) are more extreme (Figure S11). The poor performance
of the ODE is due to its being forced to account for all observations with a single
deterministic path, which inevitably leaves many observations poorly explained. On
the other hand, the stochastic nature of the LNA, and in particular, the restarting
formulation explored in this work, allows the model to capture local variability in the
epidemic process. This dynamic also results in inflated estimates of the negative bi-
nomial overdispersion parameter under the ODE model since misspecification of the
latent epidemic process is absorbed as overdispersion in the emission distribution.

5 Discussion

We have presented a broadly applicable and computationally robust framework for
fitting stochastic epidemic models to partially observed incidence data that arise
in disease surveillance and outbreak settings. Though the linear noise approxima-
tion has been used in outbreak modeling, its application has been restricted to the
analysis of cumulative incidence or prevalence data, the latter of which is often unfor-
tunately conflated with incidence. Critically, we can estimate SEM parameters and
appropriately account for the stochastic aspects of the MJP without compromising
the approximation or resorting to fragile and computationally intensive simulation–
based methods.

Our main contributions in this work were to demonstrate how to correctly repa-
rameterize a SEM to admit latent epidemic paths that are compatible with emission
distributions for incidence data, and how the LNA approximation can be folded into
a computationally robust MCMC machinery while accommodating non–Gaussian
emission distributions. We showed in simulations with simple SIR models, which are
often used as building blocks in more complex models, that SEMs approximated via
the LNA were comparable to those approximated using MMTL, and vastly outper-
formed ODE approximations that are still in common use. We used our framework
to fit a high dimensional model, which was fully stochastic in all aspects of the trans-
mission dynamics, to data from the 2013–2015 outbreak of Ebola in West Africa.
We were unable to fit this model using the state–of–the–art PMMH algorithm, even
to simulated data in the absence of model misspecification.

For clarity of exposition, we have restricted ourselves to relatively simple mod-
els, though we feel it is important to acknowledge that there a variety of ways in
which scientific validity of these models could have been improved by introducing
additional complexity. For example, it is frequently, if not universally, unreason-
able to assume that the transmission and surveillance dynamics are constant over
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Figure 4: (Top panel) Posterior distributions (shaded densities) of effec-
tive population size adjusted basic reproduction numbers under the LNA
and ODE models, with prior densities (dashed lines) plotted over the poste-
rior ranges. Solid vertical lines are posterior medians, and shaded regions
correspond to 95% credible intervals. The adjusted basic reproduction
number is defined with respect to the effective population size. For ex-
ample, Radj,G = Peff,GβG/µG, where Peff,G, βG, and µG are the effective
population size, within–country per–contact infection rate, and recovery
rate for Guinea, respectively. (Bottom panel) Posterior predicted inci-
dence in West Africa under the LNA and ODE models, marginalizing over
the joint posterior distributions of the latent incidence and model parame-
ters. Solid lines are pointwise posterior predictive median incidence, shaded
bands correspond to 80% and 95% pointwise posterior predictive incidence
distributions, and dots are the observed incidence.
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time. Fitting models with time–inhomogeneous dynamics presents additional com-
putational difficulties and are an important target for future work. We have also
not touched on formal assessments of the predictive performance, issues of model
selection, and the effects of model misspecification, though we acknowledge that all
of these topics are critical to the application of our methods.
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Supplementary Materials

The algorithms for fitting LNA and ODE models are implemented in the stemr R

package, which is available from the following stable GitHub repository along with
code for reproducing the results presented in this paper: https://github.com/fintzij/stemr.
The implementation is flexible and provides facilities for specification of arbitrary
SEM dynamics, a variety of emission probability distributions, and capabilities for
accommodating time–varying covariates, time–varying parameters, and determinis-
tic forcings. Computationally intensive operations are implemented in C++ via Rcpp

and RcppArmadillo (Eddelbuettel and François, 2011, Eddelbuettel and Sanderson,
2014). ODE integration functions are dynamically compiled in C++ with the help of
the odeintr R package (Keitt, 2017) and ODEs can be integrated using a variety
of methods available in the Odeint C++ library (Ahnert and Mulansky, 2011).

Web Appendices A, B, C, D, and E, referenced throughout this work, are avail-
able with this paper at the Biometrics website on Wiley Online Library.
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Web Appendix A: Diffusion Approximations for

Markov Jump Processes

There are a variety of methods for arriving at the diffusion approximation for a MJP
(Fuchs, 2013). We outline an intuitive, though somewhat informal, construction of a
stochastic differential equation (SDE), referred to as the chemical Langevin equation
(CLE), where the drift and diffusion terms are chosen to match the approximate
moments of MJP path increments in infinitesimal time intervals (Wilkinson, 2011,
Golightly and Gillespie, 2013), and refer to Gillespie (2000) and Fuchs (2013) for
more detailed presentations.

Denote the compartment counts at time t by Xc(t) = xct . We want to approx-
imate the numbers of infections and recoveries in a small time interval, (t, t + dt],
i.e., Nc(t + dt) −Nc(t). Suppose that we can choose dt so that the following two
leap conditions hold:

(1) dt is sufficiently small that the Xc is essentially unchanged over (t, t+ dt], so
that the rates of infections and recoveries are approximately constant:

λ(Xc(t′)) ≈ λ(xc(t)), ∀t′ ∈ (t, t+ dt]. (18)

(2) dt is sufficiently large that we can expect many disease state transitions of
each type:

λ(xc(t))� 1. (19)

Condition (18), holds when dt is infinitesimally small, and implies that the numbers
of infections and recoveries in (t, t+ dt] are essentially independent since their rates
of occurrence are approximately constant within the interval (Gillespie, 2000). This
condition also implies that the numbers of infections and recoveries are Poisson
random variables with rates λ(xc(t)dt), i.e., N c

SI(dt) ∼ Poisson(βS(t)I(t)dt) and
N c
IR(t + dt) ∼ Poisson(µI(t)dt) (Wilkinson, 2011). Condition (19) is likely to be

satisfied in large populations (Wallace et al., 2012) and implies that the Poisson
innovations are well–approximated by Gaussian random variables.

When (18) and (19) hold, we can approximate the integer–valued processes, Xc

and Nc, with the real–valued processes, X and N. The state space of X for the SIR
model is

SRX = {(l,m, n) : l,m, n ∈ [0, P ], l +m+ n = P},

and the state space of N is

SRN = {(j, k) : j, k ∈ [0, P ], X(Vjk) ∈ SRX}.

In words, the state space of X is the set of compartment volumes that are non–
negative and that sum to the population size, while the state space of N is the
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set of non–decreasing and non–negative incidence paths, constrained so that they
do not lead to invalid prevalence paths (e.g., where there are more recoveries than
infections and hence negative number of infected individuals). For now, we ignore
the constraints on SRN and SRX , and approximate changes in cumulative incidence of
infections and recoveries in an infinitesimal time step as

N(t+ dt)−N(t) ≈ λ(X(t))dt+ Λ(X(t))1/2dt1/2Z, (20)

where Λ = diag (λ(X)) and Z ∼MVN(0, I). This implies the equivalent CLE,

dN(t) = λ(X(t))dt+ Λ(X(t))1/2dWt, (21)

where the vector Wt is distributed as independent Brownian motion, and Λ(X(t))1/2

is the matrix square root of Λ(X(t)).
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Web Appendix B: Algorithms and Additional MCMC

Details

Algorithms for Sampling LNA Paths

Algorithm 1 Mapping standard normal draws onto LNA sample paths.

