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ABSTRACT OF THE THESIS

Compute Efficient Extreme Multi-Label Classification

by

Siddhant Kharbanda

Master of Science in Computer Science

University of California, Los Angeles, 2024

Professor Cho-Jui Hsieh, Chair

This thesis focuses on developing novel techniques to improve the performance and

computational efficiency of Extreme Multi-label Text Classification (XMC). XMC involves

learning a classifier to assign the most relevant subset of labels to an input from a vast

label space, often in the order of millions. Over the past decade, XMC has found relevance

in numerous large-scale applications, such as query-to-ad-phrase matching in search ads,

title-based product recommendation, and prediction of related searches.

There are two major concerns in XMC, catering to the two sides of the problem: one

that addresses the short-text query format of the input and the other that addresses

the long-text document format of the input. Since its inception, the field has witnessed

consistent gains in performance with the scaling of compute in the document format space,

while the query format space, due to its online nature, has been limited to computationally

efficient smaller models. This thesis addresses both the short-text and long-text nature of

XMC. More specifically, the thesis not only provides computationally efficient solutions

to the symmetric problem setting, where both input instances and label features are

short-text in nature, but also challenges the state-of-the-art in the asymmetric problem,

where input instances are long-text, using only a single GPU!

The first chapter proposes Gandalf, a novel approach that leverages a label co-

occurrence graph to use label features as additional data points to supplement the training

distribution. By exploiting the characteristics of short-text XMC, Gandalf constructs
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valid training instances from the label features and uses the label graph to generate

corresponding soft-label targets, effectively capturing label-label correlations. Models

trained on these new instances, despite being less than half of the original dataset, can

outperform models trained on the original dataset, particularly on the PSP@k metric for

tail labels. Gandalf can be applied in a plug-and-play manner to various state-of-the-art

algorithms, leading to an average 5% relative improvement across 4 benchmark datasets

with up to 1.3M labels.

The second chapter addresses the computational cost of conventional XMC models,

which often require up to 640GB VRAM to train on the largest public dataset. This

high cost is a consequence of calculating the loss over the entire label space. The chapter

proposes UniDEC, a loss-independent, end-to-end trainable framework that trains the dual

encoder (DE) and classifier together in a unified manner with a multi-class loss, reducing

the computational cost by 4-16×. UniDEC employs a pick-some-label (PSL) reduction to

compute the loss on only a subset of carefully chosen positive and negative labels in-batch,

maximizing their supervisory signals. The proposed framework achieves state-of-the-art

results on datasets with millions of labels while being computationally efficient, requiring

only a single GPU. UniDEC’s state-of-the-art performance and computational efficiency

have led to its successful deployment in Microsoft Bing’s query-to-ads business, serving

over 500 million advertisments in over 100 countries across the EMEA, APAC, and Latin

America regions from September 2023 to March 2024.

In summary, this thesis introduces novel techniques to improve the performance and

computational efficiency of XMC. The proposed methods, Gandalf and UniDEC, leverage

label features, capture label-label correlations, and significantly reduce computational

costs while maintaining or improving performance, thus advancing the state-of-the-art in

compute efficient extreme multi-label classification.
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CHAPTER 1

Learning Label-Label Correlations in Extreme

Multi-label Classification via Label Features

1.1 Introduction

Extreme Multilabel Classification (XMC) has found numerous applications in the domains

of related searches (Jain et al., 2019), dynamic search advertising (Prabhu et al., 2018b) and

recommendation tasks, which require predicting the most relevant results that frequently

co-occur together (Chiang et al., 2019; Hu et al., 2020), or are highly correlated to the

given product or search query. These tasks are often modeled through embedding-based

retrieval-cum-ranking pipelines over millions of possible web page titles, products titles,

or ad-phrase keywords forming the label space.

Going beyond conventional tagging tasks for long textual documents consisting of

hundreds of words, such as articles in encyclopedia (Partalas et al., 2015), and bio-medicine

(Tsatsaronis et al., 2015), contemporary research focus has also widened to settings in

which the input is just a short phrase, such as a search query or product title. Propelled

by the surge in online search, recommendation, and advertising, applications of short-text

XMC ranging from query-to-ad-phrase prediction (Dahiya et al., 2021b) to title-based

product-to-product (Mittal et al., 2021a) recommendation have become increasingly

prominent.

A major challenge across XMC problems is the extreme imbalance observed in their

data distribution. Specifically, these datasets adhere to Zipf’s law (Adamic and Huberman,

2002; Ye et al., 2020), i.e., following a long-tailed distribution, where most labels are tail
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Datasets N L APpL ALpP AWpP

LF-AmazonTitles-131K 294,805 131,073 5.15 2.29 6.92
LF-WikiSeeAlsoTitles-320K 693,082 312,330 4.67 2.11 3.01

LF-WikiTitles-500K 1,813,391 501,070 17.15 4.74 3.10
LF-AmazonTitles-1.3M 2,248,619 1,305,265 38.24 22.20 8.74

Table 1.1: Details of short-text benchmarks with label features. APpL is the avg. points
per label, ALpP being avg. labels per point and AWpP is the length i.e. avg. words per
point.

labels with very few (≤ 5) positive data-points in a training set spanning ≥ 106 total

data points (Table 1.1). With so few positive examples, training a successful classifier

on these labels purely from instance-to-label pairs seems an insurmountable challenge.

Therefore, recent methods have begun to incorporate additional data sources.

Label features and label co-occurrence In many of the settings listed above, labels

are not just featureless integers, but do have a semantic meaning in and of themselves.

For example, when matching products, each product ID could be associated with the

name of the product. This is particularly attractive in the short-text setting, when both

inputs and labels come from the same space of short phrases. Consequently, while earlier

work mostly focused on the nuances of short-text inputs (Dahiya et al., 2021b; Kharbanda

et al., 2023), more recent methods have successfully incorporated the short-text label

descriptors into their pipeline (Mittal et al., 2021a,b; Dahiya et al., 2021a, 2023a).

Yet, this still seems to underutilize the wealth of information present in label features.

In particular, we demonstrate that it is possible to train a classifier using only label

information, that is, without ever presenting to it any of the training instances, and

outperform the same classifier trained on the original training data on tail labels. This

surprising feat is enabled by the exploitation of label co-occurrence information.

In particular, using the interchangability of label features and instances, instead of

aiming for contrastive learning (Dahiya et al., 2021a), we want to use the label features

as additional, supervised training points. However, this requires them to be associated

with some apriori unknown label vector. In order to generate training targets, we make
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the assumption that the probability of a label j being relevant for the textual feature of

another label i, is equal to the conditional probability of observing j, given that i is also

a relevant label.

Contributions This insight yields a simple method, Gandalf (Graph AugmeNted

DAta with Label Features), which exploits the unique setting of short-text XMC in a

novel manner to generate additional training data in order to alleviate the data scarcity

problem. As a data-centric approach, it is independent of the specific model architecture,

enabling its application to a wide range of both current and potential future state-of-

the-art models. The unchanged model architecture also implies that not only the model

inference latency remains unchanged, but also peak memory consumption required during

training is unaffected, contrary to some model-based approaches that incorporate label

metadata (Mittal et al., 2021a; Dahiya et al., 2021a; Chien et al., 2023).

The additional training instances lead to overall longer training time. Nonetheless,

when keeping the compute budget fixed, we can observe Gandalf significantly outper-

forming the original dataset. When trained until convergence, we show an average of 5%

improvement on 5 state-of-the-art extreme classifiers across 4 public short-text bench-

marks, with some settings seeing gains up to 30%. In this way, XMC methods which

inherently do not leverage label features can beat or perform on par with strong baselines

which either employ elaborate training pipelines (Dahiya et al., 2021a), large transformer

encoders (You et al., 2019; Zhang et al., 2021c; Dahiya et al., 2023a) or make heavy

architectural modifications (Mittal et al., 2021a,b) to leverage label features.

Finally, we show that Gandalf could be considered an extension of the GLaS (Guo et al.,

2019) regularizer to the label feature setting. We interpret it as tuning the bias-variance

trade-off, where the additional error introduced by inaccurate additional training data is

more then compensated for by the decrease is variance, especially for extremely noise tail

labels (Buvanesh et al., 2024).
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1.2 Preliminaries

For training, we have available a multi-label dataset D =
(
{xi,yi}Ni=1, {zl}Ll=1

)
comprising

of N data points. Each i ∈ [N ] is associated with a small ground truth label vector

yi ∈ {0, 1}L from L ∼ 106 possible labels. Further, xi, zl ∈ X denote the textual

descriptions of the data point i and the label l which, in this setting, derive from the

same vocabulary universe V (Dahiya et al., 2021a). The goal is to learn a parameterized

function f : xi 7→ yi.

One-vs-All Classification (OvA) A common strategy for handling this learning

problem is to map instances and labels into a common Euclidean space E = Rd, in

which the relevance sl(x) of a label l to an instance is scored using an inner product,

sl(x) = ⟨Φ(x),wl⟩. Here, Φ(x) is the embedding of instance x, and wl the l’th column of

the weight matrix W.

The prediction function selects the k highest-scoring labels, f(x) = topk (⟨Φ(x),W⟩).

Training is usually handled using the one-vs-all paradigm, which applies a binary loss

function ℓ to each entry in the score vector. In practice, performing the sum over all labels

for each instance is prohibitively expensive, so the sum is approximated by a shortlist of

labels S(xi) that typically contains all the positive labels, and only those negative labels

which are expected to be challenging for classification (Dahiya et al., 2021a,b, 2023a;

Zhang et al., 2021c; Kharbanda et al., 2023):

LD[Φ,W] =
N∑
i=1

L∑
l=1

ℓ(yil, ⟨Φ(x),wl⟩)

≈
N∑
i=1

∑
l∈S(xi)

ℓ(yil, ⟨Φ(x),wl⟩) .
(1.1)

Even though these approaches have been used with success, they still struggle in

learning good embeddings wl for tail labels: A classifier that learns solely based on

instance-label pairs has little chance of learning similar label representations for labels
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Figure 1.1: Gandalf augments the training dataset D by generating soft targets for each
label based on label co-occurrence statistics. These additional datapoints Z are simply
concatenated to the traditional dataset for training.

that do not co-occur within the dataset, even though they might be semantically related.

Consequently, training can easily lead to overfitting even with simple classifiers (Guo

et al., 2019).

Label Features To reduce the generalization gap, regularization needs to be applied

to the label weights W, either explicitly as a new term in the loss function (Guo et al.,

2019), or implicitly through the inductive biases of the network structure (Mittal et al.,

2021a,b) or by a learning algorithm (Dahiya et al., 2021a, 2023a). These approaches

incorporate additional label metadata – label features – to generate the inductive bi-

ases. For short-text XMC, these features themselves are often short textual description,

coming from the same space as the instances, as the following examples, taken from (i)

LF-AmazonTitles-131K (recommend related products given a product name) and (ii) LF-

WikiTitles-500K (predict relevant categories, given the title of a Wikipedia page) illustrate:

Example 1: For “Mario Kart: Double Dash!!” on Amazon, we have available: Mario

Party 7 | Super Smash Bros Melee | Super Mario Sunshine | Super Mario Strikers as the

recommended products.

Example 2: For the “2022 French presidential election” Wikipedia page, we have the

available categories: April 2022 events in France | 2022 French presidential election |

5



2022 elections in France | Presidential elections in France. Further, a google search of

the same query, leads to the following related searches - French election 2022 - The

Economist | French presidential election coverage on FRANCE 24 | Presidential Election

2022: A Euroclash Between a “Liberal... | French polls, trends and election news for

France, amongst others.

Figure 1.2: Correlations between labels and their first-order neighbours, as found by the
label co-occurrence on the LF-WikiTitles-500K dataset. The legend shows the selected
label, the bar chart shows the degree of correlation with its neighbouring labels. Correlated
labels often share tokens with each other and/or may be used in the same context.

