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Abstract

Atom interferometry in an optical cavity

by

Matthew Jaffe

Doctor of Philosophy in Physics

University of California, Berkeley

Associate Professor Holger Müller, Chair

Matter wave interferometry with laser pulses has become a powerful tool for precision
measurement. Optical resonators, meanwhile, are an indispensable tool for control of laser
beams. We have combined these two components, and built the first atom interferometer
inside of an optical cavity. This apparatus was then used to examine interactions between
atoms and a small, in-vacuum source mass. We measured the gravitational attraction to the
source mass, making it the smallest source body ever probed gravitationally with an atom
interferometer. Searching for additional forces due to screened fields, we tightened constraints
on certain dark energy models by several orders of magnitude. Finally, we measured a novel
force mediated by blackbody radiation for the first time.

Utilizing technical benefits of the cavity, we performed interferometry with adiabatic
passage. This enabled new interferometer geometries, large momentum transfer, and in-
terferometers with up to one hundred pulses. Performing a trapped interferometer to take
advantage of the clean wavefronts within the optical cavity, we performed the longest du-
ration spatially-separated atom interferometer to date: over ten seconds, after which the
atomic wavefunction was coherently recombined and read out as interference to measure
gravity. This work demonstrates the feasibility and utility of bringing a cavity to atom
interferometry.
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Chapter 1

Introduction

1.1 Interferometry and matter waves
Measuring is mostly about counting. Whether counting ticks on a ruler to measure distance,
or counting swings of a clock pendulum to keep time, integers are doing the heavy lifting.
Inferring spacing between the ticks is more difficult than the counting. In the ruler example,
even with a great microscope, you’d be hard pressed to determine if a piece of paper was 0.1
or 0.15 mm thick, if the ruler ticks are spaced by 1 mm. If you stack 1000 papers on top of
each other, these 1 mm rulings might now be of more use.

The paper example demonstrates the utility of finely spaced, countable rulings to making
a precise measurement. This observation motivates the idea of a light interferometer, which
splits, redirects and recombines an incident light ray along two paths. Depending on the path
length difference, the two waves will be in or out of phase to some degree, giving bright or dark
spots at the output ports. If a mirror on one of the paths moves, counting the dark/bright
oscillations pass by gives a measure of the distance moved in units of the wavelength of light
(∼1 µm). This is much finer spacing than a ruler! Additionally, the wavelength of the light
can be controlled to both high precision and high accuracy, giving the distance measurement
a stable and known scale factor. A famous early scientific application of a light interferometer
was the Michelson-Morley experiment [1] in 1887, disproving the existence of the luminiferous
ether, through which electromagnetic waves were theorized to propagate. Recently, the first
detections of gravitational waves were made using light interferometers designed, built and
optimized over decades by the LIGO and VIRGO collaborations [2, 3].

The advent of quantum mechanics beginning in the 1920s revealed that matter too has
wave-like properties. Quantum particles are described by a wave equation (the Schrödinger
equation) and exhibit familiar wave phenomena such as diffraction and interference. A
matter wave interferometer, in analogy with a light interferometer, can thus be realized by
reversing the roles of light and matter: rather than using matter (mirrors and beamsplitters)
to manipulate a light wave, light waves (laser pulses) are used to manipulate matter waves.
The resulting matter wave interference can then be used as a measurement device.
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This laser manipulation of matter waves for interferometric metrology has been called
light pulse atom interferometry, and has its origins in the early 1990s [4]. Since then, the
technique has been used for a wide variety of purposes. Examples include measuring fun-
damental constants [5–8], tests of the equivalence principle [9, 10], gravimeters [11–13], gra-
diometers [14–16], and inertial sensors [17–19]. The strengths of atom interferometers are
similar to those of light interferometers: fundamental stability, and large phase accumula-
tion.

The parameters determining the phase of such devices can be well-controlled, making
atom interferometry amenable to absolute measurements. Absolute stability is key in mea-
suring the fine structure constant α [5, 6], the gravitational constant G [7, 8], and inertial
metrology (accelerations, rotations, gravity gradients). Additionally, a huge amount of phase
can be accumulated so that for parameters determining the phase, even small changes have
a large lever arm to produce a sizable phase shift. This gives finely-spaced “rulings” to the
measurement.

The sensitivity of atom interferometry has been pushed forward by increasing the mo-
mentum separation between the interferometer arms [20–24], and extending the interrogation
time by building large atomic fountains [12, 25, 26]. In this thesis, we aim to further extend
the scope of atom interferometer technologies by performing the laser pulses inside an optical
cavity. We also investigate several types of interactions using the atoms to probe a small,
in-vacuum source mass.

Motivation for a cavity

A cavity provides improvements to a free space laser beam by both (i) resonant enhancement
of the optical intensity and (ii) smooth wavefronts via mode-filtering.

The higher intensity is useful in performing matter wave manipulations. The smooth
wavefronts provided by the mode filtering allow for uniform addressing of the atoms by
the laser beam. The intra-cavity phase fronts can have substantially reduced small-scale
irregularities (wavefront distortions, or speckle) compared to the free-space input beam.

The utility of the cavity for interferometry is demonstrated and more thoroughly dis-
cussed in Chapters 4, 7 and 8.

Interactions with a source mass

We investigate three types of interactions between an in-vacuum source mass and an atom
interferometer:

(i) Gravity (Chapter 5)

(ii) “Screened” interactions proposed to explain dark energy (Chapter 5)

(iii) A force mediated by blackbody radiation (Chapter 6)
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1.2 Outline of thesis
The rest of this thesis is organized as follows. Chapter 2 lays out a theoretical framework for
atom interferometry, and briefly describes optical resonators. The experimental apparatus is
described in Chapter 3. Chapter 4 discusses our development of the first atom interferometer
in an optical cavity. Using this interferometer, we measured the gravitational attraction
between atoms and a small source mass to place strong constraints on dark energy candidates,
outlined in Chapter 5. Chapter 6 presents the first measurement of a force mediated by
blackbody radiation. Next, interferometer geometries that capitalize on advantages of the
cavity are described. A new technique using spin-dependent kicks with adiabatic passage
is presented in Chapter 7. A trapped interferometer is presented in Chapter 8 that allows
for interrogations times of over 10 seconds, the longest-duration spatially separated atom
interferometer to date. Finally, future prospects for cavity interferometers are discussed in
Chapter 9.
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Chapter 2

Atom interferometry: background
and theory

A light pulse atom interferometer uses laser pulses to coherently manipulate matter waves.
The wave function of an atom is split, re-directed and recombined by these laser pulses to
produce interference. The phase of this interference pattern constitutes the measurement
being performed. In this chapter, the formalism underlying these matter wave manipulations
is developed, and the phase of an atom interferometer is derived. This presentation of atom
interferometry follows closely the derivations of Ref. [27]. Finally, the basics of optical
resonators are presented.

2.1 Overview of an atom interferometer
A toy model interferometer could split a wave into two components (arms), separately evolve
those two arms, and then recombine the arms. For a quantum particle like an atom, we
identify these two components as states in a two-dimensional Hilbert space, |1⟩ and |2⟩. The

state of the particle is then a two-component spinor |ψ⟩ =
(
a
b

)
= a|1⟩+b|2⟩. A beamsplitter

is a rotation:

Ŝ =
1√
2

(
1 i
i 1

)
(2.1)

which maps either basis ket into an equal superposition of |1⟩ and |2⟩. This is a specific case
of the general rotation operator in this 2-component space, given by

R̂(θ, n̂) = eiσ·n̂ θ
2 =

(
cos θ

2
− inz sin

θ
2

(−inx − ny) sin
θ
2

(−inx + ny) sin
θ
2

cos θ
2
+ inz sin

θ
2

)
(2.2)
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where σ is the Pauli matrix vector, and n̂ is the unit vector around which the rotation takes
place. This beamsplitter Ŝ rotates the spinor about the −x̂-axis by angle θ = π

2
, that is,

Ŝ = R̂(π
2
,−x̂). A beamsplitter is thus also commonly referred to as a π

2
pulse.

Evolving the state during the second step of the interferometer, each spinor component
acquires a phase ϕi. This is represented by an evolution operator:

Û(ϕ1, ϕ2) =

(
eiϕ1 0
0 eiϕ2

)
(2.3)

To recombine the two components, the state is rotated back by applying Ŝ† (we could
equally validly apply the rotation Ŝ again instead of un-rotating). The output |ΨF⟩ of this
interferometer acting on an input state |ΨI⟩ is then

|ΨF⟩ = Ŝ†Û Ŝ|ΨI⟩ (2.4)

For initial state |ΨI⟩ =
(
1
0

)
= |1⟩, the output state |ΨF⟩ is:

|ΨF⟩ =
1

2

(
eiϕ2 + eiϕ1

i
(
eiϕ2 − eiϕ1

)) (2.5)

The probabilities to end up in either state, given by the square of the amplitudes, is(
P1

P2

)
=

(
cos2

(
ϕ2−ϕ1

2

)
sin2

(
ϕ2−ϕ1

2

)) (2.6)

So the output of this interferometer oscillates between |1⟩ and |2⟩, with phase set by
the phase difference along the interferometer arms ϕ2 − ϕ1. This procedure has succeeded
in mapping a typically unobserved phase difference into a measurable population difference!
We will find this mapping to be metrologically valuable, as many effects induce phase shifts,
which can then be made measurable as demonstrated above.

2.2 Free evolution and the path integral formulation
How does the matter wave accumulate phase between the laser pulses? That is, how are the
phases ϕ1 and ϕ2 in eq. 2.3 determined? This section addresses that question. We start by
presenting quantum mechanics in the path integral formalism. The Schrödinger equation
describing the time evolution of a quantum particle is

iℏ
∂

∂t
|Ψ(t)⟩ = Ĥ|Ψ(t)⟩

where Ĥ is the Hamiltonian. We can declare a solution that satisfies the Schrödinger equa-
tion:
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|Ψ(t)⟩ = e−iĤ(t−t0)/ℏ|Ψ(t0)⟩ ≡ Û(t− t0)|Ψ(t0)⟩

where we have defined the time-evolution operator Û(τ) = e−iĤτ/ℏ.
Consider a quantum particle in 1 dimension, initially located at position xI at time tI .

That is, |Ψ(tI)⟩ = |xI⟩. What is the amplitude for this particle to be found at position xF
at a later time tF ? Without gaining much insight, we can write the answer down as

⟨xF , tF |Ψ(tF )⟩ = ⟨xF , tF |U(tF − tI)|Ψ(tI)⟩ (2.7)
Now consider a path of N +1 points evenly spaced in time defining a path Γ from xI to xF :
{xI , x1, x2, . . . , xN−1, xF}, where we will also identify x0 ≡ xI and xN ≡ xF . We can write
the amplitude to follow this path by stringing together N copies of eq. 2.7:

⟨xF |U(δt)|xN−1⟩ ⟨xN−1|U(δt)|xN−2⟩ · · · ⟨x1|U(δt)|xI⟩ (2.8)
The idea of the path integral formulation is that the amplitude we’re looking to calculate

in eq. 2.7 is obtained by integrating over all possible paths. Eq. 2.8 gives us a framework
perform this integration: we integrate over all the xj between xI and xF :

⟨xF , tF |e−iĤ(tF−tI)/ℏ|xI , tI⟩ =
N∏
j=1

∫
dxj ⟨xF |U(δt)|xN−1⟩ ⟨xN−1|U(δt)|xN−2⟩ · · · ⟨x1|U(δt)|xI⟩

(2.9)
The quantity ⟨xF , tF |e−iĤ(tF−tI)/ℏ|xI , tI⟩ is known as the propagator between {xI , tI} and

{xF , tF} and will be important to us for evaluating quantities of interest. With this in mind,
let’s look at an individual component of this integral, ⟨xj+1|U(δt)|xj⟩. We’ll now specify the
Hamiltonian as that of a massive particle in a potential V :

Ĥ =
p̂2

2m
+ V (x̂)

Making use of the identity

1 =

∫
dp

2π
|p⟩⟨p|, (2.10)

the momentum and position operators in the Hamilton can be manipulated to act on their
respective eigenstates:

⟨xj+1|e−iĤδt/ℏ|xj⟩ =
∫

dp

2π
⟨xj+1|p⟩ ⟨p|e

−i

(
p̂2

2m
+V (x̂)

)
δt/ℏ

|xj⟩

=

∫
dp

2π

(
eipxj+1

)(
e
−i

(
pxj+

(
p2

2m
+V (xj)

)
δt/ℏ

))
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= e−iV (xj)δt/ℏ
∫

dp

2π
e(−

iδt
2mℏp

2+i(xj+1−xj)p) (2.11)

Terms of order δt2 have been neglected (since we will takeN → ∞ and thus δt→ 0) by taking
taking e(...)δt = 1+(. . .)δt+O(δt2), calculating, and then later re-taking 1+(· · · )δt+O(δt2) →
e(··· )δt. We have also used the relation ⟨x|p⟩ = eipx. Evaluating the gaussian integral 1 in eq.
2.11 gives us

⟨xj+1|e−iĤδt/ℏ|xj⟩ =
(
−imℏ
2πδt

)1/2

e
i δtℏ

[
m
2

(
xj+1−xj

δt

)2
−V (xj)

]
(2.12)

Plugging this into our expression for the propagator (eq. 2.9) gives

⟨xF , tF |e−iĤ(tF−tI)/ℏ|xI , tI⟩ =
(
−imℏ
2πδt

)N/2 N−1∏
j=1

∫
dxje

i δtℏ
∑N−1

l=0

[
m
2

(
xl+1−xl

δt

)2
−V (xl)

]
(2.13)

Now we’ll take some liberties to start massaging this into a more manageable form.
First, we identify the quantity

(xl+1−xl

δt

)
as a discrete time derivative. Since we will be taking

δt→ 0, we will make to following substitutions from discrete to continuous expressions:

δt
N−1∑
l=0

V (xl) →
∫ tF

tI

dt V [q] (2.14a)

δt
N−1∑
l=0

m

2

(
xl+1 − xl

δt

)2

→
∫ tF

tI

m

2
q̇2 (2.14b)

With these substitutions, we can re-write our last expression for the propagator eq. 2.13
as

⟨xF , tF |e−iĤ(tF−tI)/ℏ|xI , tI⟩ = lim
N→∞

(
−imℏ
2πδt

)N/2
(

N−1∏
j=1

∫
dxje

i
ℏ
∫ tF
tI

dt(m
2
q̇2−V [q])

)
(2.15a)

≡
∫

Dx e
i
ℏ
∫ tF
tI

dtL[q,q̇] (2.15b)

=

∫
Dx eiS[q]/ℏ (2.15c)

In going from eq. 2.15a to eq. 2.15b, we have defined the integral over all paths as∫
Dx to hide the ugly limN→∞ and

∏
j

∫
dxj. We have also identified the phase term in the

1The gaussian integral
∫∞
−∞ exp

(
1
2 iax

2 + iJx
)
dx =

√(
2πi
a

)
exp

(
− iJ2

2a

)
; see eq. 2.20 for generalization
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integral of the exponential as the Lagrangian L[q, q̇]. Finally, moving from eq. 2.15b to eq.
2.15c, we identify the integral of the Lagrangian as the action S[q].

To make use of this for atom interferometry, we’ll now make a some simplifications. First,
note that paths that minimize the action S will contribute most to the integral. Paths with
larger action cause the phase in the integral to oscillate rapidly, since S ≫ ℏ, averaging
their contribution to zero. Motivated by this observation, we can Taylor expand around the
classical path. The classical path taken by a particle minimizes the action, and is found by
solving the Euler-Lagrange equation:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0

We can now write a generic path q(t) as an expansion about the classical path qc(t):

q(t) = qc(t) + δq(t)

Recalling that we moved to the continuous variable q from the discrete {xj}, this corre-
sponds to making the transformations

xj → xc(tj) + εj (2.16a)
dxj → εj (2.16b)

This takes the discrete versions of our continous variables to

qc(t) = qc = {xI , xc(tI + δt), . . . , xc(tI + (N − 1)δt), xF} (2.17a)
δq(t) = ε = {0, ε1, . . . , εN−1, 0} (2.17b)

Substituting eqs. 2.16 into the expanded expression for the propagator eq. 2.15a, we get

lim
N→∞

(
−imℏ
2πδt

)N/2
(

N−1∏
j=1

∫
dεje

iS[qc(t)+δq(t)]/ℏ

)
(2.18)

From here, we can expand the action in a multivariate power series around the classical
path:

S[qc + ε] =
∞∑
n=0

1

n!
(ε ·∇)n S[q]

∣∣
q=qc

= S[qc] +
����������
(

N−1∑
j=1

∂S

∂xj
εj

)∣∣
q=qc

+
1

2

(
N−1∑
j=1

N−1∑
k=1

∂2S

∂xj∂xk
εjεk

)∣∣
q=qc

+O
(
ε3
)

The first derivative term vanishes because the classical path, by definition, minimizes the
action. Plugging this into eq. 2.18, our expression for the propagator now becomes
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lim
N→∞

(
−imℏ
2πδt

)N/2

eiS[qc]/ℏ

(
N−1∏
j=1

∫
dεj exp

[
i

2ℏ

N−1∑
j=1

N−1∑
k=1

∂2S

∂xj∂xk
εjεk +����O

(
ε3
)])

(2.19)

For a potential that is at most quadratic in x, the O (ε3) terms are identically zero because
third-order (and higher) derivatives of the action vanish. For higher order potentials, we
assume the O (ε3) terms are small.

To evaluate this integral, we can use a general expression for n-dimensional gaussian
integrals (integrals of this type are common in quantum field theory, see Ref. [28]). For a
real, symmetric n× n matrix A, and n× 1 column vector J ,∫

dnx exp(− i

2
x · A · x+ iJ · x) =

√
(2πi)n

detA
exp

(
− i

2
J · A−1 · J

)
(2.20)

In our integral eq. 2.19, we identify J = 0, and A = ∂2S
∂xj∂xk

(which is real and symmetric).
Using eq. 2.20 to evaluate eq. 2.19, we get our final expression for the propagator:

⟨xF , tF |e−iĤ(tF−tI)/ℏ|xI , tI⟩ = lim
N→∞

1√
2πiℏ

(m
δt

)N/2 1√
detA

eiS[qc]/ℏ (2.21)

= ZeiS[qc]/ℏ (2.22)

where we’ve wrapped up all of the potential weirdness from taking limN→∞ into a normal-
ization constant Z, that for now, we’re just hoping is sufficiently well-defined. Luckily, it is
(see Refs. [27, 29] for more detail).

We’ve found that evaluating the propagator, up to a normalization constant, amounts to a
phase given by the action along the classical trajectory divided by ℏ. We will now investigate
a very simple matterwave interferometer. In doing so, we will use the beamsplitter from eq.
2.1.

Figure 2.1: Simple Interferometer
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Consider the trajectory shown in Fig. 2.1. A beamsplitter Ŝ is applied to split a matter
wave along two classical trajectories Γa

cl and Γb
cl. When the trajectories overlap again, an-

other beamsplitter Ŝ† recombines them. If we denote the state following paths Γa
cl and Γb

cl
respectively as |a⟩ and |b⟩, we can write the state just after the first beamsplitter as

|Ψ(xI + εx, tI + εt)⟩ = Ŝ|a⟩

=
1√
2

(
1
i

)
=

1√
2
(|a⟩+ i|b⟩)

where εx and εt are tiny quantities just to indicate that this is after the beamsplitter.
From this chapter’s calculation of the propagator, we know in the free evolution between

beamsplitters, each arm acquires a phase given by the action. When the arms again overlap
at {xF − εx, tF − εt} the wavefunction is thus

|Ψ(xF − εx, tF − εt)⟩ = eiĤ(tF−tI)/ℏ|Ψ(xI , tI)⟩

=
1√
2

(
eiSa/ℏ

ieiSb/ℏ

)
where Si = S[Γi

cl] for i = a, b (and we’ve taken the symbolic εt → 0 in the exponential). The
off-diagonal elements of the evolution operator U(tF , tI) = eiĤ(tF−tI)/ℏ are zero by definition
of the classical paths Γi

cl under the Hamiltonian; |a⟩ and |b⟩ are orthogonal eigenstates of Ĥ.
Applying a final beamsplitter now reveals the interference. After the beamsplitter Ŝ†,

the state |ΨF⟩ is:

|Ψ(xF , tF )⟩ = Ŝ†|Ψ(xF − εx, tF − εt)⟩ =
1

2

(
eiSb/ℏ + eiSa/ℏ

i
(
eiSb/ℏ − eiSa/ℏ

))
The probabilities to end up in either state are

(
Pa

Pb

)
=

(
cos2

(
Sb−Sa

2ℏ

)
sin2

(
Sb−Sa

2ℏ

))
=

(
cos2

(
ϕb−ϕa

2

)
sin2

(
ϕb−ϕa

2

))

where we have defined ϕi ≡ Si/ℏ for i = a, b. This result is identical to our results eq. 2.5
and eq. 2.6 from Sec. 2.1! We’ve simply identified how to calculate the free evolution phases.

More information and derivations underpinning matter wave interferometry can be found
in Refs. [27, 29–31]. With this framework for interference developed, the next section will
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look into the atom-laser interactions used to actually perform the mirror and beamsplitter
operations.

The key takeaway from this section is that the free evolution phase is calculated by
integrating the Lagrangian along the classical path.

2.3 Atom-laser interactions
Mirrors and beamsplitters of a matter wave interferometer are performed with laser pulses
in the aptly named “light pulse atom interferometer”. Photon momenta are coherently
exchanged with a matter wave to split, re-direct and recombine the wave along desired
paths. Atom optics other than light pulses have also been demonstrated, such as material
gratings [32] and magnetic field gradients [33], but are far less common. In this section,
we quantitatively outline the atom-laser interactions behind the atom optics in this thesis,
deriving the effect of these atom optics on the interferometer phase.

A Raman transition is a two-photon process that changes the hyperfine state of the
atom and exchanges momentum with the light field. Bragg transitions, or Bragg diffrac-
tion, are also used extensively in atom interferometry. In these transitions, the matter
wave is diffracted into various momentum states without changing the internal state. Bragg
diffraction is briefly discussed in Section 2.3.4. However, we predominantly discuss Raman
transitions, as they are used nearly exclusively in this experiment.

2.3.1 Raman transitions: the system
Consider the three-level system in Fig. 2.2.

Δ

ωHF

δ

ω1

ω2

ω2
ω1

Figure 2.2: Three-level Raman system

The system consists of two ground states, |1⟩ and |2⟩, and an excited state |e⟩. The
ground states are separated in energy by ℏωHF, and |2⟩ is separated from the excited state
by ℏω2e. For cesium, the atom used in our experiment, ωHF = 2π × 9.192631770 GHz is a
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microwave frequency defining the second (for now), while ω2e ≈ 2π×351.7 THz is an optical
frequency. Consider an atom with this level structure placed in the light field shown in Fig.
2.2: an upward propagating beam with frequency ω1, and a counterpropagating beam with
frequency ω2. The Hamiltonian is

Ĥ =
p̂2

2m
+ ℏωA

1 |1⟩⟨1|+ ℏωA
2 |2⟩⟨2|+ ℏωA

e |e⟩⟨e|+ V̂ (2.23)

where V̂ is the light field perturbation, and the superscript A is used for clarity to denote a
property of the atom. Explicitly, the perturbation is

V̂ = −d̂ ·E

where d̂ = er̂ is the dipole operator. The electric field can be written as

E = E1 cos (k1z − (ω1t− φ1)) +E2 cos (k2z + (ω2t− φ2)) (2.24)
with wavevectors |ki| = ki = ωi/c, and k2 ≈ −k1. In the next section, we solve the
Schrödinger equation for this Hamiltonian.

2.3.2 Solving the equation
Momentum transfer

In this section, we’ll show that when an atom interacts with the light field, it gains or loses
one photon’s momentum. With the atom’s momentum and internal states as the relevant
degrees freedom, we follow Ref. [34] and propose as an ansatz for the solution:

|ψ⟩ =
∫
dp
∑
α

aα,p(t)e
i

(
ωA
α+ p2

2m

)
t
|α, p⟩ (2.25)

where |α, p⟩ ≡ |α⟩ ⊗ |p⟩ corresponds to an atom with internal state α ∈ {1, 2, e} and
in momentum eigenstate ψp(x) ∼ eipx/ℏ. Since V̂ contains trigonometric terms, we will be
interested in the operator e±ikẑ. More explicitly,

⟨α, p|V̂ |α′, p′⟩ ∼ (⟨α| ⊗ ⟨p|) r̂ ·E (|α′⟩ ⊗ |p′⟩) ∋ ⟨p|e±ikẑ|p′⟩ (2.26)
Using the identities2 1 =

∫
dp |p⟩⟨p| =

∫
dz |z⟩⟨z|, we can rewrite

e±ikz =

∫
dp e±ikz|p⟩⟨p| (2.27)

and
2These identities come from the orthonormality condition ⟨p|p′⟩ = δ(p − p′). This is, unfortunately,

different than a convention used in quantum field theory, ⟨p|p′⟩ = 2πδ(p− p′), which explains eq. 2.10.
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|p⟩ =
∫
dz |z⟩⟨z|p⟩ = 1√

2πℏ

∫
dz eipz|z⟩. (2.28)

Plugging eqs. 2.27 and 2.28 into eq. 2.26, we can calculate

⟨p|e±ikẑ|p′⟩ = ⟨p|
(∫

dq |q ± ℏk⟩⟨q|
)
|p′⟩ = δp,p′±ℏk (2.29)

So only momentum states separated by ±ℏk are connected to each other by each e±ikz

term. This shows that by interacting with a light field, an atom can gain or lose a photon’s
momentum, corresponding to absorption or stimulated emission. With this momentum
ladder established, we can simplify our ansatz eq. 2.25 to three components:

|Ψp⟩ =

 a1,p
a2,p+ℏ(k2−k1)

ae,p+ℏk1

 (2.30)

The three basis states then correspond to the atom’s energy levels, with momenta con-
nected by the light fields shown by the solid lines in Fig. 2.2.

Hamiltonian transformation

In this new basis, we can write the Hamiltonian as

Ĥ =


p2
1

2m
+ ℏωA

1 V12 V1e

V ∗
12

p2
2

2m
+ ℏωA

2 V2e
V ∗
1e V ∗

2e
p2
e

2m
+ ℏωA

e

 (2.31)

where
Vαβ ≡ ⟨α|V̂ |β⟩ , (2.32)

and p2 = p1 + ℏ (k1 − k2), pe = p1 + ℏk1 obey the momentum relations from the previous
section. Furthermore, states |1⟩ and |2⟩ in the cesium hyperfine ground states have equal
parity, so they are not connected by the dipole operator d̂. Thus, V12 = 0.

We can simplify this Hamiltonian with a transformation Ô such that Ô†Ô = 1. If
|Ψ⟩ → |Ψ′⟩ = Ô|Ψ⟩, the Schrödinger equation then becomes

iℏ
∂

∂t

(
Ô|Ψ⟩

)
= Ĥ

(
Ô|Ψ⟩

)
iℏ
∂

∂t
|Ψ⟩ =

(
ÔĤÔ† − iℏÔ

∂

∂t
Ô†
)

︸ ︷︷ ︸
Ĥ′

|Ψ⟩

So making such a basis transformation simply changes the Hamiltonian to



CHAPTER 2. ATOM INTERFEROMETRY: BACKGROUND AND THEORY 14

Ĥ ′ =

(
ÔĤÔ† − iℏÔ

∂

∂t
Ô†
)

(2.33)

We can presciently choose a transformation:

T̂1 =


e
i

[
p21
2m

+ℏωA
1

]
t

0 0

0 e
i

[
p22
2m

+ℏωA
2

]
t

0

0 0 e
i

[
p2e
2m

+ℏωA
e

]
t

 (2.34)

that factors out the fast oscillations in the Schrödinger equation from the atomic and kinetic
energy. Specifically, the eigenvector amplitudes are transformed according to

b1b2
be

 = T̂1

 a1,p
a2,p+ℏ(k2−k1)

ae,p+ℏk1

 =


a1,pe

i

[
p21
2m

+ℏωA
1

]
t

a2,p+ℏ(k2−k1)e
i

[
p22
2m

+ℏωA
2

]
t

ae,p+ℏk1e
i

[
p2e
2m

+ℏωA
e

]
t

 (2.35)

Plugging eq. 2.34 into eq. 2.33 gives the Hamiltonian in this new basis:

Ĥ ′ =

 0 0 Ṽ1e
0 0 Ṽ2e
Ṽ ∗
1e Ṽ ∗

2e 0

 (2.36)

where Ṽαe = Vαe exp
(
i
[(

p2
α

2m
+ ℏωA

α

)
−
(

p2
e

2m
+ ℏωA

e

)]
t
)
. Working this out a bit further,

Vαe = ⟨α|V̂ |e⟩ = ⟨α| − d̂ ·
∑
ν=1,2

Eν

(
ei(kνz−ωνt+φν) +��c.c.

2

)
|e⟩

where ν sums over the laser beams. By setting the complex conjugate term to zero, we
explicitly consider only the solid lines in Fig 2.2 (including these terms simply shifts the
energy levels |1⟩ and |2⟩, the so-called ac Stark shift, or light shift). See Ref. [35] for a more
in-depth calculation. We now introduce the following quantities:

Ωnν ≡ −⟨n|d̂ ·Eν |e⟩
ℏ

(2.37)

∆ ≡
(
ωA
e − ωA

1

)
− ω1 (2.38)

δ ≡
(
ωA
e − ωA

2

)
− (ω2 +∆) (2.39)



CHAPTER 2. ATOM INTERFEROMETRY: BACKGROUND AND THEORY 15

∆ and δ are the same as shown in Fig. 2.2, and are the bare single-photon detuning and
bare two-photon detuning, respectively. In eq. 2.37, we have defined the Rabi frequency
Ωnν for the coupling of level |n⟩ to the excited state |e⟩ by laser beam ν. For cesium, the
levels |1⟩ and |2⟩ correspond to the |F = 3⟩ and |F = 4⟩ hyperfine levels of the 62S1/2 ground
state. Their dipole matrix elements, and therefore single photon Rabi frequencies (Ω1ν and
Ω2ν) differ only by factors including Wigner 3-j symbols (Clebsch-Gordan coefficients) and
6-j symbols [36].

Combining these definitions, we can apply the “rotating wave approximation” (RWA).
In the RWA, fast oscillating terms in the differential equations for ḃα are ignored, as they
quickly average to zero. For example, consider a term like

Ṽ = α
(
ei(β+(ω1+ωA

e1)t) + ei(β+(ω1−ωA
e1)t)

)
(2.40)

where ωA
e1 ≡ ωA

e − ωA
1 = ω1 +∆. For the case of our cesium transitions, ωA

e1

∆
∼ 104. Thus the

first term in eq. 2.40 (the “counter-rotating” term) accumulates phase at a much faster rate
than the second term (the “co-rotating” term). We can ignore the counter-rotating term,
since its effect in the differential equations for the bi will only be fast oscillations of ḃi about
the slow dynamics of the co-rotating term, and thus average to zero.

After applying the RWA to toss out the counter-rotating terms, we get

Ṽ1e =
ℏΩ11

2
e

−i

([
∆+ k1v︸︷︷︸

Doppler

+

recoil
frequency︷︸︸︷
ℏk21
2m

]
t+ φ1

)

=
ℏΩ11

2
e−i(∆̃ t+ φ1)

where ∆̃ ≡ ∆+ k1v +
ℏk21
2m

combines the bare single photon detuning, the Doppler shift and
the recoil frequency [36]. In this step, we’ve also squished the z-dependence into the laser
phase φ, that is, kνz + φν → φν . Similarly, the analogous two-photon detuning

δ̃ ≡ δ + (k1 − k2) · v︸ ︷︷ ︸
2γ-Doppler

+

2γ recoil
frequency︷ ︸︸ ︷

ℏ(k1 − k2)
2

2m
(2.41)

is useful to express Ṽ2e in a similar form:

Ṽ2e =
ℏΩ22

2
e−i((∆̃+δ̃)t−φ2) (2.42)

Combining it all, we can write the transformed Hamiltonian as
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Ĥ ′ =
ℏ
2

 0 0 Ω11 e
−i(∆̃ t+ φ1)

0 0 Ω22 e
−i((∆̃+δ̃)t− φ2)

Ω∗
11 e

i(∆̃ t+ φ1) Ω∗
22 e

i((∆̃+δ̃)t− φ2) 0

 (2.43)

Writing out the Schrödinger equation with this Hamiltonian leads to a system of differ-
ential equations:

iℏ ḃ1 =
ℏ
2
Ω11e

−i(∆̃ t+ φ1)be (2.44a)

iℏ ḃ2 =
ℏ
2
Ω22e

−i((∆̃+δ̃) t− φ2)be (2.44b)

iℏ ḃe =
ℏ
2
Ω∗

11e
i(∆̃ t+ φ1)b1 +

ℏ
2
Ω∗

22e
i((∆̃+δ̃)t− φ2)b2 (2.44c)

Adiabatic elimination

The next step is to reduce this to a two-level system. This step is motivated by the idea
that the excited state is only ever negligibly populated, an assumption that is justified if the
single photon detuning ∆ is large compared to natural linewidth Γ of the transition to the
excited state. This implicitly ignores single photon scattering. Note that if ∆ ≫ |Ω11|, |Ω22|,
then the phase factors in eq. 2.44c, oscillate much faster than the Rabi frequencies at which
b1, b2 oscillate (the relevant comparison is to how fast b1 and b2 themselves change, not
the phase factors in their differential equations). We can thus directly integrate eq. 2.44c
assuming b1, b2 to be constant with respect to the integration. Doing so,

be(t) =

∫ t0+t

t0

dt′ ḃe(t
′)

≈ − 1

2∆̃

(
Ω∗

11e
−i(∆̃ t+ φ1)b1(t) + Ω∗

22e
i((∆̃+δ̃)t− φ2)b2(t)

)
(2.45)

where we have used eq. 2.44c to compute eq. 2.45, and used that ∆ ≫ δ̃. Substituting the
result back into eq. 2.44 gives our new set of differential equations:

ḃ1 =
i

4∆̃

(
|Ω11|2b1 + Ω11Ω

∗
22b2e

i(∆̃ t+ φ1)
)

(2.46a)

ḃ2 =
i

4∆̃

(
Ω∗

11Ω22e
i((∆̃+δ̃)t− φ2)

)
b1 + |Ω11|2b2 (2.46b)

ḃe =
ℏ
2
Ω∗

11e
i(∆̃ t+ φ1)tb1 +

ℏ
2
Ω∗

22e
i((∆̃+δ̃)t− φ2)b2 (2.46c)

Note that the sign of ḃe changes rapidly when ∆ is large, as we have assumed. As a result
be never changes appreciably from zero. We can thus ignore it from this stage, and move to
a two-level system considering only b1 and b2.
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Solving the two level system

To signify our jump from a three level system to a two-level system, we will change our
component notation from bi to ci. The equation we are now trying to solve is

iℏ
(
ċ1
ċ2

)
= Ĥ2

(
c1
c2

)
iℏ
(
ċ1
ċ2

)
= −ℏ

(
|Ω11|2
4∆̃

Ω11Ω∗
22

4∆̃
ei(δ̃t−(φ1−φ2))

Ω∗
11Ω22

4∆̃
e−i(δ̃t−(φ1−φ2)) |Ω22|2

4∆̃

)(
c1
c2

)

= −ℏ

(
Ωac

1
Ω2γ

2
ei(δ̃t−ϕL)

Ω∗
2γ

2
e−i(δ̃t−ϕL) Ωac

2

)(
c1
c2

)
(2.47)

where we have defined several new quantities. One is the effective laser phase, ϕL = φ1−φ2.
Temporarily re-including the spatial dependence hidden in φν , we have ϕL = φ1−φ2+(k1−
k2) · z. We also define the effective wavevector keff = k1 − k2.

Another new quantity is the two-photon Rabi frequency:

Ω2γ =
Ω11Ω

∗
22

2∆̃
, (2.48)

the rate at which the population oscillates between states |1⟩ and |2⟩ due to the driving
light fields. The ac Stark shifts Ωac

α are the shift of level α due to the driving light fields.
We previously ignored the dotted lines in Fig. 2.2, and stated that their effect is to change
Ωac

α [35]. Inserting the full result here, the ac Stark shift for level |n⟩ is

Ωac
n =

∑
ν=1,2

|Ωnν |2

4∆̃nν

, n = 1, 2 (2.49)

where the sum runs over couplings Ωnν and detunings ∆̃nν for laser beam ν.
The general solutions to eq. 2.47 date back to the early days of atomic physics [37] from

Norman Ramsey. Explicitly, they are

c1(t0 + t) = ei(Ω
ac
1 +Ωac

2 )t/2eiδ̃t/2
(
c2(t0)e

i(δ̃t0−ϕL)

[
i sinΘ sin

(
Ω̃2γt

2

)]

+ c1(t0)

[
cos

(
Ω̃2γt

2

)
− i cosΘ sin

(
Ω̃2γt

2

)]) (2.50a)
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c2(t0 + t) = ei(Ω
ac
1 +Ωac

2 )t/2e−iδ̃t/2

(
c2(t0)

[
cos

(
Ω̃2γt

2

)
+ i cosΘ sin

(
Ω̃2γt

2

)]

+ c1(t0)e
−i(δ̃t0−ϕL)

[
i sinΘ sin

(
Ω̃2γt

2

)]) (2.50b)

where Θ is defined by

tanΘ =
Ω2γ

δ̃ − δac
(2.51)

cosΘ =
δ̃ − δac

Ω̃2γ

(2.52)

sinΘ =
Ω2γ

Ω̃2γ

(2.53)

with differential ac Stark shift δac defined as

δac = Ωac
1 − Ωac

2 ,

and with generalized off-resonant Rabi frequency

Ω̃2γ =

√
|Ω2γ|2 + (δac − δ̃)2

.
This is the full solution that can be referenced for general cases. However, we can

simplify considerably from the general solution eqs. 2.50. First, we notice the common
factor ei(Ωac

1 +Ωac
2 )t/2. This is a common mode ac Stark phase shift. As long as the ac Stark

frequency shift does not vary across the wavefunction separation, this common global phase
can be ignored. We will thus suppress it from here on out.

Second, let’s assume we are right on two-photon resonance, i.e. δ̃ = δac. This makes
cosΘ = 0, sinΘ = 1, and Ω̃2γ = Ω2γ. In a mirror pulse, we choose a pulse duration tπ such
that Ω̃2γtπ = π exactly. For this reason, a mirror pulse is also commonly referred to as a
π pulse. See Ref. [38] for a quantitative analysis of the undesired phase shifts arising from
violations of these detuning and pulse duration criteria.

Applying these simplifications, the solution for a π pulse of duration τ from eq. 2.50 then
becomes

c1(t0 + τ) = ic2(t0)e
i(δ̃ τ/2+δ̃ t0−ϕL) (2.54a)

c2(t0 + τ) = ic1(t0)e
−i(δ̃ τ/2+δ̃ t0−ϕL) (2.54b)
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or in matrix form,

(
c1(t0 + τ)
c2(t0 + τ)

)
= i

(
0 ei(δ̃ τ/2+δ̃ t0−ϕL)

ei(δ̃ τ/2+δ̃ t0−ϕL) 0

)(
c1(t0)
c2(t0)

)
(
c1(t0 + τ)
c2(t0 + τ)

)
= M̂(τ, t0)

(
c1(t0)
c2(t0)

)
(2.55)

where we have here defined the mirror operator M̂(τ, t0).
For a beamsplitter pulse, we choose a pulse duration tπ

2
such that Ω̃2γtπ

2
= π

2
(again

reflecting the “beamsplitter” ↔ “π
2

pulse” nomenclature). Under the stated assumptions, a
π
2

pulse with duration τ simplifies from eq. 2.50 to

c1(t0 + τ) =
eiδ̃ τ/2√

2

(
c1(t0) + ic2(t0)e

i(δ̃ t0−ϕL)
)

(2.56a)

c2(t0 + τ) =
e−iδ̃ τ/2

√
2

(
c2(t0) + ic1(t0)e

−i(δ̃ t0−ϕL)
)

(2.56b)

or in matrix form,

(
c1(t0 + τ)
c2(t0 + τ)

)
=

1√
2

(
eiδ̃τ/2 iei(δ̃τ/2+δ̃t0−ϕL)

iei(δ̃τ/2+δ̃t0−ϕL) e−iδ̃τ/2

)(
c1(t0)
c2(t0)

)
(
c1(t0 + τ)
c2(t0 + τ)

)
= B̂(τ, t0)

(
c1(t0)
c2(t0)

)
(2.57)

where we have here defined the mirror operator B̂(τ, t0).
More comprehensive treatments of Raman transitions and their use in interferometers

can be found in Refs. [34, 35, 37–39].

2.3.3 Laser phases in an interferometer
Optical Ramsey clock / interferometer

With our description of Raman transitions, we can construct an interferometer a few levels
more complete than that from Section 2.1. We now replace our Platonic ideal of a beam-
splitter eq. 2.1 with a real Raman beamsplitter eq. 2.57. The simple interferometer from
eq. 2.4 now becomes an optical Ramsey clock! Acting on an initial state |ΨI⟩ =

(
1
0

)
= |1⟩,

the interferometry sequence then gives:

|ΨF⟩ = B̂(τ, T + τ)Û(ϕa, ϕb)B̂(τ, 0)|ΨI⟩ (2.58)
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where |ΨF⟩ is the final state after the interferometer sequence, and T is the free evolution
time over which Û operates. Multiplying out these matrices using eq. 2.57 for B̂ and eq. 2.3
for Û (we’re not yet introducing the results of Section 2.2), we take the norms of components

of |ΨF⟩ =
(
c1,F
c2,F

)
as the probability to be in states |1⟩ and |2⟩. These quantities are:(
P1

P2

)
=

(
c21,F
c22,F

)
=

1

2

(
1 + cos(δ̃ T + (ϕ1

L − ϕ2
L) + (ϕb − ϕa))

1− cos(δ̃ T + (ϕ1
L − ϕ2

L) + (ϕb − ϕa))

)
(2.59)

where ϕi
L is the effective laser phase (φi

1 − φi
2) seen by the atom in pulse i. Keep in mind

that the detuning δ̃ is the difference between the laser beam frequencies ω1−ω2 and 1
ℏ times

the energy separation of the bare levels |1,p⟩ and |2,p+ ℏkeff⟩. That is, when on the ac
Stark-shifted two-photon resonance, δ̃ ̸= 0. For convenience, from here on we will replace δ̃
with δ (the symbol δ had previously referred to this same quantity, but neglecting the shift
between levels due to the Doppler shift and recoil energy, see eq. 2.41).

The phases ϕa and ϕb are equal, since the internal energy difference ℏ
(
ωA
2 − ωA

1

)
during

the free evolution time T is already accounted for in the solutions eqs. 2.50. We can also
take the laser phase ϕ1

L − ϕ2
L = 0, as long as nothing fancy (e.g., frequency ramping, phase

jump) is done to the lasers during T , and they continue to obey eq. 2.24. With these
considerations, eq. 2.59 reduces to the familiar expression for a Ramsey clock:(

P1

P2

)
=

1

2

(
1 + cos(δ T )
1− cos(δ T )

)
(2.60)

This analysis has neglected that in the time T , the two arms spatially separate from
each other. However, if k1 ≈ k2 [co-propagating], then keff ≈ 0 (rather than keff ≈ 2k⃗1 for
k1 ≈ −k2 [counter-propagating]). Optical Ramsey fringes from performing this operation
in our experiment can be seen in Fig. 4.11 in Chapter 4. To derive the full Ramsey fringe
shape, including the contrast decay as increasing δ moves the Raman lasers off-resonance,
imperfections involving Θ and its constituent trig relations eqs. 2.51 would have to be taken
into account using the full solution eqs. 2.50.

Mach-Zehnder interferometer

The next entry in our interferometry toolkit is the Mach-Zehnder geometry, as seen in Fig.
2.3. We take k1 ≈ −k2, giving keff ≈ 2k1, and therefore spatial separation. After a free
evolution time T , a mirror pulse M̂ reverses the relative momentum of the two arms. After
another free evolution time T , the two arms are again spatially overlapped, and interfered
with a final beamsplitter pulse.



CHAPTER 2. ATOM INTERFEROMETRY: BACKGROUND AND THEORY 21

T T

Figure 2.3: Mach-Zehnder schematic

In our operator notation, this process is represented by

ÔMZ = B̂(τ3, τ2 + τ1 + 2T )Û(ϕc, ϕd)M̂(τ2, τ1 + T )Û(ϕa, ϕb)B̂(τ1, 0)

Acting ÔMZ on an initial state |ΨI⟩ =
(
1
0

)
= |1⟩ gives the output state |ΨF⟩:

|ΨF⟩ = ÔMZ|ΨI⟩ =
1

2

−e i
2
(δ(τ1+T+τ2+T+τ3)−2(ϕ2

L+ϕ3
L))
(
ei(2ϕ

2
L+ϕa+ϕd) + ei(ϕ

1
L+ϕ3

L+ϕb+ϕc)
)

e−
i
2
(δ(τ1+T+τ2+T+τ3)−2ϕ2

L)
(
ei(2ϕ

2
L+ϕa+ϕd) − ei(ϕ

1
L+ϕ3

L+ϕb+ϕc)
) 

where, again, ϕi
L is the effective laser phase at pulse i, and ϕa−d represent various free

evolution phases (which we have neglected to be specific about yet; see Section 2.4). The
global phases on each of these components don’t enter the probabilities when we take the
norm of these components. The probabilities to end up in either state are then(

P1

P2

)
=

1

2

(
1 + cos(ϕ1

L − 2ϕ2
L + ϕ3

L − ϕa + ϕb + ϕc − ϕd)
1− cos(ϕ1

L − 2ϕ2
L + ϕ3

L − ϕa + ϕb + ϕc − ϕd)

)
(2.61)

There are a few operational simplifications we can make here now that will make things
easier. The first simplification is noticing that (in the case of our Θ = π

2
assumption) δ

doesn’t enter into a physically measurable quantity. We will thus ignore it in the expressions
eqs. 2.55 and 2.57. This is equivalent to having vanishing ac Stark shift (δ = δac = 0),
or assuming that the two-photon Rabi frequency is much larger than the ac Stark shift
(Ω2γ ≫ δac = δ). With that, we can write simplified mirror and beamsplitter operations M̂0

and B̂0, respectively from eqs. 2.55 and 2.57:

M̂0 = i

(
0 e−iϕi

L

eiϕ
i
L 0

)
, B̂0 =

1√
2

(
1 ie−iϕi

L

ieiϕ
i
L 1

)
. (2.62)
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For situations other than a very on-resonant, well-timed Mach-Zehnder, these simplifications
will of course have to be revisited (e.g., as in Sec. 5.6). However, these versions of mirrors
and beamsplitters make it very clear what’s happening.

There is a clear analogy from M̂0 and B̂0 to the rotation operators R̂(π,−x̂) and R̂(π
2
,−x̂)

from eq. 2.2. The simplified Raman beamsplitter B̂0 is now quite similar to the idealized
beamsplitter Ŝ = R̂(π

2
,−x̂) from eq. 2.1. The only difference is the addition of the laser

phase e±iϕL on the off-diagonals. The mirror pulse M̂0 looks just like the rotation operator
R̂(π

2
,−x̂) with laser phase shifts e±iϕL on the off-diagonals. It inverts the states, and imparts

a laser phase.
The off-diagonal terms represent the amplitude of a state that has undergone a Raman

transition as a result of the operation. Thus, we see that when an arm interacts with the
laser field, it picks up a phase ±ϕL. Furthermore, the sign is determined by the direction of
the momentum kick: When the atom gains momentum +ℏkeff, it acquires a phase shift of
+ϕL. When the atom loses momentum to the light field, changing its momentum by −ℏkeff,
it picks up a phase −ϕL. That is, as a result of the pulses, we have:

|a,p⟩ → e+iϕL|b,p+ ℏkeff⟩ (2.63)
|b,p+ ℏkeff⟩ → e−iϕL|a,p⟩ (2.64)

This is in fact, general, and is derived and discussed in Ref. [31]. Armed with this fact,
we can follow Ref. [31] to write a formula for the total laser phase shift ∆ϕL in an atom
interferometer:

∆ϕL =

(∑
j

±ϕL(tj,xu(tj))

)
upper

−

(∑
j

±ϕL(tj,xl(tj))

)
lower

(2.65)

where {tj,xu(tj)} and {tj,xl(tj)} are the locations of atom-laser interaction j for the upper
and lower arms, respectively.

