UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Constraints on the Design of a High-Level Model of Cognition

Permalink
https://escholarship.org/uc/item/2jn5k984

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 19(0)

Authors
Jones, Randolph M.
Laird, John E.

Publication Date
1997

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/2jn5k98s
https://escholarship.org
http://www.cdlib.org/

Constraints on the Design of a High-Level Model of Cognition

Randolph M. Jones (RIONES @EECS.UMICH.EDU)
John E. Laird (LAIRD@EECS.UMICH.EDU)
Artificial Intelligence Laboratory
University of Michigan
1101 Beal Avenue
Ann Arbor, MI 48109-2110

Abstract

The TacAir-Soar system is a computer program that gener-
ates human-like behavior flying simulated aircraft in tactical air
combat training scenarios. The design of the system has been
driven by functional concerns, allowing the system to generate
a wide range of appropriate behaviors in severely time-limited
situations. The combination of constraints from the complex-
ity and dynamics of the domain with the overall goal of human-
like behavior led to a system that can be viewed as a model of
cognition for high-level, complex tasks. This paper analyzes
the system in such a light, and describes how the functional de-
sign constraints map on to cognitively plausible representations
and mechanisms, sometimes in surprising ways.

Introduction

For the past few years, we have been developing a computer
system, called TacAir-Soar, that “flies” aircraft in tactical air
combat simulations (Tambe et al., 1995). The overall goal of
this work is for the system to generate behavior that looks like
it is being generated by an expert-level human. The evalua-
tion of our system takes place at a very high level of behav-
ior. To test TacAir-Soar, we place it in a variety of different
situations, flying different types of combat aircraft, with dif-
ferent types of missions and different combat situations. We
then let the simulation run while military experts observe the
behaviors exhibited by the system’s aircraft. At this level of
observation, the experts do not have access to the step-by-step
reasoning of the system. Rather, the experts observe aircraft
maneuvers (such as changes in altitude, heading, and speed),
employment of weapons, and communication between dif-
ferent agents in semi-natural language. The experts interpret
these observable operations in terms of how they fit into even
higher-level behaviors, such as specific weapons-employment
tactics or progress toward achieving mission goals. If the be-
haviors fit a plausible overall plan that a human expert would
execute, they are judged to be correct.

In this paper, we explore the ways in which TacAir-Soar
can be considered a psychological model. Given the high
level of observable behavior, it could be argued that TacAir-
Soar is at best a knowledge-level model of cognition (Newell,
1982). Just because the system exhibits appropriate behavior
at a gross level of observation, does not necessarily indicate
that the processing within the system is anything like what a
human does on the same task. Thus, it can be argued that gen-

.

358

erating appropriate high-level behaviors is a very weak con-
straint on the design of the cognitive model.

However, the design of TacAir-Soar embodies at least two
other types of constraints, involving the characteristics of
the air combat task and the characteristics of the system’s
perceptual-motor components. We argue that these con-
straints have been sufficient to force the design of TacAir-Soar
towards an accurate symbol-level model of human expert be-
havior in air combat. Additionally, there is a third constraint
on the design of TacAir-Soar that has little to do with psycho-
logical concerns. The TacAir-Soar system will be used in a
military exercise simulation, called STOW, in late 1997, Cur-
rent plans are for the TacAir-Soar model to control over 200
different aircraft at the same time. Thus, a practical constraint
on the system design is for it to be as efficient as possible, so
that fewer computers will be necessary and the exercise will
be as cheap as possible. Our initial expectations were that we
would have to compromise our desire to simulate human be-
havior faithfully in order to meet the efficiency requirements.
However, we have been surprised to discover that every time
we make a design change for efficiency, it appears to increase
the psychological plausibility of the model as well. This pa-
per describes these constraints, as well as some specific details
of how they influenced the design of the TacAir-Soar system.
We argue that because TacAir-Soar includes these constraints
in its design, the system can be used to make claims about how
human pilots must be reasoning.

The Architecture of the Model

The simulation of human pilot behavior consists of four major
components:

1. The external environment. In this domain the environment
is a distributed simulation system that implements realistic
models of various aircraft, weapons, and sensors.

