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ABSTRACT 
A structural health monitoring (SHM) system is essentially an information-gathering mechanism. The information
accumulated via an SHM system is crucial in making appropriate maintenance decisions over the life cycle of the
structure. An SHM system is feasible if it leads to a greater expected reward (by making data and risk-informed
decisions) than the intrinsic cost  (or investment risk) of the information acquiring mechanism incurred over the
lifespan of the structure. In short, the value of information acquired through a feasible SHM system manifest into net
positive expected cost savings over the lifecycle of the structure. Traditionally, the cost-benefit analysis of an SHM
system is carried out through pre-posterior decision analysis that helps one evaluate the benefit of an information-
gathering mechanism using the expected value of information (EVoI) metric. EVoI is a differential measure and can
be  mathematically  expressed  as  a  difference  between  the expected  reward and investment  risk.  Therefore,  by
definition, EVoI fails  to capture the compounded savings over the lifecycle of  the structure (since it  quantifies
absolute savings). Unlike EVoI, we quantify the economic advantage of installing an SHM system for inference of
the structural state by using a normalized expected-reward (benefit of using an SHM system) to investment-risk
(cost of SHM over the lifecycle) ratio metric (also called a risk-adjusted reward in short) as the objective function to
quantify the value of information (VOI). We consider monitoring of a miter gate as the demonstration example and
focus on the inference of an unknown and uncertain state-parameter(s) (i.e., damage from loss of contact between
gate and wall, the “gap”) from the acquired sensor data. This paper proposes a sensor optimization framework that
maximizes  the  net  expected  compounded savings  achieved  as  a  result  of  making  SHM system-acquired  data-
informed lifecycle management decisions. We also inspect the impact of various risk-intensities of decision-makers
on the optimal sensor design.

Keywords: Value  of  information,  Bayesian  optimization,  Behavioral  psychology,  Structural  health  monitoring,
Sensor design

INTRODUCTION
This paper briefly describes  a sensor optimization framework with a target  of maximizing the net  savings as a
consequence of using an SHM system over the lifecycle of the structure. Conventionally, the cost-benefit analysis of
an SHM system is carried  out  through pre-posterior  decision analysis  using the expected  value of  information
(EVoI) metric (a differential metric). We use Expected Value of Information (EVoI) (a differential metric) and risk-
adjusted-reward (a normalized metric) as an optimality criterion. Finally, the goal of this research is to obtain the
optimal sensor network design that maximizes the Value of Information over the lifecycle of the structure.

VALUE OF INFORMATION METRIC
Consider an SHM based decision-making problem. Let the state of the structure at time t ∈ ΩT  be defined by an
uncertain state-parameter vector denoted by Θ (t) with a realization θ ( t )∈ ΩΘ (t ). The data acquired by the SHM
system  z∈ ΩZ at  time  t  is  defined by  a  random variable  X z(t ),  where  x z (t )∈ ΩX z (t ) denote  an  observed
realization. The goal of an SHM system is to recommend a maintenance strategy selected from a set of predefined
choices  ΩD={d 0 , d1 , …, dn }.  For  a  risk-profile  of  the  decision-maker  parametrized  by  (γ , ξ ),  let
L ( d i ,θ true ; γ , ξ ) denote  the  consequence  cost/regret/loss  function  that  defines  the  total  perceived  loss  as  a



consequence of making the decision d i when the true state of the structure is θ true ( t ) at time t  (see [1,2]). To obtain
the benefit of an SHM system in the design phase, we require the following:

1. We  need  a  probabilistic  state-parameter  evolution  model  (See  [2]).  Let  Θ (t) denote  a  random  variable
representing the state-parameter at a time instance t ∈ ΩT . The prior state-parameter evolution model is then
quantified by f Θ ( t ) (θ ( t )).

2. We need an inflation-adjusted cost function. The factor (r ( t )+1 )
t  adjusts for the future inflation, where r (t ) is

the assumed future monthly rate of inflation at time t  in months. We consider four types of costs:
 Cost  A:  The  inflation-adjusted  consequence-cost  of  decision  making  at  time  t ,  denoted  by

~L (d j ,θ true ( t ) , t ; γ , ξ )=L (d j ,θ true ( t ) ; γ ,ξ ) . (r ( t )+1 )
t
. The inspection and maintenance decisions are

usually carried out at discrete time steps. 
 Cost B and Cost C: The maintenance (cost B) and operation (cost C) cost of the SHM system, denoted by

CM ( t )=CM . (r ( t )+1 )
t and CO ( t )=CO . (r ( t )+1 )

t respectively.  Here, CM  denotes the current estimated
cost for one instance of maintenance of the system, and CO denotes the currently estimated operation cost
per month. We assume that the maintenance is done periodically.

 Cost D: The cost of design and initial installation of an information gathering system C (z). We assume
this to be an initial cost and hence time-independent.