In summing up the laser phases, we have applied the solution eqs. 2.50 to the full
superposition up to this point. However, it is common practice [38] to apply mirror and
beamsplitter operators to individual arms of the interferometer as if they were not part of a
superposition. That is, add up the laser phases along each arm individually, then subtract
the phases of arms interfering with each other as in eq. 2.65. This is justified by linearity,
that is,

Ĥ (α|0⟩+ β|1⟩) = α
(
Ĥ|0⟩

)
+ β

(
Ĥ|1⟩

)
.

From eqs. 2.50, we see that there can be other phase shifts for Raman pulses due to ac
Stark shifts, detunings and pulse imperfections. These are less general, but are discussed,
for example in Refs. [30, 38].
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2.3.4 Bragg diffraction
In Bragg transitions, an atom coherently interacts with 2n photons to transition from a state
|a,p⟩ to |a,p+ 2nℏk⟩. The external momentum state changes, but the internal state does
not. A diagram of this process is shown in Fig. 2.4.

0ℏk
2ℏk

4ℏk

6ℏk

8ℏk

10ℏk

Figure 2.4: Bragg diffraction.

The Bragg resonance is met when the laser frequency difference is set such that both
energy and momentum are conserved. Conservation of momentum enforces that the mo-
mentum lost by the light field is gained by the atom. That is,

nℏ(k1 − k2) = m∆vA

where k1 ≈ −k2 ≡ k. As a result, the atom’s velocity changes by ∆vA = 2nvrec, where
vrec =

ℏk
m

is called the recoil velocity. The kinetic energy gained by the atom in this process
must also equal the energy lost from the light field. In the reference frame moving at the
initial velocity of the atom, that requires

1

2
m∆v2A = nℏ|ω1 − ω2|

The energy gained by the atom is (2n)2Erec, where Erec = ℏ2k2
2m

is known as the recoil
energy, and ωrec = Erec/ℏ is called the recoil frequency. This condition is satisfied when

|ω1 − ω2| =
2n2ℏk2

m

For cesium, as used in this work, the recoil velocity is vrec = 3.5225 mm/s and the recoil
energy is Erec = ℏωrec = h× 2.0663 kHz.

One advantage of Bragg diffraction is that it offers the possibility for large momentum
transfer (LMT) by transferring 2n, rather than just 2, photons’ worth of momentum to the
atom. This can increase the sensitivity of the interferometer, as the laser phase then becomes
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ϕL → nϕL. Additionally, the kinetic energy increases with n2, leading to quadratically
increasing kinetic component ϕK to the free evolution phase (the Lagrangian is given by L =
K−U). This quadratic scaling is useful, for example in measuring the fine-structure constant
[5]. Having the atoms in the same hyperfine state also reduces sensitivity to unwanted phases
such as differential Zeeman and ac Stark shifts.

The disadvantages primarily lie in the difficulty of implementing Bragg diffraction. The
momentum spread of the atom sample must be small, at least sub-recoil. The many-state
nature of the 2ℏk-separated momentum ladder means that the usual two level treatment
can’t be applied [40]. These additional levels also lead to complicated, difficult-to-control
and undesired phase shifts [41]. Finally, while useful for suppressing systematic effects, the
common hyperfine state sacrifices state-labeling of the interferometer arms, which compli-
cates detection.

Far more extensive discussion of Bragg diffraction of matter waves can be found in, for
example Refs. [20, 27, 40, 41].

2.4 The canonical example: gravity
We will now combine the results of the previous sections to calculate the phase shift for
an atom interferometer under gravity. Consider the Mach-Zehnder geometry in a uniform
gravitational field (Fig 2.5).

0 T 2T

g

t

z

Figure 2.5: Mach-Zehnder light pulse interferometer

A π
2

pulse splits the atomic wavefunction along two paths at t = 0. After a free evolution
time T , a π pulse redirects the arms towards each other. After another duration of T , when
the two arms overlap again, a final π

2
pulse recombines the paths. The resulting interference

determines the relative populations of the two output ports. From the previous two sections,
the phase of this interferometer would be

∆Φ = ∆ϕL +∆ϕFE, (2.66)
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where ∆ϕFE is the free evolution phase found by integrating the action (Sec. 2.2) and ∆ϕL

is the phase shift due to atom-laser interactions (Sec. 2.3). The end of this section will list
a number of phase shifts that are not being considered in this example.

To calculate the action, we use the Lagrangian

L = K − U

=
1

2
mż2 −mgz (2.67)

with kinetic energy K and potential energy U = mgz, as is the case for a constant
gravitational field, causing an acceleration g for a freely falling body.

To integrate this over the trajectories we start from the velocities

vu(t) =

{
v0(t) + 2vr

v0(t)
vℓ(t) =

{
v0(t)

v0(t) + 2vr

0 ≤ t ≤ T
T < t < 2T

(2.68)

where subscripts u and ℓ denote upper and lower paths, respectively. The recoil velocity
vr = ℏk

m
is the velocity at which an atom recoils due to absorption or emission of a photon

with momentum ℏk. Finally, v0(t) = vI − gt is the velocity profile the atom would take in
the absence of the laser pulses. Integrating eq. 2.68 to get the positions gives

zu(t) =

{
z0(t) + 2vrt

z0(t) + 2vrT
zℓ(t) =

{
z0(t)

z0(t) + 2vr(t− T )

0 ≤ t ≤ T
T < t < 2T

(2.69)

where z0(t) = zI + vIt− 1
2
gt2 is the trajectory the atom would take without any laser pulses.

From these expressions, it’s straightforward to turn the crank; integrating the Lagrangian
eq. 2.67 along each path to get the difference in the actions:

Su − Sℓ =
1

2
m

∫ 2T

0

dt
(
vu(t)

2 − vℓ(t)
2
)
−mg

∫ 2T

0

dt (zu(t)− zℓ(t))

=
(
2mvrgT

2
)
−
(
2mvrgT

2
)

= 0 (2.70)

So in this case, the free evolution phase is zero! The actions along the upper and lower
classical trajectories are equal, as the kinetic and potential terms cancel.

Any phase shift in the interferometer must therefore come from the laser phase. Using
eq. 2.65 for the upper output port:

∆ϕu
L =

∑
±ϕu

L −
∑

±ϕℓ
L
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= (+ϕL(0, z
u(0))− ϕL(T, z

u(T )) + ϕL(2T, z
u(2T )))−

(
0 + ϕL(T, z

ℓ(T )) + 0
)

≡
(
ϕu
1 − (ϕu

2 + ϕℓ
2) + ϕu

3

)
(2.71)

where in the last line we have let ϕa
i ≡ ϕL(ti, z

a(ti)) be the laser phase seen by arm a for
laser pulse i. Note that ϕu

j = ϕℓ
j for j = 1, 3, since the arms are overlapped for these pulses.

We did this calculation for the upper output port, but doing so for the lower output port
gives the same answer (as it must, due to conservation of probability).

If we define the midpoint path zm(t) =
1
2
(zu(t) + zℓ(t)), and let ϕi ≡ ϕL(ti, z

m(ti)), eq.
2.71 becomes

∆ϕL = ϕ1 − 2ϕ2 + ϕ3 (2.72)
If the effective wavevector keff is constant, each phase can be expressed as ϕi = keffzm(ti).

Making this substitution into eq. 2.72, we get

∆ϕL = −keffgT
2 (2.73)

Combining eqs. 2.70 and 2.73 into eq. 2.66, we get our final expression for the phase of a
Mach-Zehnder atom interferometer in a constant gravitational field:

∆Φ = −keffgT
2 (2.74)

This geometry therefore, is a sensitive measurement of acceleration due to a gravitational
field. The effective wavevector keff is a large scale factor (≳ 107 m−1 for optical transitions)
so that small changes in g have a large lever arm to change ∆Φ, and thus the population
ratio of the output ports.

2.5 Adding a perturbation
Atom interferometers are often employed to measure small effects. While the formalism
of Sec. 2.2 is useful for gaining intuition on how matter wave interference arises, it is
cumbersome for anything beyond the simplest Lagrangians. In practice, a perturbative
treatment is used instead. Suppose a small perturbation modifies a Lagrangian L0 such that
L0 → L0 + ϵL1. To first order in ϵ, the resulting phase shift is calculated by integrating the
perturbation along the classical trajectory. That is,

δϕ(1) = ϵ

(∫
Γu
0

L1dt−
∫
Γℓ
0

L1dt

)
where Γ

u(ℓ)
0 is the classical trajectory of the upper (lower) interferometer arm.

As an example, consider the gravity gradient near the Earth’s surface. The perturbation
ϵL1 to the Lagrangian L0 from eq. 2.67 is
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ϵL1 =
m

2
γz2

For small distances z, the constant gravitational term (g ≈ 9.8 m
s2 ) is much larger than the

gradient term (γ ≈ 3 × 10−6 s−2). We can thus treat the gradient term as a perturbation.
Integrating L1 over the trajectories (eqs. 2.69) gives the resulting phase shift ϕ(1)

γ . From
eq. 2.74, a phase shift implies a shift in the inferred value g = ∆Φ

keffT 2 → g0 + δgγ. When
∆Φ → ∆Φ0 + ϕ

(1)
γ due to the presence of the gradient, the shift is

δgγ = γ

(
7

12
gT 2 − (T (v0 + vr) + z0)

)
As discussed in Section 2.2, this treatment is exact when the perturbing potential is of

quadratic order or lower in the position (as is the case for the gravity gradient potential eq.
2.75). A more complete treatment covering introduction of a perturbation can be found in
Ref. [29].

2.5.1 Other phase shifts
The above derivation gives a conceptual description of two major phase shifts: the laser
phase, and the free evolution phase for an atom in a constant gravitational field. However,
this discussion leaves out a number of other phase shifts. A few of them are briefly mentioned
here, along with references to more complete descriptions.

Gravity gradient

In the presence of a gravity gradient γ, the gravitational potential U in the Lagrangian
becomes

U = mgz +
1

2
mγz2 (2.75)

This adds quadratic terms the Lagrangian, and thus new phase terms. This specific
example was treated perturbatively in Sec. 2.5, but more information can be found in
Refs. [27, 29].

Finite pulse duration

We have also assumed that the laser pulses have zero duration. For a duration τ ≪ T , this
is a good approximation. We can rewrite the phase in eq. 2.74 as ∆Φ = keffgT

2 → αkeffgT
2,

where α = 1 for zero-length pulses. For square π
2

(π) pulses of duration τ(2τ), the leading
order correction is [42]

αsq = 1 +
τ

T

(
4

π
− 1

)
+
( τ
T

)2( 2

π
− 3

4

)
+O

( τ
T

)3
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where T is defined as the separation between the centers of the pulses. In a typical experiment
in this thesis, τ ≈ 30µs and T ≈ 50 ms ⇒ τ

T
∼ 10−3. This factor also changes with pulse

shape. More information can be found in Refs. [30, 42].

Separation phase

If the interferometer arms do not properly close, there is an additional phase shift known as
the separation phase. This could happen, for example, due to a force gradient, where the
interferometer arms are displaced by different amounts. The separation phase is given by

∆ϕsep = p̄ ·∆z

where ∆z = zℓ − zu is the separation between the upper and lower arms at the time of
the final recombination pulse. p̄ is the average classical momentum of the two arms being
combined in a given output port in the final beamsplitter. More information can be found
in Ref. [31].

Other real-life shifts

Many effects arise as systematics to the desired measurement. Examples include magnetic
fields (Zeeman shifts), light shifts (ac Stark shifts), and misalignment of the laser wavevector
with the acceleration wavevector. These individual systematics will be discussed as needed
throughout the measurements described in this thesis (specifically, see Sec. 5.6).

2.6 Optical resonators
This section outlines some basics of optical resonators. Imagine two reflective surfaces facing
each other, as in Fig. 2.6.

M1 M2

Figure 2.6: The two reflective surfaces facing each other constitute a Fabry-Perot resonator
(or cavity). An electromagnetic wave Ẽinc incident on the first surface splits into a reflected
component Ẽrefl and a portion that contributes to the circulating field Ẽcirc inside the res-
onator. A transmitted field Ẽtrans exits the resonator at the second surface.

The mirrors Mi have field reflection (transmission) coefficients ri (ti), also known as
Fresnel coefficients. The intensity reflection and transmission coefficients (the values typically
spec’d on optics components) are Ri = r2i and Ti = t2i , respectively.
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This analysis follows closely the excellent textbook Lasers by Anthony Siegman [43],
including the electrical engineering convention of using j =

√
−1. We first solve for the

fields Ẽcirc, Ẽrefl, and Ẽtrans as a function of the input field Ẽinc. Quantities with a tilde, X̃
are complex-valued (that is, they have a phase). We write an expression for the circulating
field just inside of the first mirror M1 as a transmitted component of the incident wave, and
the steady state circulating field that was reflected off the mirror one round trip earlier:

Ẽcirc = jt1Ẽinc + g̃rt(ω)Ẽcirc (2.76)
There is a 90◦ phase factor j in the transmitted portion of the incident beam due to

choice of reference plane (see [43]). g̃rt is the (frequency-dependent) complex round-trip gain
for one complete transit through the resonator. In general, it’s given by

g̃rt(ω) = r1r2(r3...) exp
(
−α0p− j

ω

c
p
)

where the product of ri’s gives reflection off all the mirrors involved in one round trip, α0

represents losses, and p is the round trip path length in the resonator. Simplifying to our
application of two mirrors in a vacuum chamber, we can set α0 = 0 and p = 2L, where L is
the separation between the mirrors. The round trip gain is then

g̃rt = r1r2 exp(−j2ωL/c)

Rearranging eq. 2.76, we get the ratio of the circulating field to the input field:

Ẽcirc

Ẽinc
=

jt1
1− g̃rt(ω)

=
jt1

1− r1r2e−j2ωL/c
(2.77)

where the first equation holds for the general g̃rt (for example, a ring cavity with more
mirrors, or adding in loss) and the second specializes to our case of interest (lossless, two-
mirror cavity).

The intensity ratio follows straightforwardly as the square of the field ratio. For our
cavity, this gives

Ĩcirc

Ĩinc
=

1− r21
1− 2r1r2 cos (2ωL/c) + r21r

2
2

(2.78)

where we have used the relation r2 + t2 = 1.
We can set up analogous equations to solve for the reflected and transmitted fields as well.

The reflected field Ẽrefl consists of a reflected portion of the incident field, and a transmitted
portion of the circulating field through M1:

Ẽtrans = r1Ẽinc + jt1

(
g̃rt

r1
Ẽcirc

)
.

The resulting field ratio is therefore
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Ẽrefl

Ẽinc
=

r21 − g̃rt(ω)

r1(1− g̃rt(ω))
. (2.79)

The transmitted field Ẽtrans consists of the transmitted portion of the circulating field
through M2:

Ẽtrans = jt2 exp[−α0p1 − jωp1/c]Ẽcirc

where the exponential term represents the path (with length p1) of the circulating field from
the in-coupling mirror to the out-coupling mirror, and therefore isn’t the full round-trip gain
g̃rt. The field ratio is

Ẽtrans

Ẽinc
= − t1t2√

r1r2

√
g̃rt(ω)

1− g̃rt(ω)
= − t1t2e

−jωL/c

1− r1r2e−2jωL/c
(2.80)

where the final equality again represents specialization to our two-mirror case.
Resonant behavior can be seen in, e.g., eq. 2.78. When the denominator is minimized

(cos(2ωqL/c) = 1 → ωq = 2πq c
2L

, for integer q), the intensity ratio can become large. For a
modest mirror reflectivity of r1 = r2 = 0.98 the optical intensity of the circulating field is 50
times that of the incident field. We call this quantity the optical gain G:

G ≡ Ĩcirc

Ĩinc
(2.81)

These field solutions are periodic. The phase factor exp[−j2ωL/c] in g̃rt as the only
frequency dependence indicates that the behavior of these fields has (angular) frequency
periodicity (2π) c

2L
, as the above equation for ωq hinted. This period is known as the “free

spectral range”, or FSR, and is equivalent to the inverse of the round trip travel time trt of
the light field in the resonator:

FSR =
1

trt
=

c

2L
(2.82)

where again the first equality is the more general definition, and the final one specializes to
the two-mirror case. The periodic and resonant behavior of the circulating field can be seen
in Fig. 2.7. Circulating intensity is plotted for matched resonators (r1 = r2 ≡ r) for several
mirror reflectivities.
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Figure 2.7: Optical gain in matched resonators. Three free spectral ranges are shown for
resonators with r = 0.7, 0.90.0.95, 0.98. The vertical scale is logarithmic.

Looking at Fig. 2.7, it’s clear that features get sharper with increasing mirror reflectivity.
By how much? We define the full-width half-maximum linewidth γFWHM as the span between
points on either side of a resonance peak where the circulating intensity has dropped to
half its maximum value. From eq. 2.77, this amounts to finding the frequency where the
denominator |1− g̃rt|2 doubles from its minimum value at resonance. For our lossless, two-
mirror case, this minimum value is (1− r1r2)

2. We thus need to solve the following equation
for γFWHM:

∣∣∣1− g̃rt

(
ωq +

γFWHM

2

)∣∣∣2 = 2 |1− g̃rt(ωq)|

1− 2r1r2 cos

(
γFWHM

L

c

)
+ r21r

2
2 = 2(1− r1r2)

2

After a decent bit of algebra (including using the relation 2 arcsin(ψ) = arcsin(2ψ
√

1− ψ2)
with ψ = 1−r1r2

2
√
r1r2

), we end up with the expression for the linewidth:

γFWHM =
4c

p
arcsin

(
1− grt
2
√
grt

)
= 4 FSR arcsin

(
1− r1r2
2
√
r1r2

)
(2.83)

In the first equality, we’ve re-inserted the general case formulation with grt = |g̃rt|, which
it turns out holds true despite doing the above algebra with our specific, two-mirror case.
Here, γFWHM is an angular frequency (since the arcsin returns radians).

Another important quantity in analyzing these resonators is the finesse F . The finesse
is a measure of the frequency-resolving power of the resonator. The most straightforward
definition is the free spectral range over the linewidth. That is,

F =
FSR
∆νcav

(2.84)
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where ∆νcav = γFWHM/2π is the full-width, half maximum of the resonance in [Hz] (to match
the FSR units). There is some subtlety in the exact definitions used for the finesse, which are
nicely and clearly explained in Ref. [44], and only briefly described below. These multiple
definitions are all very nearly equivalent at reasonably high finesse, and the differences in
definition only begin to matter at low reflectivities (≲ 0.1). With this caveat, the following
expressions for the finesse are all appropriate:

FAiry =
π

2

[
arcsin

(
1− r1r2
2
√
r1r2

)]−1

(2.85)

Fclassical =
π
√
grt

1− grt
=

π
√
r1r2

1− r1r2
(2.86)

FLorentz =
π

− ln(r1r2)
(2.87)

(2.88)

The Airy definition FAiry, in calculating eq. 2.84, uses the expression for the linewidth
eq. 2.83. It gives the number of Airy lineshapes (produced by a single frequency in the
resonator when considering all axial modes q [and not just the one it’s closest to]) that
can be spectroscopically resolved in one free spectral range. Here, spectroscopically resolved
refers to the so-called “Taylor criterion”, which dictates that two spectral lines are considered
resolved if their normalized lineshapes cross at half-intensity or lower. Though a bit of a
mouthful, this definition provides a conceptually clear interpretation.

The classical definition Fclassical simply makes the approximation sin(x) ≈ x in eq. 2.83
before plugging into eq. 2.84.

The Lorentz definition FLorentz comes from using the Lorentzian lineshape (which arises
by considering photon lifetimes in the cavity) as the relevant linewidth in eq. 2.84. The
Lorentzian cavity linewidth is given by ∆νLorentz = 1/(2πτc), where τc =

∑
i − ln(r2i )

trt
is the 1/e

photon decay time from the cavity.
While conceptually interesting and useful in unusual parameter regimes, this variety of

definitions will go unappreciated in our work here. Since we will work with reasonably high
reflectivities (r ≳ 0.98) we will justifiably consider them equivalent. It is also noteworthy
that the finesse is approximately π times the optical gain; F ≈ πG (but to much less accuracy
than the equivalence of the alternative finesse definitions).

One benefit of these resonators is the spatial mode filtering that they provide. In free
space propagation, the transverse Hermite-Gaussian modes are frequency-degenerate. Thus,
a beam can acquire a non-ideal shape (speckle, diffraction, etc.). In a resonator with bound-
ary conditions, the Guoy phase shift breaks this degeneracy. The total phase accumulated
along the resonator for Hermite-Gaussian transverse mode Hmn between mirror M1 at posi-
tion z1 and mirror M2 at position z2 is

ϕ(z2 − z1) = k(z1 − z2)− (n+m+ 1)× [ψ(z2)− ψ(z1)]
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with Guoy phase shift ψ(z) = arctan(z/zR). zR is the Rayleigh range, given by

zR =
πw2

0

λ
(2.89)

where w0 is the beam waist, and λ is the wavelength of the radiation. The Rayleigh range is
a measure of divergence of a Gaussian beam; it is the distance from the waist at which the
beam 1

e
radius has increased by a factor of

√
2 (cross-sectional “area”3 has doubled).

This Guoy phase breaks the degeneracy between the modes Hmn. After a lot of algebra,
one can arrive at the expression

ψ(z2)− ψ(z1) = arccos(±√
g1g2)

where gi = 1 − L
ROCi

and ROCi is the radius of curvature of mirror Mi (the ± is chosen by
the sign of the gi [which must be the same]; see Ref. [43] for more detail). This phase shift
therefore shifts the resonant frequency of the Hmn mode from the fundamental H00 mode by

δfmn =
FSR
π

arccos(
√
g1g2) (2.90)

Since the Hermite-Gaussian modes are non-degenerate, a beam resonant with the cavity’s
H00 mode will primarily excite only that mode. The other spatial modes are suppressed
according to eq. 2.78 by being δfmn from resonance. A very clean H00 mode can therefore
be excited within the cavity. Speckle, wavefront distortions, imperfect beam shaping, etc.
are suppressed. It is in this sense that we refer to the cavity as a mode filter.

There are limiting cases in which this mode filtering does not apply. For a near planar
situation (i.e., large radii of curvature), g1, g2 → 1, so δfmn → 0. In this case, the degeneracy
is restored, and mode-filtering is lost. For a near-concentric cavity (where the cavity length
L differs from ROC1+ROC2 by only a small amount), g1, g2 → −1, so δfmn → FSR. Again,
the degeneracy is lost. Some care must therefore be taken in choosing mirror parameters if
a cavity is to serve as a mode filter.

As we will be interested primarily in this fundamental Gaussian mode H00, we will also
be interested in its spatial size, specifically the waist w0. For a stable Gaussian mode in the
resonator, the curvature of the Gaussian beam R(z) = z + z2R/z must match the radius of
curvature of the mirrors at the mirror positions. That is,

R(z1) = z1 + z2R/z1 = −ROC1 (2.91a)
R(z2) = z2 + z2R/z2 = +ROC2 (2.91b)

We can use L = z2 − z1 to eliminate z2 from eq. 2.91b, then solve eq. 2.91a for z1 to
eliminate z1 as well. The radii of curvature ROCi can then be replaced by their respective

3This area has not been defined, but an area consideration explains the
√
2 factor in radius
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g-factors, ROCi =
L

1−gi
. This leaves a quadratic equation for the Rayleigh range zR, which

can be solved. Rearranging the solution using eq. 2.89 to get the the waist w0, we find

w0 =
Lλ

π

√
g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2
. (2.92)
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Chapter 3

Experimental apparatus

In this chapter we’ll describe the experimental setup on which the experiments in this thesis
were performed. Details of sub-systems such as the vacuum chamber, the optical layout, and
atom source preparation will be outlined.

3.1 Vacuum chamber
To maintain coherence in a quantum measurement, the system must be well isolated from the
outside environment. This includes preventing collisions from background gas molecules. For
this reason, atomic physics experiments are generally performed in ultrahigh vacuum (UHV).
A rare, prehistoric picture depicting our vacuum setup before it was engulfed in optics can
be seen in Fig. 3.1.

Our primary vacuum system consists of a vertically-oriented main chamber (Kimball
Physics MCF600-SphOct-F2C8), whose top and bottom 2.75” CF flanges each connect to an
auxiliary vacuum chamber (Kimball Physics MCF-450-SphCubeE6). Each auxiliary chamber
houses one of the science cavity mirrors.

There is a specially-designed collar between the main and lower chambers housing a
length (∼ 6”) of three layers of mu-metal magnetic shielding and a solenoid. This provides
a uniform magnetic field over that region. This section has not yet been used, but could be
important for future measurements. It’s main result so far, however, has been to provide an
undesired magnetic field gradient above it, which must be dealt with.

A small ion pump (2 L/s, Varian 919-0520) is connected to the bottom auxiliary chamber.
The main chamber has a larger ion pump (20 L/s, Varian 919-1115). A turbo pump (Varian
Turbo-V 81 M) is connected to the main chamber through a gate valve (Varian 9515027,
11
2
” ID right angle valve), which is closed after baking. A dry scroll pump (Agilent IDP-2)

is used between the turbo pump and atmosphere when pumping down from atmosphere,
bringing the inlet pressure for the turbo to about 1 mbar.

An ion gauge (Varian UHV-24) and titanium sublimation pump are placed inside the
chamber. The titanium sublimation pump (unknown part number, possibly Agilent 916-
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Figure 3.1: The vacuum chamber. The setup has since been surrounded my optics. Com-
ponents have since been rearranged and added. For example, the visible ion pump (black
cube) has been moved to make way for the wobble stick (see Ch. 5). This photo is courtesy
of Brian Estey.

0050) can be fired at UHV by sending ∼ 40 A of current through titanium-coated wires for
∼ 1 minute at a time. This sputters titanium, which acts as a non-evaporative getter.

A differential pumping tube (unknown dimensions) connects the main chamber to a
custom glass cell (Precision Glassblowing, 1.5” × 1.5” × 4” long; rotatable CF on 7

8
” tubing).

A flexible bellows containing a cesium ampule connects to this cell via a small gate valve. The
glass cell is used to load cesium from vapor pressure into a 2-dimensional magneto-optical
trap (2D MOT). The differential pumping tube allows for a high cesium vapor pressure in the
glass chamber for a high-flux 2D MOT, while maintaining low pressure in the main chamber.
A gate valve (VAT mini-UHV gate valve, unknown part number) connecting the 2D MOT
cell, and the reactive cesium, to the main chamber can be closed to keep the cesium in UHV
when the main chamber is opened to atmosphere.

3.2 The science cavity
The science cavity is a half-symmetric resonator with one flat mirror and one curved mirror
(see Fig. 3.2). Both mirrors are mounted on UHV compatible mirror mounts (Newport
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Figure 3.2: Schematic of the science cavity. The bottom mirror mount is also actuated by
slip-stick piezo motors (not shown)

8817-6-UHV), whose three positioning screws have 6 mm of travel. Two of the mirror screws
are actuated by slip-stick piezo motors (Newport Picomotors) that can be controlled elec-
tronically from outside of the vacuum chamber. The cavity mode is oriented along Earth’s
gravity. The upper mirror is mounted on a copper tube filled with lead to damp mechanical
resonances [45], atop a ring piezo (Noliac NAC2123) for length stabilization. Transmission
through the cavity is blocked by the lead filling in the current design.

Torr Seal is used as a UHV-compatible epoxy, and has not caused any problems. During
bake-out, the slip-stick piezo actuators can slide out, both moving the mirror and prevent-
ing further actuation and thus cavity alignment. This shouldn’t happen according to part
specifications, but it has. We’ve added Torr Seal to each of the actuators. Even with a some
Torr Seal, one of the lower mirror actuators has moved more than expected.

During baking, the mirrors can only get so hot. There is a lubricant inside the actuators
that can bind if baked too hot (more information obtainable from Newport). We typically
bake up to 100 C, though we have accidentally gone up to 15 C above that at parts of the
vacuum chamber for short periods of time.

The mirrors of the science cavity are housed in the upper and lower bulbs of the vacuum
chamber. On top of this coarse length imposition, we would like frequencies separated by
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Figure 3.3: Free spectral range measurement. A laser is phase-modulated at the cesium
hyperfine frequency ωCs

HF. The reflected power is measured (magenta dots) as the cavity
length is (and thus, resonance frequencies are) stepped. The data is fitted (shown in orange)
to a sum of three Lorentzians with relative heights set by the modulation depth β (see eq.
4.9 Sec. 4.3.2). The central peak is the carrier, on resonance at axial mode q. The peak at
negative (positive) cavity detuning is the blue (red) sideband, which has moved up (down)
in frequency to be resonant with axial mode q+23 (q−23) if the cavity resonance frequency
is shifted by -(+) δHF

offset. Note that the sideband location is not exactly where one might
expect from the total lineshape. The constituent carrier, blue and red sideband Lorentzian
lineshapes are shown in dotted lines in black, blue and red respectively. Their peak locations
are indicated by vertical dashed lines of the same color.

the cesium hyperfine transition (ωCs
HF =≈ 2π×9 GHz) to simultaneously enter the cavity. A

∼9 GHz cavity linewidth however, would demand such low cavity finesse as to no longer be
a resonator in any meaningful sense. The solution is to make the cavity free spectral range
as close as possible to an integer divisor of the cesium hyperfine frequency ωCs

HF.
The cesium hyperfine frequency is a bit less than 23 free spectral ranges. The remaining

offset δHF
offset is defined by 1

2π
ωCs

HF + δHF
offset = 23 × FSR. We measure this offset by phase-

modulating a laser at the cesium hyperfine frequency using an EOM, and seeing how far
apart the carrier and ±1-order peaks are. The cavity can be locked to another laser (see Sec.
3.3.2) and stepped by known amounts to determine the spacing between these resonance
peaks to high accuracy. An example of such a scan is seen in Fig. 3.3.

This procedure determines the cavity/hyperfine offset to be δHF
offset = 3.80 MHz. The free

spectral range of our cavity is then 399.845(2) MHz. From this measurement, the cavity
length is determined with eq. 2.82 to be L0 =

c
2×FSR = 37.4886(2) cm. Let Ln=23 denote the

cavity length where 23 free spectral ranges exactly equals the cesium hyperfine frequency
(i.e., δHF

offset = 0). The mismatch in length Ln=23 − L0 is only 155 µm! That is, our cavity
is 155 µm short of fulfilling this condition. We could therefore reduce δHF

offset somewhat by
heating the vacuum chamber to thermally expand it. For a thermal expansion coefficient of
steel αsteel

T = 13 × 10−6/C, the FSR changes by 5.2 kHz/C. The hyperfine offset frequency
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δHF
offset changes by 23 times that, or 120 kHz/C. While we have not yet tried this (we’ll see in

Ch. 4 that setting δHF
offset = 0 may not be desirable), being able to change δHF

offset by a several
hundred kHz to a few MHz with some heating tape could prove to be useful in the future.

This excellent positioning is, frankly, lucky as there is no mechanism to change the in-
vacuum mirror spacing from outside of the vacuum (besides something extreme like heating
the chamber). The original intention of the experiment was to use Bragg diffraction, which
does not have such a “FSR-matching” condition. The Raman FSR-matching condition was
a nice feature to have, so the earlier experimenters aimed for it, but with large uncertainty
on the positioning (since it wasn’t critical to Bragg). After all the vacuum assembly and
bake, we got sufficiently lucky that we can drive Raman transitions. This length is appar-
ently reasonably robust, since the chamber has been reopened to atmospheric pressure, and
baked/pumped down twice since then to put in source masses (see Chapter 5).

The mirror reflectivity was chosen as a compromise between bandwidth and optical power
enhancement. High reflectivity mirrors would give a large cavity finesse, and thus high
optical intensities. However, this would also increase the frequency selectivity of the cavity,
decreasing its linewidth. Over the course of an interferometer sequence, the atoms experience
a few MHz span of Doppler shifts (≈23 kHz per ms of free fall time). To drive Raman
transitions within the cavity throughout the atomic trajectory, these frequencies must fit
within the cavity.

The top mirror (M1) is a 1/2” diameter gold-coated mirror. The mirror was chosen to
be small to reduce its mass, giving a higher resonance frequency for its driving piezoelectric
transducer (PZT). As a metal mirror, its reflectivity is roughly constant across wavelengths.
The intensity reflectivity R1 is spec’d to be ≈ 0.98. The field reflectivity, or Fresnel co-
efficient, is then r1 =

√
R1 = 0.99. As a flat mirror, its nominal radius of curvature is

infinity.
The bottom mirror (M2) is a 1” diameter curved dielectric mirror with a 10 m radius

of curvature, with a wavelength-dependent reflectivity centered around 850 nm. Cavity
parameters that are independent of wavelength are summarized in Table 3.1. The measured
parameters and component specifications show good mutual agreement between each other
(many of these quantities are cross-linked).

The reflectivity of the bottom, curved mirror at wavelength λ can be inferred by mea-
suring the linewidth of the cavity for that wavelength (if we take R1 = 0.980 as a given).
We infer a reflectivity of R2 = 0.973 at both λ = 852 nm and λ = 866 nm from such a
measured linewidth. Wavelength-dependent cavity parameters are summarized in Table 3.2
for the wavelengths used in the experiment (852 nm, 780 nm and 866 nm).

The cavity parameters result in a 718 µm waist at 852 nm, the primary wavelength we
use to interact with the atoms. The divergence is small, as the Rayleigh range zR is large (1.9
m) compared to the cavity length (∼37.5 cm). The beam radius is therefore approximately
constant along the cavity length. For concreteness, from the flat mirror to the curved one,
the beam has expanded from its 718 µm waist only to a spot size of 732 µm.
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Table 3.1: Science cavity parameters that are (to good approximation) wavelength-
independent.

Quantity Value
FSR 399.845(2) MHz
Length 37.4886(2) cm
flat mirror reflectivity R1 0.98
curved mirror radius of curvature 10 m
δfnm 25.1 MHz
zR 1.90 m

Table 3.2: Wavelength-dependent science cavity parameters for wavelengths used in the
experiment.

λ [nm] w0 [µm] γFWHM [MHz] R2 Finesse F Optical gain G
780 687 12(1) 0.845 33 2.5
852 718 3.03(2) 0.973 132 36.1
866 724 3.03(2) 0.973 132 36.1

3.3 Laser system
A number of lasers are required to perform cooling and manipulations of the atoms. We will
first look at the cooling lasers, then discuss the lasers required to perform interferometry. To
show the optical layouts, we will borrow two sets of optical component drawings: one is from
Brian Estey’s PhD thesis [27], and the other is ComponentLibrary [46]. A table showing the
meaning of the symbols used can be seen in Fig. 3.4.

3.3.1 Trap and cooling lasers
Alkali atoms have historically been used in atomic physics experiments because their single
valence electron gives a comparatively simple level structure. The levels relevant for laser-
cooling cesium are shown in Fig. 3.5.

The ground 62S1/2 state of cesium is split into two hyperfine levels, |F = 3⟩ and |F = 4⟩.
The energy splitting of these states, h× (9 192 631 770 Hz), is currently the SI definition of
the second, and therefore exact.

The transition used to laser-cool cesium is the D2 line (2S1/2 → 2P3/2). The transition
from

∣∣2S1/2, F = 4
⟩

to
∣∣2P3/2, F

′ = 5
⟩

is closed, and is the primary cycling transition (we
denote hyperfine levels of the excited 2P3/2 manifold by F ′, and from here on will drop the
explicit 2S1/2 and 2P3/2 from our state notation). We call light exciting the |F = 4⟩ →
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Figure 3.4: Optical and electronic components used in subsequent diagrams.

|F ′ = 5⟩ transition trap light. Due to off resonant excitation of the |F = 4⟩ → |F ′ = 4⟩
transition however, for about 1 in every ∼ few hundred - 1000 photons scattered, the atom
decays to the |F = 3⟩ ground state. Repump light to bring such atoms back into the cooling
cycle is therefore required. The repump light excites the |F = 3⟩ → |F ′ = 4⟩ transition. See
Sec. 3.4 for more details on laser cooling and the atom source.

To cool the atoms we need both trap and repump light. The frequency stabilization
scheme for these lasers is shown in Fig. 3.6, and discussed below.

The lock chain

A spectroscopy setup belonging to another experiment in our group [27] provides bedrock for
stabilizing the laser frequencies and cavity lengths in our experiment. Light from an external
cavity diode laser (ECDL) is frequency-stabilized (“locked”) to the |F = 3⟩ → |F ′ = 2⟩ tran-
sition frequency via modulation transfer spectroscopy. Acousto-optic modulators (AOMs)
shift that frequency by 352.5 MHz, delivering 300 µW of light to our experiment which is
resonant with the |F = 3⟩ → |F ′ = 4⟩ transition frequency of the 133Cs D2 line.

We generate trap and repump light from a trap laser and reference laser, respectively.
The trap and reference lasers are both distributed feedback (DFB) diode lasers (Eagleyard
EYP-DFB-0852-00150-1500-TOC03-0005). The reference laser is injection locked by this
incoming 300 µW spectroscopy beam. All other laser and cavity locks in our experiment
derive from this reference laser (hence the name). In injection locking [47,48], a small amount
of seed power (in this case, the spectroscopy beam) is coupled into a lasing medium (the
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Figure 3.5: Hyperfine structure of the D2 line in cesium (taken from Ref. [36]).
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Figure 3.6: Locking scheme
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reference laser). If the free-running frequency is close enough to the seed frequency, the lasing
medium locks to that seed frequency. This condition is achieved by tuning the temperature
and current (which modulates the carrier density, hence the effective path length of the
semiconductor cavity) of our diode laser. The injection lock current range is about 1 mA.
An injection lock allows use of a comparatively simpler Fabry-Perot diode, rather than an
ECDL.

The trap laser is frequency stabilized to the D2 line with a frequency offset lock. A
small amount of light (1.5 mW each) from both the reference laser and the trap laser are
combined on a fast photodiode. For the trap laser to be resonant with the |F = 4⟩ → |F ′ = 5⟩
transition, their beatnote should be 8 941 MHz (see Fig. 3.5). An extra 80 MHz AOM
downstream in the trap laser beam path means that we actually want it to be 9 021 MHz.
The signal from the fast photodiode is amplified, and mixed with a dielectric resonator
oscillator (DRO) at 8 826 MHz down to 195 MHz (See Fig. 3.6b). The 195 MHz signal is
then mixed with a phase locked voltage-controlled oscillator (VCO) at 141 MHz.

Elsewhere, the VCO is divided by 16, and phase locked to one of 4 frequencies fi. This
allows the trap laser to lock to 4 different frequencies for different steps of the sequence
(trapping, molasses, blowaway and imaging; see Sec. 3.4). As a result, the frequencies in
the previous paragraph change slightly for these 4 purposes; the values above are for exact
resonance of the trap light with the |F = 4⟩ → |F ′ = 5⟩ transition.

The resulting signal at 54 MHz then enters a “trombone lock”, where the lock condition
is set by the cable path length. The signal is split (180◦ power splitter) and recombined.
Upon recombining, the phase difference ∆ϕRT between the two arms for a signal at frequency
frf is

∆ϕRT = krfL =
2πL

vp/frf

where L ≈ 1 m is the cable path length and vp ≈ 2
3
c is the speed of signal propagation in

the cable. For the frequencies that give an odd multiple of π
2
, ∆ϕRT = (2n+1)π

2
, the output

of the final mixer is zero, which gives the lockpoint. For other frequencies, an error signal
is generated. A proportional-integral (PI) servo then feeds back to the trap laser current to
stabilize it to the correct frequency.

Power from the trap and repump lasers goes into an optical fiber to be delivered to a
tapered amplifier chip (TA; m2k Laser, TA-0850-1500-CM). The optical fiber provides a
clean mode and short path length for injection into the TA. About 20 mW (1 mW) of trap
(repump) light is delivered to the TA, which amplifies the input to 700 mW at 2.12 A of
pump current. The TA output then passes through optics for delivery to the atoms (2D
MOT, 3D MOT, optical pumping). This is shown in Fig. 3.7.

Blowaway beams

Further downstream, some of the trap and repump light are each diverted to form blowaway
beams for the |F = 4⟩ and |F = 3⟩ states, respectively. These beams are each resonant for
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Figure 3.7: Generation and delivery of MOT light.

atoms in only one hyperfine state. This is useful, for example, in state preparation, where
atoms in the wrong state can be blown away from the desired atom sample. They are also
used in final readout, so the two hyperfine states can be spatially separated for imaging.

The trap light should be resonant with the |F = 4⟩ → |F ′ = 5⟩ transition. This F = 4
blowaway beam is controlled with an AOM.

The F = 3 blowaway beam is slightly more complicated. Selection rules restrict ∆F ∈
{−1, 0, 1} in scattering and decay events. Thus, if the excited manifold is populated in the
|F ′ = 4⟩ or |F ′ = 3⟩ states, a decay to |F = 4⟩ could occur, ruining the state-labeling and
closed blowaway cycling. Thus, the F = 3 blowaway beam should be resonant with the
|F = 3⟩ → |F ′ = 2⟩ transition. The beam is double passed through an AOM run at 176.25
MHz, giving the appropriate frequency shift.

There are 2 fewer Zeeman sub-levels in the F ′ = 2 manifold than in F = 3. There thus
exist two dark states in the F = 3 manifold that comprise of linear superpositions of the
constituent Zeeman states, depending on the polarization of the scattering light and the
magnetic field setting the quantization axis. In practice, this just means we sometimes need
to fiddle with the magnetic field if an F = 3 blowaway pulse doesn’t seem to be working.
The B field just needs to be such that the F = 3 atoms scatter enough photons to remove
them from the sample cloud before falling into one of these dark states. This is achievable,
but is less robust than the F = 4 blowaway.

The two blowaway beams are overlapped and coupled into a fiber port. The fiber is a
50/50 fiber splitter, allowing for two blowaway launches. This is useful, for example, because
the atoms’ trajectories can span about 2 cm, larger than the blowaway beam size.
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3.3.2 Interferometry lasers and lock schemes
To perform interferometry, the laser pulses must be resonant with the cavity. However, the
interferometry laser (the “science laser”) can’t be on at all times because it would introduce
large light shifts during the free evolution time, and cause decoherence via single-photon
scattering. As a result, we use a far off-resonant tracer laser to lock the cavity length. The
lock scheme for keeping the science laser resonant with the science cavity is shown in Fig.
3.8

to MOT optics

reference laser
transfer cavity

tracer laser

Imod

science laser

...

to RSC lattice

fiber EOM

monitor

science cavity

**
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Figure 3.8: Science cavity locking scheme.

The science laser is an external cavity diode laser (ECDL; Toptica DL100 Pro), and the
tracer laser is a DFB at 780 nm wavelength (Eagleyard, EYP-DFB-0780-00080-1500-TOC03-
0000). A “transfer” cavity is used to transfer the long term stability of the reference laser
onto the science and tracer lasers. The cavity is locked to the reference laser using a Pound-
Drever-Hall (PDH) scheme [49]. The science and tracer lasers are each locked to the cavity,
also via PDH. The current of the tracer laser is modulated to provide the phase modulation
for its PDH lock, while the science laser passes through an EOM. The free spectral range
(FSR) of the transfer cavity is ∼5 GHz, meaning the each of these laser wavelengths can be
chosen only in increments of ∼5 GHz.

The transfer cavity spacer is made of Invar, a nickel-iron alloy with a low coefficient of
thermal expansion (≈ 1× 10−6 K−1). This gives good enough length stability that it is easy
to lock the cavity to the same free spectral range using the reference laser, despite several
◦C drifts in the lab temperature. This means the tracer and science lasers can easily be
locked to the same frequency every day, rather than hunting for said frequency among a
forest of 5 GHz separated lockpoints. This is particularly important for the science laser,
whose single-photon detuning from the D2 line plays a critical role.
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The science cavity is locked to the tracer laser. The same current modulation used for
the tracer laser PDH lock to the transfer cavity also provides a PDH error signal for the
science cavity to be locked to the tracer laser. Co-locking the tracer and science lasers to the
transfer cavity ensures that Ltxr = mλsci

2
= nλtrc

2
, where Ltxr = 3.3 cm is the length of the

transfer cavity, λsci ≈ 852 nm is the science laser wavelength, and λtrc ≈ 780 nm is the tracer
laser wavelength. However, this does not provide co-locking on the science cavity, which has
length Lsci ≈ 37.5 cm.

To co-lock both lasers on both cavities, the tracer laser passes through a high-bandwidth
AOM (Brimrose TEF300-200-780). For fixed alignment we achieve about a 60 MHz range
over which the diffracted power is approximately constant. This is less than one FSR of the
science cavity (399.8 MHz), so it doesn’t guarantee a co-locking point. However, choosing a
different FSR of the transfer cavity for locking the tracer laser always enables us in practice
find a point within the 60 MHz tunability range. A more convenient co-locking method
has been implemented to add a third laser at 866 nm into the cavity, which is discussed in
Chapter 8.

3.4 Atom source and preparation
As with many atomic physics experiments, ours runs in a shot-based manner. A sample of
atoms is trapped, cooled, and used to perform interferometry. This sequence is repeated to
make measurements. A shot of the experiment begins by loading a 3-dimensional magneto-
optical trap (3D MOT) from a 2D MOT.

Doppler and sub-Doppler cooling

Without going into too much detail (see, e.g., Refs. [50–55] for information on laser cooling),
laser cooling reduces the phase space density of a gas, compressing its position and momen-
tum distributions. This is accomplished by getting atoms to preferentially scatter photons.
We want atoms with small velocities, at the trap center, to scatter few photons. We want
atoms with large velocity and/or large displacement from the trap center to scatter more
photons. In this way, atoms will scatter their way to low velocities at positions close to the
trap center.

Achieving compression in momentum space utilizes the Doppler shift. Pairs of counter-
propagating beams are red-detuned from an atomic transition. If an atom has a large velocity
in one direction, it will see that beam Doppler-shifted closer to resonance. It thus scatters
more photons from that beam (emitting into random directions), reducing its momentum in
that direction.

Position compression uses magnetic fields. An anti-Helmholz coil configuration generates
a quadrupole field, giving zero field at the center of the geometry, and increasing in magnitude
in all directions. If magnetic fields shift the atomic energy levels in the appropriate directions,
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then there will be increased scattering of photons for atoms further away from the trap center.
This causes atoms to pile up in the center of the trap.

The 2D MOT is loaded in the glass cell of the vacuum chamber from cesium background
vapor. To cover more area on the rectangular glass cell, the 2D MOT beams are large,
elliptical beams formed with large cylindrical lenses. The atoms are cooled in the directions
perpendicular to the path to the main chamber. This gives a transversally cooled beam of
cesium atoms pointed through the differential pumping tube towards the 3D MOT.

The 3D MOT forms at the center of the chamber. Counter-propagating beams in all
three dimensions provide cooling. While loading the MOT, the detuning of the beams is set
to −2.2Γ, where Γ ≈ 2π × 5.2 MHz is the natural linewidth of the cesium D2 transition.
After the MOT is loaded, the temperature of the atomic cloud is 110 µK. Next, polarization
gradient cooling (PGC) is performed (also known as optical molasses or Sisyphus cooling; see
Refs. [56,57]). The intensity is lowered and the detuning is further moved to −6.3Γ to reduce
the scattering rate, and the magnetic field is set to zero. PGC reduces the temperature to 7
µK.