. The input system. This is an interface that describes (a por-
tion of) the current state of the environment at some level
of representation.

The agent. The agent is a human or simulation model (in
our case, TacAir-Soar), which receives information about
the environment from the input system, and uses some rea-
soning process to generate expert-level external behaviors.


mailto:rjones@eecs.umich.edu
mailto:laird@eecs.umich.edu

4. The output system. This is the interface through which the
agent can take action in the environment. All agent deci-
sions must ultimately lead to output-system commands if
the agentis going to have any influence on the environment
As with the input system, there are many possible levels of
representation for the output system.

Given this structure, we can now more clearly define the
task of this research. Our goal is to understand how human
combat pilots reason and perform their tasks. To this end, the
model that implements the agent can be viewed as a dependent
variable. The external environment, input system, and out-
put system are the independent variables. The characteristics
of each of these systems impose constraints on the design of
the agent model. If we “clamp” the design of these three sys-
tems to simulate actual air combat as closely as possible, and
if the agent model is able to generate human-like high-level
behavior, then the reasoning processes in the agent provide a
hypothetical model of the reasoning processes of a human pi-
lot. We can use the agent model to make predictions about
human pilot behavior. In addition, we can examine changes
to the input and output systems that lead to improved behav-
ior in the model, and use these to propose potentially bene-
ficial changes in the interfaces used by human pilots. As we
have mentioned above, many of the changes we have consid-
ered and implemented arise from the additional constraint of
building as efficient a simulation system as possible. We dis-
covered that changes that improve the efficiency of the overall
simulation architecture generally also improved the simplicity
and quality of the agent model.

Constraints on Cognition

We are now in a position to examine the constraints on cogni-
tion in the tactical air combat domain. As suggested above,
we can divide this discussion into three components. After
we have determined how to make the environment, input sys-
tem, and output system as realistic as possible, we can analyze
their influence on the agent model. We will also analyze the
impact of intermediate versions of the agent model on subse-
quent versions of the environment simulation, input system,
and output system.

Environmental Constraints

The constraints arising from the simulation environment con-
sist of characteristics of the task domain together with the
characteristics of the underlying simulation of the environ-
ment. As we have discussed, the task domain is tactical air
combat, with the general goal of flying missions in the same
way that expert humans do. Successfully flying air combat
missions requires a fair amount of knowledge and expertise,
and there are a number of complex concepts and tradeoffs that
must be taken into consideration at any given point during a
mission. This implies that the agent model must at least con-
tain a large amount of knowledge, although it does not neces-
sarily specify a particular representation for that knowledge.
As an indication of the amount of knowledge required, the

359

current version of TacAir-Soar consists of over 4500 produc-
tion rules, implementing more than 400 operators.

Additionally, the primary sources of information we con-
sult in building TacAir-Soar come from the United States mil-
itary. These sources (experts and documents) represent doc-
trine, missions, and tactics in terms of hierarchical goals. Be-
cause we are trying to generate behavior similar to the mili-
tary, this implies a constraint on the actual representation of
knowledge withing the agent model. This is especially true if
the agent model is going to interact with real humans (such as
flying missions in groups).

Aside from the complexity and representation of knowl-
edge, a key characteristic of air combat is that the situation
is always changing, and usually quite rapidly. Depending on
the situation, human pilots must make decisions under severe
time constraints. Naturally, there is often an inverse relation-
ship between the time available to make a decision and the
quality of generated behavior. However, it is conceivable that
certain types of decisions that humans are slow to make can be
computed quickly by computer simulations. Thus, as part of
our goal of mimicking human behavior, we should watch for
the possibility of the agent model being “too good” in some
situations. This is a further constraint imposed by the domain,
although it is tempered somewhat by the “meta-constraint” of
designing as efficient a simulation system as possible.

Additional constraints on reasoning come from the simula-
tion of the air combat arena. If the simulation of the world,
aircraft, weapons, etc. is not realistic, it is unlikely that be-
haviors that would be appropriate in the real world would
also be appropriate in the simulated world. Thus, if we want
to be “forced” to design an accurate agent model, the sim-
ulation platform must provide a realistic environment. The
TacAir-Soar system has been designed to run with the Mod-
SAF (Calderetal., 1993) distributed simulation system. Mod-
SAF provides air frames with realistic flight dynamics, and
many of the sensor and weapon simulations are based on mod-
els of real systems that have been validated by the United
States military. There is room for improvement in some of the
systems, but overall the ModSAF simulator provides a quite
realistic simulation of the air combat environment.