6



In view of these examples, one can affirm two important observations: (i) the short-

text XMC problem indeed requires recommending similar items which are either highly

correlated or co-occur frequently with the queried item, and (ii) the queried item and

the corresponding label-features form an “equivalence class” and convey similar intent

(Dahiya et al., 2021a). For example, a valid news headline search should either result in

a page mentioning the same headline or similar headlines from other media outlets (see

Example 2). As a result, it can be argued that data instances are interchangeable with

their respective labels’ features. Exploiting this interchangeability of label and instance

text, Dahiya et al. (2021a, 2023a) proposes to tie encoder and decoder together and

require wl = Φ(zl). While indeed yielding improved test performance, the condition

wl = Φ(zl) turns out to be too strong, and it has to allow for some fine-tuning corrections

ηl, yielding wl = Φ(zl) + ηl. Consequently, training of SiameseXML and NGAME

is done in two stages: a contrastive loss is minimized, followed by fine-tuning with a

classification objective.

Label correlations Label-label dependencies can appear in multi-label classification in

two different forms: Conditional label correlations, and marginal label correlations (Dem-

bczyński et al., 2012). In the conditional case, label dependencies are considered condi-

tioned on each individual query, that is, they are independent if1

P[Y | X] =
∏
j

P[Yj | X] (1.2)

As an example, consider the search query “Jaguar”: If we know just this search term,

the results pertaining to both, the car brand and the animal, are likely to be relevant.

However, knowing that during a particular instance of this search, the user was interested

in the animal, one can conclude that car-based labels are less likely to be relevant. In

this way, the presence of one label gives information beyond what can be extracted just

from the search query.

1Capital X and Y denote the random variables associated with instance and labels, rsp.
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On the other hand, similar labels will generally appear together. Taking example 2

from the previous section, labels “2022 events in France” and “2022 elections in France”

will have an above-random chance of occurring together; however, that information is

already carried in the query “2022 French presidential election”, so the presence of one of

these labels doesn’t provide any new information, given the query. In that sense, labels

are marginally independent if

P[Y] =
∏

j P[Yj] . (1.3)

Given an instance, OvA classifiers generate scores independently for all labels. Thus,

they are fundamentally incapable of modelling conditional label dependence. However,

as standard performance metrics (P@k, PSP@k) are also decomposable into indepen-

dent contributions of each label, that is, they can be expressed purely in terms of label

marginals, they are similarly incapable of detecting whether a classifier models conditional

label dependence (Dembczyński et al., 2012).

This means that, as long as we want to focus on these standard metrics (and not on

inter-dependency aware losses such as Hüllermeier et al. (2022)), we only need to care

about marginal correlations. At first glance, this seems trivial: It can be shown that an

OvA classifier, trained using a proper loss, is consistent for P@k (Menon et al., 2019).

Unfortunately, consistency only tells us that, in the limit of infinite training data, we will

get a Bayes-optimal classifier. However, in practice, the XMC setting is very far from

infinite data—most tail labels will have less than five positive training examples.

Thus, the question we aim to tackle here is: Can we exploit knowledge about marginal

label correlations to improve training in the data-scarce regime of long-tailed multi-label

problems?
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1.3 Gandalf: Learning From Label-Label Correlations

By combining marginal label correlations with label features, we can extend the self-

annotation postulate of Dahiya et al. (2021a) to:

Postulate 1.3.1. Label-feature Annotation: Given a label j with label-features zj, we

posit that if these features are posed as a data point, its labels should follow the marginal

label correlations, that is

P[Yi = 1 | X = zj] ≈ P[Yi = 1 | Yj = 1] . (1.4)

Note that this reduces to self-annotation by setting i = j, in which case (1.4) becomes

P[Yj | zj] ≈ P[Yj | Yj] = 1.

In words, this means that, if the presence of label j indicates that label i would occur

with a certain probability for that same instance, then we assume that this probability

is also how likely that label i is to be relevant to a data point that consists of the label

features of label j. The right side of (1.4) can be written as

P[Yi = 1 | Yj = 1] = P[Yi = 1, Yj = 1] /P[Yj = 1] . (1.5)

Thus, we can use the co-occurrence statistics Gij := P[Yi = 1, Yj = 1] to calculate the

conditionals, and thus apply a plug-in approach using empirical co-occurrence:

P[Yi = 1 | Yj = 1] ≈ Ĝij

Ĝjj

,where, Ĝij :=
n∑

s=1

ysiysj .

Of course, in the data-scarce XMC regime, the co-occurrence matrix G will be very noisy.

In practice, we empirically find it beneficial to threshold the soft labels at δ, so that label

features as data-points are annotated by:

yGij :=


Ĝij/Ĝjj if Ĝij/Ĝjj > δ

0 otherwise

. (1.6)
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By approximating the left-hand side of (1.4) using a parameterized model Ψ, and

taking the empirical co-occurrence as a noise estimate for the right-hand side, we can

turn this equation into a (surrogate) machine-learning task. This is the same problem as

the original XMC task (1.1), applied to a different dataset Z = {(zi,yG
i )}Li=1. That is, we

want to optimize

LZ [Ψ,W] :=
L∑

i,j=1

yGij , ⟨Ψ(zj),wi⟩) . (1.7)

In Table 1.2, we present results for training on this surrogate task (row “Training

on Z”), when evaluating the resulting classifier on the original test set. The results are

striking, and provide a strong confirmation of the equivalence principle between label

features and input texts: Even though this model has never seen any actual training

instance, it performs adequate (AmazonTitles) or better (WikiSeeAlsoTitles) than the

original model in terms of precision at k. Looking at PSP, which gives more weight to

tail labels, it actually outperforms the original model, in some cases with a large margin.

This tells us that we can, in fact, identify the two encoders in equations 1.1 and 1.7,

Ψ ≡ Φ, and train a single model on the combined dataset G = D ∪ Z, as illustrated

in Figure 1.1. This combination of data yields strong improvements on both regular and

tail-label performance metrics.

LF-AmazonTitles-131K LF-WikiSeeAlsoTitles-320K

Training Data P@1 P@5 PSP@1 PSP@5 P@1 P@5 PSP@1 PSP@5

original D 35.62 17.35 27.53 37.50 21.53 10.66 13.06 16.33
surrogate Z 29.68 16.04 28.76 38.27 22.88 12.44 22.03 25.55
G = Z ∪ D 43.52 20.92 36.96 47.64 31.31 16.22 24.31 28.83
U(G, N) 38.46 18.52 32.29 41.59 25.93 13.34 19.75 23.57
Z1 ∪ D 37.59 18.18 30.75 40.06 24.43 12.15 16.89 20.02

G, yll′ = σ(Sll′) 42.80 20.49 37.01 46.73 30.28 15.43 23.97 28.45

Table 1.2: Experiments showing the quality of the datasets created with label features on
InceptionXML. While the baseline is surpassed by training on the combined dataset G, it
is also beaten by training on Z, where |Z| < |N |/2, underscoring its quality.
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1.3.1 Bias-Variance Trade-off

This improvement cannot be explained by the increased training set size |G| = N + L

alone, as we can show with the following simple experiment: We generate a new dataset

G ′ ∼ U(G, N) by uniformly sampling (without replacement) from the combined dataset a

subset that has the same size as the original training set |D| = N . Table 1.2 shows that

this already leads to significant improvements over the original training set.

To explain this phenomenon, we note that this augmented data is qualitatively slightly

different from the original training instances: the empirical co-occurrence matrix Ĝ

provides soft labels yG
i as training targets. XMC dataset exhibit high variance (Babbar

and Schölkopf, 2019; Buvanesh et al., 2024) because of the long tail labels, whereas the

soft labels of the augmented points provide a much smoother training signal. On the

other hand, they are based on the approximation of Postulate 1.3.1, and as such, will

introduce some additional bias into the method, essentially leading to a highly favourable

bias-variance trade-off.

In fact, the reduction in variance is so helpful to the training process that even

switching out (1.4) with one-hot labels based purely on the self-annotation principle

(ySAij := 1[i = j] such that Z1 = {(zi,ySA
i )}Li=1), thus considerably increasing the bias

in the generated data, we still get significant improvements over just using the original

training data (Table 1.2).

1.3.2 Connection to GLaS regularization

In order to derive a model for P[Yl′ = 1 | X = zl], we can take inspiration from the Glas

regularizer (Guo et al., 2019). This regularizer tries to make the Gram matrix of the label

embeddings ⟨wi,wj⟩ reproduce the co-occurrence statistics of the labels S,

RGLaS[W] = L−2

L∑
i=1

L∑
j=1

(⟨wi,wj⟩ − Sij)
2 . (1.8)
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Here, S denotes the symmetrized conditional probabilities,

Sij := 0.5(P[Yi = 1 | Yj = 1] + P[Yj = 1 | Yi = 1])

≈ 0.5(Ĝij/Ĝjj + Ĝij/Ĝii) .
(1.9)

By the self-proximity postulate (Dahiya et al., 2021a), we can assume wl ≈ Φ(zl). For

a given label feature instance with target soft-label (zl, y
GLaS
ll′ ), the training will try to

minimize ℓ(⟨Φ(zl),wl′⟩, yGLaS
ll′ ). To be consistent with Equation 1.8, we therefore want to

choose yGLaS
ll′ such that Sll′ = argmin ℓ(·, yGLaS

ll′ ). This is fulfilled for yGLaS
ll′ = σ(Sll′) for ℓ

being binary cross-entropy, where σ denotes the logistic function.

While the soft targets generated this way slightly differ from the ones of (1.6), as

already observed, the bias introduced by mildly incorrect training targets is offset by far

by the variance reduction, and we find that this version performs only slightly worse than

Gandalf (Table 1.2).

1.4 Main Results & Discussion

Benchmarks, Baseline and Metrics We benchmark our experiments on 4 standard

public datasets, the details of which are mentioned in Table 1.1. To test the generality

and effectiveness of our proposed Gandalf, we apply the algorithm across a variety of

state-of-the-art short-text extreme classifiers. These consist of (i) base frugal models

-Astec (Dahiya et al., 2021b) and InceptionXML (Kharbanda et al., 2023) - which

do not, by default, leverage label text information, (ii) Decaf (Mittal et al., 2021a),

Eclare (Mittal et al., 2021b) and InceptionXML-LF which equip the base models

with additional encoders to make use of label text and label correlation information and,

(iii) Ngame + Renee - consisting of Renee (Jain et al., 2023), which makes CUDA

optimizations to train BCE loss over a classifier for L labels without a shortlist. The

transformer encoder is initialized with pre-trained Ngame (M1, dual encoder) (Dahiya

et al., 2023a). We measure the performance using standard metrics P@k, its propensity-
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Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-AmazonTitles-131K LF-AmazonTitles-1.3M

SiameseXML 41.42 30.19 21.21 35.80 40.96 46.19 49.02 42.72 38.52 27.12 30.43 32.52

Astec 37.12 25.20 18.24 29.22 34.64 39.49 48.82 42.62 38.44 21.47 25.41 27.86
+ Gandalf 43.95 29.66 21.39 37.40 43.03 48.31 53.02 46.13 41.37 27.32 31.20 33.34

Decaf 38.40 25.84 18.65 30.85 36.44 41.42 50.67 44.49 40.35 22.07 26.54 29.30
+ Gandalf 42.43 28.96 20.90 35.22 42.12 47.61 53.02 46.65 42.25 25.47 30.14 32.83

Eclare 40.46 27.54 19.63 33.18 39.55 44.10 50.14 44.09 40.00 23.43 27.90 30.56
+ Gandalf 42.51 28.89 20.81 35.72 42.19 47.46 53.87 47.45 43.00 28.86 32.90 35.20

InceptionXML 36.79 24.94 17.95 28.50 34.15 38.79 48.21 42.47 38.59 20.72 24.94 27.52
+ Gandalf 44.67 30.00 21.50 37.98 43.83 48.93 50.80 44.54 40.25 25.49 29.42 31.59

InceptionXML-LF 40.74 27.24 19.57 34.52 39.40 44.13 49.01 42.97 39.46 24.56 28.37 31.67
+ Gandalf 43.84 29.59 21.30 38.22 43.90 49.03 52.91 47.23 42.84 30.02 33.18 35.56