Magnetic fields are provided by current-controlled coils. The anti-Helmholtz coils gener-
ating the MOT fields comprise of 64 circular loops (wound into 8 rows of 8 wires), mounted
on either side of the vacuum chamber. The wire used is 1

8
”× 1

8
” square hollow wire to allow

for water cooling at high currents (which we typically do not need to use, as we only apply
8 A of current). The inner diameter of the loops is 6” (and the outer diameter is thus 8”).

Bias fields are provided by auxiliary sets of coils. The ẑ (x̂) directions are provided by 40
square loops of wire with dimensions 20”× 20” (20”× 11”). These two sets of 40 loops are
made by using a single pass of ribbon cable, with appropriate connection of the cable ends.
The ŷ direction coils are an unknown number of circular loops of wire with radius ≈ 6”, and
mounted just outside of, and concentric with, the MOT coils. These auxiliary coils are used,
for example, to cancel out Earth’s magnetic field, provide B = 0 for PGC, and to provide a
bias field in the vertical direction for interferometry. Each direction of the bias coils is in a
Helmholtz arrangement to provide a spatially uniform B field.

Raman sideband cooling

The atoms are loaded into the cavity mode by adiabatically ramping on the science laser
with the PGC beams still on. Repump light into the TA is extinguished so that the trap light
pumps the atoms into F = 3. All MOT/PGC beams are then extinguished. Once the atoms
are loaded into the cavity, two additional beams perpendicular to the cavity mode form a
3D lattice. These two running waves, approximately perpendicular to each other, also derive
from the science laser and come from a single-pass bowtie beam path. Raman sideband
cooling [58–60] is then performed. Fig. 3.9 shows a depiction of the Raman sideband cooling
(RSC) configuration.

Atoms in the lattice are (to good approximation) in a harmonic oscillator, with energy
levels given by
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En =

(
n+

1

2

)
ℏωtrap,

where ωtrap is the trap frequency. The idea behind Raman sideband cooling is to remove
vibrational energy quanta from the atoms. A magnetic field is applied to make the Zeeman
splitting ∆EZ degenerate with the harmonic oscillator spacing. The Zeeman splitting for a
state |F,mF⟩ in a weak magnetic field B is given by

∆E|F,mF⟩ = µB gF mF B := mF ∆EZ(B)

where µB is the Bohr magneton, gF is the hyperfine Landé g factor, and we have defined
∆EZ(B) = µB gF B, i.e., the shift for the mF = +1 level.

To make the harmonic oscillator and Zeeman splittings degenerate then, we require

∆EZ = ∆En

µB gF B = ℏωtrap

A small amount (in our case, 8 µW) of σ+-polarized light resonant with the |F = 3⟩ →
|F ′ = 2⟩ transition pumps atoms into the excited manifold. The σ+ polarization enforces the
selection rule ∆mF = +1, so this light pumps atoms towards |F = 3,mF = 2, 3⟩, which are
dark states to this light. The beams forming the lattice drive degenerate Raman transitions
between states |mF + 1, n+ 1⟩ ↔ |mF, n⟩, indicated by the curved arrows in Fig. 3.9.

For an atom starting in the dark state |mF = 2, n⟩, these Raman transitions can drive
the atom to |mF = 1, n− 1⟩. From there, it can scatter a σ+ photon, and decay back to the
F = 3 ground manifold. In the tightly-bound Lamb-Dicke regime, the vibrational spacing
En is much larger than the kinetic energy associated with scattering these two photons1, so
the vibrational quantum number can’t change during the decay. An atom that decays to
F = 2 thus atom loses one vibrational quantum over the round trip! This cycle is how the
cooling proceeds.

Atoms pile up in the states that are still fully dark to the σ+ light, even in the presence of
the lattice Raman beams. These levels are |mF = 2, n = 0⟩ and |mF = 3, n = 0, 1⟩. An even
smaller amount of π-polarized light introduces two of these states into the fold, leaving only
|mF = 3, n = 0⟩ as the only dark state. In practice, this π-polarized light is produced by a
small misalignment of the quarter-waveplate generating the σ+ polarization. An additional
beam resonant with the |F = 4⟩ → |F ′ = 4⟩ transition is also applied to address atoms that
were not initially pumped into F = 3, or that scatter lattice beam photons.

As this process takes place, the atoms pile up in the vibrational ground state of the
lattice, cooling the cloud. After 14 ms of Raman sideband cooling, the lattice is adiabatically
released. This leaves the atoms in the stretched Zeeman state |F = 3,mF = 3⟩, and reduces
the cloud temperature to 300 nK.

1That is, En ≫ ℏ2q2

2m , where q = |kabsorb − kemit|. For cesium on the D2 line, the maximum q = 2k
corresponds to a recoil energy of 4Erec = h× 8.3 kHz. Our RSC trap frequency is about 30 kHz.
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Figure 3.9: Raman sideband cooling. Left: Energy level diagram with relevant laser-driven
transitions shown (reused with permission from Ref. [59]). See main text for description.
Right: Atomic state preparation in our experiment with (above) and without (below) the
RSC beam.

Microwave adiabatic passage

To efficiently transfer the atoms from the stretched Zeeman state to the magnetically insen-
sitive mF = 0 state, adiabatic rapid passage with microwaves is used. Fig. 3.10 demonstrates
this procedure. A quantitative description of adiabatic rapid passage is given in Ch 7. Mi-
crowaves are applied to the atoms using a horn waveguide.

A microwave pulse begins with a frequency ωHF + 5.5∆EZ/ℏ. The frequency is then
swept slowly (relative to the Rabi frequency) to ωHF + 0.5∆EZ/ℏ. The atoms are efficiently
transferred through the path shown by the solid arrows in Fig. 3.10: |F = 3,mF = 3⟩ →
|F = 4,mF = 2⟩ → |F = 3,mF = 1⟩ → |F = 4,mF = 0⟩. The start and end values of the
frequency ramp are chosen so that the |F = 3,mF = 3⟩ → |F = 4,mF = 3, 4⟩ transitions are
not driven at the beginning of the pulse, and the |F = 4,mF = 0⟩ → |F = 3,mF = 0,−1⟩
transitions are not driven at the end of the pulse.

Selection rules dictate that ∆mF ∈ {−1, 0,+1}. ∆mF = 0 transitions are suppressed by
setting the magnetic field in the experiment (and thus the atom’s quantization axis) such that
the polarization of microwave B field can’t drive them (for example, the |F = 4,mF = 2⟩ →
|F = 3,mF = 2⟩ at microwave frequency ωHF + 4∆EZ/ℏ). After these three adiabatic pas-
sages, atoms remaining in the F = 3 state are blown away. A final (standard, not adi-
abatic passage) microwave pulse resonant with the clock transition drives the atoms from
|F = 4,mF = 0⟩ to |F = 3,mF = 0⟩. Leftover atoms in F = 4 are blown away.

After these microwave manipulations, we have a 300 nK cloud of freely-falling atoms in
the |F = 3,mF = 0⟩ state.
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Figure 3.10: Microwave transfer to the magnetically insensitive state.

Vertical launch

The atoms are then launched upwards to provide time of flight to perform interferometry.
This is done using a Bloch oscillations in a frequency chirped optical lattice (see Sec. 8.4 for
more details on Bloch oscillations). Two tones are sent into an AOM, generating two optical
frequencies ω ± δ (see Fig. 3.11). When these two beams hit the cavity (symmetrically
centered), their sum can be written as

E = E0

(
(1)

sin
[
(ω − δ)(z − t)

]
+

(2)

sin
[
(ω + δ)(z − t)

]
+

(3)

sin
[
(ω − δ)(z + t)

]
+

(4)

sin
[
(ω + δ)(z + t)

])
= 4E0 (cos(ωt) sin(ωz) cos(δ ·t) cos(δ ·x)− sin(ωt) sin(ωz) cos(δ ·t) sin(δ ·x))
≈ 4E0 cos(ωt) sin(ωz) cos(δt) (3.1)

where we’ve taken c = 1 for simplicity such that ω = k, and in the last line used that
δ ·z ∼ 10−4 for this experiment (δ ∼ 2π × 100 kHz, z/c ∼ 10−10 s), such that cos(δ ·z) ≈ 1
and sin(δ ·z) ≈ 0. In the first line, terms (1) and (2) represent the upward-running waves
at frequencies ω − δ and ω + δ, respectively. Terms (3) and (4) are the downward-running
waves. Doing some trig sum/product rule rearrangement on eq. 3.1 and re-introducing c
gives

E =
(i)

4E0 cos(ωt) sin(kz − δt) +
(ii)

4E0 cos(ωt) sin(kz + δ ·t) (3.2)

−
(iii)

4E0 cos(ωt) sin(kz) cos(δ ·t)

The terms in eq. 3.2 represent (i) an upward running lattice, (ii) a downward running
lattice, and (iii) a stationary lattice with time-varying amplitude, respectively.

When the launch chirp starts, the atoms have been falling for about 10 ms. The laser
field from Fig. 3.11 is adiabatically turned on in 400 µs. The atoms falling at velocity v see
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(2)(1) (4) (3)

ω + δω - δ ω - δ

Figure 3.11: Laser field configuration in the cavity for the atomic launch. Beam labels
correspond to eq. 3.1

beam j Doppler shifted by δDopp = kj · v. For appropriately chosen δ = δDopp
2

, the atoms are
loaded into the downward running lattice (which is stationary in the atom’s frame). The
frequency δ is then ramped to zero, where all three terms in eq. 3.2 are degenerate, giving
a simple standing wave in the lab frame.

The frequency ramp continues through zero, but this degeneracy causes a problem. For
large enough δ, the atoms can be loaded into one lattice (say, the downward-running one), and
pretty much ignore the other lattices. More technically, the atoms undergo Bloch oscillations
in the ground band of one lattice, but Landau-Zener tunneling in a higher band of the other
lattices. For more details on Bloch oscillations, see Sec. 8.4. However, near zero velocity
this assumption doesn’t hold. The result of ramping through zero velocity then, is that an
approximately equal number of atoms are launched downwards, as are launched upwards,
while another class of atoms remain trapped in the stationary, amplitude-modulated lattice.
An image of the atomic cloud just after the launch, shown in Fig. 3.12, clearly shows these
populations.
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(i)

(iii)

(ii)

Figure 3.12: Atoms after the launch. Populations trapped in each of the lattices described
in eq. 3.2 are visible.

We haven’t found a good way to avoid the atom number loss associated with crossing
zero velocity. It’s possible that something like an adiabatic rapid passage Bragg pulse could
allow a more efficient transition across zero velocity. Up to this point however, we just accept
the hit in atom number.

By reversing the direction of the frequency chirp after the atoms’ time of flight, they
can be loaded into a downward moving optical lattice before being decelerated to rest. This
catch provides spatial selection of the center of the cloud (atoms that have not expanded
out of the beam), and slows the atoms down for improved imaging.

Imaging

To image the atoms after a sequence is performed, the 3D MOT beams are turned on. The
atoms scatter photons, which are collected by a charge-coupled device (CCD) camera fitted
with a lens tube. A background image is subsequently taken after the atoms have fallen
away. The images are subtracted to give a picture of the atom cloud(s).

For interferometry detection, the F = 4 blowaway beam is flashed for about 10 µs to
spatially separate the atoms in the F = 4 state from those in the F = 3 state. This allows
for normalized detection via the population ratio.

Frankly, our imaging system is pretty crude. At low atom numbers ≲ a couple 105,
imaging noise dominates. The MOT beams used for imaging give substantial unwanted re-
flections into the camera. The background subtraction removes most of this, but fluctuations
between images contribute noise. That said, access to a two-dimensional image of the cloud
is extremely helpful when setting things up and diagnosing what might be going wrong.

A broadly useful, solid bang-for-buck/time improvement to the experiment could be an
upgraded imaging system. This could be a light sheet plus photomultiplier tube (PMT) that
the atoms fall through [27], or even just a more careful and optimized fluorescence collection
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scheme. This could involve a CCD camera (detection via spatial resolution) or photodiode
(detection via time resolution) and/or additional specialized imaging beam(s).

3.5 Additional details
3.5.1 Experimental control
Our experiment is controlled by “A distributed, graphical user interface based, computer
control system for atomic physics experiments” developed at MIT [61]. It consists of a
client-server architecture. The client, Cicero Word Generator (or just Cicero) is used to
graphically build, modify, save and load sequences. The server, called Atticus, receives
instructions from Cicero and communicates with the hardware (National Instruments cards,
GPIB or serial devices, etc.).

We gratefully thank the creator(s) of Cicero; it has been fantastic for rapidly adding
or modifying functionality in the experiment without sinking massive amounts of time into
building and managing our own experimental control.

3.5.2 Raman signal generation
The Raman frequency is generated by phase-locking a dielectric resonant oscillator (DRO)
near 9.2 GHz. A stable 10 MHz source, referenced to GPS, is multiplied up to 180 MHz, to
which a VCO is phase locked. The VCO signal is then sent into a non-linear transmission line
(Picosecond Pulse Labs LPN-7103) which generates many harmonics. The 51st harmonic
at 9180 MHz is picked out using a narrow bandpass filter (Marki Microwave FB-0860) and
amplified. This signal then serves as the local oscillator for a mixer, against which a pickoff of
the DRO signal is beaten, giving a ∼12 MHz beatnote. A ∼12 MHz rf source is then mixed
with this beatnote to close the phase lock loop (PLL). By choosing among several rf sources,
the DRO can be moved and/or ramped between several frequencies for different purposes
(for example, microwave state selection or interferometry pulses). The PLL is shown in Fig.
3.13.

The microwave signal from the DRO is amplified and used to drive either a microwave
horn or an electro-optical modulator for two-photon Raman transitions. The ∼ 12 MHz
source that ramps the Raman frequency to account for the changing Doppler shift due to
gravity is provided by an Analog Devices AD9958 direct digital synthesizer (DDS) chip. The
discrete nature of the ramp parameters means that we can’t continuously tune the ramp rate
as finely as we would like to perform gravity measurements. We get around this limitation
by clocking the AD9958 with the output of a SRS DS345 function generator with 1 µHz
frequency resolution. We program the AD9958 for a fixed frequency ramp rate, where it
assumes it will receive a 10 MHz clock signal. We then provide the clock frequency required
to achieve the actual ramp rate desired by setting the DS345 to output a signal appropriately
offset (by a small amount) from 10 MHz.
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Figure 3.13: Phase lock loop for a DRO to generate the microwave frequencies necessary to
manipulate the atoms.

Low microwave source phase noise is critical to the experiment because the laser phases
are determined in part by the phase of the microwave signal. Phase noise on the DRO thus
enters directly into the interferometer. The idea of the phase lock in Fig. 3.13 is to use the
inherent excellent short-term phase stability of a DRO, and tie it down to a long-term stable
source with a servo to provide stability out to long times. We can perform a microwave
Ramsey experiment to tweak and lower the phase noise in the loop, using the atoms as
natural clocks against which to measure our system’s performance.

3.5.3 Inertial stabilization
Another important subsection of the experiment is the inertial control. The retro-reflection
mirror in an atom interferometer determines the laser wavefront locations, so vibrations of
that mirror are indistinguishable from movement of the atom in giving the laser phase ∆ϕL
of the interferometer. In our setup, we can’t just isolate a retro-reflection mirror. The cavity
mirrors are both mounted in-vacuum, and ultimately connected to the vacuum chamber. As
such, we attempt to stabilize the entire vacuum chamber.

To this end, the vacuum chamber is not mounted directly to the optical table. Instead, it
is clamped onto a steel-reinforced rectangular aluminum frame. Each of the four corners of
the frame rests atop a benchtop isolator (Thorlabs PWA090). These units are electronically-
controlled pneumatic isolators which float a platform on an air pad upon which the load
rests. A picture of this setup can be seen in Fig. 3.14. This provides additional vibration
isolation from the optical table (which is itself floated on air pads to decouple it from ground
vibrations).
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supportair pad
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Figure 3.14: Passive vibration isolation. The vacuum chamber is to the right of the image,
clamped to the steel-reinforced aluminum frame. Part of the aluminum frame and a tiny
segment of the steel reinforcement are visible. Two of the four benchtop isolators can be
seen. In the foreground, washers can be seen as spacers atop the floating pad of the benchtop
isolator.

In addition to this passive isolation, we require active stabilization. Inspired by Ref. [62],
we mount a seismometer on a platform atop the vacuum chamber. The seismometer measures
vertical vibrations of the chamber, and its output is used to apply feedback to keep the system
inertially quiet. As there is some shared academic lineage between this group and the authors
of Ref. [62], I believe we’re even using some of the literal same hardware components from
that work.

3.5.3.1 Some control theory

The analog control loop for the vibration stabilization is a tricky one. A quick bit of control
theory before getting into the specifics of this servo. Consider the system shown in Fig. 3.15.
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Figure 3.15: Basic control loop. X(s) is the input, or disturbance. Y (s) is the output, or
sensor signal. G(s) is the response (transfer function) of the system (often called the plant)
to be controlled. The plant may refer inclusively to the sensor and/or actuator as well. H(s)
is the transfer function of the controller, which processes the sensor signal to drive the plant
actuator. The output of the controller is used for negative feedback. The complex parameter
s = σ + iω is the independent variable after Laplace-transforming from the time domain.
For our purposes, it’s basically i times the frequency s = iω (σ ̸= 0 maintains the ability to
deal with finite time intervals, transients, etc. in a more general framework).

A transfer function T (s) describes the output Y (s) of a system as a function of its input
X(s) by

Y (s) = T (s)X(s),

which is one of the advantages of working in the s-domain, after Laplace transforming from
the time domain. Explicitly, convolution in the time domain (hard) becomes multiplication
in the s-domain (easy). This allows us to stack transfer functions by multiplying them.
Doing this to rearrange the transfer functions of Fig. 3.15, we can express the output/input
ratio of the depicted system as

TCL(s) :=
Y (s)

X(s)
=

G(s)

1 +G(s)H(s)
(3.3)

where TCL(s) is the closed loop transfer function. The G(s)H(s) term in the denominator,
sometimes denoted by L(s) := G(s)H(s), is called the open loop transfer function. For a
control loop to stabilize a system, the loop must be stable. What exactly does that mean?
We will present two definitions of stability (each of which has its pros and cons): Bode
stability, and Nyquist stability.

Bode stability

From eq. 3.3, we see that if

G(s)H(s) = −1, (3.4)
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Figure 3.16: Simple Bode plots. Amplitude and phase response are shown for a low pass
filter (blue), a high pass filter (red), and a resonance (green). For the resonance, the damping
factor is ξ = 0.1. ν is equal for all the transfer functions, as can be seen from the roll-off
points for the filters and the resonance peak.

the denominator blows up and we have a problem. In this case, the system becomes unstable
and oscillates at the frequency for which this condition holds. Bode analysis typically works
in the frequency domain, which we go to via the transformation s→ jω (2).

A Bode plot for a transfer function T (s) plots the magnitude and phase of T (jω) as a
function of frequency ω. Example Bode plots of three common elements are shown in Fig.
3.16.

The condition eq. 3.4 is satisfied if there exists a frequency for which the magnitude of
the response is 1, and the phase shift is 180◦. If there is a frequency for which this condition
holds, the system is unstable.

We let ωc denote the critical frequency for which the phase shift is ±180◦, and ωu denote
the unity gain frequency for which the magnitude of the response is 1. The Bode stability
criterion can then be stated as

Bode stability criterion

ωc ̸= ωu (3.5)

In practical control loops, this means scaling up the transfer function by a constant
(increasing the gain) until the system oscillates once ωc = ωu, then backing that constant
off by some safety margin (typically a factor ≲ 2).

Nyquist stability

The Bode stability criterion above, while simply stated, does not cover all cases. In partic-
ular, it is not guaranteed to apply to transfer functions with more than exactly one value
of ωc and ωu, a detail the previous section quietly swept under the rug. It also cannot be

2Control theory uses the convention j =
√
−1, which we adopt for this section.
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applied to transfer functions with certain properties3, including open-loop unstable systems
(which can sometimes be made closed-loop stable). A more general condition called Nyquist
stability can be used in this case.

First, it is useful to introduce a different view of what “stable” means. Note the following
inverse Laplace transform:

L−1

(
1

s− a

)
= eat (3.6)

If Re(a) > 0, this quantity blows up as t → ∞. A transfer function T (s) can always be
written in the form

T (s) =
N(s)

D(s)
=

ans
n + an−1s

n−1 + . . .+ a1s+ a0
bmsm + bm−1sm−1 + . . .+ b1s+ b0

,

that is, as a ratio of two polynomials in s. The roots of the numerator polynomial N(s) are
known as the zeros of T (s), denoted by zi. Similarly, the roots of the denominator D(s) are
the poles of T (s), denoted by pi. The transfer function can then be written as

T (s) =
an(s− z1)(s− z2) · · · (s− zn)

bn(s− p1)(s− p2) · · · (s− pn)
, (3.7)

which can be decomposed into a sum of partial fractions4 as

T (s) =
c1

(s− p1)
+

c2
(s− p2)

· · ·+ cn
(s− pn)

, (3.8)

where the constants ci are called the residues of T (s), given by ci = lim
s→pi

[(s− pi)T (s)]. The
Laplace transform (and its inverse) are linear, namely

L (af(t) + gf(t)) = aF (s) + bG(s) (3.9)
where F (s) and G(s) are the Laplace transforms of f(t) and g(t), respectively. Suppose a
signal u(t) is the input to the system represented by the transfer function T (s). If we want
the output v(t) to be stable (i.e., v(t) ↛ ∞ as t→ ∞), we can now state that more precisely:

For the output of a system with transfer function T (s) to be
stable, all poles T (s) must have negative real parts.

3The transfer function must also be strictly proper (more poles than zeros), and have no pole with real
part ≥ 0 (which we will see implies open-loop instability).

4The following arguments require simple (i.e., non-repeated) poles, and m > n, but analogous arguments
can be made if these conditions don’t hold.
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If this condition were not satisfied, then for some pole in the partial fraction eq. 3.8, we’d
get a term like eq. 3.6 that blows up to ∞. So to determine a system’s stability, we need to
count the number of poles of its transfer function in the right half of the complex plane. If
we are interested in a closed-loop transfer function of the form eq. 3.3, the number of poles
of

TCL(s) =
G(s)

1 + L(s)

in the right half of the complex plane must be zero, where L(s) is the open-loop transfer
function. Poles of TCL satisfy the characteristic equation

1 + L(s) = 0 (3.10)
Let us denote by Z the number of roots of the characteristic equation with real part ≥ 0.

An abbreviated definition of the Nyquist stability criterion can now be presented:

Nyquist stability criterion

A closed-loop system with open-loop transfer function L(s) is stable iff Z = 0,
where Z is the number of roots of the characteristic equation 1 + L(s) = 0 that
lie to the right of the imaginary axis.

Nyquist stability also comes with some requirements5 on the transfer function, but it is
strictly more general than the Bode criterion. Apparently Z can be tricky or annoying to
calculate, so we calculate it a fancy, roundabout way using results from complex analysis.

First, we introduce the Nyquist contour in the s-domain, Γs. The Nyquist contour is
basically a way of encircling the right half of the complex plane. It consists of a path
running along the imaginary axis from −j∞ to +j∞, and a semicircle of infinite radius
enclosing the right half of the plane. The Nyquist contour can be seen in Fig. 3.176.

The Nyquist plot, or Nyquist diagram, for a transfer function T (s) is the curve produced
by evaluating T (s) along the Nyquist contour. Conceptually, the Nyquist plot ΓT (s) lives in
a different complex plane than the Nyquist contour Γs (the s-plane for the latter, as opposed
to the T (s)-plane for the former).

Define the following integers (one of which has already been introduced) associated with
an open loop transfer function L(s):

5For example, Nyquist stability requires a linear time-invariant (LTI) system (as does Bode stability),
and a proper (but not strictly proper) transfer function (number of poles ≥ number of zeros)

6Some care needs to be taken such that no poles of the transfer function being considered lie on the
Nyquist contour, by taking tiny semicircular detours off the imaginary axis of radius ϵ → 0
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Z - number of roots of the characteristic equation 1 + L(s) = 0

P - number of poles of L(s) in the right half of the s-plane

N - number of clockwise encirclements of the point −1 + 0j by the Nyquist
plot ΓL(s) in the L(s)-plane

Complex analysis tells us that Z = N + P (specifically, using Cauchy’s argument prin-
ciple). This gives us a way to get at Z without doing a (perhaps messy) calculation! Note
that most feedback loops are open-loop stable, which means P = 0. In that case, Z = N ,
and all we have to do is look at the Nyquist plot of a transfer function (specifically, its
encirclements of the point −1 + 0j) to determine its stability. Nyquist plots for the simple
transfer functions from Fig. 3.16 can be seen in Fig. 3.17.

Γs

ν
s+ν

s
s+ν

ν2

s2+2ξνs+ν2

Figure 3.17: Simple Nyquist plots of the same transfer functions from Fig. 3.16. The Nyquist
curve Γs is shown at left, in the s-plane. The next three plots are Nyquist diagrams (in the
T (s)-plane) for a low pass filter (blue), high pass filter (red), and resonance (green), whose
transfer functions are shown below their respective plots. Arrows indicate the direction along
which the Nyquist curve Γs is being traversed. Dotted (solid) lines in the Nyquist diagrams
represent the negative (positive) imaginary axis portion of Γs, i.e., negative (positive) ω.

Next we’ll make use of these concepts to analyze our vibration stabilization loop.

3.5.3.2 Vibration stabilization

The system

We will now apply the structure of the previous section to our setup. In our case, the cavity
mirror mounting (and thus the whole vacuum chamber) is the plant, the object we wish
to control. The seismometer atop the vacuum chamber is the sensor. Unwanted vibrations
entering through the optical table are the disturbance. A voice coil between the vacuum
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chamber and a platform mounted to the optical table is our actuator. An electronic circuit
(details to follow) is the controller that applies the appropriate correction to the voice coil
based on the output of the seismometer. This loop is shown in Fig. 3.18.

Plant

Air pads

Electronics

Controller H(s)

Sensor

Actuator

magnet

coil

Seismometer

Vacuum 
chamber

Figure 3.18: Vibration stabilization control loop.

The seismometer (Kinemetrics Ranger SS-1) is a heavy (∼ kg) cylindrical magnet with
a circular slot hanging on a spring. A many-turn coil, attached to the seismometer body,
protrudes into the slot of the hanging magnet. When the seismometer body moves, the
magnet-on-a-spring serves as an inertial test body which “stays still” as the coil moves. The
changing magnetic flux through the output coil induces a current, which is read out as a
voltage as the seismometer signal.

In order for the magnet to serve as an inertial test mass, the resonant frequency ω =√
k
m

of the mass-spring system (where m is the mass and k is the spring constant) must
be low. For a mass-spring system supported against gravity, the spring force Fs = k∆x
(where ∆x is the spring’s extension from equilibrium) equals the gravitational force Fg =
mg. The resonance frequency can thus be expressed as ω =

√
g
∆x

. Achieving a resonance
frequency of 2π×100 mHz would then require a spring 24.8 m in length, which is impractical.
Low frequency inertial devices thus make use of anti-springs, where the spring constant is
negative, in addition to the spring, to lower the resonance frequency. The seismometer uses
an arrangement of bar magnets attached around the seismometer body as an anti-spring.
Other applications, gravitational wave detectors in particular (e.g., Ref. [63] and references
therein) use geometric anti-springs consisting of an arrangement of bent steel blades [64].
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Transfer function of the plant

We will now derive the form ofG(s) for our system. We model our setup as a vacuum chamber
of mass mv attached to the optical table of infinite mass by a spring with stiffness kv. It is
located at position xv, and experiences damping with coefficient βv. The seismometer has
mass ms, and is modeled as being attached to the vacuum chamber by a spring of stiffness
ks. It is located at position xs, and has damping coefficient βs.

We drive the chamber with disturbing force F , and study the system’s response. We
assume that the seismometer is much lighter than the vacuum chamber, such that the back-
action of the seismometer on the chamber is negligible. The equation of motion at fixed
Fourier component ω is:

mvẍv = F − kvxv − βvẋv

−mvω
2xv = F − kvxv − iωβvxv

xv =
F

−mvω2 + kv + iωβv
(3.11)

The analogous equation for the seismometer position xs is

msẍs = −ks(xs − xv)− βs
d

dt
(xs − xv)

−msω
2xs = −ks(xs − xv)− iωβs(xs − xv)

xs = xv
ks + iωβs

−msω2 + ks + iωds
(3.12)

The seismometer measures a voltage Vs proportional to the relative velocity of its mass
and the vacuum chamber; that is,

Vs = α(ẋs − ẋv)

Vs = αiω(xs − xv) (3.13)

For our seismometer, α = 260(10) V
m/s .

With these equations, we can now write the seismometer output Vs (Y (s) from Fig.
3.15) as a function of an input disturbance F (X(s) from Fig. 3.15). Their ratio gives us
the transfer function G(ω) of our plant. That is,

G(ω) =
Vs(ω)

F
=

iαmsω
3

(kv −mvω2 + iωβv)(ks −msω2 + iωβs)

This can be recast into a more transparent form. First, we use the natural frequency of
a mass-spring system, ωn =

√
k
m

, and the unitless damping ratio, related to the damping
coefficient by ξ = β

2mωn
. We then revert to the s-domain by taking ω → s/i. After this, the

transfer function is given by
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G(s) = − α

mv

s3(
s2 + 2sξvωn,v + ω2

n,v
) (
s2 + 2sξsωn,s + ω2

n,s
)

Nyquist and Bode plots of this function are shown below in Fig. 3.19
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Figure 3.19: Mechanical response G(s) to vibrations. Top row: Bode plots. Bottom row:
Nyquist plots. See main text for description

The seismometer resonance is critically damped by appropriate choice of load resistance,
so ξs = 1. The seismometer resonance frequency is measured to be ωn,s = 2π×1.23 Hz. The
resonance frequency of the air pads is measured to be ωn,v = 2π × 2.7 Hz. The damping
ratio is inferred to be about ξv = 0.09 via the size of the resonance peak. We’ll set mv = 1
so we don’t have to keep track of unit conversions.

The Bode plots give us intuition about what’s going on. The undamped air pad peak
is clearly visible, while the critically damped seismometer peak is more hidden. These res-
onance locations are indicated by dot-dashed blue lines. The response approaches these
closely-spaced resonances from below as ω3 and, far after the peaks, decreases via ω−1 (each
resonance contributes ω−2 on top of the incoming ω3). The phase shift far below the reso-
nance is 90◦ (which is a reflection of the signal being proportional to the velocity, and not
the position). Each resonance drops the phase by 180◦; slowly across a decade or two for the
critically damped seismometer resonance, and rapidly for the less-damped air pad resonance.

The horizontal dashed gray lines in the Bode plots show |G| = 1 and φ = 180◦. The
vertical dotted red lines show the two unity gain frequencies. Multiple ωu is a disqualifier
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for using the Bode stability criterion (as is the triple pole on the imaginary axis at s = 0).
Ignoring that, the Bode plot would predict stability for this system in a negative feedback
loop, as there is not a unity gain frequency with 180◦ phase shift.

We need to go to the Nyquist picture to assess the stability. The Nyquist diagram is
shown alongside a color-coded Nyquist curve7 to help visualize which frequencies correspond
to which points in the Nyquist diagram. The structure of the Nyquist diagram is dominated
by frequencies around the ∼Hz level.

If we were to use the output of the seismometer directly as the negative feedback (i.e., a
purely proportional controller), G would be the open loop transfer function. The four zeros
of G(s) (each indicated by with a blue x, including one double) all have negative real part
⇐⇒ are not contained within the Nyquist contour. The system is therefore open-loop stable
⇐⇒ P = 0. However, the point −1 + 0j is encircled by the Nyquist diagram, in this case
twice, giving N = 2. Therefore, Z = 2, and the system would not be closed-loop stable. This
is in contradiction to the prediction of the (inapplicable) Bode stability criterion. We’ll need
a nontrivial controller transfer function for a stable closed loop, which we discuss in the next
section.

Controller transfer function

The electronic controller alleviates the closed-loop instability of the bare mechanical response
by applying its own transfer function H(s). We use an analog control loop, so parameters
of the system are tweaked in situ to optimize loop performance. Parameters used in this
analysis will therefore be representative, but not exact.

The controller consists of two lag compensators preceded by a large-gain, inverting am-
plifier. A lag compensator has a flat frequency response, except in a specific frequency range
where it acts as an integrator. Ours are made using an op amp in a configuration shown in
Fig. 3.20, alongside the resulting transfer function.

The second line in eq. 3.14 is the general form of a lag compensator, and we identify
ω1 = 1/R3C and ω2 = 1/C(R2 + R3) for our circuit’s realization. At very low frequencies
(ω ≪ ω2 < ω1), the gain is given by K, and at high frequencies (ω ≫ ω1) it is given by
K × ω2

ω1
.

Our setup has something like ω1 ∼ 2π×700 mHz, ω2 ∼ 2π×30 mHz for both circuits, but
we haven’t measured the final component values after tuning. This aspect could very likely be
optimized, especially in a digital control loop where adding and changing feedback elements
is far easier than in an analog circuit. This has been done, e.g., in Refs. [62,65]. Optimizing
the (and likely adding at least one more) lag compensators could probably improve system
performance if needed.

Parameterized in terms of the frequencies ωiα where i = 1, 2 above, and α ∈ {A,B} for
our two lag compensators, the total transfer function of our controller is

7Technically, there should be a semicircle around the origin of radius ε → 0 so the curve does not pass
through the poles at s = 0, but we’ll just say that’s too small to see on this scale. Also, the large semicircle
should go from +j∞ to −j∞, but we set 2π × 95 Hz = ∞ for the sake of a (barely) discernible color scale.
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Hlag =
R1

R2

1 + sCR3

1 + sC(R2 +R3)

= K
1 + s/ω1

1 + s/ω2

(3.14)

Figure 3.20: Op amp lag compensator

H(s) = −Ktot

(
1 + s/ω1A

1 + s/ω2A

)(
1 + s/ω1B

1 + s/ω2B

)
(3.15)

This transfer function H(s) can be seen in Fig. 3.21. Ktot is positive, and we explicitly
include the minus sign to indicate that there is an inverting amplifier (contributing a −180◦

phase shift) as well.
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Figure 3.21: Controller transfer functionH(s). Note that this includes both lag compensators
(as seen from the slope of the double-integrator region), which have similar ω1 and ω2.

The circuit for the full controller can be seen in Fig. 3.22:
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Figure 3.22: Controller circuit schematic. The extra potentiometer in the lag compensators
is a trick to mimic a large variable resistor (larger than typically available potentiometers). In
the actual setup, this is followed by an active twin-T notch filter to filter out a high-frequency
mechanical resonance at 2 kHz.

Stability

The open-loop transfer function is now given by L(s) = H(s)G(s). Fig. 3.23 shows Nyquist
and Bode plots for L(s).
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Figure 3.23: Nyquist and Bode plots for the open-loop transfer function L(s).

We’ll start with the Nyquist plots in the upper row of Fig. 3.23. Again, the color scale
on the Nyquist curve is used to see which frequencies comprise which part of the Nyquist
diagram. We see from the blue x’s that P = 0 for L(s). The middle plot of the top row shows
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the Nyquist plot for the open-loop system. The red + indicates the point −1 + 0j. We’re
too zoomed out to see if it’s encircled because we’ve turned up the gain (Ktot, in eq. 3.15)
so high. The rightmost plot zooms in, where we see that the point is not encircled! This
particular parameter set is aggressive, giving a phase margin of only ≈ 20◦ (seen by literally
rotating the Nyquist diagram). However, this increases quickly if turning down the gain,
because the blue and green looped portions of the Nyquist diagram are curving strongly.
Achieving the (conservative) typically-quoted phase margin for stability of 45◦ only requires
reducing the gain by a factor of 2.5 from what is shown.

Since both N = 0 and P = 0,

Z = 0, and our system is closed-loop stable!

The Bode plots below the Nyquist ones in Fig. 3.23 give a more interpret-able picture of
what’s going on. The full system’s transfer function is given, as in eq. 3.3, by

TCL(s) =
G(s)

1 +G(s)H(s)
(3.16)

Bode plots of TCL(s) are shown in Fig. 3.24, as is the amplitude |TCL(s)
G(s)

| showing how
much the feedback loop attenuates vibrations as a function of frequency.
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Figure 3.24: Bode plots for the closed-loop transfer function TCL(s). Amplitude and phase
plots for TCL(s) are shown in the left and center panels, respectively. The right plot shows
|TCL(s)

G(s)
| to visualize improvement over the unstabilized situation.

By inspecting the poles of TCL(s), we find that the full system acts as if it were an
underdamped system with resonance frequency ωn = 2π × 64 mHz, and damping ratio
ξ = 0.18, for the parameters used in Figs. 3.23 and 3.24. This effective resonance is
indicated with a dot-dashed green line in the plots of Fig. 3.24. Turning down the gain
raises the effective resonance frequency and the damping ratio, so there is likely an optimal
setting somewhere.
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Figure 3.25: Vibration noise curves showing the in-loop seismometer signal with no isolation,
passive isolation, and active stabilization (feedback loop engaged).

Full system and performance

After all that design, plus a little tweaking, the performance of the real-life vibration stabi-
lization is shown in Fig. 3.25.

A quantitative description of Mach-Zehnder AI sensitivity to vibration noise can be found
in Sec. 8.3. Glossing over those procedural details here, the spectra from Fig. 3.25 can be
used to calculate the expected phase noise of the interferometer due to vibrations with and
without stabilization. This is shown in Fig. 3.26.

Optimizations that have not yet been performed in our feedback loop (which could further
improve the performance), plus limitations of the present realization, include the following:

• A more comprehensive lag compensator tuning

• The seismometer is not right at the retroreflection mirror. As such, the seismometer
signal is not precisely representing the mirror vibrations. This transfer function is
unknown.

• Despite putting the seismometer well above the vacuum chamber (possibly exacerbat-
ing the issue above), switching experimental magnetic fields do bounce the seismometer
signal.

• There are unfortunate high frequency (∼ kHz) resonances that limit the gain of the
control loop, despite use of some filters already

• The full vacuum chamber (rather than just a retroreflection mirror) is being stabilized.
As a result, the voice coil actuator may be sub-optimal (e.g., its un-centered alignment).

Although these may limit the performance of the stabilization system, it has been suf-
ficient for our purposes despite really having to shoehorn it into the existing setup due to
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Figure 3.26: Interferometer vibration noise. Left: Seismometer outputs (a voltage measuring
velocity) from Fig. 3.25 are converted to acceleration spectra. Right: Interferometer fringe
simulations with phase noise due to the corresponding acceleration noise spectrum, and
T = 55 ms. Without vibration stabilization, the phase noise has standard deviation σϕ of
nearly a full 2π, making it impossible to discern a fringe. With stabilization, this rms phase
noise is reduced by a factor of ≈ 16, providing a clean fringe. These simulations match well
to experimentally observed phase noise.

our lack of foresight. The reduction in vibrations demonstrated here is crucial for high-
sensitivity accelerometry with a Mach-Zehnder atom interferometer. Without this active
stabilization, vibration noise is high enough to fully wash out interferometry fringes, making
a measurement impossible. A separate, surprising method to mitigate vibration-induced
interferometer phase noise is also introduced in Sec. 8.3.

3.5.3.3 Tilt stabilization and vertical alignment

The laser phase ϕL = k · aT 2 includes the dot product of the atom’s acceleration a and the
laser wavevector k. If these two vectors are misaligned by a small angle θ, the actual laser
phase will be

ϕL = ϕ0
L cos θ ≈ (1− θ2)ϕ0

L

where ϕ0
L = kaT 2 is the laser phase assuming perfect alignment of k and a. Not only does

this introduce a systematic shift in a measured value, but the becomes increasingly sensitive
to small fluctuations in θ (since dϕL

dθ
≈ −θϕ0

L).
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Figure 3.27: Tilt stabilization loop. The tiltmeter is mounted on the vacuum chamber on
the optical table. A voltage proportional to its tilt along the two axes undergo a linear
transformation from x̂ and ŷ to Â and B̂. This is necessary because the alignment and scale
factors of the feedback axes do not necessarily align to the sensor axes. Each axis is then
compared to its setpoint with a PI loop. The output of the PI loop then drives a servo
motor via pulse width modulation to position an arm. That arm moves a lever attached to
a needle valve controlling one leg of the floating optical table. Adjusting this arm changes
the height at which that leg must sit to close the needle valve, thus tilting the optical table.

To avoid these problems, it is important to align the laser wavevector to Earth’s gravi-
tational field. We measure the tilt using an electronic bubble level (Applied Geomechanics
700-series) mounted to the vacuum chamber. The atom interferometer itself is used to find
the angles θx and θy for each direction that align the cavity mode along gravity. See Sec.
5.6 for details and data about finding these setpoints.

However, once known, this alignment must be maintained. A feedback loop is used,
which uses the tiltmeter signal as input, and stabilizes this signal to the setpoints discussed
in the previous paragraph. This is especially important because the air pads upon which
the vacuum chamber sits slowly but continuously lose air, and eventually need to re-level
themselves. This however, is only done to a coarse level (for our air pad spacings, this
corresponds to several hundred µrad tilt of the vacuum chamber). Fig. 3.27 shows the setup
of our feedback loop.

The tiltmeter outputs are processed and used to control the position of two servo motors
(one for each rotation axis) fitted with a rotation-to-translation attachments. Each motor is
attached to the bottom of the optical table, with an arm attached. The arm presses against
a lever to a needle valve controlling the height of that leg of the optical table. Translation
of the arm via motion of the motor thus sets the height of the optical table leg. This setup
can be seen in Fig. 3.28.

Needle valves have a small dead zone around their closed position for which a finite
movement is required to open them in either direction. This nonlinearity means that a
linear feedback loop would be unable to satisfy its setpoint condition, and would oscillate
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Figure 3.28: Left: Servo motor-controlled arm that opens/closes the optical table needle
valve. Right: Each actuated leg also has a controlled leak applied, as discussed in the text.
Valves for these leaks shown here. The box containing the linear transformation, PI loops,
and motor drivers is visible in the lower right of the image.
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Figure 3.29: Tilt feedback performance. Left: Loop engaging and settling to equilibrium
starting far from the setpoint. The time constant of about 1 minute set by the PI loop is
observed. Oscilloscope traces show tilts θx and θy, at 25 s / div, and 500 mV / div (where
1 mV = 1 µrad of tilt. Right: Tilt stability with and without feedback engaged. Jumps in
the unstabilized values are due to re-levels of the vacuum chamber air pads.

between opening the valve in alternating directions. A solution is to introduce a small,
controlled leak [30]. This moves the equilibrium point of the loop into the linear regime of
the valve’s operation. The controlled leak valves for each axis of control can be seen in Fig.
3.28.

The performance of the loop can be seen in Fig. 3.29. The PI loop has an RC time
constant of about 1 minute. This can be seen in the loop settling from an impulse in Fig.
3.29. The gain and slow time constant are set conservatively so that the feedback loop does
not fight the re-leveling of the vacuum chamber air pads. It is important that the motor
be attached to the bottom of the optical table. The table itself drifts, and if the motor
is mounted to it, this effect automatically enters the feedback loop. If not, another time
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constant is introduced into the loop and performance degrades considerably.
Longer-term data is shown in Fig. 3.29. Red and blue points show tilts in the two

rotation angles without the feedback loop, while green and navy points show the feedback
engaged. Once initially set up, this feedback loop is pretty robust and painless, and stabilizes
the tilts to the 10 µrad level.
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Chapter 4

Interferometry in the cavity

The atom source provides a laser-cooled cloud of atoms that have just been launched up-
wards. The interferometry sequence can now begin. An overview of the Mach-Zehnder
geometry was presented in Section 2.4, with constituent Raman pulses discussed in Section
2.3. These overviews glossed over many “real-world” details relevant to performing the nec-
essary matter wave manipulations. We discuss such details in this chapter, with an emphasis
on cavity-specific aspects.

Some of the motivations for putting an atom interferometer into an optical cavity have
been mentioned previously (higher optical intensity, spatial mode filter), as have some po-
tential difficulties. These benefits and difficulties are discussed here in further detail as
well.

4.1 Cavity challenges
Beam size1

The cavity mode beam waist is 718 µm, set by the 10 m radius of curvature of the lower
mirror of the science cavity. A larger radius of curvature gives a larger beam waist, but
reduces the transverse mode spacing (see eq. 2.90), degrading spatial mode filtering. An
attempt to address this trade-off using an intra-cavity lens has been made [66].

The small beam is comparable to the initial size of the atom cloud, since the cavity
mode is used for the launch. As the atomic sample thermally expands, it begins to leave the
beam. The atoms see a spread in Rabi frequencies across the transverse gaussian profile of
the beam. This gives inhomogeneous π and π

2
pulse times across the atom sample. Pulses

become less uniformly efficient, reducing interferometer contrast.
1The catch from Sec. 3.4 and the ARP pulses of Ch. 7 are attempts to address this problem.
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Figure 4.1: Raman frequency ramp in the cavity. The pink trace is the normalized cavity
lineshape. The laser peak heights show the resonant enhancement in the cavity, not their
actual intensity relative to each other (see Fig. 4.6 for that). They are shown in black
(carrier), red (red sideband, ramping), and blue (blue sideband, ramping) with a 100 kHz
linewidth. Only the ±1 orders are shown here. The shading of the sideband peaks darkens
with increasing Doppler shift. For k+ this means the sideband peaks move from light shading
to dark over the interferometer duration. For k−, they move from dark to light

Frequency selectivity
The science cavity has a full-width, half-maximum linewidth of γFWHM = 2π × 3.03 MHz at
852 nm. This frequency selectivity presents two problems.

First, the beams coupling the two hyperfine ground states of the atoms are separated
in frequency by ∼ 9.2 GHz, but must simultaneously be close to cavity resonance. This
is solved by setting the cavity length such that the free spectral range is nearly an integer
divisor of the cesium hyperfine frequency (see Sec. 3.2; that integer is 23 for our setup). In
our case, the resulting mismatch is δoffs

HF = 1
2π
ωCs

HF − 23 × FSR = 3.80 MHz. As outlined in
Sec. 3.2, this is a somewhat lucky alignment mismatch of only ∼ 155 µm from a perfect
free-spectral range matching length Ln=23 = c/

(
2× ωCs

HF
2π×23

)
.

The second problem is that these frequencies change over the duration of the interfer-
ometer by an amount comparable to γFWHM. For example, in a 100 ms interferometer, the
Doppler shift of the atom changes by ∆δDopp = k δv = k g δt = 2π× 1.15 MHz. The shift
in the two-photon Raman transition is twice that (since the atom sees each beam Doppler-
shifted in a different direction). This means that in moving from say, a negative Doppler
shift at the beginning of the launch to a positive Doppler shift on the way back down,
the two-photon Raman resonance in the lab frame would have moved from δoffs

HF − δDopp to
δoffs

HF + δDopp. This is shown in Fig. 4.1.
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4.2 Cavity benefits
Optical intensity enhancement
Perhaps the most straightforward benefit of the cavity is the higher optical power afforded
by resonant enhancement. For fixed Rabi frequency, higher available intensity allows lower
single photon scattering by increasing the single-photon detuning ∆; since Rabi frequency
scales as 1/∆, while single photon scattering scales as 1/∆2.

Additionally, high intensity raises the ceiling on performance for Bragg diffraction. For
example, Bragg diffraction requires an intensity proportional to n2 for constant pulse du-
ration, or n4 for a constant single-photon scattering rate via increased detuning [40]. With
resonant enhancement in a cavity, we may achieve n = 50 − 100 photon Bragg transitions
using tens of milliwatts of power from a standard diode laser, as opposed to the multiple
watt systems recently developed [67, 68].

Mode cleaning
A more subtle benefit is the spatial mode filtering an optical cavity provides. Since higher
order transverse modes are not frequency degenerate in the cavity (as they are in free space),
light resonant with the fundamental mode of the cavity primarily excites only that mode.
This ensures a clean gaussian transverse profile of the laser beam. Additionally, wavefront
distortions not meeting the cavity resonance criterion destructively interfere themselves away
when summing up the many reflections between cavity mirrors. This means that the phase
fronts inside the resonator are very smooth.

