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is approved:

Professor Viktor L. Ginzburg, Chair

Professor Richard Montgomery

Professor Jie Qing

Tyrus Miller
Vice Provost and Dean of Graduate Studies



Copyright c© by

Marta Batoréo
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Abstract

Coisotropic Symplectic Topology and

Periodic Orbits in Symplectic Dynamics

by

Marta Batoréo

The main theme of this thesis is the interaction between symplectic topology

and Hamiltonian and symplectic dynamics.

The first problem considered in this thesis concerns symplectic topology of

coisotropic submanifolds. We revisit the definition of the coisotropic Maslov index and

prove a Maslov index rigidity result for stable coisotropic submanifolds in a broad class

of ambient symplectic manifolds. Furthermore, we establish a nearby existence theorem

for the same class of ambient manifolds. The main tools used to achieve these goals

are Hamiltonian Floer homology and Kerman’s “pinned” action selector.

The existence of periodic orbits of symplectomorphisms lies at the center of

the second problem we consider. We are interested in a variant of the Conley conjecture

which asserts the existence of infinitely many periodic orbits of a symplectomorphism if

it has a fixed point which is unnecessary in some sense. More specifically, we show that,

for a certain class of closed monotone symplectic manifolds, any symplectomorphism

isotopic to the identity with a hyperbolic fixed point must necessarily have infinitely

many periodic orbits as long as the symplectomorphism satisfies some constraints on the

flux. The main tool used to prove this result is Floer homology for symplectomorphisms,

i.e. the Floer-Novikov homology.
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Chapter 1

Introduction

The subject of this thesis is symplectic topology with particular focus on the

topology of coisotropic submanifolds and on periodic orbits of symplectomorphisms.

Periodic orbits are among the most fundamental objects in dynamics. The

question about the existence of such orbits in Hamiltonian dynamics, where there is

no dissipation of energy, initially arose in the study of classical systems in celestial

mechanics. Classical mechanics is concerned with the laws describing the motion of

bodies under the action of a system of forces. Classically very little was known about

periodic orbits of Hamiltonian systems or fixed points of symplectomorphisms until in

the 1920s Birkhoff proved Poincare’s last geometrical theorem which asserts that an

area preserving twist map of the annulus must have at least two different fixed points.

Modern symplectic topology has its historical origin in classical Hamiltonian

mechanics on cotangent bundles. In this physical setting, a manifold X can be thought

of as the possible positions of particles in the physical system and the symplectic

manifold T ∗X, the cotangent bundle of X, is the phase space: all the possible positions

and momenta. A function defined on the phase space T ∗X is then the Hamiltonian.

Coisotropic submanifolds play an important role in symplectic geometry: they

describe systems with symmetries and provide a method to generate new symplectic

spaces (symplectic reduction) and they appear in homological mirror symmetry.

Two important classes of examples of coisotropic submanifolds are Lagrangian

submanifolds, which have half the dimension of the ambient manifold, and hypersur-

faces, which have codimension one. The dimension of a coisotropic submanifold ranges

between these two cases. These submanifolds also carry a natural foliation, called the

1



characteristic foliation, whose leaves have dimension equal to the codimension of the

submanifold. One of the topics of this thesis is the existence of special closed curves

in this foliation which can be viewed as a generalization of the existence of closed cha-

racteristics on a hypersurface in R2n: if the parametrization of the periodic solutions

is neglected, the later problem aims for closed characteristics of a distinguished line

bundle over a hypersurface in a symplectic manifold, the characteristic line bundle.

Weinstein conjectured in [Wei79] that a hypersurface of a certain type always carries

a closed characteristic and Viterbo established it in [Vit87]. Other results within this

framework include the existence of periodic solutions of certain Hamiltonian systems

on prescribed energy levels; for instance, in [Rab79] and [HZ11].

In this setting, our first main result in this thesis is on the Maslov index

and symplectic area rigidity for coisotropic submanifolds in a broad class of ambient

symplectic manifolds. In [Zil09] and [Gin11], the Maslov index is defined for loops

in coisotropic submanifolds which are tangent to the characteristic foliation of the

coisotropic submanifold. The Maslov index of such a loop, x : S1 →M, is the (Conley-

Zehnder) mean index ∆ of a symplectic path which is a lift of the holonomy along the

loop to the pull-back bundle x∗TM. Although such a lift is not unique, the coisotropic

Maslov index µ is a well-defined real valued index.

With this definition of the coisotropic Maslov index, we prove (cf. [Bat12])

a result on the Maslov class rigidity. More specifically, given a closed displaceable

stable coisotropic submanifold, we show that there exists a non-trivial loop lying in

the submanifold with Maslov index bounded below by 1 and above by 2n + 1 − k,

where 2n is the dimension of the symplectic manifold and k the codimension of the

coisotropic submanifold (see Theorem 2.1.3). Moreover, the result gives bounds on

the symplectic area bounded by the loop; this area is positive and bounded above

by the displacement energy of the coisotropic submanifold. This result was proved

by Ginzburg in [Gin11] for ambient symplectic manifolds which are symplectically

aspherical. The case where the characteristic foliation is a fibration is also considered

in [Zil09]. We extend the result in [Gin11] to certain rational manifolds which need not

be symplectically aspherical. In the spherical case, the obtained loop may be trivial

with non-trivial capping. Hence, in our theorem we state conditions on the ambient

manifold for which this loop is non-trivial and has the referred bounds on the Maslov

index and on the symplectic area.
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The Maslov class rigidity for Lagrangian submanifolds was originally studied

by Viterbo in [Vit90] for the Lagrangian torus and by Polterovich in [Pol91a, Pol91b],

for instance, for monotone Lagrangian submanifolds. These results show that the

Maslov class satisfies certain restrictions. Namely, the minimal Maslov number lies

between 1 and n + 1. Audin was the first to conjecture (as far as we know) that the

minimal Maslov number is 2 for the Lagrangian torus; cf. [Aud88]. Fukaya proved

this conjecture in [Fuk06]. There are two methods to prove this type of results. One

approach, introduced by Gromov in [Gro85], uses holomorphic curves. This approach

is the one used, for instance, by Audin and Polterovich (see also [ALP94]). A different

approach relies on Hamiltonian Floer homology and is found, for instance, in the work

of Viterbo, Kerman and Şirikçi; see also [Ker09, KŞ10].

The proof of our result follows the method used by Ginzburg in [Gin11] which

is based on the second approach mentioned above together with the stability condition

and certain lower bounds on the energy estimated by Bolle in [Bol96, Bol98]. The proof

also relies on a suitable action selector introduced in [Ker09, KŞ10].

The second part of our theorem, which gives bounds on the symplectic area

bounded by the loop, complements and partially generalizes numerous rigidity results

for the Liouville class. Among these are Liouville class rigidity results for Lagrangian

submanifolds (see e.g. [Che96, Che98, Gro85, Oh97, Pol93]), for stable coisotropic sub-

manfiolds (see e.g. [Gin07, Ker08, Ush11]) and for hypersurfaces of restricted contact

type (see e.g. [Sch06]).

Furthermore, we prove a theorem of dense or nearby existence (Theorem 2.1.4)

which guarantees the existence of periodic orbits for a dense set of energy levels. This

result is established in [Gin07] for symplectically aspherical manifolds and, as mentioned

there, it can be viewed as a generalization of the existence of closed characteristics on

stable hypersurfaces in R2n established in [HZ11]. We state this nearby existence

theorem for a broader class of rational symplectic manifolds.

Our theorems hold for a large class of manifolds including negative monotone

manifolds (see definition in Section 3.1). Standard examples are surfaces of genus

greater than two and the hypersurface in CPn defined by zm0 + . . . + zmn = 0 where

m > n+ 1.

The second main result of our investigation concerns the geometric behavior

of symplectomorphisms. Namely, we are interested in the existence and number of their
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periodic points. There are many interesting results for Hamiltonian diffeomorphisms.