1: procedure doLNA(Z,θ, I)

2: initialize: X(t0)← X0, N(t0)← 0, Ñ(t0)← 0,
3: µ(t0)← 0, Σ(t0)← 0
4: for ` = 1, . . . , L do
5: µ(t`), Σ(t`)← solutions to (11) and (13) over (t`−1, t`]

6: Ñ(t`)← µ(t`) + Σ(t`)
1/2Z(t`) . non–centered parameterization

7: N(t`)← N(t`−1) + exp(Ñ(t`))− 1
8: X(t`)← X(t`−1) + AT (N(t`)−N(t`−1))

9: Ñ(t`)← 0, µ(t`)← 0, Σ(t`)← 0 . restart initial conditions

10: return . incidence and/or prevalence sample paths
11: N = {N(t0),N(t1), . . . ,N(tL)}
12: X = {X(t0), X(t1), . . . ,X(t`)}
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Algorithm 2 Sampling LNA draws via elliptical slice sampling.

1: procedure doElliptSS(Zcur,θ,Y, I, ω = 2π)
2: Sample ellipse: Zprop ∼ N(0, I)
3: Sample threshold:

u|x ∼ Unif(0, L(Y|doLNA(Zcur,θ, I)))

4: Position the bracket and make initial proposal:

ψ ∼ Unif(0, ω)

Lψ ← −ψ; Rψ ← Lψ + ψ

φ ∼ Unif(Lψ, Rψ)

5: Set Z′ ← Zcur cos(φ) + Zprop sin(φ).
6: if L(Y|doLNA(Z′,θ, I)) > u then accept Z′

7: return Z′

8: else
9: Shrink bracket and try a new angle:

10: If: φ < 0 then: Lφ ← φ else: Rφ ← φ
11: φ ∼ Unif(Lφ, Rφ)
12: GoTo: 5
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Tuning the Initial Elliptical Slice Sampling Bracket Width

When fitting SEMs with complex dynamics, e.g., when there are many strata or
when the dynamics are time varying, we will be able improve the computational
efficiency of our MCMC by initialing the ElliptSS bracket width at ω < 2π. This
is motivated by the observation that when the model dynamics are complex, the
ElliptSS bracket will typically need to be shrunk many times before the sampler
reaches a range of acceptable angles in the proposal. Each time we propose a new
angle in the ElliptSS algorithm we must solve the LNA ODEs in order to compute
the observed data likelihood. Thus, if we can reduce the number of ElliptSS steps,
we will be able to shorten the run time of our MCMC.

We typically set the initial bracket width to a constant times the standard devia-
tion of the accepted angles in a tuning phase. Since we do not step out the ElliptSS
bracket, the initial width should not be so small as to induce additional autocor-
relation in the latent process, and should also not be so wide that the bracket is
contracted needlessly. We have found a bracket width of ω = 2

√
2 log(10)σ, cor-

responding to the full width at one tenth maximum for a Gaussian with standard
deviation σ, to work well in practice. In order to facilitate tuning of the initial
bracket width, the elliptical slice sampling Algorithm 2 was modified slightly from
the one in Murray et al. (2010) with respect to the initial angle proposal so that the
distribution of angles for accepted proposals would be symmetric around zero.

Figure S1 presents histograms of the number of contractions per ElliptSS update
and the accepted angles before and after contracting the initial ElliptSS bracket
width for the Ebola model of Section 4. In this instance, we were able to sub-
stantially reduce the number of contractions, and hence likelihood evaluations, per
ElliptSS update while leaving the distribution of accepted angles essentially un-
changed. We like to call this a “free lunch”.

Centered vs. Non–centered Parameterization

A central computation challenge for fitting hierarchical latent variable models via
DA MCMC is that samples can become autocorrelated when alternately updating la-
tent variables and model parameters (Papaspiliopoulos et al., 2003, Papaspiliopoulos
et al., 2007). DA MCMC that alternately updates LNA paths and model parameters
is no exception (Figure 1A).

This phenomenon of poorly mixing MCMC chains can be traced to the use of
a centered parameterization (CP) for the LNA in (14). Under the CP, updates to

θ|Ñ,Y are made conditionally on a fixed LNA path. Therefore, parameter pro-
posals are accepted if they are concordant with the data and the current path.
Small perturbations to model parameters can significantly shift the LNA transition
densities and render the current path unlikely under the proposal. This limits the
magnitude of perturbations to the model parameters at each MCMC iteration and
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Figure S1: Distributions of the numbers of contractions per ElliptSS
update and the accepted angles for an MCMC chain for the Ebola model
of Section 4 fit to a simulated dataset. An initial bracket width of 2π was
used for the first 5,000 iterations (top row), after which the initial bracket
width was set to 2

√
2 log(10)σElliptSS , where σElliptSS was the standard

deviation of the accepted angles from the initial run (bottom row).
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results in severely autocorrelated posterior samples.
The use of a NCP for latent LNA paths massively improves MCMC mixing.

Figure 1A shows traceplots of model parameters for one of the MCMC chains for
an SIR model fit to Poisson distributed incidence data using the CP. Each MCMC
chain was run for 2.5 million iterations, following a tuning run of equal length, but
only yielded an effective sample sizes in the low double digits for the basic reproduc-
tion number and infectious period duration. In contrast, the NCP yielded effective
sample sizes per–chain of between 500–700 for each of the model parameters in only
50,000 iterations following a tuning run of equal length. Figure 1B shows traceplots
for one of the NCP MCMC chains. Note that since the posterior distribution of
the restarting LNA under the CP does not decompose into the form required to use
ElliptSS, applying ElliptSS to the CP of the restarting LNA amounts to essentially
further approximating the random variates in that representation with Gaussian
random variables.

Multivariate Normal Slice Sampler

Univariate slice samplers can suffer from poor mixing in moderate– to high–dimensional
settings much in the same way as Gibbs samplers. One option for reducing auto-
correlation in MCMC samples is to update blocks of parameters. Methods for slice
sampling in multiple dimensions are explored in Neal (2003), Thompson (2011),
Tibbits et al. (2014). These include slice sampling in hyperrectangles, the use of
adaptive Gaussian crumbs that guide slice proposals, and slice sampling along eigen-
vectors of the estimated posterior covariance matrix.

We present a simple method for sampling a parameter vector, θ ∈ Rd, where we
perform univariate slice sampling updates along rays drawn from a non–isotropic
angular central Gaussian distribution, which is tuned to match the covariance struc-
ture of the posterior. This helps to account for linear correlations among model
parameters. The method, which we refer to as the multivariate normal slice sam-
pler (MVNSS), is similar to the algorithm in Ahmadian et al. (2011). Our approach
differs in that we typically adapt the proposal covariance matrix using a Robbins–
Monro recursion. This adaptation is helped by slight modifications to the algorithm
during the adaptation phase of the MCMC (Andrieu and Thoms, 2008, Liang et al.,
2011). The computational cost of MVNSS does not increase dramatically with the
dimensionality of the parameter space, though we have found that multiple MVNSS
updates per MCMC iteration can, in some cases, improve performance. The algo-
rithm is amenable to tuning of the initial bracket width as in Tibbits et al. (2014),
which helps to reduce the number of likelihood evaluations per iteration.