This second quality will turn out to be quite important. Wavefront aberrations limit
performance in several types of matter wave manipulations (see Chapters 7 and 8) that we
overcome with this apparatus.

Reduced experimental complexity
Resonant enhancement of the optical intensity enables a fiber EOM to generate the Raman
frequencies. Without a cavity, a second laser is usually phase-locked to a master laser to
generate the Raman beam pair. The Raman phase noise is in general higher for phase-locked
lasers than for a simple microwave source used to drive an EOM (in addition to requiring
the extra laser plus optical phase lock loop).

Relative alignment of these multiple beams also needs to be well-controlled. Even align-
ment of a retro-reflection for precision measurement is non-trivial. In a cavity, counter-
propagation of the interferometry beams is automatic.

For rotation sensors, mutual alignment of multiple beams is critical and tedious [17,69].
Using multiple transverse spatial modes of the cavity could provide mutually self-aligned
beams for a rotation sensor (see, e.g., Fig. 4.14 later in the chapter).
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Well-defined beam parameters
Uncertainties due to optical wave front curvature, and Gouy phase shifts are leading system-
atics in precision experiments using atomic fountains [6–8,41]. The well-defined geometry of
an optical cavity reduces these: beam parameters can be determined precisely by measuring
spectral features of the cavity, such as the transverse mode spacing (Sec. 3.2).

Many systematics are more easily controlled in a small volume, such as gravity gradients,
electric and magnetic fields and gradients and source mass distribution. The combination of
large momentum transfer (see Chapter 7) and long coherence times in an optical lattice (see
Chapter 8) could provide high sensitivity in a compact area.

4.3 Raman pulses in a cavity
4.3.1 Finite-sized cloud in a finite-sized beam
An unavoidable feature of our experimental setup is that the atom cloud is approximately
the same size as the interferometry beam. This is partly because the cavity mode is used to
form the lattice for Raman sideband cooling, and partly because the cavity mode is used to
launch the atoms.

Since the atom cloud’s 1
e

radius σ is comparable to the waist w0 of the cavity mode, the
atoms see a spread of beam intensities. We can assume a spherical gaussian atom distribution

natom(r) =
N0

π3/2σ3
exp

(
− r2

σ2

)
, (4.1)

where the normalization constant is such that
∫∞
0
dr 4πr2natom(r) = N0, the total atom

number. Note that r is the radial distance to the center of the cloud.
The gaussian beam meanwhile has intensity

I(ρ) = I0

(
w0

w(z)

)2

exp

(
− 2ρ2

w(z)2

)
≈ I0 exp

(
−2ρ2

w2
0

)
, (4.2)

where ρ is the distance from the center of the beam transverse to the propagation axis. In
the second line, we have used that our beam diverges weakly, so w(z) ≈ w0. The intensity,
and thus the Rabi frequency (which we will ultimately be interested in), then depend only
on ρ. The distribution of such quantities (i.e., that depend only on ρ) over the atom cloud
is then given by integrating the atomic distribution around the azimuthal angle ϕ and along
the propagation axis z:

natom, radial(ρ) =

∫
ρ dϕ dz natom(r)



CHAPTER 4. INTERFEROMETRY IN THE CAVITY 77

=
2N0

σ2
ρe−ρ2/σ2

, (4.3)

This is the distribution of radial positions of the atoms, and is shown for a few values of σ
in Fig. 4.2.
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Figure 4.2: Radial distribution of atoms, eq. 4.3, plotted for σ = 0.5, 1, 2.

The resulting distribution in atom-laser couplings makes it difficult to uniformly address
the atoms using the cavity mode. Specifically, π mirror pulses and π/2 beamsplitter pulses
can only address some atom-averaged optimum, but not provide the π or π/2 condition
for all atoms, reducing interferometer contrast. This effect worsens as the cloud thermally
expands throughout its time-of-flight. Here, we quantitatively outline this spread in atom-
laser coupling 2.

We first parameterize the intensity distribution with a unitless variable α:

Iatom,i = αiI0

where Iatom,i is the intensity seen by some atom i. Comparing explicitly with eq. 4.2, we see
that αi = exp

(
−2ρ2i

w2
0

)
.

Let’s introduce some notation. We will indicate the probability distribution function
(pdf) of a continuous real random variable (rrv) X by fX(x). We indicate the cumulative
distribution function (cdf) as FX(x), which is defined according to

FX(x) =

∫ x

fX(x
′)dx′ (4.4)

where the lower bound on the integration is the lower limit of the range X.
If we consider an atom’s position to be a rrv drawn from the cloud according to eq. 4.3,

the pdf is
2We have also developed a technique using adiabatic passage to address this inhomogeneous coupling

problem, which is described in detail in Chapter 7
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fP (ρ) =
2

σ2
ρe−ρ2/σ2

, (4.5)

where σ is again the 1
e

radius of the atomic cloud. To get the distribution of intensity scaling
α, we look at the laser intensities seen by this radial position distribution.

The laser intensity decreases with increasing radial coordinate ρ according to eq. 4.2, so
α = 1 at the center of the cloud. Then, α ∈ [0, 1] for all atoms in the cloud. α is now also a
rrv with some distribution. The distribution can be found using the following steps:

1. Invert the relationship α(ρ) to get ρ(α)

2. Integrate the pdf fP (ρ) to get the cdf FP (ρ) =
∫ ρ

0
fP (ρ

′)dρ′

3. Evaluate the cdf of ρ for a given α to get the cdf of α: FA(α) = 1− FP (ρ(α))

i) Note: α is a decreasing function of ρ. For the cdf of α to be defined in the standard
way (eq. 4.4), we therefore need the 1− . . .

4. Take the derivative to get the pdf for α: fA(α) = d
dα
FA(α)

This procedure gives us the pdf for α:

fA(α) = xαx−1 (4.6)

where x =
w2

0

2σ2 , w0 is the laser beam waist, and α ∈ [0, 1].
The atom cloud has a time-dependent σ. Assuming a gaussian distribution of velocities

in the transverse directions (in addition to the gaussian position distributions), the size of
the cloud follows [70]

σ(t) =
√
σ2
0 + σ2

vt
2, (4.7)

where σ0 is the initial size of the cloud and

σv =

√
kBT

mCs

is the velocity width as a function of temperature. The pdf fA(α) thus changes over the
atoms’ time-of-flight (TOF), as can be seen in Fig. 4.3.
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Figure 4.3: Intensity distributions for various TOF using our experimental values w0 = 718
µm, T = 300 nK, and an initial cloud size of σ0 = 400 µm. At early times, the distributions
favor higher α near 1. As the cloud expands, more of it leaves the beam, and the distribution
shifts towards α near 0. Times plotted range from t = 0 to t = 120 ms in increments of 10
ms.

This time-evolving distribution also implies a time-evolving average intensity seen by the
cloud, as demonstrated by the expectation value ᾱ := ⟨α⟩:

ᾱ =

∫ 1

0

dααfA(α) =
1

1 + x−1

The average intensity across the cloud is seen in Fig. 4.4. Also shown is the standard
deviation σα of α. The standard deviation is the square root of the variance Var(α), which
is given by

Var(α) =
∫
dα (α− ᾱ)2fA(α) =

1

(1 + 2x−1) (1 + x)2
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Figure 4.4: a) Average intensity ᾱ and b) standard deviation σα =
√

Var(α), both using
the same experimental parameters as in Fig. 4.4. Note the different vertical scales in the
two plots.
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Interestingly, this intensity distribution admits a closed form solution for Rabi flopping
across the cloud. Each atom undergoes Rabi flopping according to

P (α, t) =
1

2
(1− cos(αΩt))

where P (α, t) is the probability for atom with intensity scaling α to have undergone a
transition after a pulse has been applied for a time t. The average probability P over
the cloud can then be found by integrating over the α distribution:

P (t) =

∫ 1

0

dα fA(α)P (α, t)

=
1

2

[
1− 1F2

(
x

2
;

1

2
, 1 +

x

2
; −1

4
Ω2t2

)]
(4.8)

This looks like a mess, but it’s understandable. pFq (a1, ..., ap; b1, ..., bq; z) is a generalized
hypergeometric function. This is just a name for a particular class of power series, which will
be briefly described below (but feel free to gloss over). The power series is defined by

pFq (a1, ..., ap; b1, ..., bq; z) =
∞∑
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

zk

k!

where (q)n is the rising Pochhammer symbol, defined by

(q)n =

{
1 n = 0

q(q + 1) · · · (q + n− 1) n > 0

In our case, p = 1, q = 2, and we’re only concerned with real z = −1
4
Ω2t2. More information

on generalized hypergeometric functions can be found in Chapter 16 of Ref. [71].
Eq. 4.8 is interesting because we now have an analytic solution to Rabi flopping of a

finite sized beam in a finite-sized cloud. The solution has only one physical parameter: σ
w0

,
the size ratio of the cloud and the beam. Fig. 4.5 shows plots for various values of σ

w0
.

It would be useful to incorporate a spread of detunings δ (due to ac Stark shifts and/or
Doppler shifts) into eq. 4.8. At the moment, this behavior is not captured. One example
where this would be useful is seeing the advantage of going to higher Rabi frequency Ω
with such a detuning spread. Loosely speaking, higher Ω → shorter tπ → “worse” frequency
resolution → higher bandwidth over which the pulse is efficient. Slightly more quantitatively,
for higher Ω, the generalized Rabi frequency Ω̃ =

√
Ω2 + δ2 at which the population really

oscillates (see eq. 2.50) is dominated by the Rabi frequency rather than the detuning.
A Doppler detuning spread would presumably behave differently than an ac Stark shift

spread, since the latter is intensity-dependent like the Rabi frequency, while the former is
not. That is, we could write the generalized Rabi frequency as something like:

Ω̃ =

√
(αΩ)2 + ((α− α′)δac,α′ + δDopp)

2
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Figure 4.5: Analytic solutions for Rabi flopping of a finite-sized cloud in a finite-sized beam.
Curves shown for σ

w0
from 0.2 to 1.6 in steps of 0.2.

The above formula assumes the Raman frequency has been found by maximizing the trans-
ferred atomic population, corresponding to being exactly on-resonance for some α′ (including
ac Stark shift). A velocity distribution giving a pdf for δDopp would also be used (probably
symmetric about zero). An analytic form including these detuning effects would be nice to
casually explore such questions, but we are not sure if it exists. If this type of question were
to become important, Monte Carlo simulations could be performed.

4.3.2 Rabi frequency and ac Stark shift with multiple beams
To perform Raman pulses, light from the science laser passes through a fiber EOM. By
modulating at frequency ωmod, the science laser at frequency ωL is phase modulated:

ELe
iωLt → ELe

iωLt+β sin(ωmodt)

= EL

∞∑
n=−∞

Jn(β)e
i(ωL+nωmod)t (4.9)

where β is known as the modulation depth, and Jn is a Bessel function of the first kind.
The second line uses an identity called the Jacobi-Anger expansion. The modulation depth
is controlled by the amplitude of the modulation voltage into the EOM.

We see that phase modulation of the input optical beam gives an output spectrum with
optical frequencies separated by the modulation frequency, whose strengths are given by
Bessel functions. A pictorial representation of this beam incident upon the cavity is shown
in Fig. 4.6.

An atom can absorb an upward-propagating photon and stimulated-emit into a downward-
propagating field to undergo the two-photon Raman process. This preceding sentence holds
true as well if “upward” and “downward” are interchanged. These two processes differ in the
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Figure 4.6: Raman beams incident on the cavity. The EOM phase modulates its input
beam according to eq. 4.9. The resulting spectrum is shown in (a), with modulation depth
is β = 1.6 (a bit higher than typical experimental values β ≈ 1.2 for better clarity in
this figure). In (b), the resonant enhancement of the cavity is taken into account. Here,
ωmod = ωCs

HF. The carrier is centered on the cavity. ωCs
HF is δoffs

HF = 3.80 MHz short of 23 free
spectral ranges, so the blue sideband has negative cavity detuning. The cavity lineshape
is shown in the pink trace for reference. In (c), the relevant beams to drive a Raman
transition inside the cavity are shown. All beams propagate in both directions, and have
circular polarization. The length of the wiggly lines indicates the intensity of the optical
field at that frequency, as in (a) and (b).

sign of their Doppler shift, and can thus be chosen via the appropriate sign detuning (though
near zero velocity, they become degenerate and cannot be independently selected). We will
refer to these different process as k+ or k−. We will use k+ (k−) to indicate the transition
whose Doppler shift is increasing (decreasing) in time due to acceleration from gravity.

Sometimes the ± is used to refer to direction of the momentum kick. This is ambiguous, as
the sign of the momentum kick depends on whether the transition is from |F = 3⟩ → |F = 4⟩
or vice versa. So in our definition, both k+ and k− can kick the atom in either direction,
depending on the initial state.

To keep the Raman pair resonant with the atoms throughout their time of flight, the
Raman frequency is ramped to account for the Doppler shift. This ramp rate α required is

α = 2× dδDopp

dt
= 2

g

λ
= 23

kHz
ms ,

where the extra factor of 2 comes from each of the counter-propagating beams seeing opposite
Doppler shifts. We will refer to this Doppler-compensation frequency ramping as “gravity-
ramping”, or “the gravity ramp”.
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Figure 4.7: Atomic energy levels and laser frequencies with the output of an EOM incident
on the cavity. m refers to the EOM sideband order, and ωEOM ≈ ωHF.

4.3.2.1 Theory

Multiple orders from an EOM

The optical intensity afforded by the cavity allows use of a fiber EOM to generate the Raman
beams. While reducing experimental complexity compared to an additional phase locked
laser, it comes at the cost of additional unwanted frequency components (eq. 4.9). As seen
from Fig. 4.1, the spacing of these frequency components relative to the cavity linewidth,
the amount they move during an interferometer sequence, and the cavity linewidth itself are
all comparable. This leads to complicated behavior.

Multiple beams separated by the Raman frequency provide multiple channels to drive
the transition. These channels will interfere with each other, either constructively or de-
structively. To see how, we analyze a Raman transition in such a multi-chromatic field:

E =
∑

j,upward
Ej cos (ωjt− φj − kjz) +

∑
ℓ,downward

Eℓ cos (ωjt− φj + kℓz) (4.10)

= −2
∑
i

Ei sin(ωi − φi) sin(kiz) (4.11)

where in the second line we have assumed a perfect retroreflection such that there are an
equal number of upward and downward propagating beams, Eℓ = −Ej and ωj = ωℓ. The
wavenumber k is given by ω = ck. The sum is rewritten as a sum of standing waves in the
second line of the equation.

The atomic energy levels and laser frequencies are shown in Fig. 4.7. The single photon
detuning is ∆, and the ac Stark shift is δac, both of which we take to be positive quantities
for the arrangement shown here. Beams originating from an EOM are shown, and the
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modulation frequency is assumed to be on-resonant with the ac Stark-shifted target level.
These equations make explicit the frequency relations shown in Fig. 4.7:

ωL0 = ω1e −∆ (4.12)
ω2e = ω1e −∆hfs (4.13)
ωm = ωL0 +mωmod (4.14)

ωmod = ∆hfs − δac − 2δDopp (4.15)

δDopp is the Doppler shift, ωL0 is the input laser frequency to the EOM and ωij =
1
ℏ(Ei − Ej) represents the energy difference between levels i and j. Including δDopp ̸= 0
provides for the selectivity between the k± transitions.

We can then use the machinery from Chapter 2 to solve the Schrödinger equation for the
multichromatic field. A Hamiltonian is first written via eq. 2.31:

Ĥ =

E1 0 V1e
0 E2 Ve2
Ve1 V2e Ee


A transformation:

T̂ =

eiE1t/ℏ 0 0
0 ei(E2−δac)t/ℏ 0
0 0 eiEet/ℏ


is then applied. We leave the δac term in the phase because the light shift for a given
field arrangement is not known a priori (though we will solve for it). T̂ transforms the
Hamiltonian, as in eq. 2.36, to:

Ĥ ′ =

 0 0 Ṽ1e
0 δac Ṽe2
Ṽe1 Ṽ2e 0


The excited state |e⟩ can then be adiabatically eliminated (see 2.3.2 for details, in particular
equation 2.45):

be(t) = b1

(∫
Ṽe1(t)

)
+ b2

(∫
Ṽe2(t)

)
From here, the setup of the problem will follow Refs. [72, 73]. Substituting this expression
for be back into the equations for b1 and b2 gives an effective two-level system:

d

dt

(
c1
c2

)
= iŴ

(
c1
c2

)
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with
Ŵ =

1

4

(
A B
C D

)
(4.16)

where the elements of Ŵ are determined by V (in this case, the laser beams we apply), and
the change from bi to ci signifies that we have reduced the three-level system to a two-level
system. Eq. 4.16 is equivalent to the differential equation

c̈1(t) + i
A+D

4
ċ1(t) +

AD −BC

16
c1(t) = 0

c̈2(t) = −4i

B
ċ1(t)−

A

B
c1(t)

If c1(0) = 1, c2(0) = 0 (i.e., the system starts in |1⟩), this system has the solution

c1(t) = 1− Λ sin2

(
ΩR

2
t

)
c2(t) = Λ sin2

(
ΩR

2
t

)
with

Λ =
4BC

(A−D)2 + 4BC

and

ΩR =
1

4

√
(A−D)2 + 4BC

where ΩR is the two-photon Rabi frequency. Full contrast between the two states is achieved
by maximizing Λ → 1 by having A = D. This condition is achieved with the appropriate
δac, telling us the ac Stark shift.

The problem then boils down to constructing this Ŵ matrix from a given field arrange-
ment. Applying the rotating wave approximation makes the expressions tractable. This
provides the quantities of interest: the Rabi frequency ΩR and the ac Stark shift δac.

Mathematica can be used to churn through this algebra. For anyone that doesn’t want
to do that, the results for up to 3rd order EOM sidebands are below. The formulas have
many terms, but each term has a clear physical interpretation and follows a pattern. The full
formulas will be presented first, followed by the physical interpretation and generalization
into a pattern. This greatly simplifies the expression, and we posit that the pattern extends
beyond 3rd order sidebands.

The single photon Rabi frequency for the mth sideband is denoted by Ωm. While up to
third order is given, typical modulation depths β ∼ 1.2 give small enough contributions to
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higher order sidebands that they can be ignored (by setting some Ωm = 0). Terms involving
only carrier and first-order sidebands will be shown in black, those that involve second-order
are shown in violet, and those with third-order appear in dark green.

The ac Stark shift is found by setting A = D. We make use of δac ≪ ∆,∆hfs to solve for
δac:

δac =

(
∆hfs

4∆(∆−∆hfs)

)
Ω2
0 +

(
∆hfs

4(∆− 2∆hfs)(∆−∆hfs)

)
Ω2
1 +

(
∆hfs

4∆(∆ +∆hfs)

)
Ω2
−1

+

(
∆hfs

4(∆− 3∆hfs)(∆− 4∆hfs)

)
Ω2
2 +

(
∆hfs

4(∆ +∆hfs)(∆ + 2∆hfs)

)
Ω2
−2

+

(
∆hfs

4(∆− 4∆hfs)(∆− 3∆hfs)

)
Ω2
3 +

(
∆hfs

4(∆ + 2∆hfs)(∆ + 3∆hfs)

)
Ω2
−3 (4.17)

Each beam contributes a term to the ac Stark shift which can be seen to reflect that beam’s
intensity (Ω2

m) and the product of its detunings from the atomic transition (∆ −mωmod ≈
∆−m∆hfs) between the excited state and the each of the two hyperfine ground states being
coupled.

The Rabi frequency is more complicated, but the terms also follow a pattern:

4Ω2
R =

Ω2
1Ω

2
0

(∆−∆hfs)2
+

Ω2
0Ω

2
−1

∆2
+

Ω2
2Ω

2
1

(∆− 2∆hfs)2
+

Ω2
−1Ω

2
−2

(∆ +∆hfs)2
+

Ω2
3Ω

2
2

(∆− 3∆hfs)2
+

Ω2
−2Ω

2
−3

(∆ + 2∆hfs)2

+
2Ω1Ω

2
0Ω−1 cos(2krfz + φ1 − 2φ0 + φ−1)

∆(∆−∆hfs)

+2Ω2Ω2
1Ω0 cos(2krfz+φ2−2φ1+φ0)

(∆−2∆hfs)(∆−∆hfs)
+

2Ω0Ω2
−1Ω−2 cos(2krfz+φ0−2φ−1+φ−2)

∆(∆+∆hfs)

+2Ω2Ω1Ω0Ω−1 cos(4krfz+φ2−φ1−φ0+φ−1)
∆(∆−2∆hfs)

+ 2Ω1Ω0Ω−1Ω−2 cos(4krfz+φ1−φ0−φ−1+φ−2)
(∆−∆hfs)(∆+∆hfs)

+2Ω3Ω2
2Ω1 cos(2krfz+φ3−2φ2+φ1)

(∆−3∆hfs)(∆−2∆hfs)
+

2Ω−1Ω2
−2Ω−3 cos(2krfz+φ−1−2φ−2+φ−3)

(∆+∆hfs)(∆+2∆hfs)

+2Ω3Ω2Ω1Ω0 cos(4krfz+φ3−φ2−φ1+φ0)
(∆−3∆hfs)(∆−∆hfs)

+ 2Ω0Ω−1Ω−2Ω−3 cos(4krfz+φ0−φ−1−φ−2+φ−3)
∆(∆+2∆hfs)

+

+2Ω1Ω0Ω−2Ω−3 cos(6krfz+φ1−φ0−φ−2+φ−3)
(∆−∆hfs)(∆+2∆hfs)

+ 2Ω2Ω1Ω−1Ω−2 cos(6krfz+φ2−φ1−φ−1+φ−2)
(∆−2∆hfs)(∆+∆hfs)

+ 2Ω3Ω2Ω0Ω−1 cos(6krfz+φ3−φ2−φ0+φ−1)
∆(∆−3∆hfs)

+2Ω3Ω2Ω−1Ω−2 cos(8krfz+φ3−φ2−φ−1+φ−2)
(∆−3∆hfs)(∆+∆hfs)

+ 2Ω2Ω1Ω−2Ω−3 cos(8krfz+φ2−φ1−φ−2+φ−3)
(∆−2∆hfs)(∆+2∆hfs)

+2Ω3Ω2Ω−2Ω−3 cos(10krfz+φ3−φ2−φ−2+φ−3)
(∆−3∆hfs)(∆+2∆hfs)

(4.18)

First, each resonant pair contributes a non-negative term; these terms are listed in the
first line. The rest of the terms represent interference between different pairs of beams
driving transitions. Whether this interference is constructive or destructive depends on the
differences of phases φi (which are space- and time-independent) between the beam pairs,
and spatial location (since the total phase differences do vary in space). An interference
term R̃mn has the form

R̃mn =
ΩmΩm−1ΩnΩn−1

(∆−m∆hfs)(∆− n∆hfs)
cos (2|m− n|krfz + φm − φm−1 − φn + φn−1) . (4.19)
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krf = ∆hfs/c is the wavevector of the hyperfine frequency ∆hfs; for cesium it is 2π
3.26 cm . Noticing

that this expression with m = n also describes the non-interference terms in the first line of
eq. 4.18, we can write the much-simplified expression

4Ω2
R =

N∑
m,n=−N+1

R̃mn (4.20)

where N is the highest order of EOM sidebands being considered. This expression has been
algebraically verified up to N = 3. Given the clear physical interpretation of each aspect of
the terms in eq. 4.18, however, it seems reasonable to assume its validity beyond that.

If we take the same liberties in defining and extrapolating for δac, we can define

S̃m =
∆hfs

4

Ω2
m

(∆−m∆hfs)(∆− (m+ 1)∆hfs)

=
Ω2

m

4

(
1

∆− (m+ 1)∆hfs
− 1

∆−m∆hfs

)
(4.21)

With this expression, the total ac Stark shift from eq. 4.17 simplifies, and can be seen as
just the sum of the differential ac Stark shifts from each individual beam:

δac =
N∑

m=−N

S̃m. (4.22)

Adding the cavity

We now make these beams incident on a cavity. As a function of cavity detuning δ, the
circulating power in the cavity scales with a factor

s(δ) =
(γ/2)2

δ2 + (γ/2)2

where the above is normalized to unity on resonance, and γ defines the full-width half
maximum of the Lorentzian. We will use the convention for cavity-related frequencies to be
cyclical, i.e., measured in Hz (as opposed to angular). As a result, the Rabi frequency Ωm

R

for the mth sideband out of the EOM is

Ωm
R = Jm(β)

√
s(δmcav)Ω00

where δmcav is the detuning of the mth sideband from cavity resonance, and Ω00 is given by
eq. 2.37 for the full electric field strength E00 of the beam before modulation into several
frequency components. There is a square root because the Rabi frequency is proportional to
the electric field, while s(δ) describes the intensity.
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The zeroth order (carrier) is offset from cavity resonance by an amount δcav. Where
the sidebands fall on the cavity lineshape depends on the free spectral range and the EOM
modulation frequency. The offset from cavity resonance for sideband m is

δmcav = δcav +

(
m
ωmod

2π
− FSR × round

(
mωmod/(2π)

FSR

))
. (4.23)

where FSR = 399.845 MHz for our cavity. The formula captures the sign dependences
discussed in Sec. 3.2 (where more details on the FSR-matching can be found). For example,
at δcav = 0 and ωmod = ωCs

HF, the blue sideband has negative cavity detuning, δ+1
cav < 0. Note

that the detuning δmcav is a function of time, due to the gravity ramp.
Finally, the phases of the beams φm also depend on the detuning from cavity resonance

(Sec. 2.6). That dependence is

φm = arg

(
Ẽm, circ

Ẽm, inc

)
= arctan

 −r1r2 sin
(
2π δmcav

FSR

)
1− r1r2 cos

(
2π δmcav

FSR

)
 ,

as can be derived from the equations in Sec. 2.6, or from the presentation in Ref. [43].
Note that it is typical for phase-modulated sidebands to be considered to have intrinsic

phases. For example, the carrier and +1 sideband have phase equal to 0, while the -1 order
has π phase (reflecting that the beatnote between the carrier and the 1st order sideband is
π out of phase with the beatnote at the same frequency of the carrier and the -1st order
sideband). Here, we carry that dependence in the sign of the Bessel function Jn(β), so it
doesn’t enter into φi.

These expressions provide the single photon Rabi frequencies Ωm and the phases φm

necessary to calculate the Rabi frequency and ac Stark shift for the output of a modulated
EOM incident on a cavity using eqs. 4.20 and 4.22.

4.3.2.2 Comparison with experiment

We now present several comparisons between experiment and the preceding theory. In
the following plots, parameters that are known and fixed are: EOM modulation frequency,
atomic trajectory in the cavity, cavity linewidth and cavity offset. The initial position of the
atoms relative to the cavity beatnote (that is, z0 in 2krfz0) is fixed across all plots.

Some parameters are allowed to vary slightly. The free spectral range was most recently
measured to be 399.845 MHz, but allowed to vary by up to 20 kHz between datasets. This
accounts for thermal expansion; for a thermal expansion coefficient of steel αsteel

T = 13 ×
10−6/C, the FSR changes by 5.2 kHz/C. The cavity’s ring piezo has a free stroke of 3.3
µm. This distance changes the cavity FSR by about 3.5 kHz, and so can be ignored with
reasonable safety. That is, the fact that the cavity is locked to different integer numbers
of 780 nm half-wavelengths is subdominant to temperature changes of the vacuum chamber
when considering these Raman transition dynamics in the cavity.
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Figure 4.8: ac Stark shift vs. cavity offset for modulation depth β = 2.37. Two different
EOM modulation frequencies are shown, f+

1 = fCs
HF − 1.4 MHz and f+

3 = fCs
HF +1.0 MHz. f±

j

were chosen to correspond to the jth pulse in a k±, T = 55 ms Mach-Zehnder interferometer
(see Sec. 5.6 for measurement details). Points are experimental data, and lines are theory
with an overall scaling.

The modulation depth β is known to the few % level, but could be measured more
accurately if needed.

Finally, a linear scaling x′ = mx for x ∈ {ΩR, δac} is applied to the measured values for
comparison with theory. The absolute scale was not the point of the measurement; rather,
variation with position and cavity offset was. Theory curves are fit by eye to the data via
this linear scaling. A forthcoming publication will present similar measurements in more
detail.

These data were measured before we had a complete understanding of what was hap-
pening in the cavity, hence the somewhat strange parameter collection. If this data were
to be taken again, one could now do a much more consistent job of verifying the model.
Spatial selection using the cavity catch could be used to suppress the effect of cloud ex-
pansion. Fitting unknown parameters, rather than “by-eye” choice would be preferable.
Parameters could be more carefully controlled, for example, keeping positions exactly the
same between k± transitions despite those velocity selection pulses kicking the atom cloud
in opposite directions. Finally, ac Stark shift variation with cavity offset shifts the true
resonance frequency. Off-resonant driving artificially increases the measured Rabi frequency
(as the contrast simultaneously decreases). A more careful measurement would account for
this effect.

4.4 Interferometry and results
With the properties of these intracavity pulses fleshed out: interferometry works! The
historical time-ordering of these events was not linear; interferometry was performed in the
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Figure 4.9: Spatial beatnote of the Rabi frequency for both k+ and k− transitions. Mea-
surement was taken with β = 0.9, and at cavity offsets of 1.5 (-1.74) MHz for the k+(k−)
transition. There’s no significance to these values being different, it’s just where these par-
ticular datasets were taken. The inferred phase of the spatial beatnote at the initial position
of the atoms is 2krfz0 ≈ 0.5 rad. At low contrast (which occurs at low Rabi frequencies), the
Rabi frequency fit is less accurate.
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Figure 4.10: Rabi frequency vs. cavity offset. Left: k+ transition 23 ms after the launch
(v0 ≈ 60 cm/s just after the launch). Right: Both k+ and k− transitions, which differ in
frequency, 0.5 ms after the launch. Both left and right use β = 1.20. Rabi frequency is
inferred as in Fig. 4.9 caption.
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Figure 4.11: Optical Ramsey fringes with T = 2 ms. The ac Stark shift of the Raman pulses
used is measured to be δac = −2.35 kHz by the offset of the zero fringe from the cesium
hyperfine frequency ωCs

HF (which corresponds to 0 on the x-axis). Inset shows the sinusoidal
behavior predicted by eq. 2.60. Sufficiently far from resonance, contrast decreases as the
pulses become off-resonant. This statement is made quantitative by carrying through the
full pulse imperfection terms involving Θ from eqs. 2.50 into a more complete formula (fewer
assumptions) for the beamsplitter operator B̂.

cavity (about five years) before the properties in the preceding section were fully understood.
In this section, we’ll show some of our first data, representing the first realization of an atom
interferometer inside an optical cavity [74].

As a first demonstration, we run an optical Ramsey clock in the cavity (see Sec. 2.3.3
for a derivation of this procedure). Raman transitions with a co-propagating pair of photons
are velocity-insensitive, and transfer negligible momentum to the atoms. Two such Raman
π
2

pulses between the clock states |F = 3,mF = 0⟩ → |F = 4,mF = 0⟩, spaced by a pulse
separation time of T = 2 ms generate the Ramsey fringes shown in Fig. 4.11. The high
contrast demonstrates good coherence of the process across the atomic cloud, despite the
comparable size of the cloud and the interferometry beams. This is an optical version of a
cesium fountain clock.

Finally, we demonstrate an atom interferometer. We perform a gravity measurement by
a π

2
− π − π

2
combination of three velocity-sensitive Raman pulses, forming a Mach-Zehnder

interferometer. The Raman frequency is gravity-ramped at a rate of keffaeff ≈ 2π×23 kHz/ms
for aeff ≈ g = 9.8 m/s2. We detect the interferometer outputs separately by first pushing
atoms in F = 4 to the side with a blowaway beam, and then using fluorescence detection on a
CCD camera to spatially resolve the two populations. After normalization to take out atom-
number fluctuations, we obtain the interference fringes shown in Fig. 4.12 by scanning the
Raman frequency ramp rate, parameterized by aeff. When the ramp rate perfectly matches
the acceleration, the interferometer phase, keff (g − aeff)T

2, is zero independent of the pulse
separation time T .

Additionally, we have used as little as 87 µW of power (at a smaller single photon
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Figure 4.12: First fringes from the cavity interferometer: Mach-Zehnder fringes of a π
2
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pulse sequence with pulse separation times T = 5 ms (blue) and T = 10 ms (red).
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(a) 50 µW optical Ramsey clock, T = 2 ms.
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(b) 87 µW Mach-Zehnder, T = 1 ms.

Figure 4.13: Low power interferometry

detuning ∆ = 2 GHz) to obtain fringes with > 10% contrast, as shown in Fig. 4.13b. To our
knowledge, this is the lowest incident optical power ever used in an atom interferometer. At
this detuning, we also obtained optical Ramsey fringes with 50 µW of optical power (Fig.
4.13a).

With these basic atom optics now demonstrated inside of an optical cavity, we can begin
exploring a range of applications. For example, Fig. 4.14 shows a possible realization of a ro-
tation sensor using the self-aligned transverse modes of the cavity, alongside a demonstration
of atoms loaded into such modes. While we have not addressed this particular application,
we have realized several others.

Since our first demonstration of atom interferometry in an optical cavity [74], we have
improved our apparatus and techniques considerably. We have made science measurements,
and developed new atom interferometer technologies. Each of the following chapters in this
thesis provides an in-depth look at one such application. So with the groundwork of cavity
atom interferometry finally laid, keep reading for the good stuff!
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Figure 4.14: Higher order cavity modes for rotation sensing. Left: Possible implementation
of a rotation-sensitive interferometer enclosing a spatial area using transverse cavity modes.
Atoms enter the cavity from the side and are split by a pulsed standing wave in the Hermite-
Gaussian H0,10 cavity mode, reflected by a pulse in the fundamental H0,0 mode,and interfered
on the far side with a second pulse of the H0,10 mode. Right: Fluorescence images of atoms
in optical lattices formed by transverse modes of the optical cavity.
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Chapter 5

Gravity and dark energy with a
source mass

In this chapter, we use the cavity atom interferometer to measure the gravitational attraction
between cesium atoms and a small, in-vacuum source mass. By observing only a gravitational
interaction between the two, we constrain “screened field” models of dark energy, which would
give rise to an anomalous force. Such models propose a dynamical scalar field to explain the
observed accelerated expansion of the universe.

5.1 What is dark energy, and how do we know it’s
there?

General relativity, while over 100 years old, is our best understanding of gravity. The theory
describes gravity as a curvature of spacetime due to the presence of matter, whose movement
is in turn dictated by that curvature. As the adage goes, “spacetime tells matter how to
move, and matter tells spacetime how to curve”. The quantification of this statement is given
by the Einstein field equation(s):

Gµν + Λgµν = 8πTµν (5.1)
The Einstein tensor Gµν = Rµν − 1

2
Rgµν consists of the metric gµν , the Ricci tensor,

Rµν , and the Ricci scalar R = gµνRµν , also known as the curvature scalar. The Ricci tensor
is itself a contraction of the Riemann curvature tensor Rµν = Rα

µαν . The Riemann tensor
(redundantly) encodes the curvature of spacetime, or more generally, that of a Riemannian
manifold. Both of these quantities, however, ultimately derive from the metric gµν , which
contains the geometric information about the spacetime, such as curvature, distances and
angles. For a deep trip down the differential geometry rabbit hole in the context of general
relativity, see the textbooks Refs. [75, 76].
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Tµν is the “energy-momentum” tensor. The distribution and dynamics of matter / en-
ergy density live within Tµν . The spacetime geometry, defined by the metric gµν and the
connection on that metric, is encoded in the Einstein tensor Gµν . By linking these quanti-
ties (spacetime geometry and matter), to each other, eq. 5.1 motivates the aforementioned
adage. Units are used where the gravitational constant G (not the Einstein tensor) and the
speed of light c are normalized, G = c = 1, so that the simple presentation of eq. 5.1 can
hide the considerable difficulty of unpacking and interpreting this tensor equation

The constant Λ has been conspicuously absent from the discussion thus far. Λ has been
associated with the energy density of empty space, and therefore dubbed the “cosmologi-
cal constant”. The cosmological constant has a storied and confused history. Originally, it
was introduced by Einstein into eq. 5.1 so that there could exist a static universe solution.
Edwin Hubble in 1929 then published the discovery of our expanding universe [77], and Ein-
stein’s static universe solution was found to be unstable against perturbations anyways. The
cosmological constant was then famously dubbed a “blunder”, more confusion ensued, and
much later Λ was experimentally found to be nonzero [78,79]. For a look into this confusing
history, the introduction of Ref. [80] is a good start (and written before the discovery that
Λ > 0, providing an interesting vantage point).

What effect does a non-zero cosmological constant have on the evolution of spacetime?
Consider the Friedmann-Lemaître-Robertson-Walker (FLRW) metric:

−ds2 = −dt2 + a(t)dΣ2 ⇒ gµν =


−1 0 0 0
0 a(t) 0 0
0 0 a(t) 0
0 0 0 a(t)

 (5.2)

where the spacetime distance element ds2 is composed of unchanging time-like separation
dt2, and a space-like separation dΣ2. The space-like separation is uniform and isotropic, but
has a time-dependent scale factor a(t). This is equivalent to the metric gµν shown on the
right. Let’s take a matter distribution that is similarly uniform and isotropic,

T µ
ν =


ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

 (5.3)

where ρ is the mass-energy density, and p is the pressure. This matter distribution is com-
monly referred to as a “perfect fluid”. The FLRW universe (the metric [eq. 5.2] plus the
matter distribution [eq. 5.3]) is frequently used in cosmology; even being dubbed the “Stan-
dard Model of present-day cosmology” [81].

Pushing this metric and energy-momentum tensor through the Einstein equations 5.1
gives
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ȧ2 + kc2

a2
=

8πGρ+ Λc2

3
(5.4a)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
(5.4b)

where k = {+1, 0,−1} for positive, zero, or negative curvature respectively in the uniform
spacetime. These are the so-called Friedmann equations. The Friedmann equations describe
the time evolution of the scale factor a(t) in the FLRW universe. H := ȧ/a is the Hubble
parameter, which is frequently used.

From the second of these equations, we can see that positive energy density ρ and pressure
p decrease ä, leading to an (eventual) reduction in the scale factor a(t). A positive Λ
however, increases ä, leading (eventually) to an accelerated expansion of the universe. It is
this accelerated expansion that has been experimentally observed, and dubbed dark energy.
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Figure 5.1: Constraints on Ω0
M and Ω0

Λ. The superscript 0 indicates values for the present
epoch. Figure taken from Ref. [82], though constraints have tightened in the decade since.

The observation of dark energy comes from a number of independent lines of astro-
physical evidence. The accelerated expansion of the universe was first discovered by using
Type Ia supernovae (Sne) [78, 79, 83]. Measurements of the cosmic microwave background
(CMB) radiation provide further evidence for dark energy [84–86], and increasingly precise
determinations of cosmological parameters. Baryon acoustic oscillation (BAO) meaurements
(e.g., [87, 88]) provide yet another independent technique implying the presence of a dark-
energy-like component of our universe.

The joint constraints on the matter density ΩM and dark energy density ΩΛ in our universe
are shown in Fig. 5.1, which demonstrates the complementarity of these measurement types
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(Sne, CMB, BAO). The density parameters Ωi are the ratio of energy density of component
i to the critical density ρc, the energy density in a flat (k = 0), dark-energy-less (Λ = 0)
universe that is exactly on the knife’s edge between a forever-expanding and a forever-
contracting universe. That is, Ωi = ρi/ρc, where the critical density is found from eqs. 5.4
to be ρc = 3H2/8πG.

The currently accepted measurement for the amount of dark energy in the universe is
ΩΛ = 0.68. This corresponds to an energy scale of 2.4 meV in natural units (found by
expressing the energy density with units [energy][length]−3 in natural units [eV]4). Since our
universe is at least very close to flat, the sum of energy densities is approximately the critical
density, thus

∑
Ωi ≈ 1. That is, dark energy makes up about 68% of our universe.

The composition of dark energy is unknown. From eqs. 5.4, we see that accelerated ex-
pansion can be explained either by a positive cosmological constant Λ > 0, or the presence of
a negative-pressure fluid satisfying p < −ρc2

3
. It is this second possibility what we have been

able to address in our experiment, and whose motivations and characteristics are discussed
in the next section.

5.2 Quintessence: scalar fields as dark energy
5.2.1 Motivation
As explained in the previous section, dark energy is the name scientists have given to what-
ever is driving the late-time accelerated expansion of the universe. The most common ex-
planation for dark energy is that of a positive cosmological constant. The positive energy
density associated with empty space is interpreted as the vacuum energy of the standard
model of particle physics. While we are used to thinking of vacuum energies as shift-able to
zero (because “only energy differences matter!”), we can’t do that anymore once we think
about energy density gravitating.

The famous cosmological constant problem [80] is that the zero-point energy of the stan-
dard model produces a cosmological constant that is 10120 times too large. Supersymmetric
considerations can arguably reduce this number to “only” ∼ 1060 times too large. Even
worse, this number isn’t meant to cancel to zero (a nice, symmetric number) to match ex-
perimental values: It’s supposed to cancel to a tiny, non-zero number! This is quite serious
fine-tuning.

For a cosmological constant to explain dark energy, an additional fine-tuning is also
required [89]. From the previous section, we saw that the energy density of matter in today’s
universe, ΩM,0 is of the same order as today’s density of dark energy, ΩΛ,0; they’re within a
factor of ∼ 2. However in the post-inflation expansion of our universe, ΩM has dropped by
many orders of magnitude, while ΩΛ has by definition remained constant. This also seems
like quite the coincidence for us to live in the epoch in which the two are nearly equal

In light of these issues with taking the cosmological constant to be the identity of dark
energy, alternatives have been proposed. Dark energy could instead consist of a scalar
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field, and give rise to accelerated expansion not through the Λc2

3
term in eq. 5.4, but by

having sufficiently negative pressure p < −ρc2

3
. In this picture, dark energy is dynamic,

with accelerated expansion driven by the underlying field. This proposal, dark energy as a
dynamic scalar field, has been dubbed “quintessence” [90].

5.2.2 A force arises (and is screened)
Let’s explore the idea of a scalar field composing the dark energy. It has been proven that a
finite number of static scalar fields cannot solve the fine tuning problem (Weinberg’s “no-go”
theorem [80]). As such, the most promising route explored has been to look at a dynamic
field (rather than an infinite number of static fields, which just seems wasteful).

In order to still be in non-equilibrium today, 1010 years after the Big Bang, a new field
must be very light. This can be seen from the evolution equation of a homogeneous scalar
field ϕ in an expanding universe [91]:

ϕ̈+ 3Hϕ̇+
1

2
m2

ϕϕ = 0

where H = ȧ
a

is the Hubble parameter; a = a(t) is the scale factor of the FLRW universe.
The mass mϕ of the field is given by the curvature of the field’s potential V (ϕ): m2

ϕ = ∂2V (ϕ)
∂ϕ2 .

In order for the dynamics (i.e., time-dependence) to be relevant to the observation today so
that ΩΛ ∼ 1, the drag term 3Hϕ̇ must be of the same order as the mass term m2

ϕϕ. In that
case, mϕ must be of the order of the Hubble parameter in the present epoch, H0 ∼ 10−33

eV. Another statement of this claim is that the mass of the scalar field must be “at most
comparable to present day Hubble parameter” or else it “could be integrated out and would
be irrelevant to the low energy dynamics” [92].

This leaves us with a dynamic scalar field which must be extremely light. From such a
field, we would generically expect a Yukawa potential of the form

VYukawa ∼ α
e−mϕr

r
(5.5)

due to the field ϕ. That is, the field would mediate a force, and with such a low mass, this
force should be long-ranged. Should the force couple differently to bodies of different com-
position, this would lead to apparent violation of the equivalence principle (EP). However,
EP tests (for example, torsion pendula [93, 94], lunar laser ranging [95]) have seen no such
difference. EP violation can be characterized by the Eötvös parameter η:

η(A,B) =
2(aA − aB)

aA + aB

with aA and aB being the free-fall accelerations of test bodies A and B. The MICROSCOPE
mission has recently presented the most stringent limits on an Eötvös parameter, measuring
η(Ti, Pt) ≲ 10−14 for titanium and platinum test bodies [96].
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Alternatively, fifth force / inverse square law tests can probe for new forces as deviations
from Newtonian gravity. They place bounds on the strength α, and the range λ ∼ 1

mϕ

parameters of the Yukawa potential 5.5. Such searches [97–99] have also not observed any
new, unknown forces.

It would seem then that this dynamic field dark energy candidate is sunk at this point,
since the force it predicts has not been observed. However, in regions of high matter density,
the behavior of a field can be suppressed, or “screened”. A field for which this happens is
called a screened field. There are a variety of mechanisms through which a particle can have
its behavior suppressed. Since the initial discovery [100,101] of a screening mechanism, many
more have been explored; see [92] for a review.

Screening generally arises from a coupling of the field to baryonic (normal) matter. In
the vast majority of the universe, with mean density ∼ 10−30 g/cm3, a well-motivated field
would be unscreened. The Earth’s density of ∼ 5 g/cm3, thirty orders of magnitude larger,
would suppress effects due to the field. The Earth therefore, wouldn’t experience the full
interaction we might expect from the Yukawa potential eq. 5.5. A screened field can thus
avoid detection in EP tests, while still being the dark energy culprit.

So far we have entirely glossed over what this mysterious “screening” actually is, or how
it arises. To make this behavior more concrete, we take a deeper look into one screening
mechanism in the next section: the chameleon mechanism.

5.2.3 The chameleon mechanism
Screening arises from an interaction of a field ϕ with baryonic, or “normal” matter. An
effective field potential Veff(ϕ) can be expressed as

Veff(ϕ) = V (ϕ) + Vint(ϕ)

where V (ϕ) is the self-interaction term (i.e., the bare potential of the field itself) and Vint is
the field’s interaction with normal matter. For the simple chameleon model we will consider
here, we take the self-interaction potential to be

V (ϕ) = Λ4eΛ
n/ϕn ≃ Λ4 +

Λ4+n

ϕn
+ . . . (5.6)

This is an example of a so-called “tracker” potential [102, 103] commonly used in cos-
mology, in which the late-time behavior of a slow-rolling field is largely insensitive to the
initial conditions of the field. Λ is a parameter of this self-interaction potential with units of
energy. The coupling to normal matter Vint takes the form

Vint(ϕ) =
ϕρ

M
where ρ is the local density of normal matter, and M describing the coupling strength
is a second parameter of the model. With these expressions, the basis of the chameleon
mechanism becomes apparent and can be seen in Figure 5.2
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Figure 5.2: Chameleon potential. At low densities, the coupling to the local density in the
interaction potential, Vint(ϕ) =

ϕρ
M

, has a shallow slope. This leads to and a broad, shallow
minimum in the effective potential Veff, and thus a low chameleon mass. In high ambient
densities ρ, the effective potential acquires a sharply curved minimum, and a correspondingly
high chameleon mass.

In regions of low density ρ, the interaction potential Vint is small. When summed with
the tracker potential V (ϕ), the effective potential Veff thus has a broad, shallow minimum.
Excitations about that minimum have a low mass, since the curvature is low (remember,
m2

ϕ = ∂2Veff
∂ϕ2 ). The expected Yukawa interaction due to the chameleon is free to be long-ranged

with this low mass. In regions of high density, however, the slope of the interaction potential
is large. This leads to a sharp minimum with a correspondingly large mass. The range of its
Yukawa potential therefore becomes very small. The thirty-order-of-magnitude differences
in ρ for macroscopic objects compared to empty space makes this effect dramatic. In this
way, the chameleon acquires a large mass in regions of macroscopic density, suppressing its
effects.