Floer, in [Flo89], introduced a new approach, now called Floer theory, to es-

tablish the Arnold conjecture giving a positive lower bound on the number of fixed

points of such diffeomorphisms. However, the main focus of our work is on symplec-

tomorphisms which need not be generated by Hamiltonians. There are also variations

of Floer theory applicable in this case introduced by Dostoglou and Salamon in [DS93]

and Lê and Ono in [LO95, Ono95], but, in contrast with the Hamiltonian case, one

cannot expect Floer homology to immediately yield the existence of fixed points. For

example, a rotation of the two-torus is a symplectomorphism without fixed points.

Although here we are interested in symplectomorphisms which do not necessa-

rily arise from Hamiltonians, our result (cf. [Bat]) can be viewed in the context of what is

often referred to the Conley conjecture ([Con84]) which claims the existence of infinitely

many periodic orbits (of a Hamiltonian diffeomorphism). The conjecture was shown to

be true for symplectic manifolds with c1|π2(M) = 0 and also for negative monotone ma-

nifolds; see [CGG11, GG09, Hei12] and also [FH03, Gin10, GG12a, Hin09, LC06, SZ92].

The main difference between the Conley conjecture and our result is that in the Conley

conjecture the existence of periodic orbits is unconditional whereas in our result the

symplectomorphism is required to have one contractible (hyperbolic) periodic orbit.

Without loss of generality, when a periodic orbit is contractible, we may assume it is a

fixed point. Hence, for the sake of simplicity, from now on we consider the hyperbolic

periodic orbit γ to be constant; see beginning of Section 5.2.2 for more details.

Due to this assumption on the existence of a periodic orbit of a specific type,

our result fits more accurately under what Gürel describes in [Gür12b, Gür12a] as the

generalized HZ-conjecture; see also [GG12b]. This variant of the Conley conjecture

claims that a Hamiltonian diffeomorphism with more than necessary fixed points has

infinitely many periodic points where more than necessary is interpreted as the lower

bound on the number of fixed points provided by some form of the Arnold conjecture.

For CPn, the expected threshold is n+ 1. The HZ-conjecture was originally stated (as

far as we know) in this form by Hofer and Zehnder in [HZ11, p.263] and was motivated

by the results of Gamboudo and Le Calvez in [GLC99] and Franks in [Fra88] (see also

[Fra92, Fra96]) where they prove that an area preserving diffeomorphism of S2 having

at least three fixed points admits automatically infinitely many periodic points; see

also [BH11, CKR+12, Ker12] for symplectic topological proofs. In a broader context,
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it appears that the presence of a fixed point that is unnecessary from a homological

or geometrical perspective is already sufficient to force the existence of infinitely many

periodic points. In fact, our theorem (see Theorem 2.2.1 and cf. [Bat]) asserts that, for

a certain class of symplectic manifolds, a symplectomorphism (isotopic to the identity)

with a hyperbolic fixed point must admit infinitely many periodic points (as long as it

satisfies some condition on its flux). The theorem is a symplectic analogue of a result

proved in [GG12b] for Hamiltonian diffeomorphisms. There are few results directly

supporting the conjecture for dimension greater than two: in addition to [GG12b],

a “local version” of the conjecture is considered in [GG12b] and the conjecture is

presented for non-contractible orbits in [Gür12b].

Some examples of manifolds that meet the requirements of Theorem 2.2.1

and admit symplectomorphisms (which are not Hamiltonian diffeomorphisms) with

periodic points are the product of complex projective spaces with tori CPn×T2m (with

m+ 2 ≤ n) and the product of complex Grassmannians with tori Gr(2, N)× T2.
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Chapter 2

Main results

2.1 Rigidity of the coisotropic Maslov index

and the nearby existence theorem

In this section we state and discuss our result on the Maslov index and sym-

plectic area rigidity for coisotropic submanifolds (cf. [Bat12]). In order to state the

theorem, we must first briefly describe the Maslov index for loops in coisotropic sub-

manifolds (for a more detailed description of this index we refer the reader to Sec-

tion 3.4.1).

In the Lagrangian setting, the Maslov index gives an explicit isomorphism,

µ : π1(Λ(n)) → Z, between the fundamental group of the Lagrangian Grassmannian

and Z (cf. [Arn67]) and the Maslov class is given by the generator of

H1(Λ(n),Z) ∼= π1(Λ(n)) ∼= Z.

Then, the Maslov index of a loop x : S1 → L in a closed Lagrangian submanifold,

µ(x) ∈ Z, is obtained using the above index together with a trivialization of Tx(t)L.

For closed coisotropic submanifolds, the Maslov index is defined ([Gin11,

Zil09]) for loops tangent to the characteristic foliation as the mean (Conley-Zehnder)

index of a symplectic path obtained from a lift of the holonomy along the loop to the

pull back x∗TM . This is a well-defined real valued index, µ(x, u) ∈ R (see Exam-

ple 2.1.2), and it generalizes the usual Lagrangian Maslov index. More specifically, let

(M2n, ω) be a symplectic manifold and N2n−k a closed coisotropic submanifold of M of

codimension k. Then (TpN)ω ⊆ TpN for each p ∈ N and, denoting by ωN the restric-
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tion of ω to N, we note that the distribution TNω := kerωN on N is integrable. By

the Frobenius theorem, there is a foliation F (the characteristic foliation) on N whose

tangent spaces are given by TNω, i.e. TF = kerωN , and the rank of this foliation is

k. Consider a capped loop x̄ = (x, u) tangent to TF and the holonomy along x

Ht : T
⊥Fx(0) → T⊥Fx(t).

There is a symplectic vector bundle decomposition of the restriction of TM to N :

TM
∣∣
N

= (TF ⊕ T⊥N)⊕ T⊥F

where we identify the normal bundle T⊥F to F in N with TN/TF and the normal

bundle T⊥N to N in M with TM/TN. Lift the holonomy along x to x∗TM. The

capping u gives rise to a symplectic trivialization of x∗TM , unique up to homotopy,

and hence this lift can be viewed as a symplectic path

Ψ: [0, 1]→ Sp(2n).

Following [Zil09] (see also [Gin11]) we adopt

Definition 2.1.1. The coisotropic Maslov index is defined (up to a sign) as the mean

index of this path, i.e.

µ(x, u) := −∆(Ψ).

This Maslov index is independent of the lift of the holonomy along x. However,

in general, it depends on the trivialization arising from the capping u (see Section 3.4.1

for the definitions of the indices). The proof that this Maslov index is well-defined can

be found in [Zil09]. In Section 3.4.1, for the sake of completeness, we give a direct proof

of this fact.

Example 2.1.2. Consider the Hamiltonian defined in (Cn, ω0) by

H(z) := 1/2
n∑
l=1

λl|zl|2

with λl ∈ R+ (where ω0 is the standard symplectic form). The ellipsoid defined as the

regular level set H−1({1}) is a hypersurface (and hence a coisotropic submanifold) of

Cn. For each j = 1, . . . , n, the loop parameterized by

γj(t) := (0, . . . , 0, zj(t), 0, . . . , 0)
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where

zj(t) = e−iλjtzj

(with |zj |2 = 2/λj and t ∈ [0, 2π/λj ]) is a periodic orbit of the Hamiltonian system of

H lying in H−1({1}). A calculation shows that the Maslov index of the loop (γj , uj)

is given by

µ(γj , uj) = −∆(γj , uj) =
2

λj

n∑
l=1

λl

where uj is some capping of γj . In this case, the index is independent of the capping

we use.

To compute µ(γj , uj), we use Ψt = d(ϕtH)γ(0) the linearized flow along γ. The

foliation F is formed by the integral curves of ϕtH . See Section 3.2.1 for the description

of the Maslov index when the loop is a periodic orbit of a Hamiltonian.

With this definition of the coisotropic Maslov index, we prove (in Section 5.1.1)

the following result on the Maslov class rigidity.