Suppressing the dependence on the data for notational clarity, slice sampling
θ ∈ Rd from its posterior π(θ|Y) is largely the same as sampling θ ∼ π(θ) ∝ f(θ).
Let Σ = Cov(θ) = LLT , where L is the lower triangular matrix of the Cholesky
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(A) Centered parameterization

(B) Non-centered parameterization

Figure S2: (A) Posterior traceplots from a single MCMC chain for an
SIR model fit to Poisson distributed incidence data targeting the centered
posterior (14). (B) Posterior traceplots from a single MCMC chain target-
ing the non–centered posterior (17). MCMC alternated between updating
the latent path via elliptical slice sampling, and updating parameters via
a multivariate random walk Metropolis algorithm. R0 = βP/µ is the basic
reproductive number, 1/µ is the mean infectious period duration, and ρ is
the mean case detection rate. The true values of R0, 1/µ, and ρ were 3.5,
7, and 0.5, respectively.
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decomposition of L (any other matrix square root would do). In practice, Σ is

approximated by Σ̂n, which is estimated over an initial MCMC run. The strategy
in MVNSS is to propose θprop = θcur+cξ, where ξ = h(z), z ∼MVN(0,Σ), h(z) =
z/||z||, and to sample c in a univariate slice sampling update. Normalizing z allows
us to more easily tune the initial bracket width. During an adaptation phase, we
construct proposals as θprop = θcur + ch(wξ1 + (1− w)ξ2), where ξ1 = h(z1), z1 ∼
MVN(0,Σ), ξ2 = h(z2), z2 ∼ MVN(0, Id), h(z) = z/||z||, and w ∈ [0, 1]. The
weight given to z2 is typically quite small, but helps to avoid degeneracy of the
empirical covariance matrix during adaptation. We give the non–adaptive version
of the algorithm below.

Algorithm 3 Multivariate normal slice sampling with stepping out.

1: procedure MVNSS(θcur, L, S ′ = (0, ω))
2: u ∼ Unif(0, f(θcur)) . Set threshold
3: z ∼MVN(0, Id), ξ ← h(Lz) . Propose direction
4: p ∼ Unif(0, 1); L← −ωp, U ← L+ ω . Position S ′ around 0
5: S ′ ←StepOut(u, S ′) . Step out bracket
6: while u < f(θ − Lξ) do L← L− ω
7: while u < f(θ + Uξ) do U ← U + ω
8: c ∼ Unif(L,U); θprop ← θcur + cξ . Propose new value
9: if f(θprop) > u then θnew ← θprop . Accept proposal

10: return θnew

11: else . Shrink bracket
12: if c < 0 then L← c else U ← c
13: GoTo 8

Adapting the proposal covariance in MVNSS

Adaptive MCMC algorithms aim to improve computational efficiency by using
MCMC samples to learn optimal values of tuning parameters on the fly. MCMC
proposal kernels can be adapted in a number of different ways, but must be adapted
with care to preserve the stationarity of the target distribution. In order for an adap-
tive MCMC algorithm to preserve the stationary distribution, it must satisfy two
conditions, vanishing adaptation, and bounded convergence (Andrieu and Thoms,
2008).

The main computational tool used in the adaptive variations of the MCMC
algorithms in this dissertation is the Robbins–Monro recursion, which allows us
to continuously adapt the tuning parameters of an MCMC kernel. The Robbins–
Monro recursion is a stochastic approximation algorithm that searches for a solution
to an equation, f(θ) = α, that has a unique root at θ?. The function f(θ) is not
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directly observed. Instead, we use a noisy sequence of estimates, h(θ̂n), satisfying

E(h(θ̂n)) = f(θ) to recursively approximate θ?. The recursion takes the form,

θn+1 = θn + γn+1(h(θ̂n)− θ?).

Hence, the recursion increments θ by an amount proportional to the difference be-
tween h(θ̂n) and its target. The gain factor sequence, {γn+1}, is a deterministic
non–increasing, positive sequence such that

(i) lim
n→∞

γn = 0, (ii)
∞∑
n=1

γn =∞, (iii)
∞∑
n=1

γ1+λ
n <∞, λ > 0.

Note that since γn → 0 and E(h(θ̂n)) = f(θ), it follows that |θn+1 − θn| → 0
as n → ∞, i.e., the recursion is constructed to satisfy diminishing adaptation.
Condition (ii) ensures that the gain sequence does not decay so fast that there are
values of θ in its state space, Θ, that cannot be reached. Condition (iii) ensures
bounded convergence of the sequence {θn}. Gain factor sequences of the form

γn = C(1 + pn)−α, α ∈ (0.5, 1], p > 0 (22)

will satisfy these conditions (Andrieu and Thoms, 2008, Liang et al., 2011). We
adapt the proposal covariance over the course of an initial MCMC tuning run, which
is followed by a final run with a fixed MCMC kernel. The samples accumulated
during the adaptation phase are discarded.

Let µn and Σn denote the empirical mean and covariance of the posterior samples
from the first n MCMC iterations, and {γn} be a sequence of gain factors. In
each adaptive MCMC iteration, we sample θnew|θcur via MVNSS, and update the
empirical mean and covariance via the following recursions:

µn = µn−1 + γn(θnewn − µn−1),

Σn = Σn−1 + γn
(
(θcurn − µn−1)(θnewn − µn−1)T −Σn−1

)
.

Initializing the LNA Draws

In simple models, biologically plausible parameter values will generally lead to valid
LNA paths, and we can initialize the LNA draws by simply drawing Z ∼MVN(0, I).
However, this is not necessarily the case for complex models with many types of tran-
sition events, or when the time–series of incidence counts is long. One option is to
include a resampling step after line 6 in Algorithm 1, in which Z(t`) is redrawn in
place until we have obtained a valid LNA path that respects the constraints on the
latent state space. However, such a procedure does not sample from the correct dis-
tribution since Z is not distributed as a truncated multivariate Gaussian. To correct
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for this, we “warm–up” the LNA path with an initial run of ElliptSS iterations in
which the likelihood only consists of the indicators for whether the path is valid.
Note that ElliptSS, or any other valid MCMC algorithm for updating Z|θ,Y, will
never lead to an invalid LNA path being accepted if the current LNA draws and
model parameters correspond to a valid path. Similarly, any valid MCMC algo-
rithm for updating model parameters conditional on LNA draws will also preserve
the validity of LNA paths.