5.2.4 Chameleon hunting
How are we to detect these fields if they are seemingly designed to hide (hence, the eponymous
lizard) from experiments? Ref. [104] presented a clever proposal to use an atom interferom-
eter. The idea capitalizes on the ultra-high vacuum typical of atomic physics experiments to
“unsuppress” the chameleon field. While strongly suppressed in the stainless steel walls of
a vacuum chamber, the chameleon field becomes approximately free to approach its empty-
space value as one moves further into the UHV region.

The atoms of the interferometer serve as nearly-ideal test particles to probe the chameleon
field: they experience interaction with the field, but are not dense enough to suppress it.
Introducing a source mass to the center of the vacuum chamber, one can now re-suppress
the chameleon field, changing the potential seen by the atoms. This effect can be measured
by performing an atom interferometer in the affected region.

A word about the parameters in this chameleon theory: The parameters Λ and M both
have the dimension of mass. If the field is to describe the observed cosmic acceleration, Λ
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should take the dark energy value ΛDE = 2.4 meV (though such a particle could still exist
for other values, and just not be the driver for dark energy).

M was fairly unconstrained before the experiments in this thesis. It should plausibly be
below the reduced Planck mass MPl = (ℏc/8πG)1/2 ≈ 2.4 × 1018 GeV/c2. Before 2014, the
best lower bound came from hydrogen spectroscopy at M > 104 GeV/c2 [105]. A different
convention also seen in the literature is to use β =MPl/M instead of M .

The field distribution

Getting into a bit more detail let’s first take a look at the effect a source mass has on a
chameleon field. Specializing the tracker potential eq. 5.6 to the n = 1 case, the effective
potential is

Veff(ϕ) = Λ4 +
Λ5

ϕ
+

ρ

M
ϕ

In a region of uniform density ρ, the chameleon field takes the value ϕeq that minimizes
the potential:

∂Veff(ϕ)

∂ϕ

∣∣
ϕ=ϕeq

= 0 = − Λ5

ϕ2
eq

+
ρ

M
(5.7)

→ ϕeq =

(
Λ5M

ρ

)1/2

(5.8)

and the mass of the excitation about this minimum is

mϕ =

√
∂2Veff

∂ϕ2

∣∣∣∣
ϕ=ϕeq

=
√
2

(
ρ3

M3Λ5

)1/4

(5.9)

The Compton wavelength of the field is λϕ = m−1
ϕ . Equations 5.8 and 5.9 and show

the density-dependence of the equilibrium value of the field and its mass, respectively, in a
uniform density environment.

For a non-constant density distribution, we must solve the chameleon field equations of
motion [100, 106] to find the field’s distribution:

∇2ϕ = ∂ϕVeff(ρm, ϕ) (5.10)
for a given matter density distribution ρm(x). This nonlinear Poisson-Boltzmann equation
is reminiscent of the Poisson equation in electrostatics where one solves for the potential
(voltage) for a given charge distribution, an analogy which is discussed in [107].
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The thin-shell effect

Consider a spherical object of macroscopic density ρobj and radius R in a dilute background
environment of density ρbg < ρobj, as seen in Fig. 5.3. If both the object and the environment
are large, then far from the density border, the field approaches its equilibrium values, ϕobj
and ϕbg, in each medium. However, near the border some sort of transition must happen.

ρbg

RB

B

RA
ρA

A
ΔR ρB

Figure 5.3: Two bodies interacting via the chameleon potential.

This transition happens in most cases of macroscopic density in a thin shell around the
exterior of the object [101]. In this thin shell, the field value changes from its exterior value
(≈ ϕbg) to its interior value (≈ ϕobj) rapidly. The interior of the object, all but that thin
shell exterior, is thus shielded from chameleon effects in the outside world.

To push the electrostatics comparison, this thin-shell effect is analogous to a conducting
sphere: the chameleon “charge” all accumulates near the surface of the chameleon “conduc-
tor”. Another way of looking at this is that once inside the macroscopically dense object, the
chameleon field acquires a large mass and thus a short Compton wavelength. It is thus able
to change its value on a short spatial length scale to approach its equilibrium value. The
thickness of this shell ∆R is given by [106]:

∆R =
Mϕbg

ρobjR
(5.11)

As an example, for the parameter set {ρobj = 10 g/cm3, ρbg = 10−10 Torr of hydrogen,
R = 1 cm, Λ = ΛDE, M = 10−6MPl}, the thin shell thickness evaluates to ∆R ≈ 26 nm.

Outside of the object, in the lower density ρbg, the field acquires a lower mass (and thus
longer Compton wavelength), and approaches its equilibrium value more slowly. In general,
for a given mass distribution, the differential equation 5.10 must be numerically solved to
capture the exact behavior of the field. This can be a fairly computationally expensive and
difficult procedure. An in-depth discussion, including simulation of the chameleon field for
our own experimental geometry, can be found in Ref. [106].

A sample numerically calculated field distribution can be seen in Fig. 5.6 in the next
section.
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The atom-field interaction

Now let’s look at an atom interacting with the chameleon field. Since the atom has mass, it
couples to the chameleon field by Vint ∝ ϕ. A spatial gradient in the field ϕ therefore leads
to a gradient in their interaction energy, and thus a force. This force is given by

aϕ =
1

M
∇ϕ

where aϕ is the acceleration experienced by the atom due to the chameleon field. We can
cast this acceleration / force into a form that looks similar to gravity (because gravitational
strength is the expected, “natural” scale for this interaction).

Consider two bodies A and B with densities ρA and ρB, and masses MA and MB. Inter-
acting at a distance r via both gravity and their mutually sourced chameleon field, the force
between the bodies is

Fgravity + Fchameleon =
GMAMB

r2

[
1 + 2λAλB

(
MPl

M

)2
]

M is the parameter from Vint, and MPl is the Planck mass. The λi parameters are
screening factors [104] given by:

λi =

{
1 ρiR

2
i < 3Mϕbg

3Mϕbg
ρiR2

i
ρiR

2
i > 3Mϕbg

which, for a thin-shell situation (eq. 5.11), can be more simply interpreted as

λi =
thin shell mass

test mass
For a macroscopic object, these screening factors can be quite tiny, strongly suppressing

the chameleon force. For example, in the parameter example of the previous section, giving
a thin shell thickness ∆R = 26 nm for a sphere of radius 1 cm, the screening factor is
λ ≈ 8×10−6. For two such objects, one would need to measure their gravitational attraction
at the 10−11 level to see the chameleon force! This level of precision is impractical, as a 10−4

gravitational measurement of non-planetary source masses is already very impressive.
The idea from Burrage et al. [104] is to replace one of the source masses with an atom.

An atom is small, so for a large parameter range, λatom ≈ 1. This gives a big boost in
sensitivity to the chameleon force. With this picture in mind, we will discuss the specifics of
our setup for chameleon-searching.

5.3 Source mass and interferometer geometry
Our experiments took place in two iterations. The first used a spherical aluminum source
mass, while the second used a tungsten cylinder. Both had a vertical bore allowing the
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cavity mode to pass through the source mass. These geometries are shown in Fig. 5.4 with
relevant dimensions

r = 9.5 mm
d = 3.0 mm

d

r

h = 25.6 mm

ID =   9.9 mm
OD = 25.4 mm

t =   7.7 mm
w =   5.0 mm

t

h

w

m = 190.5 g

Figure 5.4: Source masses

The first source mass used a spherical geometry, which was simpler to calculate the expected
chameleon profile (especially without use of the numerical simulations, which were developed
later). Made of aluminum, this source mass was also simple to machine.

The cylindrical tungsten source mass was used in the second generation experiment.
Tungsten was used for its high density to provide a large mass in the hopes of measuring the
gravitational attraction between the atoms and the source mass (see Sec. 5.4). Tungsten
however, is difficult to machine due to its hardness, which partially dictated the shape.
Cylindrical tungsten is commercially available. Electric discharge machining (EDM) was
used to slice out the borehole via a slot. The slot in the side of the borehole allows the
source mass to be moved in and out of the cavity without interrupting the mode volume,
and thus the cavity lock. This important feature was not present in the previous source
mass, and it made data taking much simpler.

Both source masses had a threaded hole to mount the mass on a threaded rod. Using a
mechanical vacuum feed-through, or “wobble stick” (Nor-Cal Products WBL-275-3) allowed
the position of the source mass to be moved around from outside of vacuum. With the
spherical source mass, the MOT was formed 2.55 cm above the source mass center, and
allowed to fall towards it, during which interferometry was performed. This geometry is
shown in Fig. 5.5.

Numerical simulations of the chameleon fields resulting from each source mass were per-
formed in [106]. A representative figure is shown in Fig. 5.6.
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Figure 5.5: Placement of the aluminum sphere source mass within the vacuum chamber
(taken from Ref. [106]). A Mach-Zehnder interferometer with T = 15.5 ms began at the red
line as the atoms fell towards the sphere.

Figure 5.6: Chameleon profiles resulting from each of the two source masses (taken from
Ref. [106]). Source mass is placed in the vacuum chamber as in Fig. 5.5, and the chameleon
field is simulated along the vertical central axis of the chamber and source mass (which
are aligned) as per eq. 5.10. The field is seen to plummet upon entering the steel vacuum
chamber walls, an example of the thin-shell effect. This isn’t seen in the source mass region
(green shading) because the masses’ boreholes are accounted for in the simulation; thus there
is no abrupt density discontinuity.

A much more complete discussion of the experimental geometry, and the numerical sim-
ulations of the resultant chameleon fields can be found in Ref. [106]. We will not dwell too
much on it here, since the geometry was changed for the higher-sensitivity second version of
the measurement.
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5.4 Gravitational attraction measurement
From our first measurement of chameleon fields [108] to our second [109], a number of exper-
imental improvements were made that enabled a sensitivity improvement of > 100x. This
improvement enabled a measurement of the gravitational attraction between the probe ce-
sium atoms and the second-generation, tungsten source mass. We discuss that gravitational
measurement in this section.

A number of experimental improvements were implemented to enable this increase in
sensitivity. Important examples of these improvements are summarized below.

Raman sideband cooling. As outlined in Sec. 3.4, Raman sideband cooling was
implemented. This narrowed the momentum distribution of the atomic sample
both transverse to the interferometry beam (more time before leaving the beam)
and along it (narrower Doppler spread)

Launch. With the narrower velocity spread along the laser beam axis, a sufficient
number of the atoms can fall within the first Bloch band of the lattice. The launch
from Sec. 3.4 could then be efficiently implemented to provide increased time-of-
flight for longer interrogation times. This provides higher sensitivity, as the phase
accumulated in the Mach-Zehnder geometry due to a constant acceleration scales
quadratically with the pulse separation time T .

New source mass. The second generation source mass increased by more than an
order of magnitude from a ∼ 10 g aluminum sphere to a 190 g tungsten cylin-
der. This increases the source mass’s gravitational pull. Additionally, with the
increased time of flight due to the launch, the source mass was now positioned
above the MOT, so that the apex of the atomic trajectory was near the source
mass. This allowed the interferometer to spend more time sampling the region
close to the source mass, where interactions with it are strongest.

Inertial stabilization. Along with increased sensitivity to accelerations comes in-
creased sensitivity to vibrations (which are just accelerations of the separation
between the freely falling atoms and the reference plane retro-reflection mirror).
The vibration isolation + stabilization and tilt stabilization outlined in Sec. 3.5.3
were installed in the experiment.

Catch. Implementing the catch at the end of the sequence spatially selects only atoms
remaining in the interferometry beam at the end of the time of flight. This
improves the contrast, and thus the signal to noise (since non-participating atoms
simply fall away)

Intensity stabilized beams. Intensity stabilization was introduced for the interfer-
ometry pulses.

Numerical simulations. The numerical simulations of Ref. [106] were performed be-
tween generations 1 and 2 of this experiment, which informed and confirmed de-
sign choices of the source mass geometry.
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Data taking
We perform a differential measurement to isolate effects of the source mass on the atoms.
This is a powerful technique because absolute measurements are hard. Rather than knowing
all phase shifts (Earth’s gravitational pull, Zeeman shifts, ac Stark, etc) to the accuracy of
the desired result, we must only be confident that these quantities do not change with the
source mass position.

To this end, we measure the phase shift in the atom interferometer with the source mass
in near and far positions. The source mass position is automatically toggled between these
positions using two translation stages (Thorlabs MTS50-Z8) to actuate the wobble stick.
Due to the slot in the wall of the cylindrical vacuum chamber, the cavity remains locked
throughout these movements. 1

The interferometer phase is measured for ∼ 5 minutes before the position is toggled. The
difference δϕcyl = δϕnear−δϕfar between the interferometer phase in the near position (δϕnear)
and the phase in the far position (δϕfar) then gives the phase shift due to the presence of the
source mass. Many measurements of δϕcyl can then be taken to average down noise. Data
representing this process is shown in Fig. 5.7.

In the absence of any anomalous forces, we would expect δϕcyl to arise only from the
gravitational interaction of the atoms and the source mass. The expected phase shift can be
found by treating the gravitational field of the source mass as a perturbation (see Sec 2.5)
and integrating the gravitational potential from the source mass along the atomic trajectory.
Doing this calculation as a function of source mass height h above the interferometer gives
the result in Fig 5.8.

The phase shift can be converted into an “effective” acceleration of the atoms due to the
presence of the source mass. This is done via the Mach-Zender interferometer phase shift
formula, ∆ΦMZ = keffaT

2, such that

aeff, cyl =
1

keffT 2
δϕcyl (5.12)

This conversion is shown on the right vertical axis in Fig. 5.8.
After subtracting the much smaller (∼ 10%) phase shift δϕfar for the cylinder’s far posi-

tion, the expected result for our gravitational signal is aeff, cyl = 65 nm/s2 (corresponding to
a ∼ 3 mrad phase shift).

After about 170 hours of data taking over three weekends, our final measured result was

acyl, meas = (74± 19stat ± 15syst) nm/s2,
1In the first generation, with the un-slotted aluminum source mass, a TTL-driven servo motor mounted

on optics posts was used to turn a potentiometer to unlock the cavity while the source mass was being
moved. The servo motor was then driven in the opposite direction to re-lock the cavity once the move was
complete. As one might imagine, this method was less robust in staying locked for hours at a time, since
the cavity was being un- and re- locked every few minutes.
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Figure 5.7: Gravitational attraction to the source mass. A differential measurement is
performed by toggling the source mass between the near and far positions. a) Interferometer
fringes for each wavevector direction k+ and k−. Combining these two measurements gives
one data point out of 3,215 taken over 68 h. b) A 3-hour section of data. Four measurements
are taken at each source mass position, which are then averaged. Blue points indicate that
the source mass is in the far position; red points indicate the near position. An overall offset
g0 is subtracted for clarity. The difference between subsequent measurements after toggling
the source mass position gives one measurement of acyl. Error bars represent 1-σ standard
deviation (statistical). c) A single determination of acyl takes ∼500 s. The full dataset
(one of three) is shown here. d) The set of acyl measurements are fitted to the cumulative
distribution function of a normal distribution with mean µ and standard deviation σ. N is
the number of individual measurements. This least-squares fit (solid black line) gives acyl
for the dataset.
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Figure 5.8: Gravitational phase shift due to the source mass. The atoms’ initial position
is z(t = 0) = 0. The atoms are launched upwards at 59.1 cm/s, and an interferometer of
duration 2T = 110 ms is used. h = 0 corresponds to the bottom surface of the cylinder
being at z = 0. Our experiment used h = 2.15 cm, indicated by the dashed red cross-hairs.
The black line indicates the height h where the bottom surface of the cylinder would be at
apex of the atomic trajectory. The left axis shows the expected phase shift, and the right
axis the effective acceleration.

which is consistent with the expected gravitational signal. The first uncertainty represents
statistical uncertainty, and the second value systematic uncertainty. More information on
the specifics of this measurement can be found in [109].

At the total uncertainty of 24 nm/s2, this measurement resolves the gravitational pull of
a 190 gram mass on a cesium atom at 2.7σ (standard deviations). To our knowledge, this is
the smallest source mass gravitationally detected with an atom interferometer. Though other
interferometers (e.g., [7,8]) have achieved comparable or better gravitational sensitivity to a
source mass, the physical small-ness of the source is important in that it allows for placement
inside the vacuum chamber. We will see the importance of this factor in the next section,
where we discuss constraints on screened fields implied by this measurement.

5.5 Constraints on screened fields 2

Observation of a phase shift consistent with gravity alone places limits on how strongly the
atom and source mass can interact with each other via some other unaccounted-for way. We
can thus constrain interactions between the two mediated by screened fields.

The chameleon mechanism was discussed in Sec. 5.2.3. We will discuss one other screened
field example, the symmetron, before showing the constraints on these models implied by
our measurements.

2Much of this section is taken from the supplementary information of Ref. [109]
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5.5.1 Symmetrons
A symmetron scalar field has an effective potential symmetric under φ → −φ, whose multiple
minima in a low-density environment break this symmetry, and whose matter interaction
restores it at high densities. A simple example is the w-shaped double well potential shown in
Fig. 5.9. At low densities, the field picks one of the minima, and thus breaks the symmetry.
As we will show, the symmetron’s interaction with a small test particle is proportional to
its field value. Thus in this “asymmetric phase”, with a nonzero field value, the symmetron
mediates a fifth force between test masses. The simplest interaction term Vint is a v-shaped
term quadratic in φ, also shown in Fig. 5.9. At high densities, this dominates, and the entire
effective potential becomes v-shaped, making the symmetric value φ = 0 the minimum of
the potential. In this “symmetric phase”, small changes to the density no longer alter
the field value, and the fifth force vanishes. Thus the symmetron “hides” its fifth force
by restoring its symmetry in high-density regions. The above statements follow from the
effective symmetron potential Veff which, as with the chameleon, is the sum of a bare potential
V and an interaction potential Vint. We treat Veff as a quantum effective potential already
including all quantum corrections, as is common [104]. The simplest effective symmetron
potential, which we study to illustrate the mechanism, takes the form

Veff =
λ

4!
φ4 +

1

2

(
ρm

M2
S
− µ2

)
φ2

in which λ is the self-coupling, MS is the matter coupling suppression scale, and µ is the
bare potential mass scale. λ is dimensionless, while MS and µ have units of energy. This
model can also be constructed in a way that is radiatively stable with well-behaved quantum
corrections [110].
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Figure 5.9: Symmetron potentials. At low and high densities for λ = 1, µ = 1 meV, and
MS = 1 TeV. At low density, the field chooses one of the symmetry-breaking minima of the
double-well potential. At high density, the symmetry-restoring minimum of the potential
causes the effective matter coupling to vanish.
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Fig. 5.9 shows this potential for matter densities lower and higher than the characteristic
density µ2M2

S , which is 0.23 g/cm3 for the parameters shown. In regions of low density, the
field minimizes the potential by choosing one of the two minima ±µ

(
6
λ

)1/2, breaking the
φ → −φ symmetry. At high density, it settles at the symmetry-preserving value φ = 0.
Symmetron screening is illustrated by linearizing the symmetron equation of motion [111]
about a constant background field value, φ = φ̄+ δφ. In the static, non-relativistic case,

∇δφ =
φ̄

M2
S
ρm + 2µ2δφ

which is analogous to the Poisson equation for the gravitational potential but with an addi-
tional mass term and an effective matter coupling βsym(φ) = φMPl/M

2
S . In the low-density

limit, this approaches 6.0λ−
1
2

(
µ

meV
) (

M
TeV
)−2. At high density, ρm > µ2M2

S , the field sits at
φ = 0, and the effective matter coupling vanishes. Thus fifth forces are suppressed at high
ρm.

In the general case, the field profile due to a source mass is found by solving the non-
linear Poisson equation ∇2φ = ∂Veff/∂φ just as with chameleons. Given that source field,
we can describe the acceleration of an atom using the effective coupling βsym(φ) and a
screening parameter λa which we must determine. Using the correspondence between the
linearized symmetron equation and the Poisson equation for a linear test particle, we see that
δφ = 2M2

PlM
−2
S φ̄Ψ, where Ψ is the gravitational potential due to the test particle. This linear

treatment breaks down when |δφ| = φ̄, corresponding to Ψ =
M2

S
2M2

Pl
= 8.4 × 10−32

(
MS
TeV
)2.

Thus λa will be nearly unity as long as the gravitational potential of the atomic nucleus is
smaller than this value. Approximating the cesium nucleus as a uniform-density sphere of
radius r = 1.25 A1/3 fm with A = 133, we find a gravitational potential Ψ = 2.6 × 10−38,
meaning that λa = 1 is accurate for MS greater than 1 GeV. Below MS = 1 GeV, the atomic
nucleus is partially screened. To obtain the screening factor λa, we divided the expression
for the scalar charge [112,113] by itself in the unscreened limit. This yields a value between
zero (strongly screened) and one (unscreened).

5.5.2 Exclusions
We focus on chameleon and symmetron fields for concrete exclusion limits. Our first gen-
eration measurement [108] provided the most competitive lower bound on the chameleon
coupling M to date. These lower bounds are complementary to macroscopic bounds set by
torsion balance experiments [99,111]. Our second generation measurement presented in the
previous section improved previous limits [108, 112, 113] on these models by more than two
orders of magnitude. Figure 5.10 shows excluded parameter ranges for these models.
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Figure 5.10: Constraints on screened scalar fields. a, Chameleon field: the shaded areas in
theM−Λ plane are ruled out at the 95% confidence level. MPl/M gives the coupling strength
to normal matter in relation to gravity; Λ = Λ0 ≈ 2.4 meV (indicated by the black line) could
drive cosmic acceleration today. A comparison is made to previous experiments: neutron
interferometry [114] / neutron gravity resonance [115], microsphere force sensing [116], and
torsion balance [99,111]. b, Chameleon limits in the nβcham plane with Λ = Λ0, showing the
narrowing gap in which basic chameleon theories could remain viable. n is the power law
index describing the shape of the chameleon potential; βcham ≡ MPl/M is the strength of
the matter coupling. c, Symmetron fields: constraints by atom interferometry complement
those from torsion pendulum experiments [112,113] (shown with µ = 0.1 meV) for the range
of µ considered. For µ < 10−1.5 meV, the field vanishes entirely inside the vacuum chamber,
leaving this parameter space unconstrained. The same effect produces the sharp cutoff in
our limits at low MS.

For chameleon fields with Λ at the dark energy value Λ0 = 2.4 meV and n = 1, we exclude
up to M < 2.8× 10−3MPl, narrowing the gap to torsion pendulum constraints [99,111]. One
can see that these fields are nearly ruled out, with only a one order of magnitude range left for
the coupling strengthM . Furthermore, for all Λ > 5.1 meV, this gap is fully closed, ruling out
all such models. Our symmetron limits are complementary to torsion pendula [99, 112, 113]
as well. We improve previous constraints on λ by two orders of magnitude throughout the
entire range of MS and µ probed by our experiment. Our constraint is strongest in the
regime where the atom is screened, where for µ = 0.1 meV we rule out λ < 1.

Tests of gravity in the ultraweak-field regime with a miniature, in-vacuum source mass
probe screened field theories with the potential to explain the accelerated expansion of our
universe. In the future, technologies such as lattice interferometry ( [117, 118], and Ch.
8) in our optical cavity and large momentum transfer beam splitters (e.g., in Ch. 7) will
allow us to hold quantum probe particles in proximity to a miniature source mass, evading
geometric constraints from the source mass’ small size,and boosting sensitivity. With modest
improvements, chameleon fields at the cosmological energy density will be either discovered
or completely ruled out.
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5.6 Systematic effects 3

Taking the difference of measurements with the source mass near and far from the inter-
ferometer cancels systematic phase shifts that are independent of the source mass position.
Such effects include Earth’s gravity and gravity gradients. Also included are deviations of
the phase of our laser beam from that of a hypothetical perfect plane wave, e.g., from the
Gouy phase and wavefront curvature. The cavity mode ensures retroreflection alignment
(i.e., that k1 and k2 are anti-parallel). The remaining systematic effects are discussed below
and summarized in Table 5.1.

Table 5.1: Systematic effects table for the gravity / screened field measurement

Quantity Correction [nm/s2] Uncertainty [nm/s2]
Zeeman shift -2.5 11
ac Stark shift - 8

Tilt (vertical alignment) - 0.2
Drift - 3

dc Stark shift - 0.8
Source mass gravity 65 5

Total 62.5 15

Many systematics can be suppressed by wavevector reversal. If k → −k (i.e., k+ rather
than k−), the sign of the acceleration phase ∆ϕacc = keff ·aT 2 changes but certain systematic
phases, such as Zeeman shifts and ac Stark shifts (to first order) do not. We can invert the
sign of the effective laser wavevector (“wavevector reversal or k-reversal”) by changing the
frequency difference of the Raman beams, the Doppler detuning δDopp. Averaging accelera-
tion measurements for both k+ and k− allows us to subtract out Zeeman and ac Stark phase
shifts, leaving only the acceleration phase.

Zeeman shifts

A Zeeman shift dependent on the source mass position could cause a phase shift mimick-
ing an acceleration. Zeeman shifts can enter into the interferometer phase through the
cesium hyperfine energy splitting αB = 2π × 427.45 Hz/G2 in a magnetic field, though only
quadratically since we are using first-order magnetically insensitive states. The Zeeman
phase ∆ϕZeeman is calculated by integrating the classical action along the trajectory of the
two interferometer arms. The tungsten source mass should be non-ferromagnetic, but im-
purities or eddy currents could still cause small magnetic fields. We therefore measure the
magnetic field along the trajectory for both positions of the source mass, with the same

3Much of this section is taken from the supplementary information of Ref. [109]
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experimental timing, so that MOT eddy currents are included. To do so, we measure the
magnetically-sensitive |F = 4,mF = 4⟩ → |F = 3,mF = 3⟩ microwave transition using the
atoms as a local probe. The individual measurements vary with source mass position only
by ≲ 0.1%. We fit the field measurements to a linear field B = B0+B1z, where z is a spatial
coordinate, as in Fig. 5.11. This gives the magnetic field parameters B0 and B1, which are
used to calculate ∆ϕZeeman.
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Figure 5.11: Magnetic field determination. The magnetic field is measured for both positions
of the source mass along the atomic trajectory. Error bars represent 1-σ standard deviation
(statistical).

We calculate ∆ϕZeeman for our atomic trajectory in the measured field for both wavevector
directions k±. The expression for ∆ϕZeeman is non-reversing under the transformation k →
−k, unlike the acceleration phase ∆ϕacc that we are interested in. Cancellation is imperfect,
however, because the k-reversed interferometers are kicked in opposite directions, leading to
slightly different classical trajectories. We cancel ∼ 90% of ∆ϕZeeman using k-reversal. The
difference in Zeeman phase with source mass position(∆ϕnear

Zeeman −∆ϕfar
Zeeman) after k-reversal

is (167± 490) µrad, corresponding to a (4± 11) nm/s2 shift in the measured acceleration.
There is also a force arising from the gradient in the second order Zeeman shift, whose

acceleration is given by aZeeman = 2 h
mCs

αBB
dB
dx

. The phase shift arising from this effect can
be evaluated following Ref. [119]. For the magnetic field profile in Fig. 5.11, this evaluates
to ∼ 58 nm/s2. However, we measure only the differential signal between the two source
mass positions. This differential component is only (−1.5± 2) nm/s2.

The total Zeeman shift is the sum of these two mechanisms, (2.5± 11.2) nm/s2.

ac Stark shift

The ac Stark shift causes differential energy shift of the cesium F = 3 and F = 4 levels in
a light field. This shift is opposite during interferometer pulses 1 and 3 (when the arms are
in different states), which leads to a phase difference. This phase cancels in the symmetric
Mach-Zehnder geometry if pulses 1 and 3 are identical. However, asymmetry between these
pulses (due to thermal expansion of the cloud, changing δDopp, etc.) results in a net shift
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in the interferometer phase. If this phase shift changes with source mass position, it would
manifest as a false acceleration signal.

Clipping. Effects from the source mass on the cavity mode are negligible because the
hole in the source mass, through which the cavity mode passes, is >16 waists wide.
A radially symmetric steel clamp holds the source mass-moving translation stages
onto the steel vacuum chamber flange. This minimizes torques on the vacuum cham-
ber body as the source mass moves. No effect on the cavity linewidth or coupling
efficiency could be observed by placing the source mass in the near position. This
corresponds to a < 2 mV change on a 500 mV transmission dip signal as seen in
reflection on a photodiode. A change of this magnitude in cavity intensity would
change the ac Stark shift by only ∼ 20 µrad.
However, the source mass slightly clips two MOT beams due to geometric constraints,
which could lead to a difference in the radial distribution of the launched atoms. This
would lead to a difference in ac Stark shifts. This problem is exacerbated by the 718
µm waist of our cavity mode. Since the beam waist is of order the size of the atom
cloud, the spatial dependence of ac Stark shifts across the cloud is non-negligible.
These shifts can be suppressed by k-reversal, but the cavity complicates this.

Cavity effects. (See also erratum below)
The Raman frequency pair is generated by an electro-optic modulator (EOM) phase
modulating the Raman laser, creating sidebands. The cesium hyperfine frequency
(9 192 631 770 Hz) is just short of 23 cavity free spectral ranges. This situation is
discussed in Sec. 3.2. During the interferometer, we ramp the frequency difference of
the Raman beams by 2.42 MHz to compensate the free fall Doppler shift. In a cavity
of linewidth ΓFWHM = 3.03 MHz, this means that the third pulse (if naively locking
the cavity to carrier resonance) creates a different light field within the cavity than
the first pulse.
Applying the cavity transfer function to the incident beams (carrier and sidebands
from the EOM) gives intensities and phase shifts that are in general quite different
from each other. Furthermore, inverting the wavevector inverts the direction of the
Doppler-compensation ramp. Without careful attention, the ac Stark phases ∆ϕ±

j

from pulses k±j will not be equal (where j = 1, 3 indicates the pulse number in an
interferometer with wavevector k±). For k-reversal to effectively cancel ac Stark
phases, the ∆ϕ±

j should be made approximately equal.
We solve this problem by offsetting the cavity resonance from the carrier such that
pulses k±j give the same ac Stark shifts. Our protocol to measure the ac Stark shift
is shown in Fig. 5.12. This measurement is performed as a function of cavity offset
to find offsets at which the ac Stark shifts are made to be equal.
The phase shifts ∆ϕ±

j as a function of cavity offset from carrier resonance δcav are
shown in Fig. 5.12c. The red circle indicates the point where pulses k−1 and k−3
impart the same phase shifts. Operating the k− interferometer here minimizes the
ac Stark phase shift (∆ϕ−

3 − ∆ϕ−
1 ). We find the analogous cavity offset for k+ as
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Figure 5.12: ac Stark shifts. a) ac Stark measurement protocol. An auxiliary pulse of
variable length during a Mach-Zehnder interferometer is used to measure the ac Stark shift.
The atoms are launched at a smaller velocity for this measurement. The auxiliary pulse
thus does not drive transitions due to a large Doppler detuning from Raman resonance. b)
Beams within the cavity. Cavity lineshape shown in magenta and the carrier beam shown
in black. Blue (red) indicates the +(-)1 order sideband. The height of each laser lineshape
indicates its intensity gain inside the cavity. For k−, the Doppler compensation ramp moves
the sidebands from transparent to opaque lineshapes. For k+, the ramp moves in the opposite
direction. c) Auxiliary pulse ac Stark phase vs. cavity offset δcav. The traces shown are for
a single wavevector direction k− for pulses 1 and 3. The point where they intersect is the
cavity offset used for k− in the actual measurement of acyl. d) ac Stark shift for the four
relevant interferometer pulses. The ac Stark shift ∆f±

j is given by the slope of the linear
fit. The relative misalignment of the lines gives our k-reversal inefficiency εac. The cavity
offset used was −3.6 MHz (−4.1 MHz) for k− (k+). All error bars represent 1-σ standard
deviation (statistical).
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well. The ac Stark shifts ∆f±
j are shown in Fig. 5.12d. The mismatch of the ∆f±

j

for these four pulses, εac =
range(∆f±

j )

mean(∆f±
j )

is < 10%.

Uncertainty. The estimated error in the acceleration measurement arising from the ac
Stark shift can then be given by

∆aac ≲ εac ×
1

keffT 2

{
∆ϕnear

ac −∆ϕfar
ac
}

where ∆ϕi
ac is the ac Stark phase for the interferometer when the source mass is

in position i. We can infer the bracketed quantity from a given dataset using the
measured data:{

∆ϕnear
ac −∆ϕfar

ac
}
= keffT

2 ×
{
(a+near − a+far) + (a−near − a−far)

}
,

where a±i is the measured acceleration for wavevector k±, with source mass position
i. In short, we cancel source mass-dependent ac Stark shifts with inefficiency εac.
This varies somewhat across datasets, but a weighted average across datasets gives
8 nm/s2 uncertainty.

Erratum In writing this thesis, it was discovered that the wrong modulation depth β
(i.e., a different β than used for the interferometry pulses) was used to measure the ac
Stark shift vs. cavity offset as per the above process. A calibration using the correct
β would increase interferometer contrast and further reduce ac Stark uncertainty.

Tilt (vertical alignment)

Since the measured acceleration is k · a = ka cos θ, ensuring that θ = 0 gives the true
acceleration, as well as reduces sensitivity to tilt fluctuations. Around θ = 0, tilt changes
affect the measurement only quadratically as a → a · (1 − θ2). Toggling the source mass
could introduce a systematic tilt, which could be mistaken for an acceleration signal. We
stabilize the cavity mode wavevector along Earth’s gravity using a feedback loop with a
∼ 1-minute time constant. This is faster than the source mass toggling, but slow compared
to the experimental cycle time. Details of the control loop are discussed in Sec. 3.5.3.3. The
setpoint of the feedback was determined by mapping the measured acceleration as a function
of θx and θy (the tilt angles along the two axes) and finding the maximum. An example is
shown in Fig. 5.13:

The feedback is necessary, e.g., to compensate for the drift of the pneumatic vibration
isolation. In our datasets, the tilt data from the bubble level differ with source mass position
by under 5 µrad for each dataset, corresponding to a systematic effect of < 0.2 nm/s2.

Drifts

Environmental effects such as tides, laser power drifts, or temperature changes can cause the
measured accelerations to drift on long time scales. If we always measure {near, far} in the
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Figure 5.13: Tilt calibration. The measured acceleration varies ∝ cos θy ≈ (1 − θ2y) for tilt
angle θy.

same order it is conceivable that a long, slow drift could cause the second position to produce
a systematically different result (e.g., slightly higher for a drift upwards). The effect is largely
suppressed for sufficiently fast toggling of the source mass position. No measured parameters
(e.g., cavity coupling, temperature at multiple points in the experiment) vary at the 2 mHz
toggling frequency. The MOT and interferometry beams are intensity stabilized, and thus
do not drift. Remaining effects are quantified by fitting a polynomial to the acceleration
measurements with source mass in the far position only. We then subtract this polynomial
from all the data. A weighted average of the absolute value of these drift corrections across
datasets results in a 3 nm/s2 shift, which we conservatively quote as a drift uncertainty.

dc Stark shift

The source mass is electrically grounded. However, thin films of surface oxidation ∼ 10 nm
thick may form an insulating layer, allowing a voltage to build up. These films may have
a dielectric strength of up to several MV/cm, allowing for surface voltages of up to 10 V.
From the ground state dc polarizability of cesium, even this maximal voltage would cause a
maximum acceleration of only 0.8 nm/s2.

Source mass gravity

We model the source mass as a hollow cylinder with a wedge subtending an angle θ removed.
We integrate the potential along the atomic trajectories to calculate the expected gravita-
tional phase shift. The characterization of the source mass dimensions reproduces the density
of tungsten to within < 1%. Thus, the largest source of error in the gravitational pull is
the positioning. Even assuming a large positioning error of 2 mm, the resulting phase shift
changes only by 5%, ∼ 3 nm/s2. To be even more conservative, accounting for transverse
positioning, etc., we use 5 nm/s2 as the uncertainty in the gravitational attraction of the
source mass.
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Chapter 6

Blackbody radiation: a new force
mediator

Thermal radiation has had a storied history in physics. Infrared radiation from the Sun was
the first form of electromagnetic radiation other than visible light to be discovered [120]. Max
Planck’s description of thermal radiation using quantized packets of energy [121] resolved the
“ultaviolet catastrophe” stemming from the Rayleigh-Jeans law [122, 123], which predicted
classically that the amount of energy thermally-radiated diverges to infinity. Planck’s result
is viewed as the first major step towards a quantum description of nature. In more recent
times, the discovery [124, 125] and increasingly precise probes [85, 126, 127] of the cosmic
microwave background, blackbody radiation from the time of recombination in the early
universe, has provided insight toward myriad astrophysical purposes.

6.1 A force due to blackbody radiation
6.1.1 Qualitatively
A blackbody is a perfect emitter and absorber of radiation at all wavelengths. Many objects
approximate a blackbody sufficiently closely (or at least can be scaled in magnitude with
an emissivity ϵ) that “blackbody radiation” is commonly used as a synonym for thermal
radiation.

Though known for over a century, blackbody radiation (BBR) has relevance even in mod-
ern atomic physics. For many leading modern atomic clocks, blackbody radiation presents
an every-day struggle [128, 129]. Typical room temperature BBR spectra are far-detuned
from the clock transitions used, and the frequency shifts induced are on the ∼ 10−14 level.
For clocks operating at the 10−18 level of sensitivity however, this is a massive effect. Indeed,
uncertainty on determining the exact size of this shift is a leading systematic in absolute
clock measurement uncertainty [129].

Are the effects of these atomic energy level shifts confined to ultra-precise time-keeping?
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Figure 6.1: Cartoon of an atom near a hot, thermally-radiating object. Representative photo
of the Sun from ESA/NASA [130].

Consider a ground-state alkali atom near an object hotter than room temperature, as in
Fig. 6.1. The blackbody radiation emitted by the hot object can interact with the atoms in
two ways. The first is through single-photon scattering. If the object is very hot, some of
the emitted light will be resonant with the atom’s optical transitions. The atom can scatter
these photons, resulting in a repulsive radiation pressure. At room temperature, however, a
cesium atom (for example) scatters on average less than one BBR photon every 108 years.
For temperatures within a few hundred to a few thousand degrees above room temperature,
this is a very rare process indeed. The blackbody radiation spectrum is shown in Fig. 6.2
along with the nearest cesium transitions.

Figure 6.2: Blackbody radiation spectra. The spectra of blackbody radiation for various
temperatures compared with transition frequencies of ground-state cesium indicated by ver-
tical lines. The dash–dotted line on the left refers to the hyperfine splitting of the ground
state used in the current definition of the second. The dashed lines on the right are strong
optical absorption lines of cesium, starting from the D1 transition 62S1/2 → 62P1/2 at 894
nm. The colored band indicates the visible spectrum as a guide for the eye.

The second interaction mechanism is via the same energy level shift from the discussion
of atomic clocks. Blackbody radiation from the emitting object propagates outward. In
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doing so, the radiated power spreads out over a larger and larger surface area at increasing
distance. The intensity of the blackbody radiation is thus reduced. This spatial gradient of
the BBR intensity causes a spatial gradient in the atomic energy level shift. This gradient
causes a force. This unexpected force was first proposed to exist by Sonnleitner et al. in
Ref. [131].

In a slightly different framing, this force is actually familiar in atomic physics: it’s the
dipole force, which is routinely used to trap atoms in far-detuned laser beams [132]. Optical
tweezers [133] operate through this mechanism as well. While we are accustomed to this
concept in the strong, coherent, monochromatic beam cases of the previous two examples,
the same principle applies to weak, incoherent and broadband thermal radiation. Since it’s so
far detuned from the optical transitions of the atom, the atom sees the thermal radiation as
just weak, far red-detuned light. The thermal radiation thus mediates an attractive potential
between the atom and the thermal emitter.

Even if the above arguments follow conceptually, the atomic clock energies shift only at
the 10−14 level. Surely, a spatial gradient in this force would only contribute a negligible, if
conceptually interesting, inertial effect on a real-life atom. It turns out that this force is not
necessarily small. In the next section, we calculate the force quantitatively. We then present
a measurement of the blackbody radiation-mediated force in Sec. 6.2.

6.1.2 Quantitatively
Since the blackbody radiation for temperatures within a few thousand Kelvin from room
temperature are far-detuned from the optical transition in cesium, it is a good approximation
to use the static polarizability α0 of the atom to calculate the energy shift. This is very
convenient, because including the effect of resonances (excited states) in the calculation
complicates things considerably [128, 134, 135]. The energy level shift δE from the (time-
averaged) electric field squared ⟨E2⟩ of the light is then

δE = −α0

2
⟨E2⟩,

where ⟨E2⟩ is found by integrating Planck’s law to obtain

⟨E2⟩ = 4σT 4

ε0c

where T is the temperature, c is the speed of light, ε0 is the permittivity of free space, and
σ = π2k4B/(60ℏ3c2) ≈ 5.67× 10−8 W m−2 K−4 is the Stefan-Boltzmann constant.

We now have the energy level shift for an atom immersed in isotropic thermal radiation
at a temperature T . However, if there is a nearby blackbody source object at temperature
TS in an ambient environment at temperature T0, the energy level shift becomes

δE(r) = −2α0σ

ε0c

(
ΩS(r)

4π
T 4

S +
4π − ΩS(r)

4π
T 4
0

)
(6.1)
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where ΩS(r) is the solid angle covered by the source blackbody as seen by the atom at
position r. If TS ̸= T0, there will be a position-dependent energy level shift δE(r). The
gradient of this shift gives rise to a force FBBR on the atom,

FBBR(r) = −∇ (δE(r)) =
α0σ

2πε0c

(
T 4

S − T 4
0

)
∇ΩS(r) (6.2)

As an example, for a spherical source of radius R with the atom at a distance r > R
from its center, the solid angle taken up by the source from the point of view of the atom is
ΩS(r) = 2π(1−

√
r2 −R2/r) [131]. The force from eq. 6.2 is then

FBBR(r) = −α0σ

ε0c

(
T 4

S − T 4
0

) R2

r2
√
r2 −R2

(6.3)

Let’s put in some numbers. The static polarizability of cesium is αCs
0 = h × 0.998 Hz

(V/cm)2
.

For a sphere at temperature TS = T0+100 K of radius R = 1 cm in an ambient environment
at room temperature T0 = 300 K, a cesium atom (mass mCs = 2.2 × 10−25 kg) located 3
mm from the surface (r = 1.3 cm) will experience an acceleration due to this blackbody
radiation force of aBBR = 800 nm/s2. This is well over an order of magnitude larger than
the gravitational attraction towards such a body!

In the previous Chapter 5, we measured the gravitational attraction between a slotted
cylinder and cesium atoms. In the next Section 6.2, we present a measurement of the
blackbody radiation force FBBR between these two objects.

6.2 Measuring the blackbody radiation force
6.2.1 Modeling and predictions
The previous section calculated that the blackbody radiation force for a sphere about the
same size as our cylindrical source mass is significant compared to the size of the gravitational
signal measured in Ch 5. Motivated by this estimate, we now make predictions more specific
to our actual experiment and source mass. For the calculations in this section, we are
indebted to Matthias Sonnleitner, our collaborator in this work.

Radiative heat transfer

Much of the radiative heat transfer framework that follows is taken from the textbook Ref.
[136], and its distillation into relevance to our experiment by Sonnleitner [137]. In particular,
we follow closely the manuscript by Sonnleitner [137].

Our equation 6.2 assumes a perfect blackbody source object. In reality, objects have
an emissivity ϵλ(ϕ, θ, T ) ≤ 1, where thermal radiation at wavelength λ is emitted by the
object at temperature T in the direction defined by azimuthal and polar angles ϕ and θ,
respectively. A gray emitter is defined by having the same emissivity at all wavelengths,
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ϵλ(ϕ, θ, T ) → ϵ(ϕ, θ, T ). A diffuse gray object has the further condition that the emission is
isotropic, ϵ(ϕ, θ, T ) → ϵ(T ). In our model, we will assume that the cylinder is a diffuse gray
emitter, and even further that there is no temperature dependence. The single parameter ϵ
is thus the only quantity we will use to characterize the thermal emission from a surface of
the source mass.

The energy flux J coming off an opaque, gray, diffuse surface at temperature T is thus
the sum of its emitted radiation ϵσT 4 and the the reflected portion of the incoming radiative
flux G:

J = ϵσT 4 + (1− ϵ)G (6.4)
Using eq. 6.4 we can convert eq. 6.1 to refer to a diffuse gray emitter, rather than a true

blackbody:

δE(r) = −2α0σ

ε0c

(
ΩS(r)

4π

(
ϵT 4

S + (1− ϵ)T 4
0

)
+

4π − ΩS(r)

4π
T 4
0

)
(6.5)

In this equation, we have eliminated the assumption of a perfect blackbody in favor of
a diffuse gray emitter. We still, however, have two geometric assumptions of: (i) a perfect
and homogeneous ambient temperature T0 (by using G = σT 4

0 to put eq. 6.4 into eq. 6.5),
and (ii) no multiple reflections of radiation from the source mass.

To remove these two assumptions requires some geometry, and calculating configuration
factors F1−2 between surface areas A1 and A2. The configuration factor is a geometrical
property of two surfaces that describes the relative solid angle covered by surface A1 as seen
from surface A2. Details on configuration factors, and the specific factors relevant to our
experiment, can be found in Ref. [136] and Refs. [137, 138].

Configuration factors are reciprocal in that A1F1−2 = A2F2−1. Furthermore, if surfaces
A1, . . . , AN form an enclosure, then

∑N
j=1 Fi−j = 1 for i ∈ {1, . . . , N}. The total radiative

energy arriving at the ith surface can then be expressed as

AiGi =
∑
j

AjFj−iJj

where Jj is the radiative flux leaving surface j (note that Fi−i ̸= 0 for a concave ith
surface). Using the reciprocity of the configuration factors, we can solve for the radiation Gi

arriving at surface i in terms of the configuration factors Fi−j and the radiation leaving the
surfaces Jj:

Gi =
∑
j

Aj

Ai

Fj−iJj =
∑
j

Fi−jJj (6.6)

Plugging eq. 6.6 into eq. 6.4 for a configuration of N diffuse, gray emitters with emis-
sivities ϵi and temperatures Ti (i ∈ {1, . . . , N}) we obtain a set of N coupled energy flux
relations:
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Ji = ϵiσT
4
i + (1− ϵi)

N∑
j=1

Fi−jJj (6.7)

The energy shifts on the atom can now be written with the geometric assumptions re-
moved:

δE(r) = −2α0σ

ε0c

1

4π

N∑
j=1

Ωj(r)Jj. (6.8)

Our cylinder

A schematic and parameterization of our cylinder is shown in Fig. 6.3

Figure 6.3: Cylinder parameterization for radiative heat transfer calculation. Left: Illustra-
tion (not to scale) of the open cylinder source mass used in our experiment.The cylinder has
a length l and and inner and outer radius of r1 and r2, respectively. The slot cut from the
cylinder has a width b such that the cylinder is missing an angle 2Φ1 on the inside, 2Φ2 on
the outside. The atoms’ trajectory enters the cylinder along the central axis. (figure and
description from Matthias Sonnleitner [137]) Right: Real life photo of the cylinder, and the
piece that was cut out of it.

The parameterization in Fig. 6.3 is used to calculate the configuration factors Fi−j and
the outgoing radiation Ji for each surface i using equations 6.7. The resulting solutions are
long and complicated, and detailed in Ref. [137]. However, they have a closed form, and can
be put into a calculation program like Mathematica to solve for the energy shifts via eq. 6.8.

The resulting potential UBBR is shown in Fig. 6.4, alongside the resulting acceleration
(aBBR = − 1

mCs
∇UBBR). The details of the potential and acceleration profiles are discussed

in the figure caption.