Theorem 2.1.3. Let (M2n, ω) be a rational closed symplectic manifold, N2n−k ⊂ M2n

a closed stable displaceable coisotropic submanifold of M and F its characteristic foli-

ation.

Assume that one of the following conditions is satisfied

• M is negative monotone,

• e(N) < h0, where e(N) is the displacement energy of N and h0 is the rationality

constant of M,

• 2n+ 1 < 2N , where N is the minimal Chern number of M.

Then, for all ε > 0, there exists a capped loop γ̄ = (γ, v) such that γ is a

non-trivial loop tangent to F and

1 ≤ µ(γ̄) ≤ 2n+ 1− k,

0 < Area(γ̄) ≤ e(N) + ε,

where Area(γ̄) :=

∫
v
ω.

8



The condition that M is closed can be replaced in the theorem by geome-

trically bounded and wide. Recall that a symplectic manifold is said to be wide if

it admits an arbitrarily large, compactly supported, autonomous Hamiltonian whose

Hamiltonian flow has no non-trivial contractible periodic orbits of period less than or

equal to one; see [Gür08] for more details. The proof of the theorem in this case is

essentially the same as when M is closed.

The requirements that N is displaceable and stable are essential. For ins-

tance, a closed manifold N viewed as the zero section of its cotangent bundle T ∗N is

not displaceable (cf. [Gro85]) and the Maslov index of a loop in N is always trivial since

π2(T ∗N,N) = 0. Moreover, the assumption that N is stable cannot be entirely omit-

ted: there exist Hamiltonian systems having no periodic orbits on a compact energy

level which arise as counterexamples to the Seifert conjecture; cf. [Gin99, GG03].

Furthermore, as a corollary of the previous main result we obtain (cf. [Bat12])

a theorem of dense or nearby existence, that is, a theorem which guarantees the exis-

tence of periodic orbits for a dense set of energy levels. This result is presented

in [Gin07] for symplectically aspherical manifolds. Here, we state this nearby exis-

tence theorem for a broader class of rational symplectic manifolds. The structure of

our proof is essentially the same as in the referred paper and the necessary changes are

contained in the proof of the theorem in Section 5.1.2.

Let M be a closed rational symplectic manifold and consider a map
−→
F =

(F1, . . . , Fk) : M → Rk whose components Fj are Poisson-commuting Hamiltonians,

i.e. {Fi, Fj} = 0 for i 6= j and satisfy dF1∧ . . .∧dFk 6= 0 in N0 where Na :=
−→
F −1({a}),

for a ∈ Rk, and N0 is a displaceable coisotropic submanifold of M with codimension k.

Assume that one of the following conditions is satisfied

• M is negative monotone,

• e(N0) < h0,

• 2n+ 1 < 2N .

Then we have the following nearby existence result.

Theorem 2.1.4. For a dense set of regular values a ∈ Rk near the origin, the level

set Na carries a closed curve x (with capping u in M) tangent to the characteristic

9



foliation Fa on Na.

2.2 Hyperbolic points and periodic orbits of symplecto-

morphisms

In this section we state and discuss our result on the existence of infinitely

many periodic orbits of symplectomorphisms. More specifically, we proved (cf. [Bat])

the existence of infinitely many periodic orbits of symplectomorphisms isotopic to the

identity as long as they admit at least one hyperbolic periodic orbit and satisfy some

constraints on the flux.

Consider a symplectomorphism φ in the identity component of the group of

symplectomorphisms of (M,ω). The flux homomorphism (see definition in Section 3.3)

associates with φ a cohomology class [θ] in H1(M,R). We say that φ has rational flux

if the group formed by the integrals of θ over the loops in M is discrete, that is,

〈[θ], π1(M)〉 = h1Z

for some h1 ∈ R.

Then we have the following result on the periodic orbits of such symplecto-

morphisms.

Theorem 2.2.1. Let M2n be strictly monotone (i.e. M is monotone and c1|π2(M) 6= 0

and [ω]|π2(M) 6= 0). Assume that

• N ≥ n/2 + 1 (where N is the minimal Chern number) and

β ∗ α = q[M ] in HQ∗(M) = H∗(M)⊗ Λ (2.2.1)

for some ordinary homology classes α, β ∈ H∗(M), with deg(α), deg(β) < 2n.

Then any symplectomorphism in Symp0(M,ω) with

• a contractible hyperbolic periodic orbit γ and

• rational flux where h1 = (p/r)h0 (where h0 is the rationality constant of M)

has infinitely many periodic orbits.

Here p and r are coprime positive integers and q is the element of the Novikov

ring defined as in Section 4.3.1.
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The assumption on the existence of a hyperbolic periodic orbit γ is extremely

important. A significant feature of hyperbolic orbits is the fact that the energy of

(Floer) trajectories approaching an iteration of γ and crossing its fixed neighborhood

cannot be small, i.e. is bounded away from zero by a constant independent of the

order of iteration (see Section 5.2.1). The main tool used to prove our result is filtered

Floer-Novikov homology (see Section 4.2.2). Our assumption that the flux and the

action grow together plays an important role in the proof.

The following proposition (proved in Section 5.2.3) leads to examples of sym-

plectomorphisms which meet the requirements of the main theorem.

Proposition 2.2.2. Given a symplectic isotopy φt of (M,ω) with φ0 = id and a loop

γ in M , there exists a Hamiltonian deformation, ψt, of φt such that γ is a hyperbolic

one-periodic orbit of ψ1.

In particular, the flux of {φt} is equal to the flux of {ψt}.

Example 2.2.3. Consider M = CPm × T2n (where m + 2 ≤ n) with the standard

symplectic form. Recall that, in this case, the symplectic area of T2n is one, c1(T2n) = 0

and that, under the normalization ωFS[g0] = m + 1 (where ωFS is the Fubini-Studi

form on CPm and g0 is the generator of H2(CPm,R)), CPm is a monotone symplectic

manifold. Denote the rationality constant of M by h0. Consider a symplectomorphism

φ given by the shift of θ ∈ H1(M,R) with h1 = (p/r)h0. The symplectomorphism φ

has no fixed points. According to the previous proposition, there exists a Hamiltonian

deformation ψt of a symplectic path φt connecting the identity to φ such that ψ1 has

a hyperbolic fixed point.

Remark 2.2.4. The hyperbolicity condition is required so that the orbit has the im-

portant feature mentioned above and which is also described in Section 5.2.1. Hence,

more generally, a symplectomorphism with a periodic orbit having the property in

Theorem 5.2.1 (and satisfying the requirement on its flux) admits infinitely many pe-

riodic orbits.

Remark 2.2.5. Hypothetically the requirements on the minimal Chern number and the

interdependence of the flux and the (spherical) rationality of the manifold can possibly

be relaxed or even eliminated. However, the homological assumption (2.2.1) is crucial

in the proof.
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The proof of the theorem goes by contradiction and, if a symplectomorphism

admits finitely many fixed points, it admits an iteration k for which the action of all

the k-periodic orbits are in a small neighborhood of λ0Z. Using the feature of the

hyperbolic orbit, the fact that quantum homology acts on the (filtered) Floer-Novikov

homology and condition (2.2.1), we obtain a k-periodic orbit with action outside the

small neighborhood of λ0Z. Our assumption that the flux and the action grow together

plays an important role in the proof.
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Chapter 3

Some facts from symplectic

geometry

In this chapter we introduce the notation used throughout the thesis and

recall some facts about symplectic manifolds and symplectomorphisms considered in

the main theorems.

We are interested in certain structures and properties of symplectic manifolds

which are described in Section 3.1.

Our first result, on the rigidity of the coisotropic Maslov index, concerns the

existence of periodic orbits of a Hamiltonian on coisotropic submanifolds tangent to

its characteristic foliation. The periodic orbits of Hamiltonian systems can be charac-

terized as critical points of a functional on the space of capped loops. In Section 3.2,

we describe this action functional and the mean and Conley-Zehnder indices. In Sec-

tion 3.4, we recall the definition of the Maslov index for coisotropic submanifolds and

give some properties of this index for the so called stable coisotropic submanifolds.