Inference for Initial Compartment Volumes

When the initial compartment volumes are included as initial parameters in the
model instead of being treated as fixed, we will model them as arising from the
following truncated multivariate normal distribution:

X0 ∼ TMV NSRX (Pp, αP (P− ppT )), (23)

where p is a vector of subject–level initial state probabilities, P = diag(p), P is
the population size, α is an over–dispersion parameter, and the subscript SRX speci-
fies the state space of X (so that the compartment volumes add up to P and each
compartment volume is non–negative and less than the total population size at
time t0). Thus, the initial distribution is the truncated normal approximation of
either a multinomial distribution with size P and probability vector p if α = 1,
or of a dirichlet–multinomial distribution with parameters α =⇒ p = α/αT1,
and over–dispersion α = (P + αT1)/(1 + αT1). In models with multiple strata,
we will similarly model the initial compartment volumes as having independent
truncated multivariate normal distributions that are each approximations of multi-
nomial distributions over initial compartment counts within each stratum. Notation
and details are completely analogous to the single stratum case, and are therefore
omitted for clarity.

Let m = Pp, V = αP (P − ppT ), and V1/2 be the matrix square root of V,
which we will compute using the singular value decomposition V = UDUT =⇒
V1/2 = UD1/2. Let ZX denote the LNA draws as before, and let ZX0 ∼ MVN(0, I)
denote the vector of draws that will be mapped to X0. We will update the initial
compartment volumes jointly with the LNA draws using elliptical slice sampling.
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Algorithm 4 Sampling LNA draws and initial volumes via elliptical slice sampling.

1: procedure doElliptSS2(ZX
cur,Z

X0
cur,θ,Y, I, ω = 2π)

2: Sample ellipse: ZX
prop ∼ N(0, I), ZX0

prop ∼ N(0, I)
3: Sample threshold: u|x ∼ Unif(0, L(Y|doLNA(Zcur,θ, I)))
4: Position the bracket:

ψ ∼ Unif(0, ω)

Lψ ← −ψ; Rψ ← Lψ + ψ

φ ∼ Unif(Lψ, Rψ)

5: Make the initial proposal:

ZX′ ← ZX
cur cos(φ) + ZX

prop sin(φ)

ZX′
0 ← ZX0

cur cos(φ) + ZX0
prop sin(φ) =⇒ X′0 = m + V1/2ZX′

0

6: if L(Y|doLNA(Z′,θ′, I)) > u then accept ZX′
,ZX′

0

7: return Z′

8: else
9: Shrink bracket and try a new angle:

10: If: φ < 0 then: Lφ ← φ else: Rφ ← φ
11: φ ∼ Unif(Lφ, Rφ)
12: GoTo: 5
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Choice of Estimation Scale and Implications for Mixing and
Convergence

How we parameterize the MCMC estimation scale is critically important to its com-
putational performance. If we can identify transformations of the model parameters
that minimize strong correlations and non–linear relationships on the estimation
scale, we will be able to substantially improve MCMC mixing. In our context, it
will often be relatively straightforward to identify such transformations (or at least
intermediate transformations that can be used in combination). As a general ap-
proach, we will try to identify transformations that reflect the ways in which model
parameters jointly act on the model dynamics, and then a second set of transfor-
mations that remove any boundary conditions.

As an example, consider an SEIR model fit to incidence data from Sierra Leone.
This model includes parameters for the external force of infection and the effective
population size, which add complexity to the usual formulation of the SEIR dynam-
ics as being entirely driven by endogenous contacts within a closed homogeneously
mixing population. The effective population size is roughly the size of the initially
susceptible population. The model parameters on their natural scales are provided
in Table S1. Each of the model parameters is obviously interpretable on its natural
scale, but upon examining the pairwise scatterplots of the posterior (Figure S3) it
becomes obvious that the parameters interact in highly non–linear ways. We would
encounter a variety of pathological computational problems if we were to naively
parameterize the MCMC estimation scale without considering the ways in which
the parameters interact to affect the dynamics. For example, it would be extremely
difficult for any sampler that does not account for the curvature in the posterior,
e.g., Hamiltonian Monte Carlo (HMC), to explore the parameter space. (An aside:
we experimented with implementing the LNA in Stan and using HMC to sample the
posterior, but repeatedly integrating the LNA ODEs along with their augmented
sensitivity equations was prohibitively slow for even simple models).

We can mitigate the problems caused by non–linear relationships and strong cor-
relations among parameters by parameterizing the estimation scale in terms of how
the parameters jointly affect the model dynamics and then removing the boundary
conditions. Table S2 provides a list of parameters on their estimation scale that
are reflective of an initial first pass at how we would expect the parameters to in-
teract. For example, the parameters governing the rates of infectious contact, α
and β, combine with the effective population size and the infectious period dura-
tion to produce the basic reproductive numbers with respect to initially infected
individuals outside and inside the population. Still, we can see that there are some
residual non–linear relationships between the log effective population size, the logit
case detection probability, and the adjusted reproductive number.

A heuristic argument for an estimation scale that further simplifies the posterior
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geometry proceeds by analogy with the analogous deterministic ODE model. In
particular, we will consider how the functions of model parameters in Table S2 act
on the model dynamics through the final size relation, and how they are informed by
the data. The final size relation for the ODE model (Miller, 2012) relates the fraction
of the population that eventually becomes infected π, with the basic reproductive
number:

π = 1− e−R0π. (24)

As R0 increases, a larger fraction of the population becomes infected. As the
effective population size, Peff , increases, so too does the overall scale of the outbreak,
and the number of cases we would expect to detect. The expected scale of the
observed outbreak is related to the quantity, π×ρ×Peff , which should be concordant
with the total number of observed cases. We can interpret the product, ρ×Peff , as
a measure of scale the observed incidence data. An implication of this is that the
combination of parameters we would expect to jointly act on the model, a posteriori,
is the adjusted reproduction number offset by the case detection rate, R0×ρ×Peff ,
which will enter our estimation scale as log(R0× ρ×Peff ). The other modification
of the estimation scale in Table S2 replaces the log latent period with the log ratio
of infectious to latent period durations. The new estimation scale is given in Table
S3. On this estimation scale, the posterior is much better behaved, with weaker
pairwise correlations and little in the way of non–linear relationships between the
model parameters.

Table S1: SEIR model parameter and their interpretation on their natural
scales.

Param. Interpretation Domain
α Rate of exogenous infection [0,∞)
β Per–contact endogenous infection rate [0,∞)
ω Rate of transition from E → I [0,∞)
µ Rate of transition from I → R [0,∞)
ρ Mean case detection probability [0, 1]
φ Neg. binom. overdispersion parameter [0,∞)

Peff Effective population size [0, N ]
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Figure S3: Marginal histograms and pairwise scatterplots of posterior
samples for parameters for the SEIR model fit to the Sierra Leone Ebola
dataset using the estimation scale in Table S3. The parameters on the
estimation scales in this figure and their interpretations are provided in
Table S1.
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Figure S4: Marginal histograms and pairwise scatterplots of posterior
samples for parameters for the SEIR model fit to the Sierra Leone Ebola
dataset using the estimation scale in Table S3. The parameters on the
estimation scales in this figure and their interpretations are provided in
Table S2.
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Figure S5: Marginal histograms and pairwise scatterplots of posterior
samples for parameters for the SEIR model fit to the Sierra Leone Ebola
dataset using the estimation scale in Table S3. The parameters on the
estimation scales in this figure and their interpretations are provided in
Table S3.
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Table S2: SEIR model parameter and their interpretation on a possible
set of estimation scales.