CHAPTER 6. BLACKBODY RADIATION: A NEW FORCE MEDIATOR 125

full model

basic hollow cylinder
π-Φ1
π
basic hollow cylinder

0.0 0.5 1.0 1.5 2.0

-2.6

-2.4

-2.2

-2.0

-1.8

z [ ℓ ]

δ
E
[E
re
c
⨯
10

-
3
]

energy shift δE(z)

full model

basic hollow cylinder
π-Φ1
π
basic hollow cylinder

0.0 0.5 1.0 1.5 2.0

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

z [ ℓ ]

a B
B
R
[μ
m
/s
2
]

local acceleration a(z)

Figure 6.4: Blackbody radiation potential. The energy shift δE (left) and acceleration aBBR
(right) as a function of position. Position is measured in units of the cylinder height l = 25.6
mm. The energy shift is measured in cesium recoil energies, Erec = ℏωrec. The shaded region
indicates the source mass; the bottom surface of the mass is at z = 0.5 l. Plots are shown for
(i) a basic hollow cylinder (no slot) model, (ii) the full model in which the rectangular slot
cutout is taken into account via configuration factors, and (iii) a model in which the simple
cylinder model is just scaled by the angle missing from the inner surface of the cylinder 2Φ1.
We can see that this would be a reasonable simplification to make. The discontinuity in the
acceleration is also visible as a discontinuity in the slope of the potential (if you look closely).
This discontinuity comes from the abrupt change in solid angles Ωi of various surfaces as
seen by the atom as it enters the cylinder. In real life, imperfections would smooth this out.
Plots are shown for TS = 350 K, T0 = 300 K, and ϵ = 0.3.

From the potential, we can calculate the phase shift by treating UBBR as a perturbation,
and integrating that potential along the atom interferometer trajectories. Doing so we can
calculate the expected phase shift as a function of temperature, which is shown in Fig. 6.5.

6.2.2 Measurements
Emissivity

We determined the emissivity of the source mass. Experimental setup and representative
image from an IR camera can be seen in Fig. 6.6.
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Figure 6.5: Blackbody radiation phase shift δϕBBR as a function of temperature. The models
shown are the full model, the angularly cutout model, and a fit to the functional form
ϵCϕ(T

4
S−T 4

0 ), with Cϕ = 8.9×10−12 rad
K4 . The right vertical axis shows the effective acceleration

(the constant acceleration that would give the same phase shift, see eq. 5.12). Parameters
used correspond to the actual experiment, and are T0 = 296 K and ϵ = 0.3. The negative
acceleration indicates acceleration towards the source mass, opposite the acceleration g due
to Earth’s gravity.

Figure 6.6: Emissivity measurement. Left: A Peltier element was used to heat the source
mass from the bottom, and a thermocouple was used to measure the temperature. A thermal
IR camera (Seek Thermal Compact XR) imaged the object, and inferred a temperature
based on its assumed emissivity of ϵa = 0.95. From that, the true emissivity could be backed
out (see text). In the actual experimental setup, aluminum foil was placed between the
Peltier element and the source mass, as well as surrounding the full setup. This ensured
a more uniform ambient temperature, since the aluminum foil has a low emissivity, and is
thus mostly a reflector of the room’s radiation, rather than an emitter of its own radiation.
Right: An image into the slot of the cylinder from the IR viewer. Multiple reflections can be
seen as bright vertical stripes to the sides of center. Since our model already includes these
multiple reflections via the configuration factors, we want to use the region with a direct
line of sight (and thus predominantly emitted radiation, not reflected), seen as the “cooler”
central stripe.
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The IR camera sensor assumes an emissivity of ϵa = 0.95, and no reflected background
radiation. Accounting for these effects, we can back out the true emissivity ϵ from the sensor
reading Tsr of an object at true temperature Ttrue (measured by the thermocouple), while
also accounting for the ambient background radiation at temperature Tbg:

ϵ(Tsens, Ttrue) = ϵa
T 4

sr − T 4
bg

T 4
true − T 4

bg

The upper, lower and inside surfaces of the source mass were rough, as they had been
electric discharge machined. These surfaces all had emissivities of 0.30(2). The outside
cylindrical surface is polished, and thus has a lower emissivity of 0.08(4). However solid
angle associated with this outer surface, as seen by the atoms, is always 0, so its emissivity
doesn’t impact the measurement.

Heating the source mass

To heat the source mass from outside the vacuum chamber, we shine a strong Nd:YAG fiber
laser at 1064 nm (IPG Photonics YLR-100-1064LP, up to 100W output power, not single-
frequency) into its slot. Within 12 min at a laser power of 8 W, we heat the cylinder from
room temperature to about 460 K.

Outgassing from the source mass increases the background pressure with increased source
mass temperature. Initially, outgassing of the cylinder at 460 K caused a pressure increase
to about 10−7 mbar from a room-temperature vacuum of about 10−10 mbar (measured by an
ion gauge about 50 cm away from the cylinder). After several heating cycles, this pressure
increase was reduced to about 10−9 mbar.

An IR temperature sensor (Omega OS150 USB2.2, spectral response 2.0–2.4 µm) is then
used to read out the source mass temperature through the vacuum chamber windows. The
windows are made of fused silica and have a transmission cutoff just under λ ≈ 3 µm, hence
the specialized sensor. The infrared sensor works across a temperature range of 320 − 440
K; outside of this range, we determine the cylinder temperature by extrapolation.

The temperature is extracted as a voltage from the sensor, and extrapolated to tempera-
ture as follows. We first take the differential equation for heat loss via conduction (through
the threaded rod holding the source mass) and radiation. The differential equation is

T ′ + α(T − Tenv) + β(T 4 − T 4
env) = 0 (6.9)

where the α and β terms represent conduction and radiation, respectively. We take calibra-
tion curves, and find the parameters {α, β, Tenv} by fitting these measured cooling curves
to numerical solutions of this differential equation. This calibration is performed for several
long cooling curves, and a weighted average of these fits is taken to determine the parameters
of our system. A sample calibration curve is shown in Fig. 6.7:
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Figure 6.7: Cooling curves. Left: Calibration curve. The measured data points are fitted
by solving eq. 6.9 to extract α, β, and Tenv. The resulting curve is shown in blue. Right:
Interpolated and measured temperatures for a data run (see text). Green points represent
sensor output, and black x’s indicate that a point is within the sensor’s dynamic range. Each
point represents one fringe, and gaps are data-taking with the source mass in the far position.
The first point of each bunch being systematically too low is a technical shortcoming that has
to do with undesired inclusion of measured points with the source mass in the far position
(and thus measure room temperature). Using the extrapolated temperature (continuous red
curve) means this doesn’t cause a problem.

As stated earlier, the IR sensor works only from 320− 440 K, which does not include our
highest or lowest (room) temperatures. As a result, we need to interpolate temperatures to
include data in that range. An sample interpolation of a data cool-down curve is shown in
Fig. 6.7 (left). This continuous red curve (right) is not a fit. Rather, it is a zero-parameter
solution to the differential equation 6.9 using the parameters from the (separate) calibration
curves. It is fed only an initial value, after with eq. 6.9 is integrated forward and backward in
time to give the rest of the curve. We use these extrapolated temperatures for data analysis.

Results

From the launched atom source, we run a Mach-Zehnder atom interferometer with pulse
separation time T = 65 ms. At the apex of their trajectory, the atoms enter 3.7 mm into the
hollow cylinder. At the start of each experimental run, we heat the cylinder to a temperature
of about 460 K with the fiber laser, which is subsequently switched off. We then measure
the acceleration of the atoms during the cool-down period of up to 6 h, while monitoring the
temperature with the IR sensor. When the source mass has cooled to near room temperature,
we reheat it to start another run. We toggle the source mass’ position between near and far
positions, just as when measuring the gravitational attraction to the source mass in Ch 5.
This again provides a differential mode measurement, allowing us to separate forces induced
by the source mass from other forces, in particular the > million-fold larger one from Earth’s
gravity. The near position exposes the atoms to blackbody radiation arising from the source,
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while the far position serves as a reference. We then investigate the temperature dependence
of the interferometer phase difference between the near and far positions. A schematic of
the measurement is shown in Fig. 6.8

A CB
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H
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Figure 6.8: Measurement setup. A) Space–time diagram of each atom’s trajectories in our
Mach–Zehnder interferometer. B) Representation of the intensity gradient of blackbody
radiation surrounding a heated, hollow cylinder that causes a force on atoms. C) Predicted
acceleration of cesium atoms (as in Fig. 6.4) due to blackbody radiation, aBBR, as a function
of the distance z along the cylindrical axis. The vertical axis is taken from the center of
the source mass. The light gray shaded area marks the region inside the hollow core of the
cylinder.

Fig. 6.9 shows the measured effective acceleration aeff,cyl as a function of the source mass
temperature TS with a comparison to the theory from Sec. 6.2.1. The red dotted line in Fig.
6.9 shows the predicted acceleration aeff,cyl = aeff,BBR + aeff,grav as a sum of the gravitational
pull aeff,grav and the blackbody interaction aeff,BBR = ϵCa(T

4
S − T 4

env) (from Fig. 6.5) of the
atoms with the source mass. Here, aeff,grav = −66nm

s2 is calculated, and Tenv = 296 K is the
measured ambient temperature. Ca is the acceleration scale factor corresponding the phase
scale factor Cϕ = 8.9× 10−12 rad

K4 from Fig. 6.5 in Sec. 6.2.1:

Ca =
1

keffT 2
Cϕ = 4.7× 10−11 µm

s2K4

where T is the Mach-Zehnder pulse separation time.

Systematic effects

It is important to rule out artifacts that could partially mimic a blackbody-induced accel-
eration. A discussion of systematic effects largely overlaps with that of Sec. 5.6. Here we
discuss a few potential effects specific to the blackbody measurement.

Outgassing and radiation pressure
The pressure applied by hot background atoms from outgassing of the heated source mass
removes a substantial fraction of the cold atoms from the detection region at its highest
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Figure 6.9: Blackbody acceleration data. Measured acceleration as a function of the source
mass temperature TS. A quartic dependence on TS is observed for the acceleration experi-
enced by cesium atoms towards the source mass. A) Data from 63 thermal cycles, about
2 − 5 h each, are binned by temperature with Nbin = 65 measurements per bin. The black
dots represent the weighted mean of each bin. Vertical error bars show the 1-σ statistical
uncertainty on the weighted mean. Systematic effects have been considered in detail and
show no significant contributions to the error bars [138]. Horizontal bars show the temper-
ature spread of the Nbin measurements in the bin. The red dotted line is a calculation of
the effective acceleration aeff,cyl the atoms experience during interferometry. The error for
this theoretical prediction is dominated by the approximately 10% uncertainty of the source
mass emissivity. The gravitational pull of the cylinder gives the room-temperature offset of
the acceleration, indicated by the black dotted line at aeff,grav = −66nm

s2 . B) Residuals from
the bulk acceleration data (cyan) to the zero-parameter theory model. C) A histogram of
the bulk residuals is well described by a normal distribution. A Gaussian fit to the histogram
(black dot–dashed curve) has mean compatible with zero within the standard error of 29nm

s2 .
Note that this standard error is less than half of aeff,grav, which therefore must be included
for the measurement to be consistent with known effects. One may even venture to consider
this a second measurement of the gravitational attraction to the source mass, in addition to
the BBR force.
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temperatures, so it is conceivably a component of the measured force on the remaining
atoms. This, however, can be ruled out by multiple observations. First, this pressure
should push the atoms away from the source, while the observed acceleration is towards
the source. Second, it would depend exponentially on the source mass temperature;
such an exponential component is not evident in the data. Finally, any scattering of
hot background atoms with cesium atoms that take part in the interferometer would be
incoherent, and would reduce the visibility of our interference fringes. Fig. 6.10, however,
shows that the visibility is constant over our temperature range, ruling out scattering.
This observation also confirms that absorption or stimulated emission of incoherent
blackbody photons is negligible (see also Fig. 6.2). As with outgassing, absorption of
the blackbody photons is additionally ruled out by the sign of the measured force.
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Figure 6.10: Visibility as a function of temperature, averaged in bins of 2 K for clarity.
Scattering or absorption of photons would lead to a dephasing of the atomic ensemble,
resulting in a reduction of visibility. No obvious loss of visibility is a strong indication that the
contribution of scattering and absorption events is negligible. The inset shows interference
fringes taken at TS = 437 K and TS = 326 K. Each fringe consists of 80 experimental
runs with a cycle time of 1.2 s. The fitted fringe phase gives an acceleration measurement,
contributing a data point to the bulk data seen in Fig. 6.9.

Constant a.c. Stark shifts.
Spatially constant energy-level shifts induced by the blackbody radiation (rather than
an a.c. Stark shift gradient, which produces a force) can be ruled out because they would
be common to both interferometer arms, and thus cancel out. In addition to this cancel-
lation between interferometer arms, spatially constant a.c. Stark shifts from blackbody
radiation would also be very nearly common to both ground hyperfine states, canceling
out even within each arm. This is because the blackbody radiation is very far detuned
from any optical transition in the atom, and thus causes (very nearly) the same energy-
level shift to both hyperfine ground states. To verify, we ran the interferometer with
opposite-sign wave-vector ±keff, implementing so-called “k-reversal” [14]. This inverts
the signal keff · atotT

2 arising from acceleration atot but would not invert this constant
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a.c. Stark phase. We observe that the effect inverts sign with keff, as expected for a
force. Our results in Fig. 6.9 include data runs for both directions of the wave-vector,
performed independently, confirming a real acceleration.

Thermal expansion.
Heating of the cylinder eventually transfers heat to the vacuum chamber, potentially
causing thermal expansion. This could affect the interferometer by, for example, chang-
ing the cavity length. Such thermal expansion is avoided using a slow temperature
feedback loop acting on the vacuum chamber to allow the cavity PZT (which has lim-
ited dynamic range) to hold the cavity distance constant throughout the experiment.

Surface effects.
Near-field interactions such as Casimir–Polder forces [139] are suppressed, since the
atoms never come closer to the source-mass surface than about 2 mm, and these forces
decay at a length scale of the thermal wavelength, λT = ℏc/kBT . λT < 50 µm for
T > 300 K.

Differential a.c. Stark shifts, dc Stark shifts, Zeeman shifts, etc.
The setup in this work (this chapter, or Ref. [138]) is nearly identical to the chameleon/gravitational
measurements in Ch. 5 (Ref. [109]) as far as these effects are concerned. They are dis-
cussed in detail for that measurement in Sec. 5.6.

Implications for future experiments

Just as blackbody radiation affects atomic clocks, the acceleration due to the blackbody
field gradient observed here influences any high-precision acceleration measurements em-
ploying polarizable matter, including atomic and molecular interferometers, experiments
with nanospheres and potentially measurements of the Casimir effect and gravitational wave
detectors. For example, inside a thin cylindrical vacuum chamber, the thermal radiation
field nearly follows the local temperature T (z) of the walls, inducing an acceleration a of an
atom:

a(z) =
1

mat

∂

∂z

2αatT (z)
4

cε0
,

where mat and αat are the atom’s mass and static polarizability. Simulations confirm this
approximation for thin cylinders, even for walls with percent-level emissivity. For cesium
atoms, for example, a linear temperature gradient of T ′(z) = 0.1 K

m around a base of 300 K
would result in a ≈ 10−11 m

s2 , non-negligible in, for example, terrestrial and space-borne high-
precision measurements including tests of the equivalence principle, gravity measurements
and gradiometers or gravitational wave detection with atom interferometry. The accelera-
tion can be mitigated by monitoring and/or equalizing the temperature across the vacuum
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chamber, or (as shown by our simulations) by using wide, highly reflective vacuum cham-
bers, wherein multiple reflections make the thermal radiation more isotropic. On the other
hand, blackbody radiation can be used to simulate potentials. For example, heated test
masses could be used to calibrate an atom interferometer for measuring the gravitational
Aharonov–Bohm effect [140].
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Chapter 7

Spin-dependent kicks for adiabatic
passage in atom interferometers

In Sec. 4.3.1, we worked out the consequences of having our atom cloud and interferometry
beam of comparable sizes. The result is that we address the atoms non-uniformly, pre-
cluding straightforward, highly efficient atom optics. We have developed a technique using
adiabatic passage to address this inhomogeneous coupling problem. In adiabatic passage,
a slowly changing Hamiltonian is used to manipulate the state of a quantum system with
high fidelity. Motivated by the atom-laser coupling spread, these efforts resulted in highly
efficient matter wave manipulations allowing for flexible and novel interferometers. The
rest of this chapter describes implementation of the technique into a variety of high-fidelity
interferometer geometries.

7.1 Adiabatic passage
7.1.1 The basics
The idea behind adiabatic passage (AP) is to slowly vary a Hamiltonian such that the state
of a system is reliably transported from an initial state to a target state. This mapping is
best seen visually on the Bloch sphere, and mathematically by using two bases: the bare
basis and the dressed basis.

Consider a two level system that, in the absence of a driving Hamiltonian, has basis states
|0⟩ and |1⟩. These two states constitute the bare basis. On the Bloch sphere, |0⟩ corresponds
to a vertical state vector pointing at the south pole, and |1⟩ corresponds to a vertical state
vector pointing towards the north pole.

Using the formalism we arrived at in Sec. 2.3.2, we enter just after adiabatically eliminat-
ing the (optically) excited state, forming an effective two-level system. A driving Hamiltonian
H, in the form of eq. 2.47, couples the two levels:
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Ĥ =

(
−∆ Ω
Ω ∆

)
(7.1)

where ∆ is the detuning, and Ω is the Rabi frequency. We now introduce the dressed basis,
consisting of states |−⟩ and |+⟩, related to the bare basis by a rotation (see eq. 2.2):

(
|−⟩
|+⟩

)
= R̂(θ, ŷ)

(
|0⟩
|1⟩

)
=

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)(
|0⟩
|1⟩

)
(7.2)

where θ is defined in terms of the Hamiltonian parameters by tan θ = Ω
∆

. This rotation is
chosen because in the case of constant ∆ and Ω, it diagonalizes the Hamiltonian (when Ĥ
is transformed to Ĥ ′ according to eq. 2.33) to

Ĥ ′ =
1

2

(
−Ω̃ 0

0 Ω̃

)
,

where Ω̃ =
√
Ω2 +∆2 is the generalized Rabi frequency. Converting Ĥ ′ to the form above

requires making use of the other trig relations implied by the definition of θ. Explicitly, these
relations are:

sin θ =
Ω

Ω̃
cos θ =

∆

Ω̃
tan θ =

Ω

∆
(7.3)

Using this parameter θ that diagonalizes the Hamiltonian has a nice, clear interpretation
on the Bloch sphere. The drive vector Ω̃ has vertical and transverse components ∆ and Ω,
respectively, and its tilt from the vertical is given by θ. This setup is shown in Fig. 7.1

Figure 7.1: Driving Hamiltonian on the Bloch sphere
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The effect of such a drive on the state vector |ψ⟩ = c0|0⟩ + c1|1⟩ was first cast into an
intuitive geometric form in Ref. [141]. This “Feynman picture” combines real and imaginary
parts of c0 and c1 into a vector R:

R =

 c0c
∗
1 + c∗0c1

i(c0c
∗
1 − c∗0c1)

|c0|2 − |c1|2


The evolution of R due to the drive can then be written in a simple equation resembling

a torque:

dR

dt
= Ω̃×R (7.4)

where the vector Ω̃ = (Re(Ω), Im(Ω),∆)T. In this way, we have constructed on the Bloch
sphere a vector described by the relationships eqs. 7.3. This picture is equivalent to the
Bloch sphere picture [50], and we identify R as the familiar Bloch vector. Eq. 7.4 tells us
that the Bloch vector R will precess around the drive vector Ω̃. This precession on the Bloch
sphere can be visualized later in the chapter (spoiler alert) in Fig. 7.4.

With this intuition, we can present the basic idea of adiabatic passage. Suppose the
initial state is |1⟩, such that the Bloch vector R points to the north pole of the Bloch sphere.
If we apply a strong drive Ω̃ also pointing at the north pole (or, a tiny angle ε away), the
Bloch vector will rapidly precess around the drive vector. Now, if Ω̃ begins to slowly tip
towards the south pole, the Bloch vector will continue precessing, and follow the slow tipping.
Eventually, the drive will have tipped all the way to the south pole, and the state will have
been transferred from |1⟩ to |0⟩.

Importantly, this procedure does not depend critically on the exact strength of the drive.
As long as the drive is strong enough for precession to continue, the state is transferred with
high fidelity. We will see that this adiabaticity condition requires that the Rabi frequency be
much faster than the tipping; Ω̃ ≫ θ̇, where θ̇ is the time derivative of the angle θ between
the drive and the vertical.

Having this qualitative procedure motivated by the torque equation 7.4, we return to the
bare basis Hamiltonian eq. 7.1 to quantify. The quantities in this equation (Ĥ, ∆, Ω) are
now understood to be time-dependent. This means that the transformation to the dressed
basis, eq. 7.2, is also time-dependent. The Hamiltonian Ĥ ′ in the dressed basis (again using
eq. 2.33), then becomes

Ĥ ′ =
1

2

(
−Ω̃ −iθ̇
iθ̇ Ω̃

)
, (7.5)

such that the evolution of a state |ψ⟩ = A−|−⟩+A+|+⟩ =
(
A−
A+

)
in the dressed basis (taking

ℏ = 1) is given by
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d

dt

(
A−
A+

)
=
i

2

(
Ω̃ iθ̇

−iθ̇ −Ω̃

)(
A−
A+

)
(7.6)

Here we see the adiabatic criterion fall out nicely: if we can ignore θ̇, there is no coupling
between the dressed state eigenstates. Thus, we require Ω̃ ≫ θ̇ for the quantity to be
adiabatic. For this reason, adiabatic passage is often also called “adiabatic rapid passage”
(ARP) to indicate fast precession (Ω̃) relative to an adiabatic process (θ̇).

7.1.2 Constructing a pulse
We will now introduce some machinery to derive our pulse shape. Much of what follows in
deriving the pulse shape comes from Ref. [142]. To quantify how (non-)adiabatic a given
pulse profile is, we construct an adiabatic parameter [143] Q(t) and its reciprocal ϵ(t):

Q(t) =
1

ϵ(t)
=

Ω̃

θ̇

Large Q (small ϵ) means an adiabatic process. Our goal will be to derive a pulse with
constant (non-)adiabaticity as a function of time, i.e., ϵ(t) = ϵ0. We call th the time at which
the drive vector Ω̃ is horizontal (i.e. - ∆ = 0). from these relations, we can write:

cos θ(t) = cos θ(t)− cos θ(th)

= −
∫ t

th

sin θ(t′)θ̇(t′)dt′

=

∫ th

t

ϵ(t′)Ω(t′)dt′ ≡ Γ(t) (7.7)

where the above defines Γ(t) = cos θ(t) for convenience. Using the trig relations 7.3, we can
then write the detuning ∆(t) in terms of the Rabi frequency profile Ω(t):

∆(t) =
Ω(t)

tan θ(t)

=
±Ω(t)Γ(t)√
1− Γ(t)

(7.8)

Up to now, no approximations or mentions of an atom have been made; the preceding
manipulations simply relate geometric properties on the Bloch sphere to one another. The
real, experimentally-causal chain is that amplitude and detuning profiles Ω(t) and ∆(t) define
a path on the Bloch sphere followed by the vector Ω̃(t), at angle θ(t) from the vertical,
implying a non-adiabaticity ϵ(t). Now however, we will specialize to the pulses used in our
experiment.
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The pulse amplitude should be a smoothly varying shape, such that the dressed state
eigenstates smoothly map out of and back into the free space eigenstates. There are several
such commonly used shapes that have been studied in great depth in the field of NMR (e.g.,
see [144, 145]). For our purposes, we use the cosine-squared pulse, with a time-dependent
two-photon Rabi frequency given by:

Ω(t) = Ω0 cos
2

(
πt

2τ

)
(7.9)

where t ∈ {−τ, τ} gives the total pulse duration of 2τ . For a given Rabi frequency profile Ω(t)
such as this one, we can evaluate Γ(t) via eq. 7.7 by taking the desired constant adiabaticity
ϵ(t) = ϵ0. The detuning ∆(t) is then found using eq. 7.8. The resulting curves Ω(t), ∆(t)
for the constant-adiabaticity cosine-squared pulse are shown in Fig. 7.2:
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Figure 7.2: Amplitude Ω(t) and detuning ∆(t) for a constant adiabaticity cosine-squared
pulse.

7.1.3 Applying the pulse to an atom
A small tweak can made to the detuning profile, as suggested by Ref. [142]. When both the
intensity and detuning go to zero, as is the case for the exact cosine-squared pulse shown in
Fig. 7.2, small errors can cause wild, undesired behavior of the drive vector Ω̃ as θ = arctan Ω

∆

changes with the small errors. Rather than using the exact detuning profile then, we can use
a robust detuning profile that maintains large detunings at the beginning end of the pulse
where the Rabi frequency is small. This keeps the drive vector vertical at the beginning and
end of the pulse, even in the face of small errors and fluctuations. The robust and exact
detuning profiles are shown in Fig. 7.3.
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(a) Detuning profiles
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Figure 7.3: Robust and exact detuning profiles. In both plots, the exact profile is shown
in solid green, and the robust profile is shown in dashed purple. a) The robust and exact
detuning profiles. The robust profile is simply the exact profile between extrema of the
pulse, but stays at the extremal detunings for times not between the extrema. b) ϵ(t)Ω(t)
for both detuning profiles. Their difference (arbitrarily multiplied by 10x and offset by 1.5
for visibility) is shown in dotted orange, illustrating that an increase in ϵ(t)Ω(t) somewhere
in the pulse necessitates a decrease elsewhere, as per eq. 7.11

The robust detuning is given explicitly by

∆robust(t) =


0.727Ω0 t ≤ −0.575τ

∆(t) abs(t) < 0.575τ

−0.727Ω0 t ≤ 0.575τ

(7.10)

where the numerical values just reflect the location and values of the extrema in the exact
detuning profile ∆(t) (i.e., ∆(±0.575) ≈ ±0.727Ω0 are the extrema). The robust detuning
profile changes the adiabaticity by only a small amount, ≲ 10%. A relevant, interesting
geometric property of a pulse profile on the Bloch sphere can be seen by defining the time
tv at which the Bloch vector is vertical. We can then write

Γ(tv) = 1

⇒
∫ th

tv

ϵ(t)Ω(t) = 1 (7.11)

This is another geometric property, and thus doesn’t rely on some adiabatic approx-
imation, or care that there’s an atom somewhere eventually. A plot demonstrating this
relation for the robust and exact detuning profiles is shown in Fig. 7.3b. For the case of our
cosine-squared π pulse, tv = −τ , and th = 0.

We have not actually implemented this robust detuning profile in the experiment, as it
came to our attention after we had already performed our work. However, it may by useful to
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implement it in the near future, for the reasons discussed above. Using the robust detuning
was useful in simplifying numerical hiccups in pulse simulations.

To obtain an arbitrary detuning profile in the experiment, we program a trigger-able
arbitrary waveform generator (AWG, Tektronix AFG3022C) in burst mode. There is a
subtlety in programming the instantaneous frequency of a sinusoid, defined as the time-
derivative of the phase, 2πfinst = d

dt
φ(t). For a linear frequency chirp, for example, the

phase is quadratic, given by φ(t) = 2πµt2 +2πf0t+φ0. A subtle (at least to me) factor of 2
comes from the time derivative of the t2 term, without which the frequency ramp covers twice
the range one might (I did) expect. An IQ mixer (Marki IQ4509LXP) operated as a single
sideband mixer is inserted into the output of the Raman frequency phase lock loop discussed
in Sec. 4.3.2, Fig. 3.13. The DRO frequency is dropped by 4 MHz. The AWG then puts
out a signal with time-dependent frequency f(t) = 4 MHz+ δ(t). It is split into quadratures
by a 90◦ splitter and used to drive the IQ mixer, up-converting it into the Raman frequency
that drives the transitions.

If we can truly take the adiabatic limit, where θ̇ = 0, the differential equations 7.6 are
not coupled, and can be read out as having the solutions(

A−(t)
A+(t)

)
=

(
eiϕ/2 0
0 e−iϕ/2

)(
A−(0)
A+(0)

)
(7.12)

where

ϕ =

∫ t

0

Ω̃(t′)dt′ (7.13)

is called the dynamic phase. This dynamic phase reflects the precession of the Bloch vector
about the drive vector.

Though the dressed basis states simply acquire a phase, the transition can be seen by
converting back to the bare basis states by inverting the transformation 7.2. The evolution
of the dressed and bare basis states over the duration of a pulse are shown in Fig. 7.4

In a real experimental setup however, θ̇ is not identically zero. To apply our actual pulse
to the atom, we put our specific amplitude and detuning profiles into eq. 7.6. For a constant
adiabaticity cosine-squared pulse, we can use eq. 7.11 to show that

ϵ0 =
2

Ω0τ

Finite available laser power means that Ω0 cannot be arbitrarily high, and avoiding
single-photon scattering means that τ can’t be arbitrarily long. In our setup, we typically
use Ω0 ∼ 2π × 125 kHz and 2τ ≈ 200 µs, which imply θ̇ = ε0 = 0.025. Equivalently, our
pulses have adiabaticity Q ≈ 40.

Other pulse imperfections include a spread of detuning offsets (due to the Doppler width
of the atomic sample) and a spread in Rabi frequency (since the atomic cloud is about
the same size as the cavity mode, as discussed earlier in this chapter). It is thus useful to
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Figure 7.4: a) Dressed and c) bare state evolution during adiabatic passage. Adiabatic
passage with non-adiabaticity ϵ0 = 0.025 is solved by numerically integrating eq. 7.6 for
an atom initially in state |1⟩ (Bloch vector pointing at the north pole) using the “exact”
detuning profile, as in the experiment. The path on the Bloch sphere is shown in b). The
path of the drive Ω̃ (red arrow) over the pulse duration is shown in red, and the path of the
Bloch vector (blue arrow) is shown in blue. The arrows show a snapshot of these vectors’
locations during the pulse. Using the “robust” detuning profile smooths out the wiggles in
the bare basis curves, suppressing the corresponding arcs in the state’s path on the Bloch
sphere.

numerically integrate the Schrödinger equation 7.6 for a given pulse. To investigate these
effects, we parameterize the detuning offset and Rabi frequency spread according to:

Ω(t) → αΩ(t) (7.14)
∆(t) → ∆(t) + fΩ0 (7.15)

In this parameterization, α represents the spread in Rabi frequency, and f gives the
detuning offset in units of the peak (unmodified) Rabi frequency Ω0. A “perfect” pulse has
{α, f} = {1, 0}. Fig. 7.5 shows the results of pulses in this two-dimensional parameter space.

From the amplitude (left) plot, we see that there is a spread of detunings over which
the pulse is highly efficient, whose width grows roughly linearly with increasing peak Rabi
frequency (increasing α). From the phase (right) plot, we see that at fixed detuning f , the
phase increases roughly linearly with α (as we’d expect from eq. 7.13). We also see that
the dynamic phase as a function of detuning f at fixed α shows a quadratic relationship,
especially where the pulse is efficient. That is,

φ(α, f) ≈ αϕ0 + a(α)f 2

This behavior will be discussed in more detail later in the chapter. With that background,
we will now discuss application of these pulses in our experiment.
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Figure 7.5: Numerical solution of imperfect ARP pulses. An initial state |0⟩ evolves under
an imperfect pulse with parameters {α, f} (as in eq. 7.14) meant to transfer it to the
target state |1⟩. The pulse uses a cosine-squared envelope, and the robust detuning profile,
with non-adiabaticity parameter ϵ0 = 0.025 → Q = 40. Left: The left color plot shows
ε(α, f) := | ⟨ψf|1⟩ |2, where |ψf⟩ is the final state after the pulse. ε(α, f) indicates the pulse
efficiency. Right: Phase of the arm in the target state |1⟩ (that is, arg(⟨ψf|1⟩)), shown using
a cyclical color map. The opacity of this plot is set to ε(α, f), i.e., the value in the left
plot, so that we see the phase behavior where the pulse is efficient. Both plots also show
slices along constant α and constant f in red and blue, respectively, in the sidebars. The
phase-at-constant-α sidebar also shows, in dashed gray, a quadratic curve ϕ = af 2 + ϕ0,
fitted with parameter a to the detunings f where the pulse is efficient above a threshold
(here, ε(α, f) > 0.7). ϕ0 is the phase at f = 0.

7.2 Splitting the beamsplitter
From the introduction of our first beamsplitter in eq. 2.1, we have treated the beamsplit-
ter as a single operation. This is of course well-motivated; our Raman beamsplitter pulse
coherently and continuously splits the atomic wavefunction into two arms over its duration.
However, the Raman beamsplitter is performing two tasks in parallel: (i) superposing the
spin state, and (ii) entangling the spin state with the atom’s external momentum. We typi-
cally don’t think of Raman beamsplitters this way because we hide this underlying two-step
by exclusive use of the basis states |a,p0⟩ and |b,p0 + ℏkeff⟩. We don’t usually consider
the states |a,p0 + ℏkeff⟩ and |b,p0⟩ because they are not coupled to the initial state by the
Raman beams.

Once seeing these two functions of the Raman beamsplitter, we can imagine performing
them separately. For example, we can first generate a spin-state superposition by performing
a microwave π

2
pulse. The external momentum can then be entangled with the spin state

using our usual velocity-sensitive (counter-propagating) Raman transitions. Suppose a given
configuration of Raman beams couple



CHAPTER 7. SPIN-DEPENDENT KICKS FOR ADIABATIC PASSAGE IN ATOM
INTERFEROMETERS 143

|a,p0⟩ ↔ |b,p0 + ℏkeff⟩,

it follows that
|b,p′

0⟩ ↔ |a,p′
0 − ℏkeff⟩

are also coupled, simply by reversing the order of the first relationship and taking p′
0 =

p0 + ℏkeff, where keff = 2k for a 2-photon velocity-sensitive Raman transition, and k is the
laser wavevector.

A finite bandwidth δf of the pulse makes the pulse efficient for a range of Doppler
spreads, and a corresponding range of p0. If the pulse bandwidth is sufficiently larger than
the recoil frequency shifts involved, we can consider the pulse to have efficiency independent
of momentum over that range. That is, we can rewrite the levels being coupled as

|a,p0⟩ ↔ |b,p0 + ℏkeff⟩ (7.16)
|b,p0⟩ ↔ |a,p0 − ℏkeff⟩ (7.17)

where the only difference from the previous state-couplings is that we’ve let p′
0 → p0 by the

assumption that the pulse bandwidth is sufficiently larger than the recoil shifts. To be a
little more specific about that assumption, we define νsw ≈ 8.3 kHz as the frequency shift
required to produce a standing wave moving at the recoil velocity vrec =

ℏk
mCs

. That is,

νsw =
1

2π

2ℏk2

mCs
(7.18)

This is the relevant frequency shift because, as with a standing wave, an atom moving at
vrec sees the counter-propagating (velocity-sensitive) two-photon Raman transition frequency
shifted by νsw (since each beam is Doppler shifted with opposite sign).

Note that the maximum difference in external momentum of the states involved in eq.
7.16 is 2ℏkeff = 4ℏk. The velocity difference between those states is then 4vrec. For our
cesium atoms, this means our p′

0 → p0 assumption is explicitly

δf ≳ 4νsw ≈ 33.1 kHz,
This is not always the case, but it can usually be accomplished. We will see that it certainly
holds for our adiabatic passage pulses.

What we’ve explicitly found here is that the direction of the kick depends on the initial
state. This is the reason for our somewhat convoluted definition of k+ and k− transitions
in Chapter 4.3.2. Since the direction of the kick depends on the spin state, we will follow
Refs. [146, 147] and call these transitions spin-dependent kicks, or SDKs.

We can now split the Raman beamsplitter into a two-part operation: (i) superpose the
spin-state of the atom with a microwave π

2
pulse, and (ii) entangle the external momentum

with the spin degree-of-freedom using an SDK π pulse. This process is shown, and compared



CHAPTER 7. SPIN-DEPENDENT KICKS FOR ADIABATIC PASSAGE IN ATOM
INTERFEROMETERS 144

Figure 7.6: An atom initially in a spin superposition receives a spin-dependent kick. State
|a⟩, shown in green, is kicked up into state |b⟩. An atom initially in state |b⟩ however, is
kicked down into |a⟩. These two processes are shown on the atoms’ energy levels at right
in solid and dashed lines, respectively. The latter process is Doppler shifted to a different
resonance frequency, since the atom sees opposite-sign Doppler shifts (±2νsw) for the upward-
and downward- traveling beams.

to a standard Raman beamsplitter, in Fig. 7.7.

Figure 7.7: SDK beamsplitter. The initial spin state |a⟩ is shown in solid blue lines and
the other spin state |b⟩ is shown in dashed red lines. The horizontal (vertical) axis is time
(position), so a state’s momentum can be inferred from the slope of the line showing its
path. Each operation is shown with a dashed black vertical line. The left schematic shows
a standard 2ℏk Raman π

2
pulse. The right shows a two-step SDK beamsplitter, where the

spin-superposition and momentum-entanglement are performed in separate steps.

This new beamsplitter, the SDK beamsplitter, can then be used in an atom interferometer
in place of the standard Raman beamsplitter. Note that the spin superposition could be also
performed with a velocity-insensitive (co-propagating) Raman π

2
pulse instead of a microwave

pulse.
A similar split beamsplitter has been proposed in Refs. [15, 148] for atoms. Analogous

beamsplitters have been demonstrated in Refs. [146] using trapped ions, [33] with magnetic
beamsplitters and [149] for temperature measurement, but these have not yet been applicable
to precise atom interferometry measurements.
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So far this splitting-the-beamsplitter has seemed like an elaborate lateral move that, while
mildly interesting, doesn’t really gain us much. It turns out that the SDK beamsplitter has
a number of advantages in atom interferometry applications. We discuss these advantages
and present interferometer realizations in the next section.

7.3 SDK interferometry
Interferometers can be realized by combining SDKs. The simplest case, shown in Fig. 7.8, is
one SDK beamsplitter, followed by two π pulses to invert the direction of the interferometer
arms, and a SDK re-combiner to interfere the two arms. The SDK re-combiner is just
the beamsplitter in reverse; the arms are brought to relative rest with a SDK pulse, then
interfered with a microwave π

2
pulse.

(a)
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Figure 7.8: SDK interferometry. a) SDK beamsplitter. A microwave π
2

pulse µ̂π/2 puts
the atom into a superposition of hyperfine states. A Raman adiabatic passage Ô+ then
delivers a spin-dependent kick to each arm of the superposition. The energy level diagrams
at right show the transitions for both arms. b) Basic SDK interferometer. During the wave
packet separation time T , the arms have 4ℏk momentum separation, while τ denotes the
time between halves of the SDK mirror pulse sequence, where the arms are at rest relative
to each other. c) Large momentum transfer (see Sec. 7.3.3 in the main text). Inverting the
laser wave vectors kicks the arms in opposite directions, Ô−. Since both laser frequencies
travel in both directions, either operation can be chosen (a large enough Doppler shift breaks
the degeneracy).

To this point, it has been unclear why we spent the first section of this chapter going
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through a lengthy description of adiabatic passage. It will turn out that the SDK interfer-
ometer is particularly amenable to the use of adiabatic passage. We therefore use it in our
interferometers.

We denote by Ô± an adiabatic passage on the k± transition. For our cosine-squared
pulses, atoms with a detuning in the range ∼ ±Ω0/2 ≈ 2π × ±125 kHz/2 are transferred
with a measured efficiency of 96% (± ∼ 1%,depending on the intensity used). While we use
adiabatic passage for the optical π pulses, this is not necessary for SDK operation; standard
Raman π pulses would also work. A representative scan of our adiabatic passage efficiency
as a function of detuning and amplitude can be seen in Fig. 7.9.

0 1 2 3

Ampl [arb]

0

0.2

0.4

0.6

0.8

1

E
xc

it
at

io
n

 f
ra

ct
io

n

-200 -150 -100 -50 0 50 100 150 200

 [kHz]

ARP
gaussian
square

Figure 7.9: Adiabatic passage parameter scan. Pulse amplitude (left) and detuning offset
(right) are scanned. Efficiency driving the transition |0⟩ → |1⟩ is measured. Detuning scans
for (non-ARP; fixed frequency) pulses with Gaussian and square intensity profiles are shown
as well. The increased efficiency and bandwidth provided by the ARP pulse is clearly seen.

Note that in considering the adiabatic passage pulses acting on a superposition state
during the interferometer, it is sufficient to consider the action on the basis states alone
(since the Hamiltonian is, of course, linear: Ĥ(α|0⟩+ β|1⟩) = α(Ĥ|0⟩) + β(Ĥ|1⟩)). Thus, as
with standard Raman interferometers, we can calculate phases along each arm independently
to calculate the phases for an SDK interferometer.

7.3.1 SDK advantages
The split beamsplitter has a number of advantages over the traditional Raman beamsplitter
that are not immediately obvious. We outline several of them here.

Exclusive use of efficient atom optics

The SDK beamsplitter is particularly amenable to the use of adiabatic passage. Though this
has been attempted before in atom interferometry [150, 151], technical limitations persisted
in previous methods. We will show in Sec. 7.3.2 that the SDK beamsplitter, especially in
conjunction with an optical cavity, nicely mitigates these technical limitations.



CHAPTER 7. SPIN-DEPENDENT KICKS FOR ADIABATIC PASSAGE IN ATOM
INTERFEROMETERS 147

Using microwaves to generate superposition is generally a more-easily uniform way to
address the atomic cloud than using a laser beam. Since the atom cloud is much smaller than
the wavelength of microwave radiation (but not optical radiation), achieving homogeneous
coupling is easier with microwaves, which makes their use efficient over the cloud.

By using only microwave π
2

pulses and adiabatic passage π pulses, an interferometer can
be composed exclusively of efficient manipulations of the matter wave.

Large momentum transfer

There is another clear difference between the beamsplitters shown in Fig. 7.7: the SDK
beamsplitter has 4ℏk momentum separation between the interferometer arms, which is twice
the standard 2ℏk Raman interferometer! We will see in Sec. 7.3.3 that SDK pulses can be
cascaded, providing 4nℏk separation.

This benefit shows a merging of some benefits of both Bragg and Raman transitions.
The SDK beamsplitter provides the state labeling and high bandwidth (relative to Bragg)
of Raman transitions, and the large momentum transfer (LMT) and ac Stark insensitivity
of Bragg transitions. Adiabatic passage further increases pulse bandwidth.

Reduced experimental complexity

The benefits above typically come at the cost of great experimental complexity. Efficient
atom optics require uniformly addressing an atom cloud, which typically requires a large
beam, and thus high laser power (up to 43 W [68]).

The velocity spread in the direction of the laser beam also must be very small for Bragg
diffraction (∼ 0.1ℏk). This comes at the cost of either complicated atom sample preparation
(e.g., BEC, delta kick cooling, long cycle times up to 20 s) or a severe velocity selection,
which greatly reduces the atom number.

The SDK interferometers in our experiment however, require < 0.5 s of atom sample
preparation, no evaporation, and only ∼ 10 mW of incident laser power for interferometry
pulses. Despite this, the geometry allows for LMT interferometers, as well as other many-
pulse geometries.

Suppressed ac Stark shifts

As explained briefly in Chapter 2 and in more detail in Ref. [38], optical π pulses are signifi-
cantly less sensitive to ac Stark shifts than are optical π

2
pulses. Use of an SDK beamsplitter

allows all optical pulses to be π pulses, and thus suppresses ac Stark phase shifts. The
cartoon-ish (but still mostly correct) way of looking at it is that each arm spends half of
each optical pulse in each spin state. As long as not much changes over the pulse duration,
the differential ac Stark phase shift between the interferometer arms vanishes. Contrast this
to the case of standard Raman beamsplitters in a Mach-Zehnder. In that case, ac Stark
cancellation occurs between the beamsplitter pulses, which can be separated by hundreds
of milliseconds (∼ 103 times longer than typical pulse durations). This suppressed ac Stark
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sensitivity is particularly welcome in our cavity interferometer, where ac Stark shifts are
complicated (see Sec. 4.3.2).

Fig. 7.10 demonstrates this suppressed sensitivity.
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Figure 7.10: Suppressed ac Stark sensitivity. A basic 4ℏk SDK interferometer is run varying
the pulse amplitude beyond the minimum region where the pulses are first very efficient.
Fringes shown have have relative pulse amplitudes of 1, 1.2, 1.5, 2.1 (arb. units), respectively.
The fringes do not shift despite varying the pulse amplitude of all four SDK pulses by over
a factor of 2, indicating statistically insignificant ac Stark phase shift. T = 0.5 ms was used.

State labeling

Simply put, this method maintains the state labeling inherent of Raman transitions. This
simplifies detection and interferometer readout compared to not having it. This is not
an advantage over a traditional Raman beamsplitter, but is a convenient feature that is
preserved despite adding LMT capability and suppressed ac Stark sensitivity.

Equal velocity outputs

In previous sections, we’ve described the chirped lattice used to catch the atoms after their
time of flight. Atoms whose transverse motion have taken them outside the cavity mode
don’t see the laser and continue falling.

The catch acts as a 2ℏk momentum filter (if the lattice depth is low enough that only
the first Bloch band is caught). Atoms that missed transitions, and therefore have the
wrong velocity, are not caught and fall away. So the catch is both a spatial and velocity
filter. However, in traditional Raman or Bragg interferometers, the final output ports are
separated by at least 2ℏk, and thus cannot both be caught with high efficiency.

The SDK output ports, however, have the same velocity. They are thus particularly
well-situated to take advantage of this benefit. The catch substantially improves SDK in-
terferometer contrast, for reasons discussed in Sec. 7.4.2.
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7.3.2 The dynamic phase
Before moving on however, it is worth addressing the main technical hurdle that limited
previous attempts at adiabatic passage atom optics: the dynamic phase ϕ from eq. 7.13.
There’s no free lunch [152], and adiabatic passage is not a magic bullet. The problem ARP
addresses is that the inhomogeneous atom-laser coupling gives a spread in Rabi frequencies.
Thus, atoms at different radial positions want different tπ times for a π pulse. ARP converts
this “efficiency spread” into a phase spread, as the dynamic phase ϕ is proportional to the
Rabi frequency. For some applications, this is of no consequence, but it matters for a phase-
measuring atom interferometer.

Adiabatic passage converts the spread in Rabi frequencies (due to the laser beam waist,
eq. 4.3) to a spread in the dynamic phase ϕ. A look at the top phase sidebar of Fig. 7.5 (blue,
constant detuning) shows that ϕ is of order tens of π, so the spread in dynamic phase will
be at least several π. Averaging over the atom cloud completely washes out any interference
contrast, seemingly ruining any hope of an interferometer.

However, unlike an efficiency spread, a phase spread can be reversed. If two pulses are
applied in quick succession with alternating sign of ϕ (determined by initial state (eq. 7.12)
and sweep direction), the dynamic phase cancels. The contrast of our interferometer vanishes
if such cancellation does not occur, for example if the sweep direction of one ARP pulse is
intentionally inverted. The basic idea though, is that if not much changes between pulses
whose dynamic phases are meant to cancel, then the two arms of an interferometer will
receive dynamic phases from the first pulse of ±ϕ(ρ), and from the second pulse of ∓ϕ(ρ).
Thus, regardless of radial position ρ, the net dynamic phase will be 0, and the contrast will
not wash out.

We use several methods for effective re-phasing. First, we intensity-stabilize interferom-
etry pulses to minimize optical power drifts or fluctuations. Second, we avoid large radial
motion of the atoms by catching only the center of the atom cloud (Sec. 3.4). Third, because
the intra-cavity intensity changes with Raman frequency (Chapter 4), we adjust the input
intensity of pulse pairs such that their Rabi frequencies are equal and thus their dynamic
phases cancel.

The largest source of re-phasing errors in previous interferometers [151] was cited to be
beam quality. In our apparatus, the optical cavity acts as a mode filter [153], providing very
clean wave fronts. It is unclear, however, if the cavity is a requirement for effective SDK
interferometer operation: measuring the wavefront distortion of the in-vacuum cavity mode,
or running the apparatus without the cavity mode, are both prohibitively difficult. The work
in Ref. [151] also used a larger, hotter atom cloud.