Input System Constraints

As mentioned in the previous section, if we hope to end
up with a realistic agent model, it must receive its informa-
tion from accurate simulations of different sensors. The sen-
sor simulation determines when information should be made
available to the agent and what the content of the information
should be. However, it does not necessarily dictate a particu-
lar representation for sensor information, which will also have
a significant impact on the agent model. Representation deci-
sions are part of the design of the input system,

The choice of input representations relies a great deal on the
level of cognition we want the agent model to simulate. For
example, a complete model of cognition would probably in-
corporate a realistic vision system, and the representation of
input would be very low-level visual primitives. Even with-



out a high-fidelity vision model, it might be desirable to model
the tracking of eye movements and focus of attention. For the
initial design of TacAir-Soar, however, we made the decision
to represent input at a relatively high level of symbolic con-
cepts. TacAir-Soar is supposed to model expert-level behav-
ior, and we felt safe in assuming that expert pilots have well
rehearsed the routines for parsing visual cues, understanding
radar symbology, etc. Thus, the agent model does not focus
on behavior at that low a level. [t should also be made explicit
that choosing a relatively high level of representation allowed
us to build a more computationally efficient system.

It is worth going over TacAir-Soar’s input system in some
detail, to provide concrete examples of the input system rep-
resentation. In the tactical air combat domain, there are three
general sources of information from the environment:

1. Communicated information coming in over the radio.

2. Various types of information from cockpit displays and
gauges, such as altimeter readings, and radar contact infor-
mation.

3. Visual contacts acquired by looking out the cockpit canopy.

The first of these has the most simple representation in
TacAir-Soar's input system. Radio messages consist of a list
of symbols representing the words in the message, together
with a symbol representing which radio the message came in
on (there are typically two radios in a fighter aircraft). Such
a representation requires the agent model to parse strings of
words in semi-natural language, but not to worry about gar-
bled messages or faulty radios, etc.

Again, the design of the input representation depends on the
level of behavior we care to model. The version of TacAir-
Soar we discuss here does not flexibly understand or generate
natural language, using a large set of semi-natural templates
instead. However, a group at Carnegie Mellon University is
developing a realistic natural language processor to integrate
into the system (Lehman, Van Dyke, & Rubinoff, 1995).

It is interesting to note that the military uses template-like
“comm brevity™ codes in training their pilots, but no human
ever sticks to the rules during a real combat situation. Thus,
the current agent model is adequate for agent-to-agent simu-
lated communication, but it breaks down when communicat-
ing with a human.

The representation of input from most of the cockpit dis-
plays is also relatively straightforward. For example, an al-
timeter in a real aircraft would consist of two hands pointing
at numerals on a dial. TacAir-Soar’s input system simply rep-
resents this information with a numeral. Examples of other
quantities represented with simple symbols include the air-
craft’s speed, heading, and roll, as well as the type of the cur-
rently selected weapon (which appears in the heads-up display
of a real aircraft).

Visual contacts acquired through the cockpit canopy and
radar contacts appearing as blips on a radar display have simi-
lar, and somewhat more complex, representations for TacAuir-

360

Soar. Each contact is represented by a symbol, and this sym-
bol in turn has a set of associated symbols describing the con-
tact. The associated symbols can include things like the con-
tact’s altitude, heading, and range, and the contact’s aircrafi
type. The initial implementation of the input system reported
a small number of quantities for every existing contact (i.e.,
every entity that could be seen out the canopy or that appeared
on the radar scope). However, as we developed TacAir-Soar’s
agent model, there were some interesting interactions between
design decisions for the agent and the input system. We will
discuss some of these later.

Output System Constraints

As with the input system, the initial design of the output sys-
tem reflects as much as possible the types of devices real hu-
mans use to fly air combat missions. This includes controls
for flying the aircraft, buttons and switches for controlling the
weapons systems, and buttons to control the radar display.