Ngame + Renee 46.05 30.81 22.04 38.47 44.87 50.33 56.04 49.91 45.32 28.54 33.38 36.14
+ Gandalf 45.86 30.53 21.79 40.49 45.83 50.96 56.88 50.24 45.47 26.56 31.69 34.60

LF-WikiSeeAlsoTitles-320K LF-WikiTitles-500K

SiameseXML 31.97 21.43 16.24 26.82 28.42 30.36 42.08 22.80 16.01 23.53 21.64 21.41

Astec 22.72 15.12 11.43 13.69 15.81 17.50 44.40 24.69 17.49 18.31 18.25 18.56
+ Gandalf 31.10 21.54 16.53 23.60 26.48 28.80 45.24 25.45 18.57 21.72 20.99 21.16

Decaf 25.14 16.90 12.86 16.73 18.99 21.01 44.21 24.64 17.36 19.29 19.82 19.96
+ Gandalf 31.10 21.60 16.31 24.83 27.18 29.29 45.27 25.09 17.67 22.51 21.63 21.43

Eclare 29.35 19.83 15.05 22.01 24.23 26.27 44.36 24.29 16.91 21.58 20.39 19.84
+ Gandalf 31.33 21.40 16.31 24.83 27.18 29.29 45.12 24.45 17.05 24.22 21.41 20.55

InceptionXML 23.10 15.54 11.52 14.15 16.71 17.39 44.61 24.79 19.52 18.65 18.70 18.94
+ Gandalf 32.54 22.15 16.86 25.27 27.76 30.03 45.93 25.81 20.36 21.89 21.54 22.56

InceptionXML-LF 28.99 19.53 14.79 21.45 23.65 25.65 44.89 25.71 18.23 23.88 22.58 22.50
+ Gandalf 33.12 22.70 17.29 26.68 29.03 31.27 47.13 26.87 19.03 24.12 23.92 23.82

Ngame + Renee 30.79 20.65 15.57 20.81 24.46 27.05 - - - - - -
+ Gandalf 33.92 23.11 17.58 24.15 26.23 30.89 - - - - - -

Table 1.3: Results showing the effectiveness of Gandalf on state-of-the-art extreme
classifiers. The best results are in bold. Results for Ngame + Renee have been used
from their publication, however, have not been reported for LF-WikiTitles-500K.

scored variant, PSP@k (Jain et al., 2016; Qaraei et al., 2021), and coverage@k (Schultheis

et al., 2022, 2024).

Improvements on tail labels We perform a quantile analysis across 2 datasets

– LF-AmazonTitles-131K and the LF-WikiSeeAlso- Titles-320K (Figure 1.3) with In-

ceptionXML – where we examine performance (contribution to P@5 metric) over 5

equi-voluminous bins based on increasing order of mean label frequency in the training

dataset. Consequently, performance on head labels can be captured by the bin #1 and

that of tail labels by bin #5. We note that introducing the additional training data

with Gandalf consistently improves the performance across all label frequencies, with

more profound gains on bins with more tail labels. This is further verified by significant
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(a) Results on LF-AmazonTitles-131K (b) Results on LF-WikiSeeAlsoTitiles-320K

Figure 1.3: Gandalf demonstrating improvements on the P@5 metric across various
methods, separated into tail, torso and head labels. On the x axis, the middle row
indicates the number of labels in the bin, and the lowest row denotes the average number
of positives per label in that bin. Improvements in earlier bins (5 - 3) denote gains in tail
label performance.

performance boosts, with base models showing upto 11% improvements in the PSP@k

metrics in Table 1.3.

Gandalf vs Architectural Additions (LTE, GALE) The first formal attempt

to externally imbue the model with label information was made with Decaf, which

essentially equips the base model Astec with another base encoder (LTE ) to learn

label text (zl) embeddings along with the classifier. The second attempt, in the form of

Eclare, builds upon Decaf by adding another base encoder (GALE ) to process and

externally capture label correlation information. To make our claim more general, we also

evaluate on InceptionXML-LF, which consist of the same extensions on a more recent

base model InceptionXML (Kharbanda et al., 2023) with LTE and GALE components

(that Eclare adds over Astec). While such architectural modifications help capture

higher order query-label relations and increase empirical performance, they also increase

both, training time and the peak GPU memory required during training by ∼ 3×.

As Gandalf is a data-centric approach, the memory overhead is eliminated by default.

Further, we find that (i) Decaf and Eclare still benefit from using Gandalf augmented
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data implying architectural modifications are complementary to Gandalf. However, (ii)

simply using Gandalf augmented data enables base models Astec and InceptionXML

outperform themselves by up to 30% and perform nearly at par with their more architec-

turally equipped counter parts Eclare and InceptionXML-LF. While we posit that

Gandalf and GALE learn complementary data relations, both our quantitative (Table 1.3)

and qualitative (Table 1.5, Figure 1.3) results show that Gandalf is more effective and

efficient at capturing these relations (specifically, label correlations) compared to the

latter.

Beyond model performances We can also extract dataset specific insights with

Gandalf from Table 1.3. Significant improvements on top of the base algorithm are

particularly observed on LF-AmazonTitles-131K and LF-WikiSeeAlsoTitles-320K. In

contrast, improvements on LF-WikiTitles-500K remain relatively mild. We attribute this

to the density of the datasets. Specifically, while the former datasets consist of ∼5 training

instances per label, the latter consists of ∼17. We posit a higher query-label density

enables algorithms to inherently learn sufficient label-label correlations from existing

data. However, we further see that using Gandalf is effective for LF-AmazonTitles-1.3M,

the largest public benchmark for XMC with label features. Here, even though average

training instances per label is ∼38, the average number of labels per instance is ∼22, as

compared to maximum of ∼4 on other datasets.

Gandalf vs Siamese Learning Consequently, the third attempt made at capturing

label correlations via SiameseXML, which essentially replaces the surrogate training task

in Astec with a two-tower siamese learning framework. As argued in § 1.2, the condition

wl = Φ(zl) turns out to be too strong, and consequently training of SiameseXML

and NGAME is done in two stages. Initially, a contrastive loss needs to be minimized,

followed by fine-tuning with a classification objective which allows for some fine-tuning

corrections ηl, yielding wl = Φ(zl) + ηl. On the other hand, Gandalf simply extends

training data to learn from a-priori label co-occurrence data in a supervised manner.
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Notably (from Table 1.3), Astec + Gandalf outperforms SiameseXML by 5-10% on

Amazon datasets, while performing at par on Wikipedia datasets.

Applying Gandalf to Two-tower approaches Although we propose Gandalf as a

method suitable for training classifiers, it can also be used leveraged alongside two-tower

approaches, like Ngame. This is done by first extending the dual encoder with a scalable

classifier with Renee, which simply trains OvA classifiers on top of the base model. Using

Gandalf augmented data during this extension leads to significant improvements, more

prominently on the LF-WikiSeeAlsoTitles-320K and LF-AmazonTitles-131K datasets.

Coverage Results Coverage is an important metric in XMC as it demonstrates the

ability of the model to predict tail labels effectively. We provide coverage results on

InceptionXML in Table 1.4, demonstrating that Gandalf learns to predict labels which

were previously not being predicted at all. This phenomenon can also be seen in the

qualitative results Table 1.5.

Method C@1 C@3 C@5 C@1 C@3 C@5

LF-AmazonTitles-131K LF-WikiSeeAlsoTitles-320K

InceptionXML 22.33 39.98 46.29 7.54 15.11 18.93
+ Gandalf 31.04 51.63 58.03 13.28 26.01 32.21

Table 1.4: Coverage Results on InceptionXML with Gandalf.

Qualitative Results We further analyse qualitative examples via the top 5 predictions

obtained by training the base encoders with and without Gandalf augmented data points

in Table 1.5. Notably, we can observe that queries with even a single keyword (Oat),

which have no correct predictions without Gandalf, result in 100% correct predictions

with it. Furthermore, even the quality of incorrect predictions improves and we suspect

these labels are more likely to be missed true positives. (Jain et al., 2016) For example,

in case of “Lunar Orbiter program”, the only incorrect Gandalf predictions are “Lunar

Orbiter 3”, “Lunar Orbiter 5” and “Pioneer program” (US lunar and planetary space
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Method Datapoint Baseline Predictions Gandalf Predictions

InceptionXML-LF
Pontryagin duality, Topological order, Topological
quantum field theory, Topological quantum number,
Quantum topology

Compact group, Haar measure, Lie
group, Algebraic group, Topological
ring

Decaf Topological group
Topological quantum computer, Topological order,
Topological quantum field theory, Topological quan-
tum number, Quantum topology

Compact group, Haar measure, Lie
group, Algebraic group, Topological
ring

Eclare
Topological quantum computer, Topological order,
Topological quantum field theory, Topological quan-
tum number, Quantum topology

Compact group, Topological order, Lie
group, Algebraic group, Topological
ring

InceptionXML-LF
List of lighthouses in Scotland, List of Northern Light-
house Board lighthouses, Oatcake, Communes of the
Finistere department, Oat milk

Oatcake, Oatmeal, Oat milk, Porridge,
Rolled oats

Decaf Oat
Oatcake, Oatmeal, Design for All (in ICT), Oatley
Point Reserve, Oatley Pleasure Grounds

Oatcake, Oatmeal, Oat milk, Porridge,
Rolled oats

Eclare
Oatmeal, Oat milk, Parks in Sydney, Oatley Point
Reserve, Oatley Pleasure Grounds

Oatcake, Porridge, Rolled oats, Oatley
Point Reserve, Oatley Pleasure Grounds

InceptionXML-LF
Lunar Orbiter Image Recovery Project, Lunar Or-
biter 3, Lunar Orbiter 5, Chinese Lunar Exploration
Program, List of future lunar missions

Surveyor program, Luna programme,
Lunar Orbiter Image Recovery Project,
Lunar Orbiter 3, Lunar Orbiter 5

Decaf Lunar Orbiter program
Exploration of the Moon, List of man-made objects
on the Moon, Lunar Orbiter Image Recovery Project,
Lunar Orbiter 3, Lunar Orbiter 5

Exploration of the Moon, Apollo pro-
gram, Surveyor program, Luna pro-
gramme, Lunar Orbiter program

Eclare
Exploration of the Moon, Lunar Orbiter program,
Lunar Orbiter Image Recovery Project, Lunar Orbiter
3, Lunar Orbiter 5

Exploration of the Moon, Pioneer pro-
gram, Surveyor program, Luna pro-
gramme, Lunar Orbiter program

InceptionXML-LF
Colorado metropolitan areas, Front Range Urban
Corridor, Outline of Colorado, Index of Colorado-
related articles, State of Colorado

Colorado metropolitan areas, Outline
of Colorado, Index of Colorado-related
articles, Colorado cities and towns, Col-
orado counties

Decaf Grand Lake, Colorado
Colorado metropolitan areas, Front Range Urban
Corridor, State of Colorado, Colorado municipalities,
National Register of Historic Places listings in Grand
County, Colorado

Outline of Colorado, State of Colorado,
Colorado cities and towns, Colorado mu-
nicipalities, Colorado counties

Eclare
State of Colorado, Colorado cities and towns, Col-
orado counties, National Register of Historic Places
listings in Grand County, Colorado, Grand County,
Colorado

Outline of Colorado, Index of Colorado-
related articles, State of Colorado, Col-
orado cities and towns, Colorado coun-
ties

InceptionXML-LF
Royal Saudi Air Defense, Royal Saudi Strategic Mis-
sile Force, Saudi Royal Guard Regiment, Terrorism
in Saudi Arabia, Capital punishment in Saudi Arabia

Military of Saudi Arabia, Royal Saudi
Air Force, Royal Saudi Air Defense,
Royal Saudi Strategic Missile Force,
King Khalid Military City

Decaf Armed Forces of Saudi Arabia
Saudi Arabian-led intervention in Yemen, Saudi-led
intervention in Bahrain, Human rights in Saudi Ara-
bia, Legal system of Saudi Arabia, Joint Chiefs of
Staff (Saudi Arabia)

Royal Saudi Air Force, Royal Saudi
Navy, Royal Saudi Air Defense, Royal
Saudi Strategic Missile Force, Saudi
Arabian National Guard

Eclare
List of armed groups in the Syrian Civil War, Military
of Saudi Arabia, Royal Saudi Strategic Missile Force,
King Khalid Military City, Joint Chiefs of Staff (Saudi
Arabia)

Military of Saudi Arabia, Royal Saudi
Air Defense, Royal Saudi Strategic Mis-
sile Force, King Khalid Military City,
Saudi Royal Guard Regiment

Table 1.5: Qualitative predictions from the LF-WikiSeeAlsoTitles-320K dataset. Labels
indicate mispredictions.

programs). Additionally, we show semantic similarity between the annotated labels with

G, and the original label in Figure 1.2.
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1.5 Ablations & Computational Analysis

Gandalf, is a data-centric approach that does not increase the computational cost during

inference. While the inclusion of label features - which can often run in the order of

millions - as additional data points might seem to increase the computational cost during

training, through a series of observations, we show that this is in fact not the case. On

the contrary, Gandalf can help in reducing the memory footprint while training, enabling

researchers to use smaller GPUs, and reallocating their compute budget towards longer

training schedules. Secondly, we also study the effect of subsampling the labels used

for Gandalf to demonstrate how learning even some of the label-label correlations is

beneficial for XMC models. This observation is particularly useful when inclusion of all

label-features as data points becomes intractable due to its scale.