For more details than you ever wanted to know about the dynamic phase and its effective
cancellation, see Sec. 7.4.
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7.3.3 Large momentum transfer
Momentum transfer even higher than 4ℏk can be achieved by cascading SDKs as shown in
Fig. 7.8c. Alternating between Ô+ and Ô− pulses allows momentum transfer in the same
direction, as the spin state is toggled between |F = 3⟩ and |F = 4⟩. This alternating could
be avoided by inserting microwave π pulses between the optical pulses, but this proved less
efficient overall in our apparatus. A 4nℏk interferometer (n = 1, 2, 3, . . .) is realized by
consecutive pulses to first accelerate the arms away from each other, then invert relative
momentum, and finally recombine.

The phase difference between the arms of this interferometer can be evaluated following
the procedures in Ch. 2, and is given by

∆ϕ = 4n(k · a)T (T + τ) (7.19)

where a is the acceleration experienced by the atom, and the times T, τ are defined in Fig.
7.8.

Performance of the SDK interferometer at large momentum transfer is shown in Fig 7.11.
We have demonstrated interferometers with up to 20ℏk momentum splitting (Fig. 7.11 shows
up to 16ℏk). The momentum separation in our current setup is limited by the use of the
same laser frequencies to address both interferometer arms (we will return to this in more
detail later in this section).

We observe excellent contrast out to T = 44 ms (Fig. 7.11), limited only by the available
free-fall time. SDK interferometers shown include a time τ ≈ 20 ms centered around the apex
of the trajectory to avoid degeneracy between Ô+, Ô− and the velocity-insensitive Raman
transitions. The upper dashed line indicates the contrast of a Ramsey clock (i.e., only the
µ̂π/2 pulses) measured for various timings. Our interferometer with the largest scale factor
(16ℏk, T = 44 ms, τ = 18 ms) acquires a phase shift of 3.4 Mrad due to Earth’s gravity. A
traditional 2ℏk Raman Mach-Zehnder interferometer with the same T = 44 ms would have
a phase of 0.28 Mrad, so this represents over an order of magnitude improvement.

To use large momentum transfer in an SDK interferometer, many pulses must be applied.
A 4nℏk interferometer as in Fig.7.8c requires 4n optical pulses. This means each pulse must
be very efficient for the matter wave to follow the entire interferometer. This is where using
adiabatic passage presents a large advantage over Raman pulses.

Each pulse imparts 4ℏk momentum transfer. For our ∼ 96% efficient ARP pulses, this
gives an efficiency of 99% per ℏk. To achieve an overall efficiency ≥ 10%, use of adiabatic
SDK pulses increases the total possible momentum transfer by over an order of magnitude
compared to traditional Raman pulses, from 12ℏk (6 Raman pulses, each 70% efficient) to
260ℏk (65 adiabatic SDK pulses). This efficiency improvement is limited only by available
laser power limiting Ω0, and thus the non-adiabaticity ϵ0. Because of a fiber EOM damage
threshold, only 12 mW are incident on the cavity in our work.
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Figure 7.11: Large momentum transfer interferometers. Top: SDK interferometer contrast
as a function of gravity phase ∆ϕ, measured for various orders of momentum transfer at
wave packet separation times T = 5, 15, 25, and 44 ms. The gravity phase ∆ϕ(g) is due
to the acceleration from Earth’s gravity, g ≈ 9.8m

s2 . High visibility fringes are observed for
∆ϕ ≲ 0.5 Mrad, above which vibration noise dominates. Contrast is therefore determined
by fitting histograms of ∼ 200 interferometer outputs to an arcsine probability distribution
function [18]. Error bars represent the 1σ statistical uncertainty in the contrast fit param-
eter. The blue dotted line provides a comparison to traditional 2ℏk Raman Mach-Zehnder
interferometers in our apparatus with T = 22, 55, and 65 ms. Bottom: The fringe for a 4ℏk
interferometer with T = 1 ms, τ = 26 ms is shown, along with its contrast histogram. Each
point in the top panel of this figure comes from such a fitted histogram.

7.3.4 Single source gradiometer
The SDK toolkit enables novel and flexible interferometer geometries. As an example, we
realize a single-source gradiometer (see Fig. 7.12). A SDK beam splitter is used to separate
two arms of the atomic wave function. Once separated, they are brought back to equal veloc-
ity and used to perform two SDK interferometers simultaneously. These interferometers can
then measure a relative phase, where common-mode noise (vibrations, laser phase noise) is
rejected [16]. We demonstrate the gradiometer by measuring a phase induced by a transverse
laser beam incident on only the lower SDK interferometer. The upper and lower interfer-
ometers have the same velocity and the same internal states, reducing systematic effects.
Additionally, the gradiometer baseline is known to high precision, since it is determined only
by the photon momentum and wave packet separation time.

The primary limitation on this interferometer was achieving the same Rabi frequency
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Figure 7.12: Single-source gradiometer. A schematic of the arm trajectories is shown at left,
and in the inset at right. The first half of an 8ℏk SDK interferometer separates two arms.
Once brought back to relative rest, the actual interferometer sequence begins, simultaneously
addressing both arms. The phases of the two interferometers can then be read out using
the four output ports. The main plot shows gradiometer data. The two interferometers
have a fixed phase difference independent of common mode phase noise. When plotted
parametrically, the interferometer outputs form an ellipse whose shape is determined by this
relative phase difference. Ellipses are plotted both with (red, hollow) and without (blue,filled)
a transverse laser beam applied to phase shift the lower interferometer by ϕac. For this
data, the atoms separated for 63 ms, giving 1.764 mm of separation to the gradiometer.
T = τ = 0.3 ms was then used for the interferometers.

in the two spatially-separated interferometers for the microwave π
2

pulses µ̂π/2. The spatial
profile of microwave Rabi frequency is complicated due to multiple reflections of the radiation
by the metal vacuum chamber. This effect could be alleviated by several methods, such as
using a fractional adiabatic π/2 pulse [142], using a velocity-insensitive optical π

2
in the cavity

mode (instead of µ̂π/2), or even just a more deliberate alignment of the microwave horn.

7.3.5 Looped interferometer for ac signals
As a further example, we demonstrate a tunable detector for accelerations that oscillate with
fixed periodicity. Such “resonant” atom interferometers have been proposed to search for
gravitational waves [154] or oscillating forces due to light dark matter [155]. As shown in
Fig. 7.13, lock-in ac detection is achieved by having the wave function enclose several loops
(m = 3 are shown). The sensitivity function reverses in each loop, as the arms are kicked in
alternating directions. A requirement for such a detector is the efficient application of many
pulses. Performing many loops increases the frequency selectivity (“quality factor” Q) of the
resonant detector, and therefore its noise suppression at other frequencies. The frequency
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Figure 7.13: Resonant atom interferometer. Top: Interference fringes for different number
of loops m, as the phase per loop is varied. Bottom: Contrast decay is shown as both a
function of the number of loops m, and corresponding number of optical pulses n. Resonant
interferometer geometry for m = 3 loops is illustrated in the lower left. The dotted line
represents a model with no free parameters, using only the independently measured Ramsey
contrast (88%) and ARP pulse efficiency (96%), and the calculated single photon scattering
(1% per pulse). Agreement with the data indicates negligible sources of additional contrast
loss. A stable fringe is observed even after 51 loops.

probed is set by the duration of each loop, which is easily tuned. The sensitivity function of
this geometry is discussed in detail in Ref. [154]. We demonstrate a proof of principle for a
scalable resonant scheme (up to three loops had been previously demonstrated [14]). The top
panel of Fig. 7.13 confirms the expected behavior of such a resonant interferometer: for even
m, dc effects (such as gravity and laser phase per loop φ1) cancel, and the interferometer
phase remains zero regardless of φ1. For oddm the net interferometer phase is that of a single
loop, φ1. For this demonstration, contrast data were taken with loop sizes of T = τ = 10 µs
at 4ℏk splitting to allow over 100 pulses of 200 µs duration to fit within the available free-
fall time (including avoiding the times around the apex where k± transitions are degenerate
with each other and the velocity-insensitive co-propagating transition). A stable fringe is
observed at each loop order, whose fitted amplitude matches the histogram-fitted contrast
of Fig. 7.13. LMT could also be implemented in each loop to increase sensitivity.
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7.4 Real world issues
This section gets really into the nitty-gritty about how adiabatic passage pitfalls are avoided
in our setup. For a deeper look into the technical details, please keep reading!

7.4.1 Doppler separation
A simplification that we glossed over previously to obtain eqs. 7.16 was assuming that
the pulse bandwidth is greater than the recoil-induced Doppler shift between the states
involved. This is a good assumption for our ARP pulses (∼ 125 kHz bandwidth) in an SDK
beamsplitter (same initial momentum → 33.1 kHz separation). However, as more pulses are
added, the detuning of the arms grows by ±2νsw with each additional LMT order.

Consider a SDK beamsplitter applied to an initial state |ψ0⟩ = 1√
2
(|a, p0⟩+ |b, p0⟩).

Suppose the ARP pulse Ô+ couples |a, p0⟩ ↔ |b, p0 + 2ℏk⟩. Let δ+ be the detuning of
the “upper” arm transition |a, p0⟩ ↔ |b, p0 + 2ℏk⟩, and δ− be the detuning of the “lower”
arm transition |b, p0⟩ ↔ |a, p0 − 2ℏk⟩. We can choose the center of the detuning profile
such that δ± = ±2νsw. For the nth-order pulse, which couples the momentum states
|p0 ± 2(n− 1)ℏk⟩ ↔ |p0 ± 2nℏk⟩ (while also changing the hyperfine state), the detuning
δ
(n)
± is

δ
(n)
± = ±2nνsw ≈ ±n× 16.5 kHz

Note that the Doppler separation between the arms is twice that. This situation is
illustrated in Fig. 7.14. For our cosine-squared ARP pulse bandwidths of ∼ 125 kHz (see Fig.
7.9) then, a 4th adiabatic passage acting on a superposition is attempting to simultaneously
address transitions separated by 132 kHz, which already begins to violate the assumption.
For our pulse parameters, this is about the limit; there is a sharp decline in efficiency after
about 4th order. This limit could be pushed further with a higher peak Rabi frequency, and
corresponding detuning profile.

The results of this effect can be seen by looking at the numerical simulations, as in Fig.
7.15.

7.4.2 More dynamic phase
We just saw that the Doppler separation, when too large, hurts interferometer performance
by lowering efficiency of the SDK pulses. There is another effect arising from this detuning:
increased dynamic phase. Fig. 7.5. We can write

ϕ(α, δ) ≈ a(α)δ2 + αϕ0 (7.20)
This is an approximate relation, but fits well in the region where the pulse is efficient.

The coefficient a(α) depends on the pulse intensity α. ϕ0 is the dynamic phase for a “perfect”
pulse, {α, δ} = {1, 0}. The atoms have a spread in momentum ≲ 2ℏk that gives a spread
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Figure 7.14: Doppler separation for nth order SDK pulse. As the pulse order n increases, so
does the relative momentum between the two interferometer arms. This separation is shown
here by a narrow distribution around a central value of that momentum’s corresponding
Doppler shift. Qualitatively, this is what a low bandwidth Raman pulse’s efficiency might
look like when attempting to drive a transition for that momentum class.

Figure 7.15: Detuning effects on adiabatic passage. Lower left: Amplitude to undergo the
transition ε(α, f), as in Fig. 7.5 (just rotated and zoomed in, same ϵ0 = 0.025 → Q = 40).
Lower right: Same for the dynamic phase (opacity again set to ε(α, f)). The upper sidebars
show the corresponding quantity at fixed α = 1. Vertical dashed lines indicate the detuning
offsets for nth-order SDK pulses, for n = 1, , .., 5 at the appropriate values of f . The
horizontal axes match those of the corresponding plots below them. The amplitude top
sidebar is dashed to indicate that it’s not quite the values plotted along the red line below:
instead, we’ve raised those values to the fourth power, since four is the minimum number of
pulses at each order required for a complete SDK interferometer.
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Figure 7.16: Dynamic phase distribution. See main text for description. White vertical line
indicates the average of the distribution.

in Doppler shifts, and therefore a spread in dynamic phase ϕ. Since ϕ(δ) is quadratic, we
would expect this effect to worsen as the SDK order increases, and the Doppler separation
grows between the two arms.

It turns out that the spread in ϕ from the momentum spread of the atoms is (by far)
sub-dominant to another effect: the spread in intensities seen by the cloud due to the finite
size of both the atom cloud and the laser waist, as discussed in Sec. 4.3.1. The intensity
spread effect on ϕ is so much larger that the momentum spread can safely be ignored. In
this section, we will calculate the spread in dynamic phase due to the intensity spread.

We begin with the parameterization of the intensity from Sec. 4.3.1 with a unitless
variable α:

I(α) = αI0

where I0 is the peak intensity of a gaussian beam (eq. 4.2), and α ∈ [0, 1]. Taking the atom
cloud as a spherical gaussian distribution, we obtain the probability distribution function
for α:

fA(α) =
w2

0

2σ2
α

w2
0

2σ2−1

The above is performed in more detail in Sec. 4.3.1.
We start with a uniform momentum distribution over a 2ℏk interval (the lowest Bloch

band of cavity-launch optical lattice). The detuning as a function of momentum is just a
constant factor, δ(p) = k

mCs
p, and f = δ/Ω0 relates the detuning δ to the detuning parameter

f from the numerical simulations and eq. 7.14. The pdf for δ in this case is then flat within
a 2ℏk2/mCs-wide region.

With these distributions, we are now in a position to consider the distribution in dynamic
phase that arises from the atomic position and momentum distributions (via the pdfs fA(α)
and fD(δ)). This is done in Fig. 7.16.
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Fig. 7.16 conceptually begins with the “Phase” color plot. Again, this is the same phase
plot as in Figs. 7.5 and 7.15, just zoomed in and with a different transparency mask (cosine-
squared envelope, robust detuning profile, and ϵ0 = 0.025 → Q = 40). Here the opacity is
proportional to the joint pdf times the pulse efficiency

fA(α)fD(δ)ε(α, δ)

where fA and fD are the pdfs of α and δ, respectively. We include the pulse efficiency ε(α, δ)
because the phase mattering is conditioned upon the atom participating in the interferometer.

The pdfs for α and δ are shown in the lower and right sidebars, respectively. The pdf for
α assumes experimental values w0 = 718 µm, T = 300 nK, and σ0 = 400 µm, and t = 0 ms,
resembling a curve in Fig. 4.3.

The figure simulates a 3rd-order SDK pulse, (i.e., before the pulse in question, the atom
is in a superposition with the two arms having 8ℏk relative momentum between them). The
pdf for δ reflects this, having peaks around n = ±3. fD(δ) is here taken to be a cosine-
squared distribution with 2ℏk width because it looks cooler than the uniform distribution
we discussed earlier. This is probably more realistic anyways, since we use a velocity selection
pulse after the atoms have been launched, narrowing the velocity distribution. The f and δ
axes are equivalent, and show their respective labels.

In any event, switching to a uniform distribution (or even changing the width of the
momentum spread) changes the results only negligibly for cloud sizes > 100 µm, above
which the spread in α dominates.

Changing the SDK order affects the result only insofar as the α distribution is affected.
Since the Doppler separation between the arms (and thus δ) increases, the range of α over
which ε(α, δ) is appreciable shrinks, as seen from Fig. 7.5. This lowers the dynamic phase
spread, but addresses fewer atoms (i.e., no free lunch).

The phases shown via color in the opacity-masked phase map can then be sampled from
following the joint pdf fA(α)fd(δ)ε(α, f) (strictly speaking, ε(α, f) is not part of the pdf,
but represents the post-selection of atoms that participate in the interferometer.). After
sampling, these phases can be histogrammed to reveal the underlying distribution of phases.
The histogram at left shows these phases1. The white line shows the mean phase ϕ̄, and the
phase standard deviation σϕ is quoted.

The histogram really drives home this dynamic phase problem: there’s not a well-defined
phase here! Furthermore, this is only half of the interferometer’s dynamic phase, since
the arms of the superposition pick up equal phases with the opposite sign (see eq. 7.12).
Apparently we’ll need the dynamic phase cancellation to be pretty good for this phase spread
to be successfully reversed to un-wash out the interferometer contrast.

The preceding analysis shows that by far the most consequential effect for the spread in
dynamic phase is the spread in α. As such, the cloud size (relative to the laser beam waist)
is the dominant physical parameter controlling these spreads. A wide laser beam and small
atom cloud is better (what else is new). Fig. 7.17 demonstrates this effect.

1The phase map in Fig. 7.5 was unwrapped from [0, 2π) → R to extract these distributions using
Refs. [156,157].
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Figure 7.17: Dynamic phase vs cloud size. The same pulse and procedure generating the
histogram in Fig. 7.16 is repeated while varying the cloud size in units of the laser waist.
Our cavity mode waist is 718 µm, so cloud sizes of 100 µm to 1000 µm are shown. Plots at
top of the figure show the standard deviation of the phase σϕ (left) and the fraction of the
atom cloud successfully undergoing the pulse (right) as a function of the cloud size σatom.
After a certain cloud size comparable to the beam waist, the distribution stays more or
less the same, but fewer and fewer atoms undergo the pulse, as the rest see too low a laser
intensity. The steep right slope down from the histogram peak for small cloud sizes (i.e., the
first histogram row) is the only effect of finite momentum width; for zero momentum width
that slope is vertical, while a higher spread draws out the descent to higher ϕ. Clearly, the
intensity spread’s effect on the dynamic phase is much larger than that of the momentum
spread, especially for the actual cloud sizes used in the experiment (≳ 0.5w0).
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This behavior suggests that catching the atoms in the cavity mode after the interferometer
(i.e., performing a radial spatial selection) should decrease the phase spread among atoms
participating in the interferometer, increasing contrast (assuming some imperfection in the
dynamic phase cancellation). We do see this in the experiment; the catch significantly
increases interferometer contrast.

The model presented here so far is a solid start to understanding what’s going on with
the dynamic phase, and suggests ways one might optimize against SDK interferometer de-
phasing. However, it’s far from complete. A sampling of elements missing from the model
is listed below

1. The dynamic phase should in some way depend on the adiabaticity Q. We have not
yet investigated at all the dependence of ϕ on this parameter.

2. All of Sec. 4.3.2. Especially the changing Rabi frequency (and thus Q) via the Rabi
beatnote.

3. The catch doing a spatial filtering. While we’ve mentioned the qualitative effect, this
has not been carried out quantitatively.

4. Spatial separation of interferometer arms giving different dynamic phases, especially
via the Rabi beatnote. This could also lead to some weirdness.

Despite an alarmingly sparse understanding of the dynamic phase (the information in this
chapter was worked through almost entirely after the experiments), the interferometers still
worked. Apparently, the un-winding of the dynamic phase can be quite efficient. Contrast
persisted in the resonant AI after over 100 pulses, and the LMT interferometers worked up
to T = 44 ms at 16ℏk with the contrast still going strong. In the next section, we will present
some steps taken to help the dynamic phase cancellation work well.

7.4.3 Dynamic phase cancellation
The dynamic phase changes sign with the direction of the hyperfine transition |F = 3⟩ ↔
|F = 4⟩ and the sign of the detuning profile ∆(t). Consecutive ARP pulses can thus be
set to have their dynamic phases cancel. For the dynamic phase to cancel well between
two pulses, the atom should experience the two pulses as similarly as possible. If there is
a long time between the pulses, the atom’s motion in the radial direction can take it to a
region of different intensity (α) for the second pulse than the first pulse. In that case, the
total dynamic phase ϕtot = ϕ1 − ϕ2 won’t cancel to zero. And since this happens across the
ensemble of atoms, there will be a potentially large spread in ϕtot across the cloud, de-phasing
the interferometer.

So we want pulses that are meant to cancel each other’s dynamic phase to be close
together in time. On the other hand, we want large pulse separation time T to increase
sensitivity. It seems we’re in a pickle. A way around this is to use the even LMT orders.
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Rather than relying on pulses on either side of T to cancel each others’ dynamic phases, we
can use pairs of pulses on either side of T so the dynamic phase cancels irrespective of T .

A small hiccup to doing this involves “pulse-matching”, alluded to earlier in the chapter.
Since consecutive pulses on either side of T involve opposite transitions k+ and k−, they
interact differently with the cavity (see Chapter 4). Thus, one transition must be scaled so
that the peak Rabi frequency Ω0 is the same for the two pulses.

It is also necessary to avoid areas of the Rabi beatnote. The low Rabi frequency region
lowers the pulse adiabaticity. Additionally, on the slopes of the Rabi beatnote, vertical
movement between the pulses degrades the cancellation, even for the ∼ 200 µs separations
between matched pulses. An atom moving at 50 cm/s at the steepest slope of the beatnote
then moves 100 µm between the pulses. For the beatnote wavelength of 1.55 cm, this
gives a change in the peak Rabi frequency of about 4%, which is appreciable for large
dynamic phases. This behavior is further complicated by finite spatial separation between
the interferometer arms.

When calibrating pulse-matching, the atom sample must undergo the same trajectory as
in the interferometer. For example, when pulse-matching the 3rd and 4th pulses of an n = 4
LMT interferometer, all prior pulses must also be used to ensure the atom is in the same
location it will be during the interferometer pulses. Pulse matching is hard and kind of a
pain, as we have not yet developed a super solid calibration procedure. In any event, even
the odd-order SDK interferometers see contrast survive out to long pulse separation times
(Fig. 7.11).

Fig. 7.11 shows some strange contrast dips at intermediate T values for LMT orders
n = 1 to 3. n = 4 seems less affected. The strangeness arises from the Rabi beatnote for the
reasons discussed above, where we probably have imperfectly calibrated the pulse-matching
as a result. The n = 4 interferometer would be less affected, since it is the first order which
has 2 each of the k± transitions on either side of T . As a result, pulse matching is less critical
because k+ doesn’t need to be well-matched to k−.

Wavefront aberrations give small-scale variations in the local intensity, which can degrade
dynamic phase cancellation even for small movements of an atom. The clean wavefronts of
the cavity mode likely help a good deal to suppress this, but it’s unclear how much.

We sometimes observe that at the limits of our interferometer performance (especially
in the vicinity of Rabi dead-zones), lowering the intensity improves contrast. This seems
to go against the pervasive “high Ω0 is good” sentiment throughout this chapter. This is a
signature of imperfect dynamic phase cancellation. By lowering the intensity, we decrease
the total dynamic phase, and thus the size of its spread. In some regimes, this dynamic phase
cancellation boost seems to outweigh the hit in pulse efficiency, admitting an optimally-scaled
intensity (rather than just “infinite”).
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7.5 Summary
We have demonstrated a new tool for light-pulse atom interferometers by splitting the beam
splitter into two operations. This simple change enables the exclusive use of highly efficient
adiabatic passage, opening the door to a wide range of new and old geometries. The use
of Raman atom optics and a thermal sample greatly relax the complexity required of the
atom source to implement these geometries, without precluding their use in existing high-
performance devices. This technique combines the advantages of Bragg transitions (LMT
compatibility, ac Stark insensitivity) and Raman adiabatic passage (state labeling,high effi-
ciency, wide bandwidth). This tool’s flexibility allows specialization for multiple applications.
Short pulses forming many loops near a source mass would constitute a lock-in force sen-
sor probing viable mass ranges for light dark matter candidates [155]. High-power, large
bandwidth pulses with fast, simple atom preparation could provide LMT for precise inertial
sensing. Multi-pulse geometries, e.g., resonant AI or single-source gradiometer, enabled by
high fidelities can provide technical benefits to existing and future measurements. A next
step may envision a squeezed atom interferometer built using the collective cavity measure-
ment demonstrated in Refs. [158, 159]. The advantages of SDK interferometry are a new
item in the atom interferometry toolkit which may be preferable to alternatives for some
applications. We hope that SDK interferometry can make demanding experiments tractable,
as well as improve sensitivity across a range of measurement types.
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Chapter 8

Lattice atom interferometry

In Chapters 5 and 6, we saw that high sensitivity to interactions enables interesting physics
measurements. We have seen in several previous interferometer geometries that sensitivity
grows with interrogation time (e.g., pulse separation time T in a Mach-Zehnder). To provide
long interrogation times, atomic fountains with ∼10 m height have been [25] and are being
[26] constructed. Pushing this direction even further, plans for a 100 m [160] and a 300
m [161] fountain are in the works.

Very large atomic fountains are technically challenging. The resulting sensitivity to
vibrations requires elaborate inertial stabilization (for example, on the VLBAI experiment
[26] at Hannover), though certain techniques extract measurements even in the presence
of vibrations [16, 67]. Magnetic shielding and atom preparation become more costly and
elaborate as well, as does finding /constructing a site that the fountain can fit into.

Additionally, the sensitivity scaling with size is challenging. The atoms’ displacement
grows quadratically; to double available free-fall time, one would need a fountain 4 times
taller. For a Mach-Zehdner, this means that the sensitivity grows linearly with the fountain
height. Unfortunately, the experimental cost and complexity likely grows faster than linearly.

The requisite large spatial-scale homogeneity reflects the fact that in a large fountain, the
probe atoms’ trajectories take them through a large displacement. This large spatial extent
hampers spatial-resolution in a measurement. Interactions with a localized source mass of
the type in Chapters 5 and 6 are not aided by the nominal increase in sensitivity when the
interferometer takes place over such a large region.

One workaround for these difficulties is to go to space [162–164] for microgravity. There,
the atoms are in free-fall with the experiment, and interrogation times can be seconds long
on small spatial scales. Unfortunately, going to space is a luxury reserved for the few and
the powerful.

An alternative avenue is available for those of us who are forced to remain Earth-bound.
After separating the atomic wavefunction, one can hold the atoms in a potential, supporting
them against free-fall due to Earth’s gravity. This has been previously demonstrated in
Refs. [117, 118]. However, these two previous demonstrations made clear that requirements
on the uniformity of the holding potential are strict.
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Figure 8.1: Lattice interferometer geometry. Each laser pulse (indicated by squiggly lines) is
a beamsplitter pulse. Solid blue and dashed red lines indicate atomic trajectories in opposite
hyperfine states. Trajectories marked with an × are blown away. The time between pulses
2 and 3 is T ′ = τ + 2t2A, where τ is the time the atoms are held in the optical lattice. Only
two of the four output ports interfere at the final pulse.

In our experiment, we have demonstrated an interferometer that coherently holds the
atoms in a spatially-separated superposition state for over 10 seconds before reading out
interference. This is over a factor of 4 longer than the previous longest atom interferometer
we are aware of. We discuss the status of these ongoing efforts in this chapter.

8.1 Trapped atom interferometer in an optical lattice
The trapped interferometer sequence we perform is shown in Fig. 8.1. After launching the
atoms upwards, two Raman beamsplitter pulses are performed, separated by a time T . This
gives four total output arms. Two arms in one hyperfine state blown away, leaving two
spatially separated arms in the same internal state with the same momentum. At the apex
of the atomic trajectory, a lattice is adiabatically ramped on, loading the atoms into the
lowest Bloch band (see Sec. 8.4 for details on Bloch oscillations). After some hold time,
the lattice is adiabatically lowered, releasing the atoms. After falling for a time t2A (“time
to apex”), two more beamsplitters are applied, again separated by a time T . This third
beamsplitter again gives four output arms, two of which spatially overlap at the final pulse,
and interfere.

This geometry is similar to that of Refs. [117,118]. In both of these previous realizations,
performance was limited by beam quality. Wavefront imperfections such as speckle, or par-
asitic reflections give rise to random momentum kicks of the separated arms relative to each
other. When this occurs, the interferometer does not close after the final two beamsplitter
pulses.

An optical cavity is then ideally suited to further push this technology. The mode-filtering
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characteristic of an optical cavity provides clean wavefronts in which the spatially-separated
superposition state can Bloch oscillate. The hope is that these clean wavefronts will provide
long interrogation times.

A note about terminology. Some of the literature distinguishes between “hybrid” and
“trapped” interferometers. In the former, part of the interferometer takes place in free-fall.
In the latter, the atoms are trapped for the entire interferometer duration. We may be
fairly sloppy with this distinction, but all interferometers discussed here are of the “hybrid”
type. We will also call our geometry a “lattice atom interferometer” (“lattice AI”), or lattice
interferometer”.

8.1.1 Phase calculation
Laser phase

The phase can be calculated using the machinery from Chapter 2. The laser phase for a
lattice AI of the geometry in Fig. 8.1 in a constant gravitational field is given by

ϕL = (φ1 − φ2)− (φ3 − φ4) (8.1)
= −keffgT (T + 2t2A) (8.2)

where g is the acceleration due to gravity, and keff is the effective wavevector. Eq. 8.2
represents the specialization of eq. 8.1 to the geometry shown in Fig. 8.1.

The appearance of t2A in eq. 8.2 is a bit jarring on first glance. This simply reflects that
for large t2A, the atoms are moving faster between pulses 1&2 (and 3&4), so the distance
between points on the atomic trajectory for fixed pulse separation T is larger. Note that in
the limit t2A → 0, the laser phase reduces to the expression for a Mach-Zehnder (which, if
τ = 0, the geometry indeed becomes).

Free evolution phase

The free evolution phase (more details in Sec. 2.2) is given by

∆ϕFE =
1

ℏ

(∫
Γcl

T − U

)
upper

− 1

ℏ

(∫
Γcl

T − U

)
lower

= ϕK − ϕU

where ϕK is the kinetic phase and ϕU is the potential phase. The kinetic phase is given by
integrating

ϕK =
1

2
m

∫ (
vupper(t)

2 − vlower(t)
2
)
dt (8.3)
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= gkeffT (T + 2t2A) (8.4)

The potential contribution to the free evolution phase is found analogously by integrating
the potential seen by the classical paths of the interferometer arms over their trajectories.
For the potential U = mgz, this is given by

ϕU = mg

∫ (
zupper(t)

2 − zlower(t)
2
)
dt (8.5)

= gkeffT (T + 2t2A + τ) (8.6)

The 8 configurations

There are actually 8 different configurations of the lattice AI. These are determined by

• κ12: Which of the k± transitions are used for beamsplitters 1 and 2?

• β01: Do we blowaway the un-kicked of the 4 arms?

• κ34: Which of the k± transitions are used for beamsplitters 3 and 4?

We’ll take κij = ±1 for the k± transition. We’ll use β01 = 1 when the one un-kicked
arm (of the four outputs of the first two beamsplitters) is blown away, and β01 = 0 when it
is loaded into the lattice. Typically, we’ll prefer to use β01 = 1 since it helps with spatially
selecting central atoms.

Since the quantity gkeffT (T + 2t2A) appeared multiple times the previous section, we’ll
give it a name:

gkeffT (T + 2t2A) ≡ ϑ (8.7)
The 8 configurations, along with their respective phases are shown in Fig. 8.2. To keep

a consistent notation, all phases quoted are of the form

ϕX = ϕ1
X − ϕ2

X

where ϕ1
X is the phase due to X on arm 1, and arm 1 is defined as the arm that is kicked

by the first pulse. The other arm, that interferes with arm 1, is arm 2. This convention also
determines the relative sign of phases in this section.

Trajectories for the 8 combinations {κ12, β01, κ34} are shown in Fig. 8.2. The common
mode motion due to gravity has been subtracted out to help see the differences between
the geometries (i.e., the motion of the interferometer arms is shown in a frame freely-falling
with the atoms). The set of {κ12, β01, κ34 } corresponding to each geometry is shown in the
upper left of that cell.
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{+1, 1, +1} {+1, 0, +1} {+1, 1, -1} {+1, 0, -1}

{-1, 1, +1} {-1, 0, +1} {-1, 1, -1} {-1, 0, -1}

Figure 8.2: Lattice AI configurations. See main text for discussion.

We denote by ϕ∗
L the part of the laser phase independent of the ramp rate, i.e., what

the laser phase would be if the Raman frequency were not ramped. That is, the total laser
phase will be given by

ϕL = ϕ∗
L + ϕL,α

where ϕL,α depends on the exact implementation of the gravity ramp (which can no longer
be a simple linear ramp, due to a nonzero hold time τ).

While eq. 8.1 applies in all cases (and thus, ϕ∗
L =

∑4
i=1 keffz1(2)(ti).), it hides(by vague

notation of the ϕis that the correct of z1(t) or z2(t) must be chosen to represent the arm
that was actually kicked by the pulse.

Several observations are noteworthy. First, we see that the ϑ in the kinetic phase is
always canceled by the ϑ in the potential phase since ϕFE = ϕK − ϕU . This is familiar
from the Mach-Zehnder geometry from Section 2.4. Second, we note that the phases do not
depend on β01, i.e., which two arms are caught1.

Half of the geometries are sensitive to the recoil velocity vr. These recoil-sensitive ge-
ometries look familiar; they’re Ramsey-Bordé interferometers. The recoil-sensitive, Ramsey-

1other than the implied change of t2A by ±1 Bloch period τB ≈ 708 µs
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Bordé geometries are denoted by black trapezoids. The kinetic phase ϕK has the same
sensitivity to ωr for all 4 recoil-sensitive schemes. The laser phase ϕ∗

L gets a contribution as
well from the kinematic dependence of the recoil velocity as the wavepackets separate along
the laser wavevector.

These effects are all interesting and worth fleshing out, but the real prize is the extra
term contained in ϕU of the free evolution phase: keffgTτ . Our goal will be to make τ very
long to make this phase term large. For demonstrated parameters T = 1.066 ms, τ = 10 s,
this phase term is over 1000 times larger than any of the other phase terms discussed in this
section.

8.2 Far-detuned laser system
To introduce a third wavelength into the science cavity, we need a new laser with a widely
tunable lockpoint. We use an external cavity diode laser (New Focus TLB7100) at 866 nm.
This was chosen for two reasons. The first was so that the new laser wavelength has high
reflectivity off the existing coating of the in-vacuum dielectric cavity mirror.

Given this constraint, the second reason was to minimize single-photon scattering. The
atomic polarizability from the D2 transition at 852 nm is used to provide the high-field
seeking trapping potential. However, the D1 line of cesium is around 894 nm. A beam
red-detuned (high-field seeking) by ≲ 42 nm from the D2 line is blue-detuned (low-field
seeking) from the D1 line. For intermediate wavelengths between these transitions, these
effects compete. At the “tuneout wavelength”, the attractive and repulsive effects cancel
exactly, and the atom experiences no energy level shift (trapping potential). For the cesium
D1 and D2 lines, this tuneout wavelength is ≈ 880.25(4) nm [165].

For fixed trap depth then, there exists a wavelength that has a minimum scattering rate.
Too close to the D2 line, and the scattering rate ∝ 1

∆2 becomes too high. Too close to
the tuneout wavelength, and the required optical power for trapping further increases the
scattering rate. This behavior is shown in Fig. 8.3.

The optimal wavelength is around λ = 866.9 nm, which gives a single-photon scattering
rate Γsc = 2π × 0.09 Hz (τsc = 2πΓ−1

sc = 10.9 s). Our laser is at 866.0 nm, which does not
change these numbers at the stated precision. Calculations are performed by application of
the formulas in Ref. [132]; involving the vector and tensor polarizabilities may somewhat
change them (but the simple analysis giving nearly the correct tuneout wavelength indicates
that corrections should be small).

8.2.1 Widely-tunable locking scheme
To introduce the 866 nm light into the science cavity, it should be tunable by at least half
of the free spectral range (FSR = 399.8 MHz) to guarantee co-locking with the science and
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Figure 8.3: Scattering from the D1 and D2 lines. The right axis shows the incident optical
power on our cavity at 65% coupling efficiency required to trap cesium atoms at a depth
U0 = 5Erec at the center of the beam. The left axis shows the resulting single-photon
scattering rate. Note that the scattering rate blows up near the tuneout wavelength, where
the ac Stark shift becomes so small that very high laser powers are required to form a
5Erec-deep lattice. Above this wavelength, the trapping potential is low-field seeking.

tracer lasers. The method used to co-lock the science and tracer lasers is not scalable to an
additional laser2.

To address this problem, we use the first of two methods presented below to provide a
widely tunable (> 600 MHz) lockpoint for the 866 nm laser. The first method presented is
a bit more expensive (using both a fiber EOM and a free space EOM), but less susceptible
to residual amplitude modulation (RAM). The second method uses only the fiber EOM, in
an interesting scheme. We found that the resulting RAM was unfortunately too high.

Both schemes utilize the low Vπ of fiber EOMs to provide broadband-edness. Unfortu-
nately, the optical interconnects from optical fiber to EOM crystal back into optical fiber
can have poor polarization-maintaining qualities relative to a free space EOM. Fiber EOMs
are thus more susceptible to RAM.

Actual method used

The scheme we actually use is fairly simple. A free space EOM is used to put Pound-Drever-
Hall modulation at fpdh ∼ 20 MHz onto the input beam. The beam then enters a fiber EOM,
and is modulated at a much higher, tunable frequency Ωmod/2π between 675 - 1300 MHz.
This creates ±1-order sideband manifolds, separated from the carrier by the tunable Ωmod.
Each of these manifolds has the PDH sidebands of the input beam. They each (in addition
to the carrier) give a PDH error signal, with opposite signs. Each sideband manifold can be

2Namely, coarsely finding an appropriate free spectral range to lock the tracer laser to (5 GHz incre-
ments), and fine-tuning with a hi-bandwidth AOM would be a pain to implement with yet another laser.
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tuned between 675− 1300 MHz, limited only by an amplifier used, and either can be locked
to.

Since this tuning range is greater than the free spectral range of the science cavity, we are
guaranteed a co-locking point even with just one of the sideband manifolds. Furthermore,
the RAM introduced by the fiber EOM is not at the Pound-Drever-Hall frequency, but at
Ωmod, so it doesn’t give the error signal an offset.

By locking a sideband manifold to the transfer cavity, the lattice laser itself can be moved
by tuning Ωmod. This allows us to co-lock the lattice laser onto the science cavity, alongside
the science and tracer lasers. This method works so well that if re-working the experiment,
we would set it up for the tracer laser as well.

Alternative, interesting method

A second method was ultimately abandoned due to RAM. However, it’s an interesting scheme
with possible applications elsewhere, so we’ll describe it here.

The basic idea is similar to the previous method: generate sideband manifolds that are
separated by a large, tunable frequency, each with their own Pound-Drever Hall structure.
However, rather than perform each of these steps separately, they are performed together by
phase modulating the phase modulation. This type of lock has previously been proposed [166]
and demonstrated [167, 168], and we will refer to it as electronic sideband (ESB) locking.

The work in this section was performed first at the Institut für Quantenoptik at Leibniz
Universität Hannover (IQO Hannover) during a 6-week visiting scholar stint I spent there,
and later back on the home base with this 866 nm laser.

To generate the PDH sideband manifolds, we send phase-modulated phase modulation
into a fiber EOM. This requires a voltage of the form

Veom = Vβ1 sin (Ωmodt+ β2 sin(ωpdht)) , (8.8)
where Ωmod is the large, tunable frequency, and ωpdh = 2πfpdh is the Pound-Drever-Hall
frequency. β2 is the modulation depth of the phase modulation (i.e., it’s the PDH β), and
Vβ1 is the overall scale factor that determines how much of the laser power goes into each
sideband manifold. This can be seen more explicitly using the Jacobi-Anger expansion eq.
4.9 to expand the phase modulated laser beam given by

Eout = E0 exp

[
−iωLt− iβ1 sin

(
Ωmodt+ β2 sin(ωpdht)

)]
, (8.9)

for optical input E0e
−iωLt.

To generate this waveform, we use a vector multiplier (Analog Devices ADL5390). This
particularly slick implementation of electronic sideband locking is due to Étienne Wodey.
The lock scheme using the vector multiplier is shown in Fig. 8.4. The high-frequency
signal at Ωmod is first split into its quadrature components before being sent into the vector
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Figure 8.4: Electronic sideband locking with a vector multiplier.

multiplier. An additional input (the “baseband” signal) for each quadrature then multiplies
the respective quadrature. These two are summed into the output of the vector multiplier.

For an input Vin = A sin(Ωmodt), the output is given by

Vout = G(A sin(Ωmodt+ φ)) (8.10)
where G and φ are given by

G =
1

V0

√
V 2

IBB + V 2
QBB (8.11)

φ = arctan (VQBB/VIBB) (8.12)

That is, the magnitude of the output is given by the quadrature sum of the baseband
signals (scaled to some reference V0), and the phase is set by the relative size of the baseband
signals. This device thus gives arbitrary control of the amplitude and phase of the output,
presenting a flexible path to generating the signal required by eq. 8.10. The baseband inputs
are simply the waveforms that give G = 1, and φ = β2 sin(Ωpdht). The resultant waveforms
are

VQBB =
Vpp

2
sin (β2 sin(Ωpdht)) (8.13a)

VIBB =
Vpp

2
cos (β2 sin(Ωpdht)) (8.13b)

These waveforms can be generated with an AWG, and used to drive the baseband inputs of
the vector multiplier. Alternatively, they can be approximated by sinusoids to eliminate the
use of an AWG. These approximating sinusoids are

V ′
QBB =

Vpp sin β2
2

sin(Ωpdht) (8.14a)
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Figure 8.5: Electronic sideband locking baseband inputs. Left: ESB baseband signals for
β2 = 1.08. Thick red (blue) signals are VIBB (VQBB) from eqs. 8.13. Approximating signals
given by the sinusoids eqs. 8.14 are shown in black dotted (dashed) lines. Right: Resulting
rf spectrum output from vector multiplier for Ωmod = 2π × 800 MHz, Ωpdh = 2π × 9 MHz.

V ′
IBB =

Vpp(1− cos β2)

2

(
cos(Ωpdht) +

1

2
cot2

β2
2

)
(8.14b)

Both the true and approximated waveforms can be seen in Fig. 8.5.
Applying this signal to an EOM, the resulting optical spectrum, as seen in transmission

through the Hannover optical cavity, can be seen in Fig. 8.6, alongside the resulting PDH
error signals.

Vpp is chosen based on the Vπ of the EOM. The error signal is maximized when the optical
power in the ±1 manifolds are maximized, at β1 ≈ 1.84.

An interesting side application of this technique is 3f demodulation. This locking scheme
phase modulates hard, at high β ∼ 3.83 such that the first-order sidebands disappear and
there are significant 3rd-order sidebands. The PDH photodiode signal is demodulated at
3Ωpdh, rather than the usual 1Ωpdh. This type of locking can be less sensitive to RAM, as
well as provide some other benefits3 [169].

Typically though, one needs to modulate the EOM so hard that this technique is uncom-
mon. When generating the phase modulation via the baseband inputs however, achieving
high β is as simple as changing the waveform! The necessary waveforms (eqs. 8.13 with
β2 = 3.83), the resulting transmission spectra and PDH signals can all be seen in Fig. 8.7.

While the ESB lock worked quite well at Hannover, the fiber EOM used at Berkeley gave
more residual amplitude modulation than the previously discussed two-EOM technique. The
Hannover fiber EOM (iXBlue Photonics, NIR-MPX800-LN-10) was fabricated with a “proton

3For example, in cryogenic applications where laser-induced heating of the cavity matters, the 3f-PDH
lock gives less power circulating in the cavity at fixed signal-to-noise.
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Figure 8.6: ESB error signals with β2 = 1.25. Left: ESB lock signals on the Hannover cavity.
Lower, cyan trace shows transmission through the cavity, and thus the optical spectrum.
PDH error signal is shown in the upper, blue trace. Note the lack of a PDH signal around
the non-tunable carrier. The spurious sidebands near the carrier are second order sidebands
(giving no error signal) due to incorrect driving of the vector multiplier, and were later
corrected (along with the other spurious peaks). Right: Traces of the same quantities on the
Berkeley cavity (our transfer cavity; lower finesse than the Hannover cavity).
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Figure 8.7: Left: Baseband inputs for producing β2 = 3.83. Red (blue) signals are VIBB
(VQBB). Right: Optical spectrum in transmission and resulting error signal, using the Han-
nover cavity. Note the absence of the ωL ± 1Ωpdh peaks. The offset of the error signal from
the dark blue triangle is an artifact of the oscilloscope ground.
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exchange based” process, while the Berkeley fiber EOM (EOSpace) manufacturing method
is unclear, which could explain the difference. The Berkeley fiber EOM also required fiber-
to-fiber mating sleeves to bring the laser light to the experiment, and evidence of etaloning
was observed4. It’s possible that etaloning was still the culprit behind the remaining RAM.
This interpretation is also supported by 3f-demodulation not appreciably reducing the RAM.
The ESB method was not ultimately used in our cavity interferometer.

8.3 Immunity to vibrations
Vibrations are a difficult and ubiquitous noise source for atom interferometer gravimeters.
Significant effort [18, 62, 170–172] is expended to suppress, actively stabilize, and/or post-
correct against these vibrations.

It turns out that the lattice interferometer can subvert this noise source. To see how,
we take a quantitative look into the vibration response of the lattice AI compared to the
traditional AI gravimeter geometry, a Mach-Zehnder.

8.3.1 The framework
We will consider the interferometer pulse durations to be zero, i.e., Ω2γ → ∞. Our analysis
could be done without this assumption, as in Refs. [42, 173], but it would unnecessarily
complicate the formulas. The basic effect of including a finite Rabi frequency is to introduce
a high-frequency cutoff to the interferometer transfer function. This is worth considering,
for example if the Raman beams derive from two phase-locked lasers, which can give the
laser phase high-frequency noise. For Bragg pulses, or Raman pulses using an EOM (such
as ours), this high frequency noise source does not exist, and we concern ourselves with
low-frequency noise arising from mechanical vibrations of the retroreflection mirror (which
serves as the phase reference to the atoms). We will first look at the vibration sensitivity
of the Mach-Zehnder, before extending the formalism to our lattice interferometer. Much of
this formalism comes from Ref. [173].

Mach Zehnder geometry

In the Mach-Zehnder, vibrations can enter via the laser phase

∆ϕL
MZ = ϕ1 − 2ϕ2 + ϕ3 (8.15)

where ϕi are the laser phases seen by the atom at pulse i (see Sec. 2.4). The laser phases
include the positions (ϕi = keffx(ti) + . . .), which is how vibration noise enters the interfer-
ometer.

4RAM decreased after application of index-matching gel between the fiber tips
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We introduce a quantity gMZ(t) called the sensitivity function. The sensitivity function
is defined so that a jump in the laser phase by dϕL at time t shifts the interferometer phase
by dϕMZ. That is,

dϕMZ = gMZ(t)dϕL

Suppose we have noise on the laser phase over the interferometer duration ϕL(t). This
could be, for example, noise on the Raman beatnote, or position noise of the retroreflection
mirror. We can calculate the full effect on the interferometer phase by integrating the phase
noise against the sensitivity function

ϕMZ =

∫
dt gMZ(t)

dϕL

dt
(8.16)

From the expression for the Mach-Zehnder laser phase in eq. 8.15, we see that the sen-
sitivity function is

0 T 2T

-1

0

1

���(�)

gMZ(t) =


−1 0 < t < T

+1 T < t < 2T

0 else
(8.17)

The only problem is that we are interested in the noise contribution to ϕL(t) which,
by definition, we do not have an expression for. Therefore, we’ll move to Fourier space to
calculate the size of interferometer phase fluctuations for a given distribution of laser phase
noise. We will indicate the Fourier transform of a time-domain function with a tilde. That
is, f̃(ω) is the Fourier transform of f(t). Explicitly, the transform and its inverse are given
by

f̃(ω) =

∫ ∞

−∞
dω e−iωtf(t) f(t) =

∫ ∞

−∞
dt eiωtf̃(ω) (8.18)

We can expand ϕL(t) as the inverse Fourier transform of ϕ̃L(ω) in eq. 8.16, and use the
resulting exponential to convert gMZ(t) into its Fourier transform. The result is

ϕMZ =

∫
dω (−iω)g̃MZ(ω)ϕ̃L(−ω)

≡
∫
dωHϕL

MZ(ω)ϕ̃L(−ω) (8.19)
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where in the second line we have found/defined the transfer function of the interferometer
from laser phase noise ϕL to interferometer phase noise, HϕL

MZ(ω). Explicitly, this is

HϕL
MZ(ω) = −iωg̃MZ(ω) (8.20)

where the Fourier transform of the sensitivity function gMZ(t) is

g̃MZ(ω) =
4

iω
e−iωT sin2

(
ωT

2

)
(8.21)

Again, since we’re talking about noise, we are interested in the variance of the interferom-
eter phase noise, Var[ΦMZ]. We’ll treat atom interferometer phase noise ΦAI as a distribution
from which a random variable ϕAI is drawn (typically, capitalization indicates the distribu-
tion of a random variable, while lower case indicates a sample). The distribution ΦAI is
defined by the power spectral density (PSD) of the noisy variable (in this case, the laser
phase noise), which we will show next. We can express the variance of an interferometer
phase in the form of eq. 8.19 as

Var[ΦAI] = ⟨Φ2
AI − ⟨ΦAI⟩2⟩

=

∫ ∞

−∞
dω

∫ ∞

−∞
dω′H∗

X(−ω)H∗
X(−ω′) ⟨ X̃(ω)X̃∗(ω′)− ⟨X̃(ω)⟩⟨X̃∗(ω′)⟩ ⟩

where X is the noisy variable, and HX is the transfer function between the noisy variable
and the interferometer output. We have used that ϕAI = ϕ∗

AI (because it’s real-valued) to
arrive at the form above. Note that the expression in the outer expectation brackets is of
the form ⟨Y Z − ⟨Y ⟩⟨Z⟩⟩. If Y and Z are uncorrelated, this expression vanishes. Thus, if
we assume that laser phase noise at frequency ω is independent from the noise at frequency
ω′ ̸= ω, we get

Var[ΦAI] =

∫ ∞

−∞
dω|HX(ω)|2⟨|X̃(−ω)|2⟩

where we have also identified that ⟨X̃(−ω)⟩ = 0 because X̃(ω) is the Fourier transform
of X(t) which, as noise, has expectation value zero; positive and negative fluctuations are
equally likely.