The periodic orbits of symplectomorphisms can also be viewed as critical

points of some functional but in this case on the space of tailed -capped loops. In

Section 3.3, we describe this action functional and the mean index.

3.1 Symplectic manifolds

Our main results are for closed rational symplectic manifolds. In this section

we describe and discuss the properties of such manifolds needed in the proofs. For

13



more details see [MS95].

Recall that (M,ω) is closed if it is compact with no boundary and is said to

be (spherically) rational if the group

〈[ω], π2(M)〉 ⊂ R

formed by the integrals of ω over the spheres in M is discrete, that is,

〈[ω], π2(M)〉 = h0Z

where h0 ≥ 0. When 〈[ω], π2(M)〉 = 0 we set h0 = ∞. The constant h0 is called the

rationality constant and it is the infimum over the symplectic areas of all nonconstant

spheres in M with positive area. More explicitly,

h0 := inf
A∈π2(M)

{
〈ω,A〉 | 〈ω,A〉 > 0

}
.

Consider an almost complex structure J on M compatible with ω, i.e. such

that 〈ξ, η〉 := ω(ξ, Jη) is a Riemannian metric on M . For every symplectic manifold

(M,ω), the space of compatible almost complex structures is non-empty and con-

tractible. Similarly, a Riemannian metric g is compatible with ω if it is of the form

g(·, ·) = ω(·, J ·) for some almost complex structure J .

Denote by c1 := c1(M,J) ∈ H2(M,Z) the first Chern class ofM . The minimal

Chern number of a symplectic manifold (M,ω) is the integer N which generates the

discrete group 〈c1, π2(M)〉 ⊂ R formed by the integrals of c1 over the spheres in M , i.e.

〈c1, π2(M)〉 = NZ

where N ∈ Z+. When 〈c1, π2(M)〉 = 0, we set N = ∞. The constant N is given

explicitly by

N := inf
A∈π2(M)

{
〈c1, A〉 | 〈c1, A〉 > 0

}
.

A symplectic manifold (M,ω) is called monotone (negative monotone) if the

cohomology classes c1 and [ω] satisfy the condition

c1|π2(M) = λ [ω]|π2(M)

for some non-negative (respectively, negative) constant λ ∈ R.
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The manifold (M,ω) is called symplectically aspherical if

c1|π2(M) = 0 = [ω]|π2(M).

Notice that a symplectically aspherical manifold is monotone and a monotone (or ne-

gative monotone) manifold is rational.

3.2 Hamiltonian diffeomorphisms

All the Hamiltonians H on M are assumed to be one-periodic in time, namely,

H : S1 ×M → R,

where S1 = R/Z, and we set Ht = H(t, ·) for t ∈ S1. The Hamiltonian vector field

XH of H is defined by ιXHω = −dH. The time-one map of the flow of the Hamiltonian

vector field XH is called a Hamiltonian diffeomorphism and denoted by ϕH .

The composition ϕtH ◦ϕtK of two Hamiltonian flows is again Hamiltonian and

it is generated by K#H where

(K#H)t := Kt +Ht ◦ (ϕtK)−1. (3.2.1)

Remark 3.2.1. In general K#H is not a one-periodic Hamiltonian. However, K#H is

one-periodic if H0 = 0 = H1. This condition can be met by reparametrizing the Hamil-

tonian as a function of time without changing the time-one map. Thus, in Section 5.1,

we will usually treat K#H as a one-periodic Hamiltonian.

When two Hamiltonians K and H are one-periodic, we denote by K\H the

two periodic Hamiltonian equal to Kt for t ∈ [0, 1] and Ht−1 for t ∈ [1, 2] (where we

assume K1 = H0 and H1 = K0). Then define the k-periodic Hamiltonian H\k :=

H\ . . . \H (k times) the natural way.

The Hofer norm of a one-periodic Hamiltonian H is defined by

||H|| :=
∫ 1

0
(max
M

Ht −min
M

Ht)dt.

The Hamiltonian diffeomorphism ϕH is said to displace a subset U of M if

ϕH(U) ∩ U = ∅.
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When such a map exists, we call U displaceable and define the displacement energy of

U to be

e(U) := inf
{
||H|| : ϕH displaces U

}
where || · || is the Hofer norm.

3.2.1 Capped loops, the Hamiltonian action functional

Let x : S1 →M be a contractible loop with capping u : D2 →M, i.e. u|∂D2 =

x. Two cappings u and v of x are called equivalent if the integrals of ω and of c1 over

the sphere obtained by attaching u to v are both equal to zero. For instance, when M

is symplectically aspherical, all cappings of x are equivalent. A capped closed curve x̄

is, by definition, a closed curve x equipped with an equivalence class of cappings.

The action functional of a one-periodic Hamiltonian H on a capped closed

curve x̄ = (x, u) is defined by

AH(x̄) := −
∫
u
ω +

∫
S1

Ht(x(t))dt.

The space of capped closed curves is a covering space of the space of contractible loops

and the critical points of the action functional are exactly the capped one-periodic

orbits of the Hamiltonian vector field XH . The action spectrum S(H) of H is the set

of critical values of the action.

A (capped) periodic orbit x̄ of H is said to be non-degenerate if the linearized

return map

dϕH : Tx(0)M → Tx(0)M

has no eigenvalues equal to one. Note that capping has no effect on degeneracy or

non-degeneracy of x̄.

Using a trivialization of x∗TM arising from the capping of x̄, the linearized

flow along x

dϕtH : Tx(0)M → Tx(t)M

can be viewed as a symplectic path Φ: [0, 1]→ Sp(2n). The mean index of x̄ is defined

by ∆(x̄) := ∆(Φ); see Definition 3.4.3. When we need to emphasize the role of H, we

write ∆H(x̄). A list of properties of the mean index can be found in Section 3.4.1. In

general, the mean index and the action depend on the equivalence class of the capping
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u of the loop x. More concretely, let A be a 2-sphere and denote by x̄#A the recapping

of x̄ by attaching A. Then we have

∆(x̄#A) = ∆(x̄)− 2 〈c1, A〉 and AH(x̄#A) = AH(x̄)−
∫
A
ω.

Consider a non-degenerate path Φ: [0, 1] → Sp(2n), i.e. such that Φ(1) has

no eigenvalues equal to one. We denote by µCZ(Φ) the Conley-Zehnder index of Φ.

For a non-degenerate capped closed orbit x̄ = (x, u), its Conley-Zehnder index is given

by the Conley-Zehnder index of the symplectic path Φ obtained from the linearized

flow dϕtH and a trivialization arising from the capping u. Up to a sign, it is defined

as in [Sal99, SZ92] and we use the normalization such that µCZ(x̄) = n when x̄ is a

non-degenerate maximum (with trivial capping) of an autonomous Hamiltonian with

small Hessian; cf. [GG09].

We have the following relation between the Conley-Zehnder and mean indices

for non-degenerate paths and orbits; cf. [SZ92]:

|∆(Φ)− µCZ(Φ)| < n and hence |∆(x̄)− µCZ(x̄)| < n. (3.2.2)

3.3 Symplectomorphisms

In this section, we recall some properties of symplectomorphisms following

[LO95].

We denote by Symp(M,ω) the symplectomorphism group of (M,ω) and by

Symp0(M,ω) the identity component in Symp(M,ω).

Let φ ∈ Symp0(M,ω) and consider φt a symplectic path connecting the iden-

tity to φ, i.e. φ0 = id and φ1 = φ. A vector field Xt is defined by:

d

dt
φt = Xt ◦ φt. (3.3.1)

Recall that the flux homomorphism is defined on the universal cover of

Symp0(M,ω) as follows:

F̃lux : S̃ymp0(M,ω) → H1(M,R)

φ̃ 7→
[∫

ω(Xt, ·)dt
]
. (3.3.2)
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Let θ be a closed one-form which represents the cohomology class F̃lux(φ̃).