Also similar to the input system design is our choice to rep-
resent output actions at a level consistent with the level of be-
havior we are interested in modeling. Once again, because we
are modeling expert humans, we can assume that most control
actions are well rehearsed, so we do not have to model out-
put at the level of muscle control or physical movements. The
output system design assumes, for example, that all it takes to
press the fire button is the explicit intention to press the button,
as determined by the agent model for behavior.

Likewise, our initial design assumed that the agent model
could control the maneuvers of the aircraft at a fairly high
level. The output system accepts commands from the agent
to set a desired speed, heading, and altitude. The actual com-
bination of aileron, elevator, and thrust parameters required to
satisfy the desired maneuver are computed by the underlying
simulation platform for the aircraft. The design of the output
system evolved quite a bit from its initial conception to the
present. As we will discuss later, certain weaknesses in the
early agent model required us to add extra levels of functional-
ity to the output system. These enhancements in turn imposed
new constraints on the agent model, focusing it more closely
to an accurate model of human behavior.

The Agent Model

With all of the above design decisions, we were able to spec-
ify the task constraints, the details of the environmental sim-
ulation, and the specifics of the input and output systems. At
this point we were ready to design the agent model. At the
knowledge level, all the agent model needs to do is map in-
formation from the input system to commands issued to the
output system in order to generate appropriate high-level be-
haviors. However, as we have suggested, all of the constraints
discussed above combine to specify in more detail what prop-
erties the agent model must have.

The TacAir-Soar model is implemented within Soar, a
computational architecture for simulating cognition (Newell,
1990), so all knowledge is specified in the form of condition-
action rules. The rules match against symbols from the input



system as well as internally created symbols, and fire to cre-
ate new internal symbols (such as subgoals or conceptual in-
terpretations of the environment) or to send commands to the
output system in order to generate external behavior,

The design of the rule base was immediately influenced by
all of the constraints mentioned above. To begin with, the
rules must interface with input and output systems that match
real cockpit interfaces very closely. In addition, output com-
mands control systems that are simulated to behave as real-
istically as possible. This means that the rules must not only
generate the right behavior in the right situations (i.e., func-
tion at the knowledge level), they must map input symbols that
correspond roughly to an expert pilot’s high-level perception
to symbols that correspond roughly to an expert pilot’s high-
level action. Thus, the realistic design of the input and output
systems takes a large step in constraining the agent model to
be a symbol-level model of expert pilot behavior.

Furthermore, the constraints of the task had a great influ-
ence on the representation of knowledge in the agent model.
As discussed previously, the tactical air combat domain re-
quires the flexible and often rapid generation of appropriate
behavior in a complex environment, as well as a general hi-
erarchical representation of concepts. This led us to repre-
sent knowledge as a combination of a bottom-up hierarchy of
interrupt-driven rules together with a top-down goal hierarchy
that focuses the context of interrupt processing.

This is perhaps best illustrated with a simplified example.
Suppose the agent has decided to intercept and shoot down
a target denoted by a radar blip on the agent’s screen. The
agent might have active hierarchical goals of destroying the
target, employing weapons against the target, and shooting a
sidewinder missile at the target. Now suppose the radar in-
dicates a change in heading by the target. A bottom-up rule
might calculate a new attack heading for employing the mis-
sile. Another rule would combine this result with the goal of
using a sidewinder, to determine that the new geometry is out-
side the range of a sidewinder missile. This might lead another
rule to propose using a longer range sparrow missile instead.

The combination of top-down and bottom-up hierarchies
directly addresses the dual constraints of rapid behavior gen-
eration in a knowledge-rich domain. As new information
comes from the input system, it leads to changes in the
bottom-up hierarchy, but the hierarchy is designed so that
changes only occur at the most operational level as defined by
the goal hierarchy. In the previous example, if the target radar
blip only changed heading by a little bit, it would not neces-
sarily demand a new computation of attack heading. Alterna-
tively, a new attack heading might be necessary, but the tar-
get geometry will still allow a sidewinder missile shot. If the
target changed heading enough to assume a highly defensive
posture, a larger portion of the bottom-up hierarchy might be
recomputed, leading to a change in higher-level goals. For ex-
ample, the agent may decide to employ some new tactic that
takes advantage of the target's defensive posture.