Parameter Interpretation Domain
log(1000α) Log effective number of additional infecteds per 1000 foreign infecteds (−∞,∞)

log(Radj − 1) = log(βPeff/µ− 1) Log basic reproductive number for native index case and Radj > 1. (−∞,∞)
log(1/ω) Log mean latent period duration (−∞,∞)
log(1/µ) Log mean infectious period duration (−∞,∞)
logit(ρ) Logit mean case detection probability (−∞,∞)
log(φ) Log negative binomial overdispersion parameter (−∞,∞)

log(Peff ) Log effective population size (−∞, log(P ))

Table S3: SEIR model parameters and their interpretation on a possible
set of estimation scales.

Parameter Interpretation Support
log(1000α) Log effective number of additional infecteds per 1000 infecteds outside the population (−∞,∞)

log(Radj − 1) + log(ρPeff ) Log adjusted reproductive number for native index case with offset, and Radj > 1 (−∞,∞)
log(ω/µ) Log ratio of mean latent to infectious period durations (−∞,∞)
log(1/µ) Log mean infectious period duration (−∞,∞)
logit(ρ) Logit mean case detection probability (−∞,∞)
log(φ) Log negative binomial overdispersion parameter (−∞,∞)

log(ρPeff ) Log mean case detection rate (−∞, log(P ))

Web Appendix C: Section 3 — Simulation Setup

and MCMC Details

Simulation Setup

In this simulation, repeated for each of the three different regimes of population size
and initial conditions given in Table S4, we simulated 500 datasets as follows:

1. Draw log(R0− 1), 1/µ, logit(ρ), log(φ) from the priors given in Table S4.

2. Simulate an outbreak, N|θ, under SIR dynamics from the MJP via Gillespie’s
direct algorithm (Gillespie, 1976). If there were fewer than 15 cases, simulate
another outbreak.

3. Simulate the observed incidence, Y|N,θ, as a negative binomial sample of the
true incidence in each epoch, i.e., Y` ∼ Neg.Binomial(ρ(NSI(t`)− NSI(t`−1)), φ).
If the outbreak died off before epoch 15, the dataset was truncated at 15 obser-
vations (i.e., the dataset consisted of a series of case counts accrued during the
outbreak along with a series of trailing zeros accrued after the outbreak died
off). If the outbreak lasted longer than 50 epochs, the dataset was truncated
at 50 observations
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We proceed to fit SIR models using the LNA, ODE, and MMTL approximations.
Priors for model parameters were assigned as in Table S4. Five MCMC chains per
model were initialized at random values near the true parameters and run for 35,000
iterations per chain. The first 10,000 iterations used to warm up each chain and
adaptively estimate the empirical covariance matrix to be used in the multivariate
Gaussian random walk Metropolis–Hastings proposals for parameters. The empir-
ical covariance matrix was initialized as 0.01 times an identity matrix. After the
warm–up period, the empirical covariance matrix was frozen and the final 25,000
iterations from each chain were combined to form the final MCMC sample.

For models fit via the LNA and ODE approximations, the covariance matrix was
adapted as in algorithm 4 of Andrieu and Thoms (2008). The gain factor sequence
was γn = 0.25(1+0.05n)−0.50001, and a small nugget variance, equal to 0.00001 times
an identity matrix, was added during the adaptation phase. The target acceptance
rate used in the adaptation was 0.234. The models were implemented using the
stemr R package (Fintzi, 2018).

Inference via the MMTL approximation within PMMH were fit using the pomp R
package (King et al., 2016b). We used 500 particles in the PMMH algorithm. This
choice was made to mitigate issues of particle degeneracy that occurred with fewer
particles for some datasets. The time step for MMTL was set to 1/7, which, for
example, corresponds to τ–leaping over one day increments given weekly incidence
data. The MCMC was initialized in the same way as LNA and ODE models, but the
empirical covariance matrix was adapted according to a different cooling schedule.
The gain factor sequence provided by the package is of the form γn = nα, where the
cooling term, α, was set to 0.999. For some of the datasets, the PMMH algorithm
became degenerate during the adaptive phase of the MCMC. When this was the
case, the MCMC was restarted at a different set of random initial conditions. The
posterior samples from all five MCMC chains were combined after discarding the
initial samples from the adaptation phase.

Additional Coverage Simulation Results
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Table S4: Population sizes, initial conditions, and priors under which
datasets were simulated. Five hundred datasets were simulated for each of
the population size regimes. Each outbreak was simulated from a MJP with
SIR dynamics. The observed incidence was a negative binomial sample of
the true incidence in each inter–observation interval.

Regime 1 Regime 2 Regime 3
Population size (N) 10,000 50,000 250,000
Initial infecteds (I0) 1 5 25

Parameter Interpretation Prior Median (95% Interval)
R0 − 1 Basic reproduction # - 1 LogNormal(0, 0.5) =⇒ R0 = 2.00 (1.38, 3.66)

1/µ Mean infectious period LogNormal(-0.7, 0.35) 1.43 (0.72, 2.84)
ρ/(1− ρ) Odds of case detection LogNormal(0, 1) =⇒ ρ = 0.5 (0.12, 0.88)

φ Neg.Binom. over–dispersion Exponential(0.1) 6.93 (0.25, 36.89)

Table S5: Median (2.5%, 97.5%) quantiles of average run time per MCMC
chain, in minutes, for models fit in the coverage simulation presented in Sec-
tion 3.1. Models were fit via the linear noise approximation (LNA), multi-
nomial modified τ–leaping (MMTL) within particle marginal Metropolis–
Hastings, and deterministic ordinary differential equations (ODE).

Population size ODE LNA MMTL
10,000 2 (2.1, 2.2) 1.2 (1.3, 1.4) 2.9 (2.9, 3.8)
50,000 108.6 (161.5, 165.2) 55.6 (67.6, 63.4) 187.1 (274.5, 360.8)
250,000 429.2 (443.8, 439.8) 212.7 (197.9, 202.3) 759.1 (761, 831.7)
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Web Appendix D: Identifiability when Estimating

the Effective Population Size

When the scale of an outbreak is small relative to the population size, it may be
unreasonable to assume that the entire population mixes homogeneously and par-
ticipates in propagating the epidemic. An alternative is to split the population into
two sub–populations, one that is effectively removed from infectious contact, and
another at–risk sub–population within which infectious contacts arise via homoge-
neous mixing of infectious and susceptible individuals. For example, in the case of
the SIR model, we split susceptibles into two compartments, SR and SE, where SR

is a susceptible sub–population that is effectively removed, and SE is a susceptible
population that may become exposed. In this model, the effective population size
is Peff = SE + I + R, and is interpreted as the size of the population at risk of
infection. The transmission model is otherwise constructed in the same way as the
canonical SIR model, except with SE replacing S.