When new data/measurement   x z (t )∈ ΩX z (t )is  obtained,  the state of  the structure is  updated by obtaining the
posterior distribution of the state parameter, denoted by  f Θ∨X z

(θ∨xz), using Bayesian Inference (see [3]). The
updated  posterior  state-parameter  evolution  model,  denoted  by  f Θ (t)∨X z(t )(θ ( t )|xz ( t ) ),   is  obtained  by  using
Bayesian inference utilizing the measurement data simulated by a finite element model that is assumed to be the
ground truth.

The EVoI of the design z for a risk profile ( γ , ξ )at a given time instance is defined as:
EVoI ( z , t ; γ ,ξ )=C save ( z ; γ , ξ )−C ( z )

C save (z , t ; γ , ξ )=EX z (t ) [min
d i

~L ( d j , θtrue ( t ) ,t ; γ , ξ ) ]−min
di

EΘ (t ) [
~L (d j ,θ true ( t ) , t ; γ , ξ ) ]

(1a)

(1b)
Here,  C save (z , t ; γ , ξ ) gives  the  expected  cost  saved  by  making  a  better  decision  based  on  newly  acquired
measurements through the mechanism z at time t  for the risk profile (γ , ξ ).  The EVoI over the life cycle for an
SHM system z for the risk-profile (γ , ξ ), denoted by EVo I LC ( z ;γ ,ξ ) , and the risk-adjusted reward, denoted by
λLC (z ;γ ,ξ ) is then defined as (derived in Chadha et al. [3]):
EVo I LC ( z ;γ ,ξ )=C saveLC (z ; γ , ξ )−(C (z )+CM∧O ( z ))

λLC ( z ; γ , ξ )=
C saveLC (z ; γ , ξ )

(C (z )+C M∧O ( z ) )

(2a)

(2b)

The quantity C saveLC ( z ;γ ,ξ ) denotes the expected savings over the lifecycle of the structure as a consequence of
making data-informed decision making for the risk-profile (γ , ξ ), such that:

C saveLC ( z ;γ ,ξ )=∑
n=1

N A

(min
di

EΘ (t An) [
~L ( d j , θ true (t An ) , tA n

;γ ,ξ ) ])−∑
n=1

N A

(E X z(tAn
)[min

di

EΘ (t An
)∨X z(t An

)[
~L ( d j , θtrue (tAn ) , tAn

; γ , ξ ) ]])
(3)

An SHM system is feasible if it satisfies either of these equivalent conditions:

EVo I LC ( z )≥ 0 ,∨ λLC (z ) ≥1. (4)
Among many SHM system designs, optimal designs zEVoI  and z λ are obtained as:

zEVoI=arg max
z ∈ Ω Z

EVo I LC ( z ) ,∧z λ=arg max
z ∈ Ω Z

λLC ( z ) (5)



We obtain the optimal sensor design using  EVo I LC ( z ) and  λLC ( z ) as the objective functional by deploying the
Bayesian optimization algorithm described in Yang et al. [3].

APPLICATION TO MITER-GATES
Let the state of the miter gate be completely defined by the loss of boundary contact (or a “gap”) between the gate
and  the  concrete  wall  at  the  bottom  of  the  gate,  such  that  θ ∈ ΩΘ=¿.  Consider  a  binary  decision-space
ΩD={d 0 , d1}, such that d0 is a decision to not do specified maintenance and d1 is a decision to perform some
specified maintenance. Figure (1a) below shows the optimal sensor network design zEVoI  obtained using Eq. (5) and
the optimization algorithm delineated in Yang et al. [3].  It was observed that the Bayesian algorithm picked two
sensors  close  to  the gap  (encircled  with red)  leading  to  maximum  EVo I LC ( zEVoI ). However,  for  comparison
purposes, we consider the optimal design  zEVoI  and the random design zrandom to have 5 sensors. This shows that
effectively, the optimal design would consist of a smaller number of sensors.

Fig 1a: Optimal sensor design zEVoI Fig 1b: Random design zrandom

Fig 1: Miter-gate and the sensor network design considering conservative decision profile 

Fig 2: Comparison of EVoI ( z , t ; γ ,ξ ) for optimal and random design at various time instances

We observe that the optimal sensor design leads to a higher Expected Value of Information at an intermediate time
period (5-30 months). Beyond this time period, the structural damage is high enough that a conservative decision
maker (the considered profile for the simulation) would recommend maintenance be carried out irrespective of the
SHM design  used  to  obtain  the  measurements.  Therefore,  for  higher  damage  levels,  decisions  obtained  using
optimal design and random design are the same. The  EVoI ( z , t ; γ ,ξ ) is not smooth in Fig. (2) because lower
particle numbers  were used for Bayesian inference using the particle filter  technique.  This was done to reduce
computational costs.

Conclusions:



This  paper  briefly  details  the  mathematical  formulation  behind  a  sensor  optimization  framework  that  aims  at
maximizing the net cost saving over the lifecycle of the structure. The idea targets the core of an SHM system and
attempts to come up with the most optimal data acquisition system design. This is currently ongoing research.
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