Throughout this work, we assume that the group formed by the integrals of θ over the

loops in M is discrete, that is,

〈[θ], π1(M)〉 = h1Z (3.3.3)

for some h1 ∈ R. When the group 〈[θ], π1(M)〉 = 0 we set h1 =∞. The symplectomor-

phism φ is said to have rational flux when (3.3.3) holds.

A symplectomorphism φ is called exact if it is the time-one map of a Hamil-

tonian vector field (see Section 3.2 for the definition).

3.3.1 Tailed-capped loops and the action functional

Let x : S1 →M be a contractible loop, where S1 = R/Z, with capping u : D2

→M, i.e. u|∂D2 = x. Two cappings v and w of x are called equivalent if the integrals

of ω and of c1 over the sphere obtained by attaching v to w are both equal to zero.

Denote by LM the space of (capped) loops in M .

The integration of the form θ defined by (3.3.2) along loops gives a homomor-

phism

Iθ : π1(M) → R

γ 7→
∫
γ
θ.

Consider the covering π : M̃ → M associated with ker Iθ ⊂ π1(M), i.e. the deck

transformation group of the cover π : M̃ →M is isomorphic to

π1(M)

ker Iθ
. (3.3.4)

Denote by ev : LM → M the evaluation map x 7→ x(0) and by ẽv the corresponding

map on LM̃ . Consider the covering space of LM associated to the homomorphisms

Ic1 : π2(M) → R

A 7→ 2

∫
A
c1 =: 2 〈c1, A〉

and

Iω : π2(M) → R

A 7→ −
∫
A
ω =: −〈ω,A〉
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which we denote by L̃M . The deck transformation group of the obtained covering

space is isomorphic to the quotient group

π2(M)

ker Ic1 ∩ ker Iω
.

This construction gives rise to a covering space of LM , which we denote by L̃M̃ , so

that the following diagram commutes:

L̃M̃ j̃ //

Π̃
��

LM̃ ẽv //

Π
��

M̃

π

��
L̃M j // LM ev //M

(3.3.5)

where j is the projection from L̃M to LM and j̃ the corresponding projection from

L̃M̃ to LM̃ . The deck transformation group of L̃M̃ → LM is the direct sum

(π1(M)/ ker Iθ)
⊕

π2(M)/(ker Ic1 ∩ ker Iω).

An element of the covering space L̃M̃ is represented by an equivalence class

of pairs (x̃, ṽ) where

i) x̃ is a loop in M̃ ,

ii) ṽ is a disc in M̃ bounding x̃ and

iii) (x̃, ṽ) is equivalent to (ỹ, w̃) if x̃ = ỹ and

Ic1(v#(−w)) = 0 = Iω(v#(−w))

where v = π(ṽ) and w = π(w̃).

An element of L̃M̃ can be viewed as a capped loop with a tail attached to it

in M (see Figure 3.1). Consider an element [(x̃, ṽ)] ∈ L̃M̃ and a capped loop (x, v) in

M such that π(x̃) = x and π(ṽ) = v. Fix a point p0 ∈ M and consider a path in M ,

t, connecting p0 to x(0). We say that two objects ̂̂x := (x, v, t) and ̂̂y := (y, w, t′) are

equivalent if

i) x = y,

ii) Ic1(v#(−w)) = 0 = Iω(v#(−w)) and
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p0

x(0)

x

v

t

Figure 3.1: Tailed-capped loop

iii) Iθ(t#t
′) = 0 where t#t′ is the concatenation of the paths t and t′.

The equivalence class [̂̂x] (in M) corresponds to the equivalence class [(x̃, ṽ)] (in M̃).

Let φ ∈ Symp0(M), φt a symplectic path connecting φ0 = id to φ1 = φ and

Xt the vector field associated with φt (as in (3.3.1)).

Lê and Ono proved in [LO95, Lemma 2.1] that we can deform {φt} through

symplectic isotopies (keeping the end points fixed) so that the cohomology classes

[ω(X ′t, ·)] and F̃lux(φ̃) = [θ] are the same (where X ′t is the vector field associated with

the deformed symplectic isotopies φ′t).

Lemma 3.3.1 (Deformation Lemma). For φ̃ ∈ S̃ymp0(M,ω), there exist

i) a smooth path φt in Symp0(M,ω) with φ0 = id, φ1 = φ and φt+1 = φt ◦ φ1 and

ii) a Hamiltonian Ht : M →M with Ht+1 = Ht

such that

−ω(Xt, ·) = θ + dHt =: θt.

The fixed points of φ = φ1 are in one-to-one correspondence with one-periodic

solutions of the differential equation

ẋ(t) = Xθt(t, x(t)) (3.3.6)

where Xθt is defined by −ω(Xθt , ·) = θt.

The set of one-periodic solutions of (3.3.6) is denoted by P(θt) and coincides

with the zero set of the closed one-form defined on the loop space of M , LM , by

α{φt}(x, ξ) =

∫ 1

0
ω(ż, ξ) + θt(z(t))(ξ)dt (3.3.7)
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where x ∈ LM and ξ ∈ TxLM (i.e. ξ is a tangent vector field along the loop x).

By the Deformation Lemma 3.3.1, there exists a periodic Hamiltonian

H̃ : S1 × M̃ → R such that dH̃t = π∗θt (t ∈ S1) (3.3.8)

where θt := −ω(Xt, ·). The time-dependent Hamiltonian flow on M̃ generated by

H̃t is the pull back of the original symplectic flow on M . In particular, the set of

contractible periodic solutions of the Hamiltonian system P(H̃) is the set π−1(P(θt))

and P̃(H̃) := j̃−1(P(H̃)) is the critical set of the functional:

A
H̃

([x̃, ṽ]) = −
∫
D
v∗ω +

∫ 1

0
H̃(t, x̃(t))dt (3.3.9)

where π(ṽ) = v (recall j is given by (3.3.5)). The action functional is homogeneous

with respect to iterations

A
H̃\k([x̃, ṽ]k) = kA

H̃
([x̃, ṽ])

where [x̃, ṽ]k is the k-th iteration of [x̃, ṽ] and depends on the equivalence class of the

capping ṽ of the loop x̃:

A
H̃

((x̃, ṽ)#A) = A
H̃

(x̃, ṽ) + Iω(A)

where A ∈ π2(M).

3.3.2 Mean index and the augmented action

A one-periodic orbit x of φ ∈ Symp(M,ω) (i.e. a periodic solution of (3.3.6))

is said to be non-degenerate if

dφx(0) : Tx(0)M → Tx(0)M

has no eigenvalues equal to one and x is called hyperbolic if none of the eigenvalues has

absolute value equal to one. Observe that a hyperbolic periodic orbit is non-degenerate.

We say that φ (or H when φ = ϕH) is non-degenerate if all its one-periodic orbits are

non-degenerate.

Let (x, v) be a capped periodic orbit of φ. Using a trivialization of x∗TM

arising from the capping v, the linearized flow along x

dφt : Tx(0)M → Tx(t)M
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can be viewed as a symplectic path Φ: [0, 1] → Sp(2n). The mean index of (x, v) is

defined by ∆φ(x, v) := ∆φ(Φ); see [SZ92].

Recall that the time-dependent Hamiltonian flow on M̃ generated by H̃ (ob-

tained in Lemma 3.3.1) is the pull back of the original symplectic flow on M , hence a

periodic orbit x̃ ∈ P̃(H̃) is non-degenerate if and only if π(x̃) is non-degenerate as a

periodic orbit of φ and it is hyperbolic if and only if π(x̃) is hyperbolic as a periodic

orbit of φ. Moreover,

∆
H̃

([x̃, ṽ]) = ∆φ((x, v))

and it has the following properties:

∆
H̃\k([x̃, ṽ]k) = k∆

H̃
([x̃, ṽ]),

and

∆
H̃

([x̃, ṽ]#A) = ∆
H̃

([x̃, ṽ])− Ic1(A)

where A ∈ π2(M). The augmented action is defined by

Ã
H̃

([x̃, ṽ]) := A
H̃

([x̃, ṽ])− λ

2
∆
H̃

([x̃, ṽ]). (3.3.10)

Notice that the augmented action is independent of the capping ṽ and it is homogeneous

with respect to iteration, i.e.