(a) (b)

(c) (d)

Figure 1.4: The (a) P@1 and (b) PSP@5 metric plotted against iterations for Incep-
tionXML with and without Gandalf. The effect of subsampling labels for Gandalf on the
(c) P@1 and (d) PSP@5 metric. Both results are on the LF-AmazonTitles-131K dataset.
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Computational Costs during Training For the LF-Amazon- Titles-131K dataset, we

plot the P@1 and the PSP@5 metric against iterations for InceptionXML, trained with and

without Gandalf in Figure 1.4. As can be seen, using Gandalf gives better performance,

even on tail labels, right from the beginning. Moreover, where the performance of

InceptionXML saturates, the performance of Gandalf continues to scale with increasing

compute. Therefore, given a fixed computational budget, a model trained with Gandalf

will outperform one trained without it. This can also be seen in Table 1.2 where training

on U(G, N), i.e., under the exact same computational budget as training on the the

original dataset gives performance improvements. In the same table, we can also observe

improvements when training on less than half the original compute with Z. These

observations firmly place Gandalf as a compute-efficient method of leveraging label-

features in XMC models.

Effect of Subsampling Labels We demonstrate the effect of subsampling labels used

for Gandalf under two schemes, (a) Randomly sampling an expected percentage subset

of labels and (b) randomly sampling this subset from equi-voluminous bins of increasing

label frequency, i.e., prioritising tail labels for lower percentages. These results are shown

for the P@1 and PSP@5 metric on the LF-AmazonTitles-131K dataset in Figure 1.4.

Both the metrics grow linearly as the percentage sampled labels are increased in steps

of 25%. This goes ahead to show the lack of label-label correlations being captured in

existing methods, and how learning even on a subset can be useful. Further, prioritising

tail-labels consistently outperforms the random sampling baseline, underscoring the

data-scarcity issue in XMC.

Comparison against conventional data augmentation strategies We compare

Gandalf with with existing data augmentation techniques in Table 1.6. While no

such techniques exist specifically for XMC, we use three baselines: synonym replace-

ment(randomly replacing words in the input text with their synonyms, chosen via BERT

similarity), MixUp and Label-MixUp. While the first two are standard data augmenta-
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Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-AmazonTitles-131K

InceptionXML 35.62 24.13 17.35 27.53 33.06 37.50
+ Synonym Replacement 35.07 23.71 17.08 27.20 32.41 36.77

+ MixUp 35.63 24.15 17.37 27.55 33.00 37.63
+ Label-MixUp 37.25 25.02 17.98 29.25 34.58 39.09

+ Gandalf 43.52 29.23 20.92 36.96 42.71 47.64

LF-WikiSeeAlsoTitles-320K

InceptionXML 21.53 14.19 10.66 13.06 14.87 16.33
+ Synonym Replacement 20.08 13.13 9.92 12.00 13.50 14.90

+ MixUp 21.62 14.15 10.65 13.13 14.99 16.36
+ Label-MixUp 23.90 16.10 12.28 15.20 17.60 19.56

+ Gandalf 31.31 21.38 16.22 24.31 26.79 28.83

Table 1.6: Comparison of conventional data augmentation strategies with the proposed
Gandalf method.

tions in NLP, Label-Mixup is a modified version of MixUp that combines the feature of

a label feature and input datapoint, which is more suitable for XMC. Notably, Gandalf

outperforms all of them with a significant margin:

Sensitivity to δ We examine Gandalf ’s sensitivity to δ by training InceptionXML-

LF on data generated with varying values of δ. As shown in Table 1.7, the empirical

performance peaks at a δ value of 0.1 which is sufficient to suppresses the impact of noisy

correlations. Higher values of δ tend to suppress useful information.

Method P@1 P@5 PSP@1 PSP@5 P@1 P@5 PSP@1 PSP@5

LF-AmazonTitles-131K LF-WikiSeeAlsoTitles-320K

InceptionXML 35.62 17.35 27.53 37.50 21.53 10.66 13.06 16.33
+ Gandalf G 43.71 21.14 37.25 47.89 31.42 16.37 24.78 28.98

+ Gandalf (G + Random Walk) 43.52 20.92 36.96 47.64 31.31 16.22 24.31 28.83

InceptionXML-LF 40.74 19.57 34.52 44.13 49.01 39.46 24.56 31.67
+ Gandalf (δ = 0.0) 41.71 20.14 36.94 46.64 31.40 16.53 26.01 29.99
+ Gandalf (δ = 0.1) 42.09 20.45 37.09 47.04 32.20 16.60 26.06 30.03
+ Gandalf (δ = 0.2) 41.73 20.18 37.01 46.67 31.29 16.28 25.68 29.65

Table 1.7: Results demonstrating the effectiveness of Gandalf using both, a statistical
co-occurrence matrix (G) and its modified version using a random walk. The table also
shows the method’s sensitivity to δ, as defined in Equation 1.6.
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Choice of label co-occurrence graph G While with Gandalf, we leverage a

statistical measure for G, we can also estimate it with random walks (Mittal et al., 2021b).

We find that our method is not significantly affected by this choice, with the co-occurrence

graph giving slightly enhanced performance(Table 1.7). We hypothesise this happens

due to the noise introduced via random walks. While both variants aim to model similar

information, their differing usage determines their overall effectiveness. In particular,

leveraging it for Gandalf helps learn sufficient information on top of GALE. Moreover,

as discussed previously, our results are also not significantly affected by using the a

symmetric variant of the graph, consistent with the GLaS regularizer, shown in Table 1.2.

1.6 Other Related Work

Prior works in XMC focused on annotating long-text documents, consisting of hundreds of

word tokens, such as those encountered in tagging for Wikipedia (Babbar and Schölkopf,

2017; Khandagale et al., 2020; You et al., 2019; Schultheis and Babbar, 2022) with numeric

label IDs. Most recent works under this setting were aimed towards scaling up transformer

encoders for the XMC task (Zhang et al., 2021c; Kharbanda et al., 2022).

Exploiting Correlations in XMC For XMC datasets endowed with label features,

there exist three correlations that can be exploited for better representation learning : (i)

query-label, (ii) query-query, and (iii) label-label correlations. Recent works have been

successful in leveraging label features and pushing state-of-the-art by exploiting the first

two correlations. For example, SiameseXML and NGAME (Dahiya et al., 2021a, 2023a)

employ a two-tower pre-training stage applying contrastive learning between an input

text and its corresponding label features. GalaXC (Saini et al., 2021) & PINA (Chien

et al., 2023), motivated by graph convolutional networks, create a combined query-label

bipartite graph to aggregate predicted instance neighbourhood. This approach, however,

leads to a multifold increase in the memory footprint. Decaf and Eclare (Mittal

et al., 2021a,b) make architectural additions to embed label-text embeddings (LTE) and
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graph-augmented label embeddings (GALE) in each label’s OVA classifier to exploit

higher order correlations from the random walk graph. PINA, in its pre-training step,

leverages label features as data points, but does so by expanding the label space {0, 1}L

to also include instances as {0, 1}L+N leveraging the self-annotation property of labels

(Dahiya et al., 2021a) and inverting the initial instance-label mappings to have instances

xi as labels for label features zl as data points. This, however, leads to an explosion

in an already enormous label space. In this work, we find that a significant amount of

information can be learned by modelling label-label correlations, which existing methods

fail to leverage.

Two-tower Models & Classifier Learning Typically, due to the single-annotation

nature of most dense retrieval datasets (Nguyen et al., 2016; Kwiatkowski et al., 2019;

Joshi et al., 2017), two-tower models (Karpukhin et al., 2020a) solving this task eliminate

classifiers in favour of modelling implicit correlations by bringing query-document embed-

dings closer in the latent space of the encoders. These works are conventionally aimed at

improving encoder representations by innovating on hard-negative mining (Zhang et al.,

2021a; Xiong et al., 2020; Lu et al., 2022), teacher-model distillation (Qu et al., 2021; Ren

et al., 2021) and combined dense-sparse training strategies (Khattab and Zaharia, 2020).

While these approaches result in enhanced encoders, the multilabel nature of XMC makes

them, in itself, insufficient for this domain. This has been demonstrated in two-stage

XMC works like Dahiya et al. (2021a, 2023a); Jain et al. (2023) where these frameworks

go beyond two-tower training and train classifiers with a frozen encoder in the second

stage for better empirical performance. While a concurrent work (Gupta et al., 2023) does

show that dual-encoder XMC models can outperform classifiers, but requires significant

computational resources to scale the contrastive loss across the entire label space.
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1.7 Conclusion

In this paper, we proposed Gandalf, a strategy to learn label correlations, a notoriously

difficult challenge. In contrast to previous works which model these correlations implicitly

through model training, we propose a supervised approach to explicitly learn them by

leveraging the inherent query-label symmetry in short-text extreme classification. We

further performed extensive experimentation by implementing on various SOTA XMC

methods and demonstrated dramatic increases in prediction performances uniformly across

all methods. Moreover, this is achieved with frugal architectures without incurring any

computational overheads in inference latency or training memory footprint. We hope our

treatment of label correlations in this domain will spur further research towards crafting

data-points with more expressive annotations, and further extend it to long-text XMC

approaches where the instance-label symmetry is quite ambiguous.
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CHAPTER 2

UniDEC : Unified Dual Encoder and Classifier

Training for Extreme Multi-Label Classification

2.1 Introduction

Extreme Multi-label Classification (XMC) is described as the task of identifying i.e.

retrieving a subset, comprising of one or more labels, that are most relevant to the

given data point from an extremely large label space, potentially consisting of millions of

possible choices. Over time, XMC has increasingly found its relevance for solving multiple

real world use cases. Typically, long-text XMC approaches are leveraged for the tasks of

document tagging and product recommendation and short-text XMC approaches target

tasks such as query-ad keyword matching and related query recommendation. Notably,

in the real world manifestations of these use cases, the distribution of instances among

labels exhibits a fit to Zipf’s law (Adamic and Huberman, 2002). This implies, the vast

label space (L ≈ 106) is skewed and is characterized by the existence of head, torso and

tail labels (Schultheis et al., 2022). For example, in query-ad keyword matching for search

engines like Bing, Google etc. head keywords are often exact match or related phrase

extensions of popularly searched queries while tail keywords often target specific niche

queries. Typically, we can characterize head, torso and tail keywords as having > 100, 10

- 100, and 1 - 10 annotations, respectively.