361

Testing and Learning from the Agent Model

Once the agent model was designed and implemented, we
were in a position to do two things. First, we needed to test the
model by putting it into various combat situations and getting
feedback from expert military observers. Second, we were
able 1o profile the execution of the agent model in order to de-
termine which types of reasoning were leading to overwhelm-
ing amounts of processing, suggesting areas that we might im-
prove the efficiency of the simulation. We used feedback from
both of these processes to refine the agent model, bringing it
closer to our ideal model of expert behavior.

Perhaps more importantly, our experiences in testing the
agent model led to quite a few changes in our design for the in-
put and output systems. The following sections describe and
justify some of the design changes we have made as we have
continued development and testing of the system.

Automated Spatial Perception

In our initial input system design, radar blips and visual con-
tacts were described with just a few attributes, indicating al-
titude, heading, speed, and range. This design corresponded
to our impression of what information was immediately avail-
able to a human on the radar screen. However, when imple-
menting high-level tactics, such as the intercept of a target, the
agent must have access to various higher-level types of spatial
and geometric information, such as the collision course to the
target, the amount of angle the target is facing away from the
agent, the separation between the agent and the target’s flight
path, and many others. Each of these quantities are used for
some part of tactical decision making.

Because this level of information is necessary for each con-
tact, the agent had to compute it from the information pro-
vided by the input system. This was a time-consuming pro-
cess that required little “intelligence”. Because this seemed
like a behavior that could be easily automated, and because
of our goal of having a very efficient simulation, we moved
the computation of these higher-level attributes from the agent
model into the input system.

The input system is written in the C programming lan-
guage, and is very efficient at these computations because
they merely involve various arithmetic operations and func-
tion calls. Computing the quantities in the agent model in-
curred significant overhead from matching rules against the
input system and then creating new memory elements when
the rules fire. This re-design of the input system led to large
improvements in performance. The fact that these enhance-
ments reduce the cognitive load of the agent model predict
that similar enhancements to real radar interfaces could prove
quite beneficial to human pilots. In fact, after redesigning the
simulation, we discovered that some of these capabilities do
exist in a few very modern radar systems. This further vali-
dates the re-design of the input system and agent model.

Focus of Attention

Even after moving computation from the agent model into the
input system, there were still times when the agents could get



bogged down processing input information. Another problem
we encountered was that the system would slow down as the
number of contacts an agent could see increase. This occurred
because the input system was computing all the input values
for every contact, regardless of whether the information was
actually useful. The design basically followed the principle,
“more information is better,” without regard to the cost of ac-
quiring that information.

There are many different types of contacts in tactical air
combat, and one of the hardest tasks in the domain is sort-
ing these types out. Some contacts represent friendly forces
coordinating with the agent. Others are friendly forces fly-
ing unrelated missions. Some contacts are hostile aircraft that
must be intercepted by the agent, and some are hostile aircraft
that someone else will take care of. Finally, most contacts are
initially of an unknown nature, until they can be identified as
friendly or hostile somehow.

Contacts of each type require different types of processing.
For example, an agent need not concern itself with detailed
position information of most other friendly forces. Only mod-
erate attention must be paid to hostile forces that are far away
or assigned to someone else. On the other hand, very care-
ful attention must be focused on a target contact. It should
be clear that these different types of contacts provide an addi-
tional opportunity for improving the efficiency of the system.

We built knowledge into the agent model to classify con-
tacts into three broad categories, demanding low, medium,
and high levels of attention. We then built new commands into
the output system, allowing the agent to designate an attention
level for any radar or visual contact. Finally, we changed the
input system so that it would only compute as much geometric
information for each contact as was required by the specified
attention level.

These changes incurred a small overhead in processing in
the agent model, but this was more than compensated by im-
provements in the efficiency of the input system. What pleas-
antly surprised us about these changes was that they improve
the human-like qualities of the agent model, even though they
were driven mostly by the need for computational efficiency.
It is clear that humans use some kind of mechanism for focus-
ing attention, although it probably has significant differences
from TacAir-Soar’s focusing mechanism. However, this pro-
vides a solid computational argument for why focus of atten-
tion is so important to an intelligent system.