Ã
H̃\k([x̃, ṽ]k) = kÃ

H̃
([x̃, ṽ]).

3.4 Coisotropic submanifolds and the Maslov index

We are particularly interested in closed coisotropic submanifolds. Recall, from

Section 2.1, that a N2n−k is a coisotropic submanifold if (TpN)ω ⊆ TpN for each p ∈ N
and that these submanifolds admit a foliation F defined by TF = TNω. In this section,

we recall the definition of the Maslov index in this setting and discuss some properties

of this index for stable coisotropic submanifolds.

3.4.1 Definition of the coisotropic the Maslov index

The objective of this section is to revisit the definition of the coisotropic

Maslov index and give a direct proof of the fact that it is well defined. As mentioned

in the introduction, similar notions of index are originally considered in [Gin11, Zil09].
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First, we define the Maslov index of a loop of coisotropic subspaces of (R2n, ω0)

where ω0 := dx ∧ dy and (x, y) are the coordinates in R2n = Rn ×Rn. Then, we define

the Maslov index of a capped loop lying in a coisotropic submanifold and tangent to

the characteristic foliation of the coisotropic submanifold. We start by recalling the

definition of the mean index given in [SZ92]. For its construction, we need a collection

of mappings given by the following theorem:

Theorem 3.4.1 ([SZ92]). There is a unique collection of continuous mappings

ρ : Sp(V, ω)→ S1

(one for every symplectic vector space V ) satisfying the following conditions:

• Naturality: If T : (V1, ω1)→ (V2, ω2) is a symplectic isomorphism (that is, T ∗ω2 =

ω1), then

ρ(TϕT−1) = ρ(ϕ)

for ϕ ∈ Sp(V1, ω1).

• Product: If (V, ω) = (V1 × V2, ω1 × ω2), then

ρ(ϕ) = ρ(ϕ1)ρ(ϕ2)

for ϕ ∈ Sp(V, ω) of the form ϕ(z1, z2) = (ϕ1z1, ϕ2z2) where ϕi ∈ Sp(Vi, ωi).

• Determinant: If ϕ ∈ Sp(2n) ∩O(2n) ' U(n) is of the form

ϕ =

 X −Y
Y X

 ,

then

ρ(ϕ) = det(X + iY )

• Normalization: If ϕ has no eigenvalues on the unit circle, then

ρ(ϕ) = ±1

Remark 3.4.2. The map ρ : Sp(2n)→ S1 is given explicitly by

ρ(ϕ) := (−1)m0
∏

λ∈σ(ϕ)∩S1\{−1,1}

λm+(λ)
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where σ(ϕ) is the set of eigenvalues of ϕ, m0 is given by

m0 := #
{
{λ, λ−1} | λ ∈ σ(ϕ) ∩ R−

}
and m+(λ) is some multiplicity assigned to an eigenvalue λ ∈ S1\{−1, 1}; see page

1316 in [SZ92] for the details of the definition of m+.

Notice that only the eigenvalues of ϕ on the unit circle and on the negative

real axis contribute to ρ(ϕ).

Then, the definition of the mean index of a path Ψ: [0, 1] → Sp(2n) is given

by:

Definition 3.4.3 (Mean Index ; [SZ92]). Let Ψ: [0, 1]→ Sp(2n) be a path of symplectic

matrices. Then choose a function α : [0, 1] → R such that ρ(Ψt) = eπiα(t). The Mean

index of the path Ψ is defined by

∆(Ψ) := α(1)− α(0)

The mean index ∆ has the following properties:

1. Homotopy Invariance: ∆(Ψ) is an invariant of homotopy of Ψ with fixed end

points

2. Concatenation: ∆ is additive with respect to concatenation of paths:

∆(Ψ) = ∆(Ψ|[0,a]) + ∆(Ψ|[a,1])

where 0 < a < 1

3. Loop: ∆(ϕΨ) = ∆(ϕ) + ∆(ϕ0Ψ) if either ϕ or Ψ is a loop

4. Naturality: ∆(TΨT−1) = ∆(Ψ) where T : (V1, ω1) → (V2, ω2) is a symplectic

isomorphism and Ψ ∈ Sp(V1, ω1)

5. Product: ∆(Ψ) = ∆(Ψ1) + ∆(Ψ2) where Ψ ∈ Sp(V = V1 × V2, ω = ω1 × ω2) is

given by Ψ(z1, z2) = (Ψ1z1,Ψ2z2) where Ψi ∈ Sp(Vi, ωi).

The Maslov index of a loop of coisotropic subspaces is given (up to a sign) as the mean

index of a certain path of symplectic matrices.
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Definition 3.4.4 (Maslov Index for Coisotropic Subspaces). Consider

C = (Ct)t∈[0,1]

an oriented loop of coisotropic subspaces of (R2n, ω0) and

Ht : C0/Cω0
0 → Ct/C

ω0
t

a path of symplectic linear maps. Recall that a loop C is oriented if one can orient the

space Ct (continuous in t) so that C0 and C1 have the same orientation. Pick a path

Ψ: [0, 1]→ Sp(2n) satisfying Ψ0 = Id, Ψt(C0) = Ct and Ψt

∣∣∣
C0/Cω0

= Ht (3.4.1)

and define the real valued index µ : C→ R by

µ(C, H) := −∆(Ψ),

where C is the set of loops of coisotropic subspaces of (R2n, ω0).

If the loop C is not oriented, we define the Maslov index µ(C, H) as half of

the Maslov index of the loop obtained by traversing the initial loop twice.

Proposition 3.4.5. The Maslov index given in Definition 3.4.4 is well defined.

Proof. We prove this proposition in three steps by considering the following cases:

1. The loop C is constant with Ct = L0 a fixed Lagrangian subspace of (R2n, ω0).

2. The loop C is constant with Ct = C0 a fixed coisotropic subspace of (R2n, ω0).

3. General case: C is a loop of coisotropic subspaces of (R2n, ω0).

Step 1: Assume, without loss of generality, that C is the constant horizontal

loop L0 :=
{

(x, y) ∈ R2n | y = 0
}
. Then consider Ψ: [0, 1] → Sp(2n) as in (3.4.1) and

notice that since Ct = L0 is Lagrangian, H ≡ 0. For t ∈ [0, 1], we have that Ψt fixes

the lagrangian L0 if and only if it is of the form At Bt

0 A−Tt

 where BT
t A

T
t = A−1

t Bt.

This path is homotopic to the concatenation of two symplectic paths of the form:

Ψ
′
t =

 Ãt 0

0 Ãt
−T

 and Ψ
′′
t =

 Ã1 B̃t

0 Ã1
−T


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where we essentially first travel along Ψt with Bt = 0 and then, when we reach A1 B0 = 0

0 A−T1

 ,

we build up Bt from 0 to B1.

Since Ψ
′′
t has constant eigenvalues, ∆(Ψ

′′
) = 0. Hence, by property (2), the

mean index of Ψ is equal to the mean index Ψ
′
.

Suppose that Ãt is diagonalizable, i.e., it can be written in the form

Ãt = Pt


(A1)t 0

. . .

0 (An)t


︸ ︷︷ ︸

=: Dt

(Pt)
−1 (3.4.2)

where Pt ∈ Sp(2n) and each block (Aj)t corresponds to an eigenvalue (λj)t of Ãt. Then,

in this case, Ãt 0

0 Ãt
−T

 =

 Pt 0

0 P−Tt

 Dt 0

0 D−Tt


︸ ︷︷ ︸

=: Γt

 Pt 0

0 P−Tt

−1

and, by the naturality property of the map ρ, we have ρ(Ψ
′
t) = ρ(Γt) for all t ∈ [0, 1].