Typically, per-label classifiers are employed for solving the XMC task. A naive

strategy to train classifiers for XMC involves calculating the loss over the entire label

set. This method has seen empirical success, particularly in earlier works like Dismec

(Babbar and Schölkopf, 2017), which learns one-vs-all classifiers by parallelisation across
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Figure 2.1: The architecture for the UniDEC framework, denoting the the classifiers and
DE trained in parallel, along with the loss functions used. The inference pipeline is shown
in the rectangular box.

multiple CPU cores. With the adoption of deep encoders, various works moved to training

on GPUs, which due to VRAM constraints, led to the use of tree-based shortlisting

strategies (Chang et al., 2020; Kharbanda et al., 2022, 2023; Dahiya et al., 2021b) to

train classifiers on the hardest negatives. This reduced the computational complexity

from O(L) to O(logL). While leveraging a label shortlist made XMC training more

feasible via modular training (Dahiya et al., 2023a,b) or joint training using a meta-

classifier (Jiang et al., 2021; Kharbanda et al., 2022, 2023) , it still left out scope for

empirical improvements. Consequently, Renee (Jain et al., 2023) demonstrated the

extreme case for methods which employ classifiers with deep encoders by writing custom

CUDA kernels to scale classifier training over the entire label space. This, however, leads

to a GPU VRAM usage of 256GB (Figure 2.1) for training a DistilBERT model on
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LF-AmazonTitles-1.3M, the largest XMC dataset. Notably, what remains common across

all XMC classifier-training algorithms is the advocacy of OvA reduction for the multi-label

problem (Dahiya et al., 2021a). Theoretically, the alternate pick-all-labels (PAL) approach

should lead to a better optimization over OvA, since it promotes “competition” amongst

labels (Menon et al., 2019). However, PAL reduction has neither been well-studied nor

successfully leveraged to train classifiers in XMC since such losses require considering all

labels which is prohibitively expensive.

A parallel line of research involves leveraging dual encoders (DE) for XMC. While DE

models are a popular choice for dense retrieval (DR) and open-domain question answering

(ODQA) tasks, these are predominantly few and zero-shot scenarios. In contrast, XMC

covers a broader range of scenarios (see Table 1.1). Consequently, modelling the XMC

task as a retrieval problem is tantamount to training a DE simultaneously on many, few

and one-shot scenarios. While DE trained with triplet loss was thought to be insufficient

for XMC, and thus augmented with per-label classifiers to enhance performance (Dahiya

et al., 2023a; Gupta et al., 2023), a recent work Dexml (Gupta et al., 2023) proved the

sufficiency of the DE framework for XMC by proposing a new multi-class loss function

Decoupled Softmax, which computed the loss over the entire label space. This, however,

turns out to be prohibitively expensive as Dexml requires 640GB GPU VRAM to train

on LF-AmazonTitles-1.3M.

At face value, PAL reduction of multi-label problems for DE training should be made

tractable by optimizing over in-batch labels, however in practice, it does not scale to

larger datasets due to the higher number of positives per label. For instance, for LF-

AmazonTitles-1.3M a batch consisting of 1,000 queries will need an inordinately large

label pool of size ∼ 22.2K (considering in-batch negatives) to effectively train a DE

with the PAL loss. Alternatively, the stochastic implementation of PAL in the form of

pick-one-label (POL) reduction used by Dexml, either convergences slowly (Gupta et al.,

2023) or fails to reach SOTA performance.

In order to enable efficient training, in this work, we propose “pick-some-labels”

(PSL) relaxation of the PAL reduction for the multi-label classification problem which
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enables scaling to large datasets (∼ 106 labels). Here, instead of trying to include all

the positive labels for instances in a batch, we propose to randomly sample at max β

positive labels per instance. To the best of our knowledge, we are the first work to study

the effect of multi-class losses for training classifiers at an extreme scale. Further, we

aim to develop an end-to-end trainable loss-independent framework, UniDEC - Unified

Dual Encoder and Classifier, for XMC that leverages the multi-positive nature of the

XMC task to create highly informative in-batch labels to train the DE, and be used as a

shortlist for the classifier. As shown in Figure 2.1, UniDec, in a single pass, performs

an update step over the combined loss computed over two heads: (i) between DE head’s

query and sampled label-text embeddings, (ii) between CLF head’s query embeddings and

classifier weights corresponding to sampled labels. By unifying the two compute-heavy

ends of the XMC spectrum in such a way, UniDEC is able to significantly reduce the

training computational cost down to a single 48GB GPU, even for the largest dataset

with 1.3M labels. End-to-end training offers multiple benefits as it (i) helps us do away

with a meta-classifier and modular training, (ii) dynamically provides progressively harder

negatives with lower GPU VRAM consumption, which has been shown to outperform

static negative mining (Jiang et al., 2021; Kharbanda et al., 2022, 2023) (iii) additionally,

with an Approximate Nearest Neighbour Search (ANNS), it can explicitly mine hard

negative labels added to the in-batch negatives. While UniDEC is a loss independent

framework (see Table 2.4), the focus of this work also includes studying the use of multi-

class losses for training multi-label classifiers at an extreme scale via the proposed PSL

reduction. To this end, we benchmark UniDEC on 6 public datasets, forwarding the

state-of-the-art in each, and a proprietary dataset containing 450M labels. Finally, we also

experimentally show how OvA losses like BCE can be applied in tandem with multi-class

losses for classifier training.
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2.2 Related Works & Preliminaries

For training, we have available a multi-label dataset D = {{xi,Pi}Ni=1, {zl}Ll=1} comprising

of N data points and L labels. Each xi is associated with a small ground truth label set

Pi ⊂ [L] out of L ∼ 106 possible labels. Further, xi, zl ∈ X denote the textual descriptions

of the data point i and the label l respectively, which, in this setting, derive from the

same vocabulary universe V (Dahiya et al., 2021a). The goal is to learn a parameterized

function f which maps each instance xi to the vector of its true labels yi ∈ [0, 1]L where

yi,l = 1⇔ l ∈ Pi.

Dual Encoder A dual encoder consists of the query encoder Φq, and a label encoder

Φl. Conventionally, the parameters for Φq and Φl are shared, and thus we will simply

represent it as Φ (Dahiya et al., 2023a; Gupta et al., 2023; Karpukhin et al., 2020b; Qu

et al., 2021). The mapping Φ(.) projects the instance xi and label-text zl into a shared

d-dimensional unit hypersphere Sd−1. For each instance xi, its similarity with label zl is

then computed via an inner product i.e., si,l = ⟨Φ(xi),Φ(zl)⟩ to produce a ranked list of

top-K relevant labels.

Training two-tower algorithms for XMC at scale is made possible by recursively splitting

(say, via a hierarchical clustering strategy) instance encoder embeddings {Φ(xi)}Ni=1 into

disjoint clusters B (Dahiya et al., 2023a), where each cluster represents a training batch

B. Each batch B = {QB, LB} is characterised by a set of instance indices QB = {i | i ∈

[N ]}, s.t. |QB| = N/|B|, and the corresponding collated set of (typically one per instance)

sampled positive labels p ∈ Pi, defined as LB = {p | p ∈ Pi and i ∈ QB}. As per

the in-batch negative sampling strategy common across existing works (Dahiya et al.,

2023a; Gupta et al., 2023; Karpukhin et al., 2020b; Qu et al., 2021), the negative label

pool then is made up of the positive labels sampled for other instances in the batch i.e.

Ni = LB − Pi. As compared to random batching, (Dahiya et al., 2023a) posit that the

batches created from instance-clustering are negative-mining aware i.e. for every instance,

the sampled positives of the other instances in the batch serve as the set of appropriate

“hard” negatives.
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An additional effect of this is the accumulation of multiple in-batch positives for most

queries (see Figure 2.2a). This makes the direct application of commonly used multi-class

loss - InfoNCE loss - infeasible for training DE. Hence XMC methods find it suitable to

replace InfoNCE loss with a triplet loss (Dahiya et al., 2023a,b) or probabilistic contrastive

loss (Dahiya et al., 2021a), as it can be potentially applied over multiple positives and hard

negatives (equation 1 in (Dahiya et al., 2023a)). While this would seem favourable, these

approaches still fail to leverage the additional positive signals owing to multiple positives

in the batch as they calculate loss over only a single sampled positive i.e. employing POL

reduction instead of PAL reduction.

Classifiers in XMC The traditional XMC set-up considers labels as featureless

integer identifiers which replace the encoder representation of labels Φ(zl) with learnable

classifier embeddings ΨL
l=1 ∈ RL×d (Chang et al., 2020; You et al., 2019; Zhang et al.,

2021b). The relevance of a label l to an instance is scored using an inner product,

si,l = ⟨Φ(xi),Ψl⟩ to select the k highest-scoring labels. Under the conventional OvA

paradigm, each label is independently treated with a binary loss function ℓBC applied to

each entry in the score vector. The OvA reduction can be expressed as,

LOVA =
L∑
l=1

{yl · ℓBC(1, si,l) + (1− yl) · ℓBC(0, si,l)}

2.3 Method: UniDEC

In this work, we propose a novel multi-task learning framework which, in an end-to-end

manner, trains both - a dual encoder and extreme classifiers - in parallel. The framework

eliminates the need of a meta classifier for a dynamic in-batch shortlist. Further, it

provides the encoder with the capability to explicitly mine hard-negatives, obtained by

querying an ANNS, created over {Φ(zl)}Ll=1, which is refreshed every ε epochs.

The DE head is denoted by ΦD(·) = N(g1(Φ(·))) and the classifier head by ΦC(·) =

g2(Φ(·)), where N represents the L2 normalization operator and g1(·) and g2(·) represent

separate nonlinear projections. Unlike DE, and as is standard practice for OvA classifiers,
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(a) (b)

Figure 2.2: (a) Visualizing UniDEC’s batching strategy. Such a framework naturally
leads to higher number of positives per query, enabling us to scale without increasing the
batch size significantly. (b) Scatter plot showing the average number of positive labels per
query, when we sample β positives and η hard negatives in the batch. Note that, even
with β = 3 and η = 0, avg(|P |) = 13.6.

we train them without an additional normalization operator (Dahiya et al., 2021a,b).

2.3.1 Pick-some-Labels Reduction

LPAL-N (Menon et al., 2019) is is formulated as :

LPAL-N(Φ1(x),Φ2(zl)) =
1∑L

j=1 yj

L∑
l=1

yl · ℓMC(1, ⟨Φ1(x),Φ2(zl)⟩)

Since it computes the loss over the entire label space, it is computationally intractable

for XMC scenarios. To reduce the computational costs associated with this reduction, we

propose a relaxation by computing loss over some labels in batch B = {QB, LB}, which

we call pick-some-labels (PSL).

LPSL(Φ1(x),Φ2(zl) | B,PB) =
∑
i∈QB

−1
|PB

i |
∑
p∈PB

i

ℓMC(1, ⟨Φ1(x),Φ2(zp)⟩)

where Φ1 and Φ2 are encoding networks. Any multi-class loss 2 can be used in place

of ℓMC . By varying Φ1 and Φ2, we get a generic loss function for training classifier as well

2While binary class loss functions can also be used, in this work, our focus is to study multi-class
losses
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as DE. This approximation enables employing PAL-N over a minibatch QB by sampling

a subset of positive labels P̂i ⊆ Pi s.t. |P̂i| ≤ β. The collated label pool, considering

in-batch negative mining, is defined as LB = {
⋃

i∈QB
P̂i}. Here, PB

i = {Pi ∩ LB} denotes

all the in-batch positives for an instance xi, i.e., the green and pale green in Figure 2.2.