Wider Range of Aircraft Control

For most of the missions that TacAir-Soar flies, we found the
initial model for aircraft control sufficient. Recall that this in-
volves issuing commands to the output system to set the de-
sired heading, speed, and altitude of the aircraft. The initial
design of the output system also allowed the agentto seta turn
rate for changes in heading. We did find, however, that some
tactical behaviors require a finer level of control.

For example, the initial control interface makes it easy to
line up missile shots in two dimensions. The agent simply
computes an appropriate attack heading, issues a command

362

for the aircraft to come to that heading, waits for the desired
heading to be achieved, then fires the missile. However, air
combat takes place in three dimensions. Especially for close-
range shots, the agent must take altitude differences into ac-
count by setting an appropriate pitch for the aircraft.

Another case arises for aircraft delivering bombs to a
ground target. One tactic for delivering bombs is to fly toward
the target at low altitude, then “pop up” to acquire the target
visually, and then drop the bombs. Improved aircraft control
aids this tactic in a number of ways. First, when the agent ini-
tiates the pop-up maneuver, it must do so by specifying a par-
ticular pitch for the aircraft. Next, the agent can only acquire
visual targets through the simulated canopy, which is on the
top of the aircraft. This requires the agent to roll the aircraft
180 degrees. Finally, when dropping bombs, an aircraft will
have much greater accuracy if it is diving toward the target
than if it is flying straight and level. This again requires con-
trol over the pitch of the aircraft.

None of these special maneuvers can be executed by the
simple, initial control system provided by the ModSAF flight
simulator. Thus, we needed not only to improve the output
system, but the underlying simulation as well, to allow these
maneuvers to be executed. This is an instance where certain
behaviors in the domain required us to make the environmen-
tal simulation even more faithful to the real world. However,
from the cognitive perspective, our success with the simple
output system for many tactics suggests the advantages of in-
troducing new simplified interfaces to the control of real air-
craft. As it turns out, many modern commercial aircraft do
have such simplified, high-level interfaces. It is an empirical
question whether such interfaces would also benefit fighter pi-
lots, or whether the low-level interfaces help them to stay alert
and to feel “in control”.

Automated Memory Aid

The final enhancement we will discuss arises once again from
our concern for efficiency in the overall simulation. The initial
agent model had one other task that would sometimes over-
whelm the cognitive processing. When the agent acquires a
new visual or radar contact, it creates an internal representa-
tion of that contact. Then, if contact is lost, the agent will at
least remember that someone was out there, and the agent can
attempt to reacquire contact or take appropriate action. How-
ever, the lost contact is certainly still moving, and in addi-
tion the agent may need to keep track of higher-level attributes
(collision-course, target aspect, etc.) for the contact. The ear-
lier agent model computed all of this “projected” information
itself, because it could not be provided by the input system
when the contact disappeared.

These computations became significant especially when a
number of current contacts would disappear at the same time,
for example, if the agent took its aircraft into a defensive ma-
neuver. The agent's processing would suddenly grind down
while it updated geometric position information for each of
the missing contacts. The information computed by the agent
was exactly the same information that would be provided by



the input system'’s radar model, if the radar contact were ac-
tive. Thus, we decided once again to move this processing
from the agent model into the input system.

We accomplished this by introducing a new command in
the output system. This command allows the agent 1o cre-
ate a “fake” radar blip with an initial speed, heading, alti-
tude,bearing and range. The new input system then processes
this blip by updating its position periodically and then com-
puting the same attributes (at the appropriate attention level)
it would compute for a normal radar contact. This ability
leads to vast improvements in efficiency in certain situations.
Once again, our success with building this capability into the
TacAir-Soar system suggests possible enhancements to the
radar interface of real combat aircraft.