Claim 3.4.6. For all t ∈ [0, 1], we have ρ(Γt) = 1.

Proof. For the sake of simplicity, we will drop, for now, the subscript t in the notation.

By Remark 3.4.2, we have

ρ(Γ) := (−1)m0
∏

λ∈σ(Γ)∩S1\{−1,1}

λm+(λ)

= (−1)m0
∏

λ∈σ(Γ)∩S1\{−1,1}
Imλ>0

λm+(λ) λ̄m+(λ̄)

= (−1)m0
∏

λ∈σ(Γ)∩S1\{−1,1}
Imλ>0

λm+(λ)−m+(λ̄) (3.4.3)

where σ(Γ) is the spectrum of Γ. Recall that only the eigenvalues of Γ on the unit circle

and on the negative real axis contribute to ρ(Γ). Regarding the eigenvalues on S1, it

can be proved, directly from the definition of m+, that m+(λ) = m+(λ). Hence, using
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the notation with the subscript t, we obtain by (3.4.3) that ρ(Γt) = (−1)(m0)t , for each

t ∈ [0, 1], where

(m0)t := #
{
{λt, λ−1

t } ∈ σ(Γt) : λt ∈ R−
}

= #
{
λt ∈ σ(Dt) : λt ∈ R−

}
.

The last equality follows from the fact that λt is an eigenvalue of Dt if and only if λt

and λ−1
t are eigenvalues of Γt. Since Dt is continuous in t and det(Dt) 6= 0, the signs

of det(D0) and det(D1) are the same. The determinant of Dt is given by

det(Dt) =
∏

λt∈R−
λt

∏
λt∈R+

λt︸ ︷︷ ︸
>0

∏
λt∈C\R

λt︸ ︷︷ ︸
>0

where the products run over λt ∈ σ(Dt). Then the sign of det(Dt) is determined by

the number (mod 2) of the real negative eigenvalues of Dt and we have (−1)(m0)0 =

(−1)(m0)t for all t ∈ [0, 1]. Since, by (3.4.1) D0 = Id the result follows immediately.

Hence, we have proved that, under the assumption (3.4.2), ρ(Ψ
′
t) = 1 for a

fixed t ∈ [0, 1]. Since the set of diagonalizable matrices is dense in the set of matri-

ces, the result holds for a “general” Ψ
′
t. It follows that ∆(Ψ

′
) = 0 and hence we have

∆(Ψ) = 0.

Step 2: Consider Ψ: [0, 1] → Sp(2n) as in (3.4.1) and the symplectic decom-

position of R2n:

R2n = (R2n/C0 ⊕ Cω0
0 )⊕ C0/Cω0

0 . (3.4.4)

Since Ψt ∈ Sp(2n), Ψt(V ) = V and Ψt(C0/Cω0
0 ) = C0/Cω0

0 , the path Ψt has

the form  (Ψt)|V 0

0 Ht


with respect to decomposition (3.4.4), where V := R2n/C0 ⊕ Cω0

0 . By property (5) of

the mean index,

∆(Ψ) = ∆(Ψ|V ) + ∆(H).

Since V is symplectic and Cω0
0 is Lagrangian in V, we have by step 1 that ∆(Ψ|V ) = 0

and hence ∆(Ψ) = ∆(H). Therefore, the mean index ∆(Ψ) only depends on the mean
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index of H and the result is proved for case (2).

Step 3: Let Ψ: [0, 1] → Sp(2n) be a path as in (3.4.1) and consider a loop

Φ: [0, 1] → Sp(2n) which depends only on C and satisfies Φt(C0) = Ct. Recall that

C is an orientable loop and hence we may consider such a loop Φ. Define the path

Ψ̃ : [0, 1]→ Sp(2n) by Ψ̃t := Φ−1
t Ψt which satisfies Ψ̃t(C0) = Ct for all t ∈ [0, 1]. By step

2, ∆(Ψ̃) = ∆(H̃), where H̃t : C0/Cω0
0 → Ct/C

ω0
t is given by

H̃t = Φ−1
t

∣∣
(Ct/C

ω0
t )

Ψt

∣∣
(C0/C

ω0
0 )

= Φ−1
t

∣∣
(Ct/C

ω0
t )
Ht.

Since Φ is a loop, then by property (3) of the mean index we have ∆(Ψ̃) = ∆(Φ−1Ψ) =

∆(Φ−1) + ∆(Ψ) and ∆(H̃) = ∆
(
Φ−1

∣∣
(C0/Cω0 )

)
+ ∆(H). Hence

∆(Ψ) = ∆(H̃)−∆(Φ−1)

which only depends on H and on Φ. Since Φt only depends on Ct, ∆(Ψ) only depends

on H and C. Therefore, the Maslov index µ(C, H) := −∆(Ψ) depends only on the loop

C = (Ct) and the linear map H and not on the choice of the path Ψ as long as it satisfies

the properties in (3.4.1).

We, now, define the Maslov index of a capped loop lying in a coisotropic

submanifold and tangent to the characteristic foliation of the coisotropic submanifold.

Let (M,ω) be a symplectic manifold, N2n−k a coisotropic submanifold of

(M,ω) and F its characteristic foliation. Consider x : S1 → N a loop in N tangent

to F and u : D2 → M a capping of the loop x in M. We have the symplectic vector

bundle decomposition

TW
∣∣
N

= (TM/TN ⊕ TF)⊕ TN/TF .

Assume x∗TF is orientable and hence trivial. Denote by ξ a trivialization of x∗TF :

x∗TF
ξ∼= S1 × Tx(0)F .

Moreover, we have the following isomorphism

TM/TN ∼= T ∗F ,

and hence ξ ⊕ ξ∗ can be viewed as a family of symplectic maps

Ξt : TM/TNx(0) ⊕ Tx(0)F → TM/TNx(t) ⊕ Tx(t)F .
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Denote by Ht : (TN/TF)x(0) → (TN/TF)x(t) the holonomy along x. The capping u

gives rise to a symplectic trivialization, unique up to homotopy, of x∗TM. Using such

a trivialization, the map Ξt ⊕Ht can be viewed as a path

Ψ: [0, 1]→ Sp(2n)

which, up to some identifications, satisfies

Ψ0 = Id, Ψt(Tx(0)N) = Tx(t)N and Ψt

∣∣
(TN/TF)x(0)

= Ht. (3.4.5)

Definition 3.4.7 (Maslov Index of a Capped Loop). The Maslov index of (x, u) is

defined by

µ(x, u) := −∆(Ψ).

If x∗TF is not orientable, we define µ(x, u) as µ(x2, u2)/2 where (x2, u2) is

the double cover of (x, u).

Remark 3.4.8. By Proposition 3.4.5, µ(x, u) is independent of the trivialization ξ. How-

ever it may depend on the capping u. We give some properties of the coisotropic Maslov

index (cf. [Gin11]):

• Homotopy Invariance: µ(x, u) is invariant under a homotopy of x in a leaf of F .

• Recapping: µ(x, u#A) = µ(x, u) + 2 〈c1, A〉 where u#A is the notation for the

recapping of (x, u) by a 2-sphere A.

• Homogeneity: µ(xk, uk) = kµ(x, u) where (xk, uk) is the k-fold cover of (x, u).

3.4.2 Stable coisotropic submanifolds

In this section, we give the definition and some properties of stable coisotropic

submanifolds. This class of coisotropic submanifolds was introduced in [Bol96, Bol98]

and is defined as follows.