2.3.2 Dual Encoder Training with Pick-some-Labels

The PSL loss to train a DE is formulated as,

LD,q2l = LPSL(ΦD(x),ΦD(zl) | B,PB)

More specifically, we perform k-means clustering on the queries such that similar queries

are clustered into the same batch B, leading to both positive and negative-aware batching

(Dahiya et al., 2023a). Thus, PB
i consists not only of the sampled positives P̂i but also

those non-sampled positives that exist in the batch as sampled positives of other instances

i.e. PB
i = P̂i ∪ {

⋃
j∈{QB−{i}} P̂j ∩ Pi}. We find the cardinality of the second term to be

non-zero for most instances having |Pi| > β due to a high overlap of sampled positive

labels in query-clustered batches, leading to a more optimal batch size. Thus, although

we sample |P̂i| ≤ β ∀ i ∈ QB, ∃ i ∈ QB s.t. |PB
i | ≥ β. As per our observations, PB

i = Pi

for most tail and torso queries. For e.g., even if β = 1 for LF-AmazonTitles-1.3M, for

|QB| = 103, Avg(|P̂i|) = [12, 14]. Thus, it makes PSL reduction same as PAL for torso

and tail labels and only taking form of PSL for head queries.

Dynamic ANNS Hard-Negative Mining While the above strategy leads to collation

of hard negatives in a batch, it might not mine hardest-to-classify negatives (Dahiya

et al., 2023a). We explicitly add them by querying an ANNS created over {ΦD(zl)}Ll=1

for all {ΦD(xi)}Ni=1. More specifically, for each instance, we create a list of hard neg-

atives Hi = topk(ANNS(ΦD(xi)|Ni=1, ΦD(zl)|Ll=1)) s.t. Hi ∩ Pi = ϕ (denoted by red in

Figure 2.2). Every iteration, we uniformly sample a η-sized hard-negative label subset

Ĥi ⊂ Hi alongside P̂i ∀ xi ∈ QB. More formally, the new batch label pool can be denoted
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as LB = {
⋃

i∈QB
P̂i ∪ Ĥi}. Interestingly, due to the multi-positive nature of XMC,

sampled hard-negatives for xi might turn out to be an unsampled positive label for xj.

More formally, ∃ j ∈ QB s.t. {Ĥi ∩ Pj ̸= ϕ, Ĥi ∩ PB
j = ϕ}. This requires altering the

definition of PB
i to accommodate these extra positives (represented by the dark green

square in Figure 2.2) as PB
i = {P̂i ∪ {

⋃
j∈{QB−{i}} {P̂j ∪ Ĥj} ∩ Pi}}. This effect is also

quantified in Figure 2.2b. Query clustering for batching and dynamic ANNS hard-negative

mining strategies complement each other, since the presence of similar queries leads to

a higher overlap in their positives and hard negatives, enabling us to scale the effective

size of the label pool. Further, to provide ΦD and ΦC with progressively harder negatives,

the ANNS is refreshed every τ epochs and to uniformly sample hard negatives, we keep

|H| = η × τ .

Note that LD,q2l denotes the multi-class loss between xi and zl ∀ l ∈ LB. As the

data points and labels in XMC tasks belong to the same vocabulary universe (such as

product recommendation), we find it beneficial to optimize LD,l2q alongside LD,q2l, making

LD a symmetric loss. Since (Radford et al., 2021), a plethora of works have leveraged

symmetric optimizations in the vision-language retrieval pre-training domain. For XMC,

the interchangability of QB and LB in the symmetric objective can be viewed equivalent to

(i) feeding more data relations in a batch, and (ii) bridging missing relations in the dataset.

Further, we formulate XMC as a symmetric problem from LB to QB, thus calculating the

multi-class loss between zl and xi ∀ i ∈ QB given by:

LD,l2q = LPSL(ΦD(zl),ΦD(x) | B,PL)

Note that, PL = {i |i ∈ QB, l ∈ LB, Pi,l = 1}. The total DE contrastive loss can thus

be written as (note, for simplicity we use λD = 0.5 for all datasets, which works well in

practice):

LD = λD · LD,q2l + (1− λD) · LD,l2q
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Algorithm 1 Training step in UniDEC
Input: instance x, label features z, positive labels P, encoder Φ, classifier lookup-table Ψ,

non-linear transformations g1(·) and g2(·)

ΦD(·), ΦC(·) := N(g1(Φ(·))), g2(Φ(·))

for e in 1..ϵ do

if e % τ is 0 then

B← Cluster(ΦD(xi)|Ni=0)

H ← topk(ANNS(ΦD(xi)|Ni=0, ΦD(zl)|Ll=0))

for QB in B do

for i in QB do

P̂i ← sample(Pi, β)

Ĥi ← sample(Hi − Pi, η)
LB ← {

⋃
i∈QB

P̂i ∪ Ĥi}

PB ← {{Pi ∩ LB}|i∈QB}

PL ← {{i | i ∈ QB, Pi,l = 1}|l∈LB}

LD,q2l ← LPSL(ΦD(xi),ΦD(zl) | B, PB)

LD,l2q ← LPSL(ΦD(zl),ΦD(xi) | B, PL)

LD ← λD · LD,q2l + (1− λD) · LD,l2q

LC,q2l ← LPSL(ΦC(xi),Ψ(l) | B, PB)

LC,l2q ← LPSL(Ψ(l),ΦC(xi) | B, PL)

LC ← λC · LC,q2l + (1− λC) · LC,l2q

L ← λ · LD + (1− λ) · LC
adjust Φ, g1(·), g2(·) and Ψ to reduce loss L.

2.3.3 Unified Classifier Training with Pick-some-Labels

XMC classifiers are typically trained on a shortlist consisting of all positive and O(Log(L))

hard negative labels (Dahiya et al., 2021b). As the reader can observe from Figure 2.1

and Algorithm 1, the document and label embedding computation and batch pool is

shared between ΦD and ΦC. We simply unify the classifier training with that of DE by
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leveraging the same PSL reduction used for contrastive learning, with only minor changes:

ΦC(xi)|i∈QB replaces ΦD(xi)|i∈QB and, the label embeddings ΦD(zl)|l∈LB are replaced by

Ψl|l∈LB . Formally, the multi-class PSL loss for classifier LC,q2l can be defined as:

LC,q2l = LPSL(ΦC(x),Ψl | B,PB)

Similar to DE training, we find it beneficial to employ a symmetric loss for classifier

training as well, defined (with λC = 0.5) as:

LC = λC · LC,q2l + (1− λC) · LC,l2q

Finally, we combine the two losses and train together in an end-to-end fashion, thereby

achieving Unification of DE and classifier training for XMC.

L = λLD + (1− λ)LC

2.3.4 Inference

For ANNS inference, the label graph can either be created over the encoded label

embeddings {ΦD(zl)}Ll=1 or the label classifier embeddings {N(Ψ(l))}Ll=1, which are queried

by {ΦD(xi)}Ni=1 or {N(ΦC(xi))}Ni=1 respectively. Even though we train the classifiers over

an un-normalized embedding space, we find it empirically beneficial to perform ANNS

search over the unit normalized embedding space (Gunel et al., 2021; Khosla et al., 2020).

Interestingly, the concatenation of these two embeddings leads to a much more efficient

retrieval. More specifically, we create the ANNS retrieval graph over the concatenated label

representation {ΦD(zl)⊕N(Ψ(l))}|Ll=0, which is queried by the concatenated document

representations {ΦD(xi)⊕N(ΦC(xi))}|Ni=0. Intuitively, this is a straight-forward way to

ensemble the similarity scores from both the embedding spaces.
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2.4 Experiments

Datasets: We benchmark our experiments on 6 standard datasets, comprising of both

long-text inputs (LF-Amazon-131K, LF-WikiSeeAlso-320K) and short-text inputs (LF-

AmazonTitles-131K, LF-AmazonTitles-1.3M, LF-WikiTitles-500K, LF-WikiSeeAlsoTitles-

320K). We also evaluate baselines on a proprietary Query2Bid dataset, comprising of

450M labels, which is orders of magnitude larger than any public dataset. Details of these

datasets can be found at (Bhatia et al., 2016) and in Table 2.1.

Datasets Benchmark N L APpL ALpP AWpP

MS-MARCO DR 502,931 8,841,823 - 1.1 56.58

LF-AmazonTitles-131K XMC 294,805 131,073 5.15 2.29 6.92
LF-Amazon-131K XMC 294,805 131,073 5.15 2.29 6.92

LF-AmazonTitles-1.3M XMC 2,248,619 1,305,265 38.24 22.20 8.74
LF-WikiSeeAlso-320K XMC 693,082 312,330 4.67 2.11 3.01

Query2Bid-450M Search Engine 52,029,024 454,608,650 34.61 3.96 -

Table 2.1: Details of the benchmark datasets with label features. APpL stands for avg.
points per label, ALpP stands for avg. labels per point and AWpP is the length i.e. avg.
words per point.

MS-MARCO, a representative dataset for DR tasks, has 3.2M documents but on

average contains only 1.1 positively annotated answers (label) per question (instance)

(Qu et al., 2021). On the other hand, LF-AmazonTitles-1.3M, an XMC dataset which is

representative dataset for product recommendation task, has a label space spanning 1.3M

Amazon products where each instance (a product title) is annotated (tagged), by ∼ 22.2

labels (related product titles) and each label annotates, ∼ 38.2 instances. This indicates

the broader spectrum of XMC tasks in contrast with zero-shot nature of ODQA task.

Baselines & Evaluation Metrics: We compare against two classes of Baselines

namely, (i) DE Approaches (Φ) consisting of only an encoder (Dahiya et al., 2023a;

Gupta et al., 2023; Karpukhin et al., 2020b; Xiong et al., 2020) and, (ii) Classifier

Based Approaches (Ψ) which use linear classifiers, with or without the encoder

(Dahiya et al., 2023a; Jain et al., 2023). We use popular metrics such as Precision@K and

Propensity-scored Precision@K (K ∈ {1, 3, 5}), defined in (Bhatia et al., 2016).

Implementation Details We initialize both DePSL, our purely dual encoder method
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and UniDEC with a pre-trained 6l-Distilbert and train the Φ, g(·) and Ψ with a

learning rate of 1e−4, 2e−4 and 1e−3 respectively using cosine annealing with warm-up

as the scheduler, hard-negative shortlist refreshed every τ = 5 epochs. We make an effort

to minimize the role of hyperparameters by keeping them almost same across all datasets.

Note that for all experiments in the paper, g1(·), g2(·) is defined as follows,

ΦD(·), ΦC(·) := N(g1(Φ(·))), g2(Φ(·))

g1(·) := nn. Sequential(nn.Linear(dΦ, d), nn.Tanh(), nn.Dropout(0. 1))

g2(·) := nn. Sequential(nn.Linear(dΦ, d), nn.Dropout(0. 1))

2.4.1 Evaluation Results

In these settings, we evaluate DePSL and UniDEC against both DE and XMC baselines.

UniDEC differs from these baselines in the following ways, (i) on training objective,

UniDEC uses the proposed PSL relaxation of PAL for both DE and CLF training, instead

of POL reduction used by existing methods like Ngame and Dexml, (ii) UniDEC does

away with the need of modular training by unifying DE and CLF, (iii) finally, UniDEC

framework adds explicitly mined hard negatives to the negative mining-aware batches

which helps increase P@K metrics (see Table 2.5). Note that direct comparison against

some of the baselines may not be justifiable due to reasons discussed individually below.

UniDEC/DePSL vs Ngame(Φ): Table 2.2 depicts that UniDEC (Φ⊕Ψ) consistently

outperforms Ngame(Ψ) (it’s direct comparison baseline), where we see gains of 2− 8% in

P@K and upto 10% on PSP@K. DePSL, on the other hand, outperforms Ngame on P@k

with improvements ranging from 2− 9%. For PSP@k, DePSL (Φ) always outperforms

Ngame (Φ) on long-text datasets, while the results are mixed on short-text datasets.