Learning from the Agent Model

There were also times when the agent model exposed gaps in
our knowledge of the domain, and helped direct knowledge
acquisition efforts. An example concerns the development of
behaviors for delivering bombs to a ground target. Our ini-
tial design used visual contact information for the ground tar-
get, with the agent model computing possible bomb trajec-
tories in an effort to decide when bombs should be dropped.
This was a very expensive reasoning process, much like the
computations the agent model initially performed for airborne
contacts. Thus, we naturally pursued the course of moving
these computations into the input system.

After struggling for a few days with a design for the new
input system, we discussed the matter with military experts.
They informed us that combat aircraft already have such an
interface built in. The interface is called a Computer Con-
trolled Impact Point (CCIP), and it performs exactly the func-
tion we were trying to build into our own input system. Thus,
we were able to solve this problem by building our own ver-
sion of the CCIP, based on the interface in existing combat air-
craft. This episode had some frustrating aspects, but it was
reassuring that the constraints on the agent model guided our
knowledge acquisition efforts in a productive direction.

Discussion

We have presented a system designed to exhibit high-level
human-like behaviors in a complex domain. On the surface,
this scems like a knowledge-level task, but we have presented
a number of features of the particular simulation domain that
tightly constrain the behavior model. We argue that these con-
straints are sufficient to view TacAir-Soar as a symbol-level,
cognitive model of high-level human behavior for the tactical
air combat domain. Most of the constraints have to do with
making the agent model’s environment as realistic as possi-
ble. However, we were surprised to discover that the addi-
tional “engineering” constraint of building a highly efficient
simulation system led directly to improvements in the quality
and accuracy of the cognitive model.

As further evidence that the TacAir-Soar agent provides a
good model of human cognition, we have discussed a number

363

of enhancements to the overall simulation design as develop-
ment of the model progressed. Each enhancement maps quite
plausibly onto the real domain of air combat, and the model
thus makes reasonable predictions about human behavior and
the effects of modifications to some aircraft interfaces.

Future work with TacAir-Soar will expand and improve the
behaviors generated by the system, as well as continuing our
search for a more efficient simulation system. We expect that
further efficiency enhancements will make even more sug-
gestions about potential modifications to combat aircraft in-
terfaces. In addition, we hope to use the model to explore
how expert pilots think and reason about their domain, with
the hopes of identifying better representations and reasoning
processes. Further down the road, we plan to use the exist-
ing expert model of behavior as a target for a system that ac-
quires expertise automatically. The learning model will be
even more constrained by human behavior, and will hopefully
tell us more about how humans learn, reason, and interact with
the world.

Acknowledgements

The initial design of TacAir-Soar was developed and im-
plemented by the authors together with Milind Tambe, Paul
Rosenbloom, Frank Koss, and Karl Schwamb. Paul Nielsen
has also provided significant input to the current TacAir-Soar
system for flying simulated fixed-wing aircraft. Paul Rosen-
bloom’s group at the Information Sciences Institute of the
University of Southern California is now working on a paral-
lel effort to build a similar system to control simulated rotary-
wing aircraft. Although we have presented the fixed-wing
version of the system for this paper, the constraints and con-
tributions of the rotary-wing version are similar.

References

Calder, R. B., Smith, J. E., Courtemanche, A. J., Mar, J. M.
F., & Ceranowicz, A. Z. (1993). ModSAF behavior sim-
ulation and control. Proceedings of the Third Conference
on Computer Generated Forces and Behavioral Represen-
tation. Orlando, FL: University of Central Florida Institute
for Simulation and Training.

Lehman, J. F, Van Dyke, J., & Rubinoff, R. (1995). Nat-
ural language processing for IFORs: Comprehension and
generation in the air combat domain. Proceeding of the
Fifth Conference on Computer Generated Forces and Be-
havioral Representation. Orlando, FL: University of Cen-
tral Florida Institute for Simulation and Training.

Newell, A. (1982). The knowledge level. Artificial Intelli-
gence, 18, 87-127.

Newell, A. (1990). Unified theories of cognition. Cambridge,
MA: Harvard University Press.

Tambe, M., Johnson, W. L., Jones, R. M., Koss, F,, Laird, J.
E., Rosenbloom, P. S., & Schwamb, K. B. (1995). Intel-

ligent agents for interactive simulation environments. A/
Magazine, 16(1), 15-39.



	cogsci_1997_358-363