If we assume that our noisy variable (in this case, the laser phase noise ϕL(t)) distribution
is a “wide-sense stationary” distribution (basically, parameters of the distribution aren’t
changing in time), the Wiener–Khinchin theorem identifies the expectation value of the
norm-squared of the Fourier transform ⟨|X̃(−ω)|2⟩ as the power spectral density SX(−ω).
The power spectral distribution of a real-valued variable is even, so we finally arrive at

Var[ΦAI] =

∫
dω|HX(ω)|2SX(ω)

Now that we have worked through this formalism in some detail for the Mach-Zehnder
case, we look at the lattice interferometer.
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Lattice interferometer laser phase

The laser phase for our lattice interferometer is given by

∆ϕL
latt = (ϕ1 − ϕ2)− (ϕ3 − ϕ4) (8.22)

By inspection, we can write down the sensitivity function as

0 T T+τ 2T+τ

-1

0

1

��� ����(�)

gL,latt(t) =


−1 , 0 < t < T

0 , T < t < T + τ

+1 , T + τ < t < 2T + τ

0 , else
(8.23)

The Fourier transform is

g̃L,latt(ω) =
4

iω
e−

i
2
ω(2T+τ) sin

(
ωT

2

)
sin

(
ω(T + τ)

2

)
(8.24)

Since the analog of eq. 8.16 applies to laser phase of the lattice AI as well, the transfer
function is

HϕL
L,latt(ω) = −iωg̃L,latt(ω) (8.25)

Lattice interferometer free evolution phase

The fact that the lattice AI laser phase transfer function gL,latt(t) is zero during τ (which can
be much larger than T ) hints that the sensitivity to laser phase noise could be suppressed. In
the case of accelerations from vibrations of the lattice holding the atoms, does this not violate
the equivalence principle? The equivalence principle states that an acceleration is locally
indistinguishable from a gravitational field. While the laser phase ∆ϕL

latt is not sensitive to
transients during the (potentially long) time τ , we are saved from such a violation by the
free evolution phase.

We will assume that the atomic wavepacket follows the vibrating lattice. This assumption
may be frequency-dependent due to the adiabatic nature of the Bloch oscillations (e.g., do
Bloch oscillating atoms average out fast vibrations of the lattice? ), but it is the conservative
(and reasonable) one to make to assess the vibration sensitivity. In any event, we will be
concerned with low frequency vibrations.

Vibrations of the retroreflection mirror are given by an acceleration profile a(t). In our
case of a cavity without a single retroreflection mirror, we can consider the cavity as a rigid
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body because the length-stabilization feedback bandwidth (∼ 40 kHz) is much faster than
the frequencies of vibrations we’ll be concerned about (∼ 1− 100 Hz).

The free evolution phase ∆ϕFE is given by the integral of the Lagrangian over the classical
path (see Sec. 2.2). Since vibration noise does not affect the kinetic part of the free evolution
phase, we concern ourselves with the potential part:

∆ϕFE =
1

ℏ

(∫
Γcl

��T − U

)
upper

− 1

ℏ

(∫
Γcl

��T − U

)
lower

= −(ϕU
upper − ϕU

lower)

≡ −ϕU

where ϕi
U = 1

ℏ

∫
Γi
Ui. For acceleration noise due to vibrations, we can use the equivalence

principle to think of these accelerations as a noisy gravitational field with potential given by

U = ma(t)∆z(t)

where a(t) is the noisy acceleration, and ∆z(t) is enforced by the interferometer geometry.
This acceleration due to mirror vibrations only talks to the atoms during the hold, when

their trajectory is enforced to follow the mirror position. To fit this into the framework de-
veloped for the laser phases, we can write ∆z(t) → ∆zmax gU,latt(t), where ∆zmax = veff

recT =
ℏkeffT/m. We will also call the unitless gU,latt(t) a sensitivity function, in analogy with the
same quantity for the laser phases of the previous sections. It is given by

0 T T+τ 2T+τ

0

1

��� ����(�)

τhold

gU,latt(t) =

{
1 , t ∈ τhold

0 , else
(8.26)

Note that the hold time τhold is less than the total time τ between laser pulses 2 and 3
because of the times t2A. The noise contribution to the free evolution phase is then

ϕU = keffT

∫
dt a(t)gU,latt(t)

From here, we can play the same Fourier tricks from the previous sections to get

ϕU = keffT

∫
dω ã(−ω)g̃U,latt(ω)
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≡
∫
dωHa

U,latt(ω)ã(−ω) (8.27)

again defining a transfer function Ha
U,latt of the interferometer from acceleration noise to free

evolution phase noise. Explicitly, these quantities are

g̃U,latt(ω) =
2

ω
e−iω(T+τ) sin

(ωτhold

2

)
(8.28)

and the transfer function is given by

Ha
U,latt(ω) = keffT g̃U,latt(ω)

Bringing it all together
So far we’ve looked at laser phase noise and acceleration noise. We are concerned with
acceleration noise due to vibrations, so we should express the laser phase noise inputs ϕL
as functions of acceleration noise. The laser phase noise can be expressed in terms of the
position phase noise as

ϕL(t) = keff (xretro(t)− xatom(t))

The acceleration is the second time-derivative of the position, which we can evaluate by
going to Fourier space to take these time derivatives,

x̃(ω) =
1

(iω)2
ã(ω) (8.29)

It’s worth noting that when assuming that the atoms are trapped and localized in lattice sites,
the change in (xretro(t) − xatom(t)) is zero. However, this is incidental since the sensitivity
function gL, latt(t) is already zero there; i.e., even if this geometry were used in free fall (no
lattice hold during τ), nonzero fluctuations in (xretro(t)−xatom(t)) during τ do not enter into
the laser phase.

We can now use eq. 8.29 to get the laser phase noise in terms of the acceleration noise:

ϕ̃L(ω) = −keff

ω2
a(t)

where we’ve let a(t) = (ãretro(ω)− ãatom(ω)), since the previous paragraph argues why we
only need to keep track of the acceleration of the retroreflection mirror.

We can now translate all of the transfer functions into the common noisy variable of
acceleration noise. That is, we convert the laser phase transfer functions to acceleration
transfer functions by

Ha
i (ω) = −keff

ω2
HϕL

i (ω)
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We can now write the expected fluctuations for each of the three phases ϕi (ϕL
MZ, ϕL

latt
and ϕU

latt) in a common language. If we define (σrms
i )2 = Var[Φi], we can write the following

expressions for the rms fluctuations of the interferometer phase:

(σrms
i )2 =

∫
dω|Ha

i (ω)|2Sa(ω)

Table 8.1 shows the summary of these quantities.

Table 8.1: Vibration-sensitivity expressions for relevant interferometer phases

Mach-Zehnder
laser phase ϕL

MZ

Lattice AI
laser phase ϕL

latt

Free evolution
phase ϕU

latt

ϕAI ϕ1 − 2ϕ2 + ϕ3 (ϕ1 − 2ϕ2)− (ϕ3 − ϕ4)
m
ℏ

∫
dt a(t)∆z(t)

Noisy X(t) ϕL(t) ϕL(t) a(t)

∆ϕi(X)
∫
dt g(t)dX

dt

∫
dt g(t)dX

dt
keffT

∫
dt g(t)X(t)

g(t)

f : X 7→ a −keff
ω2 −keff

ω2 1

|Ha
i (ω)|2 16k2eff

ω4 sin4
(
ωT
2

) 16k2
eff

ω4 sin2
(
ωT
2

)
sin2

(
ω(T+τ)

2

)
4k2effT

2

ω2 sin2
(
ωτhold

2

)

8.3.2 Comparison of lattice AI and Mach-Zehnder vibration
sensitivities

A comparison of the vibration sensitivity of the Mach-Zehnder and lattice AI geometries is
shown in Fig. 8.8. In the problematic frequency range of ≈ 1− 100 Hz, the lattice AI shows
significant suppression compared to the Mach-Zehnder.
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Mach-Zehnder laser phase

Lattice AI laser phase

Lattice AI free evolution phase
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Figure 8.8: Vibration sensitivity of lattice and Mach-Zehnder AIs. Normed transfer functions
|Ha

i (ω)|2 are shown (where ω = 2πf) for the Mach-Zehnder (red) and lattice AI (blue) laser
phases, and the lattice AI free evolution phase (green). Left plot shows out to high frequency
where ω−2 and ω−4 behavior can be seen. Right plot is a zoomed view of the same plot. Here,
T = 1 ms, τ = τhold = 10 s, and TMZ =

√
T (T + τ) = 100 ms was used in the Mach-Zehnder

to give an interferometer with equal sensitivity to the gravitational acceleration.

This suppression is shown as a function of frequency in Fig. 8.9, where the ratio of
the norms-squared of the transfer functions |Ha

i (ω)|2 is plotted. The ratio is seen to go
to 0.5 at very low frequencies (near dc), because the lattice interferometer has equal-sized
contributions from both the laser phase and the free evolution phase, while the Mach-Zehnder
has only the laser phase. In the troublesome frequency range of 1 − 100 Hz, the lattice
interferometer is seen to offer significant suppression. Note that the quantities |Ha

i (ω)|2
(the ratio of which is plotted) is related to the variance of the interferometer phase, so the
interferometer phase fluctuations have an rms value related to the square root.
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Figure 8.9: Vibration sensitivity suppression factor. The ratio |Ha
MZ(ω)|2/|Ha

latt(ω)|2 is plot-
ted as a function of frequency using the same parameters as described in the Fig. 8.8 caption.
Fast oscillations at sin2(ωτ

2
) in this plot are averaged smooth for all but the first cycle.

To actually calculate the interferometer phase noise, we need an acceleration power
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spectral density Sa(ω) against which to integrate the |Ha
i |2. We can use the isolated-but-

unstabilized spectrum from Fig. 3.25 measured on our experiment with a seismometer to
calculate (σrms

MZ )
2 and (σrms

latt )
2 = (σrms

L,latt)
2+(σrms

U,latt)
2. Comparing these quantities for the same

parameters as in Fig. 8.8, we find

σrms
latt = 0.016σrms

MZ

That is, the rms phase fluctuation due to vibration noise for the lattice AI is only 1.6%
that of a Mach-Zehnder with the same sensitivity to gravity (for this representative vibration
spectrum).

8.4 Bloch oscillations
Holding the atoms in a shallow optical lattice is a more dynamical process than first meets
the eye. Specifically, the behavior of a matter wave in a periodic potential is known as Bloch
oscillation. Consider the potential formed by an optical lattice:

V̂ = ℏU0
1 + cos(2kẑ)

2
(8.30)

where the laser propagates in the z-direction, k = 2π
λ

and λ is the laser wavelength. U0 is
the lattice depth. As with the Raman transitions from Sec. 2.3, the potential contains the
exponential terms e±i2kẑ. We therefore expect a state with momentum p to be coupled to
states of momentum p± 2ℏk. Thus, we will work in a basis of states

|p, n⟩ := |p+ 2nℏk⟩

Putting this potential into the Schrödinger equation using this |p, n⟩ basis yields the
Hamiltonian

ĤBloch =



. . . κ 0 · · · 0 · · · 0

κ β2
−l κ

. . . ... ...
0 κ

. . . κ 0 · · · 0
... . . . κ β0 κ

. . . ...
0 · · · 0 κ

. . . κ 0
... ... . . . κ β2

l κ

0 · · · 0 · · · 0 κ
. . .


(8.31)

where βl = (p+2lℏk)2
2m

+ 2κ and κ = U0/4, and we’ve set ℏ = 1. The matrix being tridiagonal
reflects the potential coupling a state |p, l⟩ to itself and |p, l ± 1⟩.
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The periodic nature of the potential means that the Hamiltonian commutes with a trans-
lation operator

T̂d = exp(i p̂ d/ℏ)

where d = λ/2 is the periodicity of the lattice. There therefore exist simultaneous eigenstates
of both the Hamiltonian ĤBloch and the translation operator T̂d. These eigenstates form the
Bloch basis that we will use to describe the atoms in the lattice. These states are denoted
by |q, n⟩.

The parameter q is called the quasimomentum, which is a conserved quantity under
ĤBloch. As the name suggests, the quasimomentum is the periodic potential’s analog of the
free space momentum. Eigenvalues of T̂d must be complex numbers with unity norm, so we
can write them as eiqd, where q ∈

[
−π

d
, π
d

]5. This relationship to the eigenvalues of T̂d is the
definition of the quasimomentum q.

The integer n simply enumerates the eigenstates of the Hamiltonian ĤBloch at a given
quasimomentum q in energy-order; n = 1 is the lowest energy state, n = 2 is the next lowest,
etc. We will also refer to the eigenstates |q, n⟩ with fixed n as “bands” (ground band has
n = 1, second band has n = 2, etc. )

The energies associated with the free-space states |p, n⟩ are given byEp,n = (p+2nℏk)2/2m.
In the lattice the energies Eq,n are given by the eigenvalues of the Hamiltonian ĤBloch cor-
responding to the eigenvectors |q, n⟩. The energies Eq,n and Ep,n can be seen compared to
each other in Fig. 8.10. The salient feature of the comparison is the opening of gap near the
edges of the Brillouin zone.
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Figure 8.10: Energies of the first four Bloch bands are shown for various lattice depths. For
the weakest lattice U0 = 1Erec, dashed black lines show the free space momentum dispersion
relations, and a opening of the gap at the edges of the first Brillouin zone can be seen.

With these states in mind, we now consider the application of a constant force F =
F ẑ (for example, due to gravity), where ẑ is the unit vector along the direction of the
Hamiltonian’s periodicity. The Hamiltonian ĤBloch is then replaced by ĤF = ĤBloch − F ẑ
(where ẑ is the position operator, not the unit vector ẑ). ĤF is no longer periodic, so
its resulting eigenstates are no longer simultaneous eigenstates of the translation operator

5This range is called the first Brillouin zone.
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T̂d. However, the evolution of T̂d can be calculated to give the time-dependence of the
quasimomentum:

−iℏ d
dt
T̂d = [ĤF , T̂d]

= [−F ẑ, T̂d]
= FdT̂d

A state that starts as an eigenstate of the translation operator T̂d therefore remains an
eigenstate of the translation operator. The eigenvalue (quasimomentum), however, becomes
time-dependent, given by

q(t) = q(0) + Ft/ℏ (8.32)
where q(0) is the initial quasimomentum. This can be seen by identifying T̂d → exp(iq(t)d)
when acting on eigenstates |q, n⟩.

Consider a particle trapped with initial quasimomentum q(0) = 0 and in the lowest band
n = 1 in a periodic potential plus a constant force, i.e., subject to the Hamiltonian ĤF . As
the quasimomentum evolves according to eq. 8.32, it approaches the edge of the Brillouin
zone. We know from eq. 8.32 that the quasimomentum will continue increasing linearly /
wrap back into the first Brillouin zone at q = −π

d
. However, in doing so, what will happen to

n? In free-space, where we can arrive by simply taking U0 → 0, we know that n must increase
to 2, where we’ve just massively complicated a particle accelerating due to a constant force.

In the lattice however, the Schrödinger equation with Hamiltonian ĤF needs to be nu-
merically time-evolved to see how much of the population results in each band n. Consider
the Hamiltonian ĤBloch without a force. For the quasimomentum at the edge of the first
Brillouin zone, an energy gap between the first and second bands (see Fig. 8.10) of height
≈ 2κ is present. This can be seen by considering only the lowest two bands, turning eq. 8.31
into the two level system

ĤBloch,2lvl =

(
β−1 κ

κ β0

)
(8.33)

and diagonalizing with p = k.
The two-level Hamiltonian in eq. 8.33 is of the same form as eq. 7.1 describing adiabatic

passage! Thus, if the quasimomentum is swept slowly through the edge of the Brillouin
zone at p = k, the atom will undergo adiabatic passage through the transition |q = k, n⟩ →
|q = −k, n⟩. For an atom held against gravity in a vertical optical lattice, a Bloch oscillation
can thus be seen as a first-order Bragg transition undergone via adiabatic passage. As the
atom accelerates downwards, the increasing Doppler shift brings its detuning closer to two-
photon resonance. The atom then adiabatically passes through the transition, and receives
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a 2ℏk momentum transfer, bringing it to the other side of the first Brillouin zone in the same
Bloch band.

This gives a simple and counterintuitive picture: a quantum particle subject to a con-
stant force in a periodic potential will oscillate. This is quite different than the free space
expectation of a constant force providing a constant acceleration. This Bloch oscillation
phenomenon was first predicted by Bloch [174] in 1929 and Zener [175] in 1934 while de-
scribing electron conductivity in a crystal lattice. However, scattering of electrons due to
lattice defects is usually much faster than the Bloch period, making the effect unobservable
in those systems. Direct experimental realization had to wait until 1993, when Bloch oscil-
lations were observed in a semiconductor superlattice [176] (where the larger spatial period
makes the Bloch period short enough (∼ 600 fs) to be observed via THz radiation). Later,
cold atoms in an optical lattice were first used [177] to demonstrate Bloch oscillations, and
have since been an excellent platform for their demonstration and use.

The Bloch period TB at which these oscillations occur can then be seen as the time
required to accelerate an atom until its velocity vatom = 2vrec (i.e., when the Doppler shift of
the counter-propagating beams forming the lattice are seen in the atom’s frame as resonant
with a first-order Bragg transition), where the recoil velocity is vrec = ℏk/m. For a constant
acceleration a, vatom = at, and

TB =
ℏk
ma

For a cesium atom supported against gravity in an 866 nm lattice, this gives a Bloch period
of 707.5 µs.

Since a Bloch oscillation is an adiabatic process, the Landau-Zener formula [178] can be
used to calculate the probability that the atom does not undergo the adiabatic process. It
can be shown [179] that this loss probability is given by

Ploss = e−ac/a where ac = a0
π

64

(
U0

Erec

)2

and a0 = ℏ2k3/m2 is the natural acceleration. For cesium atoms in an 866 nm lattice,
a0 = 87 m/s2. This can therefore be an extremely efficient process. For our cesium atoms
supported against gravity in a 6Erec-deep 866 nm lattice, Ploss ≈ 1.5 × 10−7. Many Bloch
oscillations can therefore be done while avoiding atom loss (up to thousands have been
previously demonstrated in a non-interferometric setup [180]). This quality is what we hope
to capitalize on in our setup, and is shown in Fig. 8.11.

When implementing Bloch oscillations for a lattice hold in our experiment, it is important
to ramp the lattice on adiabatically, at the appropriate time, to smoothly map a sub-2ℏk
momentum spread atom sample into the ground band of the lattice. Additionally, this is the
same phenomenon underlying the atom launch and catch from Sec. 3.4; these two procedures
are simply Bloch oscillations in an accelerated lattice. More in-depth explanations of and
calculations for Bloch oscillations can be found in Refs. [22, 179, 181, 182].
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Figure 8.11: Atom loss for Bloch oscillations as a function of lattice depth. Parameters used
are cesium atoms in an 866 nm lattice supported vertically against gravity for 1 s (1413 Bloch
oscillations). Note the fairly sharp edge where the Bloch oscillation survival probability goes
from 0 to 1. In the actual experiment, this edge is smeared out due to the finite size of the
atom cloud and beam, and the transverse motion of the atoms.

8.5 Experimental implementation and results
8.5.1 Lifetime limitations for long holds
A long lattice lifetime is a prerequisite to holding a coherent superposition in the lattice for
long times. Several effects limit the lattice lifetime, which will be discussed here.

Lattice depth stability

Trap depth noise at the trap frequency parametrically heats the atoms, leading to atom
loss [132, 183, 184]. In our case, trap depth noise comes in two forms: intensity noise of the
input beam, and frequency noise on the lattice laser relative to cavity resonance, which gets
converted into amplitude noise by the cavity lineshape.

The frequency to amplitude noise can come from a number of sources: noise on the lattice
laser lock, the science cavity lock, or any lock upon which these two are based (tracer laser,
transfer cavity, spectroscopy). When the lattice laser is locked to science cavity resonance,
the constituent locks are sufficiently tight to give low frequency-to-amplitude noise. However,
if these locks drift relative to each other, the lattice laser moves from the zero-derivative peak
of the Lorentzian science cavity lineshape, to its slope off-resonance. Even a few tens of kHz
off cavity resonance, this frequency-to-amplitude noise reduces cavity lifetimes. Reducing
drifts of the lockpoints was therefore important. This necessitated the switch to the lower-
RAM lock discussed in Sec. 8.2.

Intensity noise on the input beam is reduced via amplitude stabilization using an AOM,
similar to the system in Ref. [184].
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Figure 8.12: Lattice tilted from vertical. Left: Misalignment (greatly exaggerated) by an
angle θ of the lattice axes {x̂′, ẑ′} from the axes defined by gravity {x̂, ẑ}. Right: Tilted
lattice potential for θ = 1 mrad showing reduced trapping in the transverse direction.

Quantitative evaluation of the remaining trap depth noise on lattice lifetime and contrast
decay remains to be performed. Both residual on-resonance frequency-to-amplitude noise,
and noise in the intensity stabilization loop should be considered.

Tilt

Radial confinement in the 718 µm waist cavity mode is weak, with a trap frequency of only
∼ 2.5 Hz at 5 Erec depth. If the lattice axis is not aligned to the vertical defined by gravity, a
component of the gravitational pull to Earth will be along the radial direction of the lattice.
This is shown in Fig. 8.12.

The 1 mrad tilt plotted in Fig. 8.12 reduces the trap depth in the transverse dimension
from 5 Erec to about 3.4 Erec. This can lead to atom loss either through increased Landau-
Zener tunneling, or simply becoming to shallow to confine the transverse velocity distribution
of the atoms.

Luckily, we already have the tilt-stabilization system from Sec. 3.5.3.3. We can simply
find the tilt setpoint that aligns the cavity mode to the vertical (either by measuring gravity
with an interferometer, or looking at atom loss in a long lattice hold), and stabilize the
optical table to that point.

Vacuum pressure

Collisions between the cesium atoms and background gas molecules eject atoms from the
trap. We have found that this is a non-negligible contribution in our setup.

Firing the titanium sublimation pump gave us an opportunity to temporarily increase
our pressures, and the titanium acting as a getter eventually pumped to a lower pressure
than we started with. Lattice lifetimes measured during this pump-down can be seen in Fig.
8.13.
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Figure 8.13: Vacuum pressure-limited lifetime. Lattice lifetimes were measured as the pres-
sure P was decreased by sputtered titanium from a sublimation pump acting as a getter. Fit
includes the expected lifetime dependence on pressure, τP ∝ 1

P
, and single-photon scattering

at rate Γsc = τ−1
sc . Total lifetime τ is given by τ =

(
τ−1
P + τ−1

sc
)−1.

After the titanium pumping equilibrated, an ion gauge ∼10 cm away from the main
chamber measured the pressure to be 4× 10−11 Torr. This is comparable to the x-ray limit
of the ion gauge, and so may not be perfectly representative. It’s also probably not exactly
the relevant pressure, since the ion gauge is located down a tube from the main chamber.

Collisions with the background molecules at room temperature, however, should eject
cesium atoms from the trap. Thus, while limiting the lattice lifetime, this process shouldn’t
have an impact on interferometer contrast, since atoms that do remain in the trap haven’t
collided.

Single-photon scattering

While 866 nm is reasonably far from both the cesium D1 and D2 lines, there is nonzero
single photon scattering. The scattering rate at 866 nm is

Γ0
sc =

1

54.4 s

(
U0

Erec

)
where U0 is the potential at the center of the trap. Typical trap depths use U0 ∼ 8Erec
(compare with Fig. 8.11). This is necessary due to the finite size of the beam and the cloud:
the trap must be deep enough at the edge of the atomic cloud that Landau-Zener losses are
low. A larger beam could use a shallower trap.

To get a representative single value for the scattering rate, we can time-average the
intensity seen by an atom over one oscillation period at the radial trap frequency (≈ 3
Hz), and average this quantity across the atomic cloud. This gives some numerical factor ξ
between about 0 (no atoms see any intensity) and 1 (all atoms spend the entire hold sitting
at the deepest point), such that Γsc = ξΓ0

sc for a given lattice depth U0. For a lattice depth
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of 8Erec, and using ξ = 0.7 as a reasonable estimate, this gives a single-photon scattering
lifetime around τsc ≈ 10 s, which is consistent with what we see in experiments.

Single-photon scattering effectively randomizes the vertical component of the atom’s
velocity such that there is a 50% chance the atom remains trapped in the first Bloch band.
As a result, half of the atoms that scatter a lattice photon stick around, but do not contribute
to the interferometer signal. Thus, we can expect single-photon scattering to contribute to
contrast decay with a time constant equal to 2τsc.

8.5.2 Contrast oscillations
We have observed two effects that modulate the interferometer contrast as a function of
pulse separation time T . In this section, we describe each of them.

The first effect is an oscillation of the contrast with a period of about 61.2 µs. We see best
contrast when the pulse separation time T is a value such that the wavepacket separation is
an integer multiple of the lattice spacing. That is,

2vrecT = n
λlatt

2
(8.34)

T = n
mCs

8πℏ
λlattλRaman = n× (61.2µs)

where n is an integer, λlatt = 866 nm is the lattice laser wavelength, and λRaman = 852 nm is
the wavelength of the laser used for the Raman transitions. We will refer to times T satisfying
eq. 8.34 as Talbot times, in loose analogy with Talbot-Lau matter wave interferometers
[185, 186], and the condition eq. 8.34 as the Talbot condition.

We interpret this observation as the separated wavepackets wanting to be loaded into the
lattice at the same phase of the lattice potential. If this were not the case, maybe this causes
the interferometer to improperly close, as each arm sloshes around in its respective lattice
pancake with a different phase. We note that this has not been observed in the previous
lattice interferometers [117, 118], but the cause of the discrepancy is unclear. We postulate
that this is due to our velocity spread: ≈ 2vrec, as compared to 0.15vrec in Ref. [118]. But this
does not explain the different behavior from the similar ≈ 2vrec velocity spread in Ref. [117].
That experiment uses the same beam for the Raman π

2
pulses and Bloch oscillations, while

we use two different wavelengths (852 nm and 866 nm, respectively). Ref. [117] also used
Rb, a different species, and a correspondingly shallower 2Erec-deep lattice. While the exact
mechanism of this contrast oscillation is yet to be pinned down, its effect is clearly seen in
Fig. 8.14.

The second source of contrast modulation comes from the ac Stark phase shift of the
tracer laser at 780 nm used to lock the cavity length. For 10 µW of incident optical power,
the ac Stark phase shift in the cavity is approximately δac,tracer ≈ 2π×20 Hz. Two arms held
in the lattice formed by the 866 nm laser, will in general see different phases of the tracer
laser standing wave, and thus different values of δac,tracer. Variations across the cloud of this
nonzero ac Stark shift dephase the interferometer. This is also shown in Fig. 8.14.
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Figure 8.14: Lattice interferometer contrast oscillations. Left: Contrast oscillations with
varying T of the lattice AI with period ≈ 61.5 µs, set by the Talbot condition vrecT = nλlatt/2.
Interferometer contrast oscillating with T is shown for several lattice depths (which refer to
the depth at the center of the beam). These interferometers had 300 Bloch oscillations, so
τ ≈ 211 ms. Right: Contrast modulation from ac Stark phase shifts induced by the 780
nm tracer laser. Decoherence is minimized near the super-Talbot condition, when vrecT =
nλlatt/2 ≈ mλtracer/2, giving blips of contrast separated by ≈ 560 µs, as discussed in the
main text. Data here uses τ = 1.05s, U0 = 5.9Erec. Several tracer powers are shown. Note
that the peaks are wider with 7.7 µW tracer power than with 12.0 µW, indicating less severe
super-Talbot constraint. At low enough tracer powers, super-talbot-ing is suppressed, as
seen from the 1.6 µW trace. The fast Talbot contrast modulation can still be seen in these
traces. Contrasts > 0.5 are a result of nearly maximal contrast (which equals 0.5) plus an
artifact of image background subtraction at low atom number.

We therefore add a requirement to eq. 8.34 for best contrast, namely

2vrecT = n
λlatt

2
≈ m

λtracer

2
(8.35)

Unfortunately, this condition can not be met exactly. But there will be a Talbot time
satisfying eq. 8.34 that best satisfies eq. 8.35 every ≈ 561 µs. We will call these times super-
Talbot times, and the condition eq 8.35 the super-Talbot condition. The super-Talbot period
is the time taken to traverse at velocity 2vrec one spatial beatnote of the standing waves
formed by the lattice laser (with wavelength 866 nm

2
) and the tracer laser (with wavelength

780 nm
2

). This spatial beatnote has wavelength λbeat = 7.85 µm, so λbeat/(2vrec) = 561 µs.
We have confirmed this interpretation by varying the tracer laser power used to lock

the science cavity, and observing that contrasts at non-super-Talbot times improves with
decreasing tracer laser power, while the super-Talbot time contrasts remained roughly fixed.
Second, we varied the momentum splitting by implementing a basic SDK lattice interferom-
eter (with 4ℏk momentum splitting), and observed that the super-Talbot period decreased
by a factor of 2 to 280 µs, indicating that the effect is really a spatial structure, and not
some artifact of loading into/out of the lattice.

Not all super-Talbot times are created equally, unfortunately, as the super-Talbot con-
dition eq. 8.35 can not be exactly met. There is a “carrier-envelope offset phase” analog
between (i) the 61 µs - period Talbot condition, and (ii) the requirement to be an integer
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multiple of the tracer/lattice laser beatnote. Conditions (i) and (ii) are not guaranteed to
be able to be met simultaneously. There are some super-Talbot times, for example, where
the optimal T for (ii) is centered between two Talbot times of nearly equal contrast. Both
conditions cannot be perfectly met.

In practice, once aware of this effect, we were able to reduce the incident tracer laser
power used to lock the cavity from 50 µW to ∼3 µW. This has improved the situation, but a
full assessment of residual limitation from imperfectly satisfying the super-Talbot condition
has yet to be performed. If it were possible to use the same wavelength for the tracer and
lattice-hold lasers, this effect would disappear.

8.5.3 Preliminary results
With all these considerations, performance of the interferometer is shown in Fig. 8.15. At
τ = 1 s, the fringe has peak-to-peak contrast of 44%, out of a maximum possible 50% (see
the extra output ports in Fig. 8.1).
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Figure 8.15: Preliminary lattice AI performance at τ = 1 s (left) and τ = 10 s (right). A
shorter hold of 300 Bloch oscillations is also shown alongside the 1 s fringe. All fringes here
use T = 1.066 ms.

Contrast decay as a function of τ and as a function of T can be seen in Fig. 8.16. Single
photon scattering should contribute to contrast decay with τ with a time constant of about
20 s. We observe a time constant on this contrast decay of about 5 s. Contributions to the
unaccounted-for contrast decay could include

Stray light: Each time we have identified and eliminated a faint source of stray light,
the contrast has jumped up.

Residual wavefront imperfections: Though the cavity helps this problem by a factor
of something like the finesse (naïvely, at least)6, it does not completely eliminate it.
A higher-finesse cavity may further reduce this contrast decay channel. Quantitative
assessment of this effect remains to be performed.

6One step further, we’d posit a reduction for Hermite-Gaussian mode Hmn of G(ωq + 2πδfmn)/G(ωq),
where G is the optical gain, ωq is the resonance frequency of the H00 mode, and δfmn is the cavity’s transverse
mode shift given by eq. 2.90.
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Figure 8.16: Preliminary lattice AI performance. Left: Contrast decay with hold time τ for
several pulse separation times T = {0.516, 1.066, 2.170, 5.000, 7.760} ms. Measured contrast
points are fitted to an exponential c0 exp(−τ/τ0(T )). The dot-dashed line indicates the
expected contrast decay for single-photon scattering alone, for a scattering rate of Γsc =
(10 s)−1. Right: The decay time constant τ0(T ) depends on T , and is shown. It is fitted to
its own exponential decay to guide the eye.

The lattice laser is actually not particularly well mode-matched to the cavity (≈ 50%
coupling efficiency). Small dips in reflection can be seen for the modes Hmn with
m + n = 15. For m + n = 16, δfmn − FSR ≈ 1.8 MHz ≈ 0.6γFWHM. That is, these
modes with m + n = 16k for the first few integers k are nearly resonant with the
cavity, and therefore unsuppressed. Adding an appropriate lens setup would improve
the mode-matching, and should be done.

Tracer laser ac Stark shift: The super-Talbot condition sets a pulse separation time T
that minimizes the ac Stark shift of the tracer laser. Unfortunately, the minimized
value is not zero. The size of this effect could be assessed by measuring contrast
decay as a function of tracer laser power.

Amplitude modulation of the lattice: The remaining heating rate after amplitude
and frequency stabilization remains to be quantitatively assessed.

Other, yet-unknown sources

8.6 Summary
We have presented a geometry allowing for spatially-separated matter wave interferometry
with over 10 seconds of interrogation time. The geometry capitalizes on the mode filtering
of an optical cavity inside which the atoms are manipulated.

Optimizations of the current setup remain to be had. Furthermore, the method presented
(i.e., using a cavity) presents a route to even further extend the capabilities of such an
interferometer by appropriate design choices.
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This type of interferometer could have applications as a compact gravimeter with sup-
pressed sensitivity to vibrations, or a probe of source-mass interactions (e.g., Chapters 5
and 6) with high spatial resolution. Additionally, the dominant free-evolution phase term
keffgTτ , being up over 1000 times larger than any other phase term, may help shed light on
the matter wave redshift debate (e.g., [187–192], see Sec. 9.3.1.1 for more detail).
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Chapter 9

Future prospects

A number of future routes are open for polishing and improving the performance of the
apparatus. Additionally, the development of tools in this thesis point towards future exper-
iments and new areas of research. In this chapter, an attempt is made to discuss some of
these prospects. We categorize them below into short-, medium-, and long-term projects.
Within each of these sections, subsections indicate if the improvements relate to the work
from a previous chapter in this thesis.

9.1 Short term
Atom interferometer in an optical cavity (Chapter 4)
Rabi pulses in a cavity were described Ch. 4. However, we did not yet have a full under-
standing of these effects when performing the experiments in this thesis. As such, there are
several general optimizations that can be made to improve interferometer performance. A
forthcoming publication will explore some of these optimizations.

Single-sideband EOM. Much of this complication could be avoided if we just had a
single-sideband optical modulator. Such a modulator has been used for a rubidium
interferometer [193]. Unfortunately, while these modulators exist in the telecom
band around 1550 nm (which is then frequency doubled to get the 780 nm light used
with Rb atoms), they do not yet exist at 852 nm. There is no fundamental reason
why not; once they do, this would dramatically simplify Raman pulses in a cavity.

Time-dependent cavity offset δcav(t). Over their trajectory, the atoms’ position in
the spatial beatnote of the Rabi frequency changes. So does the Raman frequency,
which is chirped to compensate for gravity. Rather than sitting at a fixed (and
usually 0) cavity offset, the offset could follow a curve that maximizes the Rabi
frequency at each point. This curve is straightforward to calculate from the model
presented in Chapter 4.
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ac Stark matching. For Mach-Zehnder geometries, cavity offsets can be chosen that
match the ac Stark shifts of the first and third π

2
pulses. Rather than the tedious

calibration from Sec. 5.6, this can be inferred from the model, increasing contrast
on all interferometers (not just ones that are manually calibrated).

Spin-dependent kicks (Chapter 7)
The quantitative understanding of adiabatic passage in our SDK interferometers was simi-
larly delayed from the experiments. Optimizations for SDK interferometers include

Robust detuning profile. Implementation of the detuning profile given by eq. 7.10
should decrease noise in the adiabatic passage of the SDK interferometers.

Tailor pulses for applications For example, the resonant AI doesn’t need the band-
width of the LMT interferometer. Trade-offs could be made to optimize the pulses
for each application. Larger momentum transfer and/or more loops could be demon-
strated.

Adiabatic beamsplitters. Ref. [142] describes adiabatic beamsplitter and recombiner
pulses. The adiabatic recombiner pulses are not robust against experimental imper-
fections, but the beamsplitters should impart only a global phase to both interferom-
eter arms, which is therefore of no consequence. Using this adiabatic beamsplitter
to open the interferometer (with either a microwave or optical pulse) would be in-
teresting, and a potential improvement.

Dependence on adiabaticity Q. Increasing Q increases both the adiabaticity (good)
and the dynamic phase (bad). This parameter was totally unexplored in our setup,
so is unlikely to be optimal.

9.2 Medium term
Chameleons (Chapter 5)
The SDK and lattice interferometers both provide routes to increased sensitivity over a
Mach-Zehnder, especially within a compact volume. Interactions with a source mass can
now be measured with higher precision. One order-of-magnitude improvement would fully
cover the parameter space for a dark energy chameleon (Λchameleon = ΛDE = 2.4 meV) with
n = 1. This would be a significant result: such chameleons would either be discovered or
ruled out entirely.
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9.3 Longer term
Lattice interferometer (Chapter 8)
If we allow the possibility of changing cavity mirrors, many possibilities for the lattice in-
terferometer open up. First, access to the cavity transmission could be provided by drilling
a hole in the lead mount. This would also allow input beams from both sides of the cavity.
In that case, the cavity could be locked using the 866 nm laser as the tracer laser. This
would remove the 780 nm laser from the setup, and its contrast-limiting ac Stark shift (Sec.
8.5.2) along with it. Care would need to be taken to ensure that the higher power of the
lattice-hold beam does not cause shifts in the cavity lock point. However, an appropriate
arrangement of polarizations and isolators should be possible.

If the 866 nm laser were replaced with a laser red-detuned from both the cesium D1 and
D2 lines, single-photon scattering could be eliminated as a concern. Excellent laser tech-
nology exists at, e.g., 1064 nm. The current cavity mirrors do not support this wavelength,
hence the 866 nm choice. If we were to upgrade the mirror coatings, fixed reflectivity /
linewidth could be maintained at 852 nm (leaving the interferometry pulses unchanged),
while providing much higher reflectivity and finesse at 1064 nm for the lattice hold. This
increased finesse would allow for even smoother wavefronts (and higher intracavity power)
and reduced scattering, potentially even further extending available interrogation times.

Additionally, the lattice interferometer in a cavity presents a novel gravimeter geometry.
Using the lattice interferometer as a gravimeter has two major advantages. The first is
suppressed vibration sensitivity (Sec. 8.3) by up to 1-2 orders of magnitude. The other is the
substantially reduced physical volume over which the interferometer must run. Typically,
AI gravimeters increase sensitivity by extending the pulse separation time T in a Mach-
Zehnder geometry. For example, a state-of-the-art mobile AI gravimeter uses something like
T = 200 ms in ≈ 1 m of vertical space. To achieve similar sensitivity per shot to gravity, a
lattice interferometer with T = 4 ms, τ = 10 s could be used, instead requiring < 400 µm
of vertical space. This is not a perfectly fair comparison (for example, the integration rate
of a 10 second shot is slower), but illustrates the utility of the lattice hold for gravimeter
sensitivity, especially in a compact volume.

9.3.1 New directions
9.3.1.1 Gravitational Aharonov-Bohm effect and the gravitational redshift of

the Compton frequency

A longstanding motivation for the cavity interferometer experiment has been a measurement
of the gravitational analog of the Aharonov-Bohm effect [140]. The original (electromagnetic)
Aharonov-Bohm effect was important in the early days of quantum mechanics for several
reasons. First, it was a counterintuitive prediction [194, 195] that was later experimentally
confirmed [196–198]. Second, it demonstrated that the fundamental object of electromag-
netism was not the E and B fields, but the potential Aµ = {ϕ,A}.
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Figure 9.1: Electromagnetic Aharonov-Bohm effect, as seen in a setup described in the text.
Figure reused with permission from the original Ref. [195].

A classic depiction of the effect is shown in Fig. 9.1. An electron wavefunction is split,
and redirected around an infinite solenoid. The solenoid can have either current or no current
running through it. Either way, the magnetic field B is zero everywhere outside the solenoid.
Upon recombination of the electron wavefunction, there is a phase shift given by

φAB =
e

ℏ

∮
A · dℓ

=
e

ℏ
ΦB

where e is the charge of the electron, A is the vector potential, and the integral is around the
closed loop formed by the electron interferometer. In the second line, Stokes’ theorem plus
the relation ∇×A = B are used to involve the magnetic flux ΦB passing through the closed
contour being integrated around. If there is a current running through the solenoid, there
is a magnetic flux through the loop formed by the electron interferometer arms and thus a
non-zero phase shift. This effect is topological, in that no number of local measurements
could be performed along the electron path to predict the outcome.

The gravitational version of this effect uses the gravitational potential to produce an
analogous phase shift. We will call this the gravitational AB effect. Consider the mass
distribution shown in Fig 9.2. The resulting gravitational potential has 3 extrema (when
plotted as a 1D cross-section; in 3D they’re saddle points). The maximum between the two
minima has a different gravitational potential than the minima. If two arms of an atom
interferometer were parked at these points (one minimum and the maximum), they would
accumulate a differential phase that could be read out upon recombination. As per the
original proposal [140], the phase shift induced on a cesium atom interferometer is

δϕgravAB = 160 mrad ×
( s

1 cm

)( ρ

10g / cm3

)( τ

1 s

)
(9.1)
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Figure 9.2: Gravitational Aharonov-Bohm effect setup (from Ref. [140]).

where s is the wavepacket separation, ρ is the source mass density, and τ is the time for
which the wavepacket is held at the saddle points of the potential. Eq. 9.1 assumes spherical
masses of radius R = 0.72s, and separation L = 3R between the source mass centers so that
the wavepackets are indeed located at the potential extrema.

For a terrestrial experiment, however, Earth’s gravity would pull the atoms away from
the gravitational potential extrema of the two source masses. We could use the lattice
interferometer of Chapter 8 to hold the wavepackets at that separation. The experiments
in this thesis have already demonstrated a τ = 10 s hold at s ∼ 10 µm separation, without
even having yet optimized the lattice interferometer. We have used a tungsten source mass
(∼ 20 g/cm3), and resolved a phase shifts of ∼ 4 mrad (Chapters 5 and 6).

These numbers put us pretty much exactly at the required sensitivity to resolve a phase
shift due to the gravitational AB effect. Granted, the implied 7 µm spherical source masses
are not practical (they should at least be large enough for the cavity mode to pass through).
But put another way, while increasing the wavepacket separation from 10 µm up to 1 cm, we
have 3 orders of magnitude available to sacrifice on other parameters while still remaining
sensitive enough to see the gravitational AB effect. This consideration neglects any future
improvements to the lattice interferometer, which we actually expect to be made.

The gravitational AB effect is interesting for a number reasons. The first is that it inherits
all of the interest of electromagnetic AB effects: topological, non-local, non-dispersive, and
occurring despite the absence of a classical force. Second, a gravitational AB measurement
presents the opportunity for an interesting measurement of Newton’s gravitational constant
G. Since the wavepackets are located at saddle points of the potential, the interferometer
phase is first-order insensitive to positioning uncertainty/fluctuations, which was the leading
uncertainty in the most recent atom interferometric measurement of G [7]. Due to the
interferometer’s small size, single-crystal source masses are feasible. This eliminates a second
leading systematic effect of the measurement in Ref. [7]; namely characterization of the source
mass distribution at the 10−4 level.

A measurement of the gravitational AB effect could also potentially help clarify the “red-
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shift controversy” started when Ref. [187] argued that the Compton frequency ωc = mc2/ℏ is
a physical frequency that can be exploited for metrological purposes (in this case, a measure-
ment of the gravitational redshift). This line of reasoning was vociferously argued against
in Ref. [188], and subsequently in references such as [189, 191]. Meanwhile, references such
as [190, 192] made pro-Compton frequency arguments. A measurement was then performed
purporting to lock a crystal oscillator to a subharmonic of the cesium Compton frequency,
asserting the physical nature of the Compton frequency as an oscillator [199]. A measure-
ment of the gravitational Aharonov-Bohm effect could help shed experimental light on this
controversy.

In fact, demonstration of the long-hold lattice interferometer itself may already be able
to bring some clarity to the discussion. After all, the wavepackets sit at force-free points
(lattice sites) at different gravitational potentials. The exact formulation of what this all
means is somewhat unclear (at least to me). Another future direction of work would be
to investigate the impact of the long-hold lattice interferometer on the redshift debate. If
physical, the Compton frequency and/or the gravitational AB setup could be leveraged to
perform measurements of the type(s) outlined in Ref. [200] that aim to explore the interface
of general relativity and quantum mechanics.

9.3.1.2 Dark matter detector using resonant AI

The resonant AI from Sec. 7.3.5 could be used to search for oscillating forces due to dark
matter [155]. A measurement campaign over which the loop duration is swept covers a
corresponding mass range of dark matter candidates being searched for.

9.3.1.3 Squeezing, and even more cavity benefits

The experiments in this thesis have so far taken advantage of only two qualities of the optical
cavity: smooth wavefronts, and resonant enhancement of the optical intensity. More cavity
benefits remain to be taken advantage of.

One example is to utilize the higher-order modes of the optical cavity (using, e.g., a spatial
light modulator). For example, donut modes could provide radial confinement. Use of higher-
order Hermite-Gauss modes has been proposed as a self-aligned rotation sensor [74, 201].
These possibilities have not yet been experimentally explored, and could open interesting
possibilities to extend the capability of a cavity atom interferometer.

Probe beams in a cavity can provide an excellent measure of the population ratio between
two hyperfine states [202]. Atomic resonances provide dispersion, and thus a phase shift to
an incident light beam. Consider an atom such as cesium with two hyperfine ground states,
|g1⟩ and |g2⟩, and an optically excited state |e⟩. If an incident beam is between the |g1⟩ → |e⟩
and |g2⟩ → |e⟩ transitions, the total phase shift of an intracavity beam (and thus the cavity
resonance condition) depends on the atomic population in the two hyperfine states.

Even better than just measuring the population ratio of atoms in the cavity, this technique
can turn the cavity into an entangling device. Obtaining collective information about the
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atomic sample by measuring this phase shift has been used to produce spin-squeezed states up
to 20 dB below the standard quantum limit [158,159]. This capability requires a significantly
higher cavity finesse than in our setup.

Atom interferometry and spin-squeezing (plus the requisite readout) have now both been
demonstrated in an optical cavity. An extremely exciting future direction would be to merge
these two paths.
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