DePSL vs DPR/ANCE: Empirical performance of DPR demonstrates the limits

of a DE model trained with InfoNCE loss and random in-batch negatives (popular in

DR methods). Evidently, Ance improves over DPR in the P@K metrics, which can be

36



Method d P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 d P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

Long-text → LF-Amazon-131K LF-WikiSeeAlso-320K

Ngame (Φ) 768 42.61 28.86 20.69 38.27 43.75 48.71 768 43.58 28.01 20.86 30.59 33.29 36.03
DePSL (Φ) 512 45.86 30.52 21.89 38.19 44.07 49.56 512 44.83 29.07 21.66 30.67 33.56 36.41

SiameseXML (Ψ) 300 44.81 - 21.94 37.56 43.69 49.75 300 42.16 - 21.35 29.01 32.68 36.03
Ngame (Ψ) 768 46.95 30.95 22.03 38.67 44.85 50.12 768 45.74 29.61 22.07 30.38 33.89 36.95

UniDEC (Φ⊕Ψ) 768 47.80 32.29 23.35 40.28 47.03 53.24 768 47.69 30.74 22.81 35.45 38.02 40.71

Short-text → LF-WikiTitles-500K LF-WikiSeeAlsoTitles-320K

GraphSage (Φ) 768 27.30 17.17 12.96 21.56 21.84 23.50 768 27.19 15.66 11.30 22.35 19.31 19.15
Ngame (Φ) 768 29.68 18.06 12.51 23.18 22.08 21.18 768 30.79 20.34 15.36 25.14 26.77 28.73
DePSL (Φ) 512 49.66 27.93 19.62 27.44 25.64 24.94 512 33.91 21.92 16.48 24.22 25.80 27.99

Ngame (Ψ) 768 39.04 23.10 16.08 23.12 23.31 23.03 768 32.64 22.00 16.60 24.41 27.37 29.87
CascadeXML (Ψ) 768 47.29 26.77 19.00 19.19 19.47 19.75 768 23.39 15.71 12.06 12.68 15.37 17.63
UniDEC (Φ⊕Ψ) 768 50.22 28.76 20.32 25.90 25.20 24.85 768 36.28 23.23 17.31 26.31 27.81 29.90

Short-text → LF-AmazonTitles-131K LF-AmazonTitles-1.3M

DPR(Φ) 768 41.85 28.71 20.88 38.17 43.93 49.45 768 44.64 39.05 34.83 32.62 35.37 36.72
ANCE (Φ) 768 42.67 29.05 20.98 38.16 43.78 49.03 768 46.44 41.48 37.59 31.91 35.31 37.25
Ngame (Φ) 768 42.61 28.86 20.69 38.27 43.75 48.71 768 45.82 39.94 35.48 33.03 35.63 36.80
DePSL (Φ) 512 42.34 28.98 20.87 37.61 43.01 47.93 384 54.20 48.20 43.38 30.17 34.11 36.25

SiameseXML (Ψ) 300 41.42 30.19 21.21 35.80 40.96 46.19 300 49.02 42.72 38.52 27.12 30.43 32.52
Ngame (Ψ) 768 44.95 29.87 21.20 38.25 43.75 48.42 768 54.69 47.76 42.80 28.23 32.26 34.48

UniDEC (Φ⊕Ψ) 768 44.35 29.49 21.03 39.23 44.13 48.90 512 57.41 50.75 45.89 30.10 34.32 36.78

Table 2.2: Experimental results showing the effectiveness of Depsl and UniDEC against
both state-of-the-art dual encoder approaches and extreme classifiers. The best-performing
results are put in bold. DE and classifier results are compared separately.

observed as the impact of explicitly mining hard-negative labels per instance instead

of solely relying on the random in-batch negatives. Even though, these approaches use

12l-Bert-base instead of 6l-Distilbert common in XMC methods, Ance only shows

marginal gains over Ngame on both datasets. Our proposed DE method, DePSL, despite

using half the # Layers and half the search embedding dimension, is able to surpass these

DR approaches by 15− 20% for P@K metrics over LF-AmazonTitles-1.3M dataset.

Search Dimensionality As mentioned before, DePSL outperforms Ngame on P@K

metrics across benchmarks. Notably, DePSL does so by projecting (using g1(·)) and

training the encoder embeddings in a low-dimension space of d = 384. Similarly, for

UniDEC, inference is carried out by concatenating N(ΦC) and ΦD embeddings. Here,

both g1(·) and g2(·) consist of linear layers projecting Φ(·) into a low-dimensional space

of d = 256 or d = 384. On the other hand, all aforementioned baselines use a higher

dimension of 768 for both DE and CLF evaluations. For the proprietary Query2Bid-450M

dataset, we use final dimension of 64 for all the methods necessitated by constraints of

online serving.
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2.4.2 Efficiency Comparison with Spectrum of XMC methods

In this section, we provide a comprehensive comparison (refer Table 2.3) of our proposed

DePSL and UniDEC with two extreme ends of XMC spectrum (refer Figure 2.1): (i)

Renee, which is initialized with pre-trained Ngame encoder, trains OvA classifiers with

the BCE loss and, (ii) DEXML which achieves SOTA performance by training a DE

using their proposed loss function decoupled softmax. Note that, these approaches do

not pose a fair comparison with our proposed approaches as both Renee and Dexml

do not use a label shortlist and backpropagate over the entire label space, requiring an

order of magnitude higher GPU VRAM to run an iteration on LF-AmazonTitles-1.3M.

Therefore, for the same encoder, they can be considered as the upper bound of empirical

performance of CLF (OvA) and DE methods respectively. Table 2.3 shows that similar,

and perhaps better, performance is possible by using our proposedUniDEC and leveraging

the proposed PSL reduction of multi-class losses over a label shortlist.

Comparison with Renee : We observe that UniDEC delivers matching performance

over P@K and PSP@K metrics on long-text datasets and significantly outperforms Renee

on LF-AmazonTitles-1.3M. In fact, our proposed DE method outperforms Renee on LF-

Wikipedia-500K without even employing classifiers. We posit that UniDEC is therefore

more effective for skewed datasets, with higher avg. points per label and more tail labels.

Furthermore, these observations imply while Renee helps BCE loss reach it’s empirical

limits by scaling over the entire label space, with the UniDEC framework, we can match

this limit with a shortlist that is 86−212× smaller than the label space, thereby consuming

significantly lower compute (1 × A6000 vs 8 × V100).

DePSL vs Dexml (with shortlist): While DePSL leverages the proposed PSL

reduction in the UniDEC framework, the latter uses the POL reduction with the same

loss function. As evident in the LF-AmazonTitles-1.3M, Table 2.3, (i) For a comparable

label pool size (4000 vs 8192), DePSL significantly outperforms DEXML by ∼20% in

P@K metrics. (ii) To achieve similar performance as DePSL, DEXML need to use an
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Method P@1 P@5 PSP@1 PSP@5 |QB| |LB| VRAM TT

w Classifiers LF-Amazon-131K

Renee 48.05 23.26 39.32 53.51 512 131K 128 58
UniDEC 47.80 23.35 40.28 53.24 576 3000 48 24

w Classifiers LF-WikiSeeAlso-320K

Renee 47.70 23.82 31.13 40.37 2048 320K 128 81
UniDEC 47.69 22.81 35.45 40.71 677 3500 48 39

LF-Wikipedia-500K

DEXML 77.71 43.32 - - 2048 2048 80 -
DEXML 84.77 50.31 - - 2048 22528 160 -
DePSL 85.20 49.88 45.96 59.31 221 3000 48 55

Renee 84.95 51.68 39.89 56.70 2048 500K 320 39

DEXML-Full 85.78 50.53 46.27 58.97 2048 500K 320 39

Dual Encoder LF-AmazonTitles-1.3M

DEXML 42.15 32.97 - - 8192 8192 160 -
DEXML 54.01 42.08 28.64 33.58 8192 90112 320 -
DePSL 54.20 43.38 30.17 36.25 2200 4000 48 53

Renee 56.04 45.32 28.56 36.14 1024 1.3M 256 105
UniDEC 57.41 45.89 30.10 36.78 1098 3000 48 78

DEXML-Full 58.40 45.46 31.36 36.58 8192 1.3M 640 66

Table 2.3: Experimental results showing the effectiveness of DePSL and UniDEC against
the two ends of XMC spectrum. |QB| denotes batch size, |LB| denotes label pool size and
TT denotes Training Time(in hrs). Note, these comparisons are not fair owing to the
significant gap in used resources.

effective label pool size of 90K. However in the same setting, DePSL needs only 1/4th

batch size and 1/22th label pool size. (iii) Moreover, even after scaling to an effective label

pool size of 90× 103 i.e about 20× larger than DePSL, DEXML still lacks by 1− 1.5%

on PSP@K metrics despite having better P@K metrics. We defer the discussion about

this trade-off to textbf P vs PSP trade-off. A similar trend is seen in LF-Wikipedia-

500K. These observations empirically demonstrate the informativeness of the batches in

UniDEC - the same information can be captured by it with significantly smaller batch

sizes.

UniDEC vs DEXML-Full: UniDEC, scales to LF-AmazonTitles-1.3M on a single

A6000 GPU using a label shortlist of only 3000 labels, as opposed to DEXML-Full which

requires 16 A100s and uses the entire label space of 1.3M. Despite this, Table 2.3 indicates
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that UniDEC matches DEXML-Full performance on P@5 and PSP@5 metrics.

LF-AmazonTitles-1.3M LF-WikiTitles-500K

Method P@1 P@5 PSP@1 PSP@5 P@1 P@5 PSP@1 PSP@5

DE loss - SupCon; CLF loss - SupCon

UniDEC 53.41 43.57 32.54 38.20 48.38 19.89 26.26 24.78
UniDEC-de 49.35 39.23 27.78 32.86 48.63 19.30 27.21 24.52
UniDEC-clf 46.90 38.62 31.23 35.28 29.48 14.21 18.97 18.82

DE loss - SupCon; CLF loss - SupCon + BCE

UniDEC 54.86 44.61 28.05 35.05 49.68 20.15 25.29 24.67
UniDEC-de 51.08 40.78 28.64 34.00 47.07 18.88 27.47 24.53
UniDEC-clf 53.48 42.76 26.24 32.81 45.07 17.96 19.01 19.68

DE loss - Decoupled Softmax; CLF loss - BCE

UniDEC 55.12 44.80 31.72 37.28 48.65 19.58 26.15 24.37
UniDEC-de 50.83 40.61 27.14 33.66 47.70 18.59 26.84 24.19
UniDEC-clf 54.69 42.81 30.74 36.48 43.27 16.55 19.41 18.29

DE loss - Decoupled Softmax; CLF loss - Decoupled Softmax

UniDEC 56.73 45.19 34.03 39.54 48.97 19.82 27.08 24.89
UniDEC-de 52.52 42.02 29.78 35.06 49.20 19.30 27.36 24.49
UniDEC-clf 43.67 36.85 32.68 37.07 30.27 13.74 18.95 17.75

DE loss - Decoupled Softmax; CLF loss - Decoupled Softmax + BCE

UniDEC 57.41 45.89 30.10 36.78 50.22 20.32 25.90 24.85
UniDEC-de 52.51 42.00 29.82 35.08 49.16 19.33 27.35 24.54
UniDEC-clf 55.56 44.10 29.15 35.49 44.66 17.38 20.56 19.62

Table 2.4: Experimental results showing the effect of different loss functions while training
UniDEC. Further, the table also shows the scores of inference done using only the DE head
ΦD(x) or the normalized CLF head N(ΦC(x)), instead of the concatenated vector.