The effective population size and the mean case detection probability are weakly
identifiable parameters in that we require prior information about their scales to
disentangle their effects. To see why this is so, note that ρ and Peff enter into the
complete data likelihood, (16), through the priors and through emission distributions
that have means of the form, ρ∆NSI(t`). The incidence here should be understood as
an increment in compartment concentrations scaled by the effective population size,
since the LNA is a density dependent process (Komorowski et al., 2009, Wilkinson,
2011, Fearnhead et al., 2014). Thus, the emission densities have means of the form,
ρ
(
N ′SSI(t`)−N

′
SSI(t`−1)

)
Peff , where N′ = N/Peff is the equivalent representation

of the LNA in terms of compartment concentrations.
Absent prior information, we will have difficulty identifying both the case detec-

tion probability and effective population size. Despite this, there are a few reasons
that ρ and Peff might be weakly identifiable, rather than completely unidentifiable.
First, certain stochastic aspects of the outbreak, such as the probability of a major
outbreak and persistence of transmission, depend on the population size. Further-
more, the scale of the observed incidence and the observed outbreak duration are
informative about the minimal effective population size. Therefore, the fact that
we observe part of the outbreak is itself informative. Finally, a rough estimate the
true population size is typically available, providing an upper bound on the effective
population size. By extension, the latent epidemic process is also weakly identifi-
able in models where the effective population size and case detection probability are
estimated.

In contrast, the effective detectable population at risk, ρ × Peff , along with
parameters governing the outbreak dynamics, are directly informed by the data and
remain identifiable. It might seem paradoxical that we can infer the dynamics of an
outbreak when we are unable to estimate the latent process. To understand why
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this is so, note that a SEM can be rewritten in terms of concentrations by dividing
the compartment counts by the population size, yielding the so–called “true mass–
action model”. The dynamics of this equivalent model, expressed, for example, by
the basic reproductive number R0 and recovery rate for an SIR model, are known
to be independent of the population size (de Jong et al., 1995). Combinations
of model parameters yield latent paths, N′, expressed in terms of increments in
concentrations, and are weighted in the posterior proportionally (modulo the prior)
to the likelihood of scaled paths, ρPeffN

′. The temporal nature of the data is
important here because the curvature of scaled paths should roughly match that of
the data. Thus, we are leveraging curvature in the data to make inferences, not just
the pointwise emission probabilities.

We check that ρ × Peff and the parameters governing the outbreak dynamics
are identifiable via a simple simulation. We drew 500 sets of parameters from the
priors given in Table S9, and simulated an outbreak and a dataset for each set of
parameters. The models were fit via the LNA under the same priors from which the
parameters were drawn using the MCMC procedure used to fit models for the main
coverage simulation (described in the first section of Web Appendix C). The results
are summarized in Table S10. The nominal coverage rates for all model parameters
is approximately correct. However, the relative widths of the posterior credible
intervals for the case detection rate are substantially narrower than the relative
widths of the credible intervals for ρ and Peff vis–a–vis their prior intervals. This
suggests that the data are informative about ρ×Peff . The priors for ρ and Peff are
not completely flat, and the scale of the observed counts is itself informative about
Peff . Therefore, we still expect, and observe, some contraction in the posteriors for
ρ and Peff , individually.

Table S9: Parameters and priors used in simulating 500 SIR outbreaks
where the effective population size was a parameter in the model. The
true population size was 100,000. Each outbreak was simulated from a
MJP with SIR dynamics. The observed incidence was a negative binomial
sample of the true incidence.

Parameter Interpretation Prior Median (95% Interval)

R0− 1 Basic reproduction # - 1 LogNormal(0, 0.5) =⇒ R0 = 2.00 (1.38, 3.66)
1/µ Mean infectious period LogNormal(0.7, 0.35) 2.01 (1.01, 4.00)

ρ/(1− ρ) Odds of case detection LogNormal(0, 1.4) =⇒ ρ = 0.5 (0.06, 0.94)
φ Neg.Binom. overdispersion Exponential(0.1) 6.93 (0.25, 36.89)

Peff Effective population size Unif(5000, 50000) 27500 (6125, 48875)

51



Table S10: Results for the models fit to the outbreaks simulated un-
der SIR dynamics with random effective population sizes. Reported are
the nominal coverage rates of 95% credible intervals, the median (95%
CI) of the posterior median deviations (PMD), credible interval widths
(CIW), and credible interval widths relative to the 95% prior interval
widths (Rel.CIW). The relative widths of the credible intervals for ρ×Peff
are computed with respect to the induced prior resulting from the marginal
priors for ρ and Peff .

Parameter Coverage PMD CIW Rel.CIW

R0 0.94 -0.02 (-0.9, 0.58) 1.1 (0.47, 2.43) 0.48 (0.21, 1.06)
µ 0.95 0 (-0.36, 0.21) 0.49 (0.29, 0.85) 0.66 (0.4, 1.16)
ρ 0.95 -0.01 (-0.36, 0.24) 0.55 (0.14, 0.74) 0.62 (0.16, 0.84)

Peff 0.96 800 (-18900, 16100) 32200 (14600, 41100) 0.75 (0.34, 0.96)
ρ× Peff 0.93 35 (-9000, 4200) 6750 (640, 26750) 0.18 (0.02, 0.72)

φ 0.95 0.04 (-13.49, 8.95) 9.1 (0.31, 46.85) 0.25 (0.01, 1.28)

Web Appendix E: Modeling the Spread of Ebola

in West Africa

We modeled the spread of Ebola in Guinea, Liberia, and Sierra Leone under SEIR
transmission dynamics within each country, incorporating cross–border transmission
via virtual migration of infectious individuals. The model was first fit to a dataset
simulated from the true model under known parameters, and then to incidence data
from the 2013–2015 West Africa outbreak, each time using both the LNA and ODE
approximation computation. The priors and model fitting procedures were largely
the same for each dataset and for each approximation. Hence, the following sections
apply to all Ebola models.

Model Parameters and Rates of State Transition

Priors for Model Parameters

Priors for Effective Population Sizes and Initial Compart-
ment Counts

At the time when transmission was assumed to commence in each country, suscep-
tible individuals in the population were considered to either be geographic or social
proximate to the transmission process, in which case they could possibly become
exposed, or were detached from the transmission process. We separate the S com-
partment into a compartment for individuals who are susceptible and connected to
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Table S11: Parameters and their interpretations. Subscripts, A,B, indi-
cate countries. All parameters governing rates of state transition for Liberia
and Sierra Leone are zero until three weeks prior to the first detected case,
when transmission was assumed to commence in each country.

Parameter Interpretation State Transition
βA(t) Per–contact rate of transmission within country A. SEA → EA
αAB(t) Per–contact rate of transmission from country A to B. SEA → EA
ωA(t) Rate at which latent individuals become infectious. EA → IA
µA(t) Rate at which infectious individuals recover. IA → RA

Peff,A Effective population size. —
ρA Mean case detection rate. —
φA Negative binomial overdispersion. —

Table S12: Rates of state transition. Subscripts for rates indicate model
compartments and superscripts indicate countries, while subscripts for
compartments and parameters indicate countries. All rates of state tran-
sition for Liberia and Sierra Leone are zero until three weeks prior to the
first detected case, when transmission was assumed to commence in each
country.

Rate State Transition
λASEE(t) = βA(t) (IA + αBA(t)IB + αCA(t)IC)SEA SEA → EA

λAEI(t) = ωA(t)EA EA → IA
λAIR(t) = µA(t)IA IA → RA
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exposure, SE, and individuals who are susceptible but effectively removed, SR. The
fraction of the initially susceptible population that could possibly become exposed
corresponds the effective population size. We identify the scale of the prior for SE

by matching the total number of cases that were detected in each country to the
number of cases that we would expect to detect given the effective population size
under deterministic outbreak with SEIR dynamics.

The final size relation for the SEIR model (Miller, 2012) relates the fraction of
the population that becomes infected, π, to the basic reproduction number via:

(1− π) = exp−πR0 .

Tables S15 and S16 give the effective fraction of the population that could possibly
become exposed in each country in order for the expected number of detected cases
under deterministic SEIR dynamics to match the observed number of cases under a
range of values for the adjusted reproduction number, Radj, and mean case detection
rate, ρ.

In our Ebola models, we used a multivariate normal approximation to a multi-
nomial distribution for the initial distribution of individuals. The hyperparameter
for country A, was set to

αA = (SA = NA − 30, EA = 15, IA = 10, RA = 5),

and we compute the effective number of susceptibles as SEA = S−SRA . The effective
population size is Peff,A = SEA + EA + IA +RA.

Ebola Model MCMC Details for Models Fit via the LNA and
ODE

The model fitting procedure and priors were the same for both models, and were
also the same for models fit via the LNA and ODE approximations. We ran five
chains for each model, initialized at random parameter values, for 150,000 itera-
tions per chain, the first 50,000 of which consisted of an adaptive tuning phase.
The model parameters, not including the initial compartment volumes, were jointly
updated via MVNSS (Web Appendix C). The empirical covariance for the MVNSS
algorithm was adapted over the first 100,000 iterations using the gain factor se-
quence, γn = 0.5(1 + 0.01n)−0.9. The contribution of isotropic Gaussian noise to
the proposal was initialized at 0.001 and reduced throughout the adaptation phase
according to the sequence ιn = 0.001(1 + 0.01n)−0.99. The covariance matrix was
blocked by country, treating parameters belonging to different countries as inde-
pendent in the MCMC proposal kernel. Migration parameters were blocked with
parameters corresponding to the destination country. The initial compartment vol-
umes were jointly updated in a separate EllipSS update than the rest of the latent
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Table S15: Rough estimates of effective population sizes under different
reproduction numbers and detection rates that are needed to match the
observed case counts from the West Africa Ebola outbreak to expected
counts of detected cases under deterministic SEIR dynamics.

Detection rate (ρ)

R0 0.4 0.6 0.8
Guinea

1.25 14400 9560 7200
1.5 21700 14500 10900
1.75 31500 21000 15800

Liberia
1.25 19800 13200 9940
1.5 29900 19900 15000
1.75 43500 29000 21700

Sierra Leone
1.25 45000 30000 22500
1.5 67800 45200 33900
1.75 98500 65700 49200

Table S16: Rough estimates of effective population sizes under different
reproduction numbers and detection rates that are needed to match the
observed case counts from a simulated Ebola outbreak to expected counts
of detected cases under deterministic SEIR dynamics.

Detection rate (ρ)

R0 0.4 0.6 0.8
Guinea

1.25 17600 11700 8850
1.5 26500 17700 13200
1.75 38500 25700 19200

Liberia
1.25 37000 24700 18500
1.5 55800 37200 27900
1.75 81000 54000 40500

Sierra Leone
1.25 40500 27000 20200
1.5 60900 40600 30500
1.75 88500 59000 44200
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Table S17: Priors for the initial compartment volumes at the times when
transmission was assumed to commence in Guinea, Liberia, and Sierra
Leone. The initial compartment volumes for each country are assigned
independent truncated multivariate normal priors (Web Appendix B). If
the population size for country A is NA, and the initial state probability
is denoted p0,A = X0,A/NA = (S0,A, E0,A, I0,A, R0,A)/NA, the prior is a
truncated multivariate normal approximation of a multinomial distribution
with mean NAp0,A and covariance NA(P0,A − p0,Ap

T
0,A).

Country Prior mean initial volumes (X0)
Guinea (11.8× 106 − 30, 15, 10, 5)
Liberia (4.4× 106 − 30, 15, 10, 5)
Sierra Leone (7.1× 106 − 30, 15, 10, 5)

LNA paths. The MCMC alternated between one ElliptSS and one MVNSS updates
per MCMC iteration. The ElliptSS bracket width was reset after the first 5,000
MCMC iterations to ω = 2

√
2 log(10)σElliptSS, where σElliptSS was the standard

deviation of the accepted angles over the initial iterations. The MCMC estimation
scales for each country were parameterized as in Table S3 with the one addition
being the log ratio of adjusted reproductive numbers, subtract one, for Guinea,

log
(

(R
(2)
eff,G − 1)/(R

(1)
eff,G − 1)

)
. Convergence was assessed visually by inspection of

traceplots of posterior samples, and via potential scale reduction factors (PSRFs)
(Brooks and Gelman, 1998) computed via the coda R package (Plummer et al.,
2006). The LNA models each took roughly three days to run while run times for
ODE models took between 1–2 hours.

Ebola Model MCMC Details for Computation with Particle
Marginal Metropolis–Hastings

Computation using the MMTL approximation within PMMH was done using the
pomp R package King et al. (2016b). We used 1,000 particles in the PMMH algo-
rithm. The time step for MMTL was set to 1/7, which, for example, corresponds to
τ–leaping over one day increments given weekly incidence data. The MCMC was
initialized and parameterized in the same way as LNA and ODE models. Parameter
updates were made using a multivariate Metropolis algorithm with Gaussian pro-
posals. The proposal covariance matrix was adapted over an initial run of 50,000
iterations, with adaptation starting after the first 100 iterations were completed.
The gain factor sequence implemented in the package is of the form γn = nα, where
the cooling term, α, was set to 0.99975. MCMC was run for 300,000 iterations
following the adaptive MCMC phase. The posterior samples from all five MCMC
chains were combined after discarding the initial samples from the adaptation phase.
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We were unable to obtain a convergent and well mixing MCMC sampler, despite
substantial expenditure of time and effort, even for the dataset simulated under the
assumed model. Hence, PMMH was abandoned as a computational strategy in the
analysis of data from the West Africa Ebola outbreak. The multivariate PSRF,
computed using the coda package in R (Plummer et al., 2006), was 1.89 and four
of the 24 parameters had univariate PSRF values above 1.05, indicating that the
posterior had not been adequately explored.

Single–Country Models Fit to Ebola Data From Guinea, Liberia,
and Sierra Leone

A typical first step in learning about the overall outbreak dynamics is to separately
model the incidence data from each country. This is less challenging than fitting a
multi–country model that incorporates cross–border transmission since each model
will have fewer parameters and a smaller latent state space. Furthermore iterating
through simplified models is helpful in identifying parameterizations that simplify
the posterior geometry (see Web Appendix B).