Evaluation with Multiple Loss Functions : As mentioned previously, any loss

function can be chosen in the UniDEC framework, however, we experiment with two

multi-class losses in particular, namely SupCon loss (SC) (Khosla et al., 2020) and

Decoupled Softmax (DS) (Gupta et al., 2023). Replacing ℓMC with these gives

LSupCon =
∑
i∈QB

−1
|PB

i |
∑
p∈PB

i

log
exp(⟨ΦD(xi),ΦD(zp)⟩/τ)∑

l∈LB

exp(⟨ΦD(xi),ΦD(zl)⟩/τ)

LDecoupledSoftmax =
∑
i∈QB

−1
|PB

i |
∑
p∈PB

i

log
exp(⟨ΦD(xi),ΦD(zp)⟩/τ)∑

l∈LB/{PB
i −p}

exp(⟨ΦD(xi),ΦD(zl)⟩/τ)

Notably, from Table 2.4 and Table 2.6, we observe that Decoupled Softmax turns out
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to be a better loss for XMC tasks as it helps the logits scale better (Gupta et al., 2023)

as compared to SupCon which caps the gradient due to a hard requirement of producing

a probability distribution. We further observe that classifier performance can further

improve by adding BCE loss as an auxiliary OvA loss to the classifier loss. While this

helps enhance P@K metrics, the PSP@K metrics take a significant dip on the inclusion of

auxiliary BCE loss. These observations are in line with the performance of Renee which

leverages BCE loss and suffers on PSP@K metrics. Simply using BCE loss for classifier

works in our pipeline, however, ends up performing worse than using multi-class loss to

train the classifiers.

2.4.3 Ablation Study and Discussion

Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-Amazon-131K w/o Hard Negatives

UniDEC 47.80 32.29 23.35 40.28 47.03 53.24 47.45 31.49 22.53 41.28 46.93 52.40
UniDEC-de 45.24 30.32 21.97 37.85 43.92 49.90 45.45 30.29 21.79 38.15 43.97 49.53
UniDEC-clf 47.83 32.31 23.32 40.56 47.17 53.21 43.77 28.30 19.90 39.80 43.64 47.78

LF-WikiSeeAlso-320K w/o Hard Negatives

UniDEC 47.69 30.74 22.81 35.45 38.02 40.71 46.74 30.04 22.27 35.85 38.10 40.97
UniDEC-de 44.65 28.84 21.53 30.54 33.30 36.20 43.07 27.67 20.69 30.52 32.81 35.55
UniDEC-clf 42.04 25.89 18.89 33.63 34.07 35.60 41.05 25.47 18.80 33.52 34.01 35.82

LF-WikiTitles-500K w/o Hard Negatives

UniDEC 50.22 28.76 20.32 25.90 25.20 24.85 49.84 28.31 19.95 26.41 25.44 24.99
UniDEC-de 49.16 27.51 19.33 27.35 25.24 24.54 46.87 25.60 17.83 27.38 24.64 23.81
UniDEC-clf 44.66 24.81 17.38 20.56 19.86 19.62 44.20 24.83 17.48 21.33 20.60 20.42

LF-AmazonTitles-1.3M w/o Hard Negatives

UniDEC 57.41 50.75 45.89 30.10 34.32 36.78 56.51 49.77 44.94 31.90 35.89 38.21
UniDEC-de 52.51 46.66 42.00 29.82 33.21 35.08 49.71 43.87 39.37 30.40 33.49 35.20
UniDEC-clf 55.56 48.77 44.10 29.15 33.15 35.49 53.31 47.21 42.90 30.41 34.19 36.47

Table 2.5: Experimental results showing the effect of adding ANNS-mined hard negatives
while training UniDEC. Further, the table also shows the scores of inference done using
either the DE head embedding ΦD(x) or the normalized CLF head embedding N(ΦC(x)),
instead of the concatenated vector {ΦD(x)⊕N(ΦC(x))}. The P vs PSP trade-off associated
with adding ANNS-mined hard-negatives is clear by observing the underlined values.

We show the effect of the two individual components ΦD and ΦC of UniDEC in

Table 2.5. The scores are representative of the evaluation of the respective component

of the UniDEC framework, (i) UniDEC-de (ΦD) performs inference with an ANNS

built over ΦD(zl)|Ll=0, (ii) UniDEC-clf (ΦC) performs inference with an ANNS built
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over N(Ψ(l))|Ll=0 and (iii) UniDEC uses the ANNS built over the concatenation of both

{ΦD(zl) +N(Ψ(l))}|Ll=0. Notably, concatenation of embeddings leads to a more effective

retrieval. We attribute its performance to two aspects, (i) as seen in previous XMC

models, independent classifier weights significantly improve the discriminative capabilities

of these models and (ii) we hypothesise that normalized and unnormalized spaces learn

complementary information which leads to enhanced performance when an ANNS is

created on their aggregation. Note that, the individual search dimensions of UniDEC-de

and UniDEC-clf are d/2 and searching with a concatenated embedding leads to a fair

comparison with other baselines which use a dimensionality of d.

Effect of ANNS-mined Hard Negatives The effect of explicitly adding ANNS-

mined hard negatives is shown via a vis-a-vis comparison with UniDEC (w/o Hard

Negatives) in Table 2.5. Here, when we do not add hard negatives, we compensate

by adding other positives of the batched queries. More broadly, we observe a P vs

PSP trade-off in this ablation. We find that not including hard negatives in the shortlist

performs better on PSP@K metrics, due to inclusion of more positive labels. Consequently,

adding (typically η = 6) hard negatives generally increases performance on P@K metrics,

while compromising on PSP@K metrics. While the smaller datasets show only marginal

improvements with added hard negatives, these effects are more pronounced in the larger

datasets, proving its necessity in the pipeline.

Loss Dual P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-Amazon-131K LF-WikiSeeAlso-320K

SC 44.41 29.84 21.63 36.89 43.00 48.90 43.79 28.31 21.08 29.47 32.15 34.89
SC ✓ 45.03 30.24 21.93 37.66 43.81 49.78 44.32 28.84 21.57 30.16 33.14 36.11
DS 45.86 30.52 21.89 38.19 44.07 49.56 44.73 28.78 21.43 30.18 32.79 35.58
DS ✓ 45.79 30.60 21.95 38.43 44.42 49.92 44.83 29.07 21.66 30.67 33.56 36.41

LF-AmazonTitles-1.3M LF-WikiTitles-500K

SC 52.22 46.45 41.80 29.15 32.90 34.91 48.30 27.33 19.26 27.00 25.12 24.51
SC ✓ 50.62 45.09 40.64 30.51 34.30 36.33 47.33 26.79 18.94 27.41 25.21 24.63
DS 54.20 48.20 43.38 30.17 34.11 36.25 49.66 27.93 19.62 27.44 25.64 24.94
DS ✓ 53.26 47.55 42.86 31.90 35.80 37.88 48.87 27.47 19.35 28.09 25.77 25.08

Table 2.6: Experimental results showing the effect of adding symmetric loss while training
DePSL.
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Effect of Symmetric Loss As shown in Table 2.6, making the loss function symmetric

has a favorable effect on all metrics for long-text datasets. However, this make the

short-text datasets favor PSP@K metrics more, at an expense of P@K metrics. We believe

this happens because of mixing data distributions. While adding a short-text loss over

long-text document helps the model understand the label distribution better, this has

a reverse effect on short-text datasets and the label distribution confuses with already

short-text query distribution and ends up learning the label distribution more at the

expense of query distribution.

2.4.4 Query2Bid Evaluation and Live A/B testing on Sponsored Search

To demonstrate the effectiveness of our method on proprietary datasets and real-world

scenarios, we do experiments in sponsored search setting. The proposed model was

evaluated on proprietary dataset for matching queries to advertiser bid phrases (Query2Bid)

consisting of 450M labels. Query2Bid-450M dataset was created by mining the logs from

search engine and enhancing it through Data Augmentation techniques using a ensemble

of leading (proprietary) algorithms such as Information Retrieval models (IR), Dense

retrieval models (DR), Generative Non-Autoregressive models (NAR), Extreme-Multi-

label Classification models (XMC) and even GPT Inference techniques.

Experimental Setup : The BERT Encoder is initialized with 6-Layer DistilBERT

base architecture. Since the search queries and bid phrases are of short-text in nature, a

max-sequence-length of 12 is used. We evaluate DePSL against XMC and DR models

deployed in production which could scale to the magnitude of chosen dataset. Training

batch-size is set to 2048 and other Hyperparameters are chosen to be same as for public

benchmark datasets. Training is carried out on 8 V100 GPUs and could easily complete

within 48 hours. Performance is measured using popular metrics such as Precision@K

(P@K) with K ∈ 1, 3, 5, 10.
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Method P@1 P@3 P@5 P@10

NGAME 86.16 73.07 64.61 51.94
SimCSE 86.08 73.26 65.27 53.51
DePSL 87.33 74.63 66.44 54.13

Table 2.7: Results on Query2Bid-450M dataset for Sponsored Search

Offline Results : Table 2.7 shows that on DePSL can be 1.15-1.83% more accurate

than the leading DR & XMC methods in Sponsored Search setting. This indicates that

leveraging DePSL can yield superior gains in real-world search applications.

Live A/B Testing in a Search Engine: DePSL was deployed on Live Search Engine

and A/B tests were performed on real-world traffic. The effect of adding DePSL to

the ensemble of existing models in the system was measured through popular metrics

such as Impression Yield (IY), Click Yield (CY), Click-Through Rate (CTR) and Query

Coverage (QC). Refer (Dahiya et al., 2023a) for definitions and details about these metrics.

DePSL was observed to improve IY, CY, CTR and QC by 0.87%, 0.66%, 0.21% and

1.11% respectively. Gains in IY, CY and CTR establish that DePSL is able to predict

previously unmatched relations and the predictions are more relevant to the end user.

QC boost indicates that DePSL is able to serve matches for queries to which there were

no matches before in the system. This ascertains the zero-shot capabilities of the model.

2.5 Other Related Works

To reduce computational costs of training classifiers, previous XMC methods tend to

make use of various shortlisting strategies, which serves as a good approximation to the

loss over the entire label space (Chang et al., 2020; Dahiya et al., 2021b; You et al., 2019).

This shortlist can be created in one of the two ways : (i) by training a meta classifier on

coarser levels of a hierarchically-split probabilistic label tree. The leaf nodes of the top-k

nodes constitute the shortlist (Jiang et al., 2021; Kharbanda et al., 2023, 2022) (ii) by

retrieving the top-k labels for a query from an ANNS built on the label representations
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from a contrastively trained DE (Dahiya et al., 2021a). Both these methods have different

trade-offs. The meta-classifier based approach has a higher memory footprint due to the

presence of additional meta classifier (∼ RL/10×d in size) along with the extreme classifier,

but it gives enhanced performance since this provides progressively harder negatives in a

dynamic shortlist, varying every epoch (Jiang et al., 2021; Kharbanda et al., 2023, 2022).

The shortlisting based on ANNS requires training the model in multiple stages, which

has low memory usage, but needs longer training schedules and uses a static shortlist for

training extreme classifiers (Dahiya et al., 2023a, 2021b; Mittal et al., 2021a,b).

Previous research has also explored various other methods : (i) label trees (Khandagale

et al., 2020; Prabhu et al., 2018a; Wydmuch et al., 2018), (ii) classifiers based on

hierarchical label trees (Chang et al., 2020; Zhang et al., 2021b; Prabhu et al., 2018b).

Alongside previous negative-mining works, the statistical consequences of this sampling

(Reddi et al., 2018) and missing labels (Jain et al., 2016; Qaraei et al., 2021; Schultheis

et al., 2022; Schultheis and Babbar, 2021; Wydmuch et al., 2021) have led to novel insights

in designing unbiased loss functions - which can also be applied in UniDEC.

2.6 Conclusion

In this paper, we present a new loss-independent end-to-end XMC framework, UniDEC,

that aims to leverage the best of both, a dual encoder and a classifier in a compute-efficient

manner. The dual-encoder is used to mine hard negatives, which are in turn used as the

shortlist for the classifier, eliminating the need for meta classifiers. Highly informative

in-batch labels are created which maximise the supervisory signals while keeping the GPU

memory footprint as low as possible - to the extent that we outperform previous SOTAs

with just a single GPU. The dual encoders and classifiers are unified and trained with the

same multi-class loss function, which follows the proposed pick-some-labels paradigm. To

the best of our knowledge, we are the first work to study the effect of PAL-like losses for

training XMC classifiers. We hope this inspires future works to study the proposed PSL

reduction for multilabel problems as a compute-efficient means to further eliminate the
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need of high-capacity classifiers in XMC, bringing the scope of this problem closer to the

more general dense retrieval regime.
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