Figure S6: Diagram of state transitions for SEIR models fit to Ebola in-
cidence data from Guinea, Liberia, and Sierra Leone. Dotted boxes denote
countries, nodes in circles denote the model compartments: susceptible
(S), exposed (E), infectious (I), recovered (R). Compartments are sub-
scripted with country indicators. The number of susceptible individuals
is equal to the effective population size, estimated as a parameter in the
model, minus the numbers of exposed, infected, and recovered individuals.
Solid lines with arrows indicate stochastic transitions between model com-
partments, which occur continuously in time. Rates at which individuals
transition between compartments are denoted by λ and are subscripted
by compartments and superscripted by countries, e.g., λLSE is the rate at
which susceptible individuals become exposed in Liberia. Transmission in
Liberia and Sierra Leone was assumed to commence at 10 and 19 weeks,
respectively. Full expressions for the rates are given in Table S18.
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We fit separate SEIR models, diagrammed in Figure S6, to the incidence data
from each country using both the LNA and ODE approximations. Transmission
was modeled in Liberia beginning March 2, 2014, and in Sierra Leone from May 4,
2014, corresponding to three weeks prior to the first confirmed or probable cases
in those countries. The force of infection in each country included a constant term
for infectious contact from outside the population, but did not explicitly link exoge-
nous transmission to the prevalence in other countries. The transition rates for the
single–country models are given in Table S18. To account for the small scale of each
outbreak relative to the population size in the country, we estimated the effective
population size as a parameter in the model. The number of susceptible individuals
was then equal to the effective population size, minus the numbers of exposed, in-
fected, and recovered individuals. To complete the model specification, the observed
incidence was modeled as a negative binomial sample of the true incidence in each
inter–observation interval, as in (1).

Table S18: Rates of state transition for single–country models for Ebola
transmission. Subscripts for rates indicate model compartments. All rates
of state transition for Liberia and Sierra Leone are zero until three weeks
prior to the first detected case, when transmission was assumed to com-
mence in each country.

Rate State Transition
λSEE(t) = (α(t) + β(t)I)SE SE → E

λEI(t) = ω(t)E E → I
λIR(t) = µ(t)I I → R

The priors for single–country model parameters were the same as those used in
fitting the multi–country model, given in Tables S13 and S17. The exception was
the prior for the baseline rate of transmission from outside the population, where
for each country we took 1000α ∼Exponential(rate=40), reflecting our assumption
that there were probably fewer than a dozen (two dozen under the more diffuse
prior regime) transmission events per 1,000 infected individuals outside the country.
This was based in part on results published in Dudas et al. (2017), who estimated
between one–half to two dozen reintroduction events, depending on the country,
between April 2014 and May 2015. We also used the same parameterizations for
the estimation scales on which our MCMC samplers explored the posteriors (Table
S14), again with the exception of the baseline rate of exogenous transmission. For
each single–country model, we parameterized the estimation scale for this parameter
as log(1000α). All other MCMC details — number of iterations, adaptation tuning
parameters, etc. — were the same as those used in fitting the multi–country Ebola
model. Posterior medians and credible intervals for all parameters are reported in
Table S19.
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Additional Results and Diagnostics for the Model Fit via the
Linear Noise Approximation — Simulated Data Example
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Additional Results and Diagnostics for the Model Fit via the
Ordinary Differential Equation Approximation — Simulated
Data Example

Additional Results for LNA and ODE Models Fit to Data
from the West Africa Outbreak
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Figure S9: Posterior distributions of LNA model parameters for the
model fit to data from the West Africa Ebola outbreak. We show pos-
terior medians (solid gray lines), 95% Bayesian credible intervals (light
gray areas under the posterior densities), prior densities (induced priors for
the reporting rate and latent period durations) over the posterior ranges
(dashed green curves). Priors and interpretations of parameters are speci-
fied in Table S13.
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Figure S10: Posterior distributions of ODE model parameters for the
model fit to data from the West Africa Ebola outbreak under tight pri-
ors. We show posterior medians (solid gray lines), 95% Bayesian credible
intervals (light gray areas under the posterior densities), prior densities
(induced priors for the reporting rate and latent period durations) over
the posterior ranges (dashed green curves). Priors and interpretations of
parameters are specified in Table S13.
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Table S20: Posterior estimates of initial numbers of exposed and infected
individuals for the Ebola models fit to data from the West Africa outbreak.
The effective number of susceptibles is equal to the effective population
size minus the numbers of exposed, infected, and recovered individuals,
but is not reported along with the number of recovered individuals since
the effective population size is only weakly identified (Web Appendix D).
Country–specific parameters are denoted by subscripts G, L, and S. Priors
are given in Table S17.

Parameter LNA ODE
E0,G 8.9 (2.1, 17.6) 12.4 (4.5, 20.2)
E0,L 9 (2, 16.9) 0.6 (0, 3.3)
E0,S 6.4 (0.8, 14.1) 14.6 (7.1, 21.5)
I0,G 6.9 (1.4, 13.4) 7.9 (2, 14.4)
I0,L 6 (1, 12) 0.3 (0, 1.6)
I0,S 7.3 (1.7, 13.2) 11.1 (5.5, 16.7)

Figure S11: (Bottom panel) Comparison of posterior predictive p-values
(PPPs) and relative posterior predictive interval (PPI) widths for LNA
and ODE models fit to data from the West Africa Ebola outbreak. Each
point corresponds to the observed incidence in a given week. The X–
Y coordinates give the PPPs under each model. The size and color of
each point corresponds to the relative PPI width, computed as (σ̂ODEpost,` −
σ̂LNApost,`)/σ̂

LNA
post,`, and the sign of the relative width is further emphasized

by the shape of the point. Dots indicate that PPIs for the ODE model
are wider, while triangles corresponds to observations for which the PPI
produced by the LNA model was wider.
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Table S21: Effective sample sizes and potential scale reduction factors
for LNA and ODE Ebola multi–country model parameters.

LNA ODE

Parameter ESS PSRF ESS PSRF
log(βGPeff,G/µG − 1) + log(Peff,GρS) 1013 1.01 6449 1.00
log(βLPeff,L/µL − 1) + log(Peff,LρL) 559 1.02 6505 1.00
log(βSPeff,S/µA − 1) + log(Peff,SρS) 756 1.01 5604 1.00
log(αGLPeff,L/µG) 2866 1.00 8626 1.00
log(αGSPeff,S/µG) 1406 1.01 5012 1.00
log(αLGPeff,G/µL) 3335 1.00 7964 1.00
log(αLSPeff,S/µL) 863 1.01 4172 1.00
log(αSGPeff,G/µS) 683 1.01 6304 1.00
log(αSLPeff,L/µS) 1396 1.01 3475 1.00
log(Peff,GρG) 6280 1.00 6581 1.00
log(Peff,LρL) 6166 1.00 9172 1.00
log(Peff,SρS) 7544 1.00 9312 1.00
log(ωG/µG) 6002 1.00 8624 1.00
log(ωL/µL) 7212 1.00 9266 1.00
log(ωS/µS) 7087 1.00 5961 1.00
log(7/µG) 884 1.01 3818 1.00
log(7/µL) 544 1.01 5112 1.00
log(7/µS) 840 1.01 2736 1.00
log(ρG/(1− ρG)) 1431 1.01 1696 1.00
log(ρL/(1− ρL)) 783 1.01 2416 1.00
log(ρS/(1− ρS)) 3503 1.00 4041 1.00
1/
√
φG 607 1.01 9627 1.00

1/
√
φL 794 1.03 7436 1.00

1/
√
φS 980 1.01 9384 1.00
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