The submanifold N is said to be stable if there exist k one-forms α1, . . . , αk

on N such that

Ker dαi ⊃ Ker ωN for all i = 1, . . . , k

and

α1 ∧ . . . ∧ αk ∧ ωn−kN 6= 0 on N.
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Notice that this condition is rather restrictive. For instance, a stable Lagrangian sub-

manifold is necessarily a torus and a stable coisotropic submanifold is automatically

orientable. Thus, examples of stable coisotropic submanifolds include Lagrangian tori

and also contact hypersurfaces. Moreover, the stability condition is closed under pro-

ducts. For more details, we refer the reader to [Bol96, Bol98, Gin07, Ush11].

As a consequence of the Weinstein symplectic neighborhood theorem, we ob-

tain tubular neighborhoods of stable coisotropic submanifolds:

Proposition 3.4.9 ([Bol96, Bol98]). Let N2n−k be a closed stable coisotropic subma-

nifold of (M2n, ω). Then, for r > 0 sufficiently small, there exists a neighborhood of N

in M which is symplectomorphic to

Ur =
{

(q, p) ∈ N × Rk : |p| < r
}

equipped with the symplectic form

ω = ωN +
k∑
j=1

d(pjαj)

where p = (p1, . . . , pk) are the coordinates in Rk and |p| is the Euclidean norm of p.

Thus, such a neighborhood is foliated by a family of coisotropic submanifolds

Np = N × {p} with p ∈ Bk
r :=

{
p ∈ Rk : |p| < r

}
and a leaf of the characteristic

foliation on Np projects onto a leaf of the characteristic foliation on N.

Furthermore, we have

Proposition 3.4.10 ([Bol96, Bol98, Gin07]). Let N2n−k be a stable coisotropic sub-

manifold of (M2n, ω). Then

• the leaf-wise metric (α1)2 + . . .+ (αk)
2 on F is leaf-wise flat;

• the Hamiltonian flow of ρ = (p2
1 + . . .+ p2

k)/2 is the leaf-wise geodesic flow of this

metric.

3.4.3 Stable coisotropic submanifolds and the Maslov index

Consider x̄ = (x, u) a non-trivial (capped) periodic orbit of the Hamiltonian

flow of ρ. Then, as a consequence of Proposition 3.4.5, we obtain that the mean index
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∆ρ(x̄) of a periodic orbit x̄ of a leaf-wise geodesic flow on N is equal to, up to a sign,

the coisotropic Maslov index of the projection of x̄ on N. More precisely,

µ(π(x), û) = −∆ρ(x, u) (3.4.6)

where û is the capping of the orbit π(x) given by the capping u of x together with the

cylinder obtained from the projection of x on N ; see Figure 3.2.

M

M x {p}

π(x)

x

u

π

Figure 3.2: Capping û.

The following result establishes bounds on the Conley-Zehnder index of a

small non-degenerate perturbation of a capped periodic orbit (x, u) of ρ which goes

beyond (3.2.2). (Here as above N is stable.)

Proposition 3.4.11 ([Gin11]). Let ρ′ be a small perturbation of the Hamiltonian ρ

defined in Proposition 3.4.10 and x′ a non-degenerate periodic orbit of ρ′ (with a capping

u′) close to a non-trivial periodic orbit x of ρ (with a capping u). Then

∆ρ(x, u)− n ≤ µCZ((x, u)′) ≤ ∆ρ(x, u) + (n− k)

where (x, u)′ := (x′, u′).
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Chapter 4

Floer homology

Symplectic topology offers a powerful tool for finding periodic orbits, Floer

homology. The Conley-Zehder index mentioned in Section 3.2 is used for the grading

of (Hamiltonian) Floer homology which is the main tool used to prove our first main

result (Theorem 2.1.3). This version of Floer theory is described in Section 4.1 (for

more details see [Sal99]).

The main tool used to prove the result on periodic orbits of symplectomor-

phisms is a variation of (Hamiltonian) Floer homology. In Section 4.2, we discuss Floer

homology for symplectomorphisms, that is, Floer-Novikov homology. The quantum

homology (defined in Section 4.3.1) acts on the Floer-Novikov homology. This action

is described in Section 4.3.2 and needed in the statement of our second main result

(Theorem 2.2.1).

4.1 Floer homology for Hamiltonians

4.1.1 Definition of Floer homology

Let us recall the definition of the Floer homology for a non-degenerate Hamil-

tonian H. The Floer chain groups are generated by the capped one-periodic orbits

of H and graded by the Conley-Zehnder index. The boundary operator is defined by

counting solutions of the Floer equation

∂u

∂s
+ Jt(u)

∂u

∂t
= −∇Ht(u)
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with finite energy. Floer trajectories for a non-degenerate Hamiltonian H with finite

energy converge to periodic orbits x̄ and ȳ as s→ ±∞ and satisfy

E(u) = AH(x̄)−AH(ȳ) =

∫ ∞
−∞

∫
S1

∣∣∣∣∣∣∂u
∂s

∣∣∣∣∣∣2dtds.
The boundary operator counts Floer trajectories converging to periodic orbits y and x

as s→ ±∞ and satisfying the condition [(capping of x̄)#u] = [capping of ȳ].

This construction extends by continuity from non-degenerate Hamiltonians to

all Hamiltonians; see [Sal99, SZ92] for more details.

Remark 4.1.1. The total Floer homology is independent of the Hamiltonian and, up to

a shift of the grading and the effect of recapping, is isomorphic to the homology of M .

More precisely, we have

HF∗(H) ∼= H∗+n(M)⊗ Λ

as graded Λ-modules; see, for instance, [GG12a, MS12] and references therein for details

on the definition of the Novikov ring Λ or Section 4.3.1 for the description of Λ in the

case where M is strictly monotone. In particular, the fundamental class [M ] can be

viewed as an element of HFn(H).

Remark 4.1.2. To ensure that the Floer differential is defined, we either assume M to

be weakly monotone (see e.g. [HS95, MS12, Ono95, Sal99]) or utilize the machinery of

virtual cycles (see e.g. [FO99, FOOO09, LT98]). In our main result, one of the possible

conditions on M is negative monotonicity. In this case, M2n is weakly monotone if and

only if N ≥ n− 2, where N is the minimal Chern number.

4.1.2 Filtered Floer homology

Let us recall the definition of the filtered Floer homology for a non-degenerate

Hamiltonian H (see e.g. [GG09] and references therein). The (total) chain Floer

complex CF∗(H) =: CF
(−∞,∞)
∗ (H) admits a filtration by R. For each b ∈ (−∞,∞]

outside S(H), the chain complex CF
(−∞,b)
∗ (H) is generated by the capped one-periodic

orbits of H with action AH less than b. For −∞ ≤ a < b ≤ ∞ outside S(H), set

CF
(a,b)
∗ (H) := CF

(−∞,b)
∗ (H)/CF

(−∞,a)
∗ (H).

The boundary operator ∂ : CF∗(H) → CF∗−1(H) descends to CF
(a,b)
∗ (H) and hence

the filtered Floer homology HF
(a,b)
∗ (H) is defined.
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This construction also extends by continuity to all Hamiltonians. For an

arbitrary (one-periodic in time) Hamiltonian H on M, set

HF
(a,b)
∗ (H) := HF

(a,b)
∗ (H̃) (4.1.1)

where H̃ is a non-degenerate perturbation of H and −∞ ≤ a < b ≤ ∞ are outside

S(H).

When a < b < c, we have CF
(b,c)
∗ (H) = CF

(a,c)
∗ (H)/CF

(a,b)
∗ (H) and thus

obtain the long exact sequence

. . .→ HF
(a,b)
∗ (H)→ HF

(a,c)
∗ (H)→ HF

(b,c)
∗ (H)→ HF

(a,b)
∗−1 (H)→ . . . . (4.1.2)

4.1.3 Homotopy maps

By definition, a homotopy of Hamiltonians on M is a family of (one-periodic

in time) Hamiltonians Hs smoothly parameterized by s ∈ R and such that Hs ≡ H0

when s is near −∞ and Hs ≡ H1 when s is near ∞; see [Gin07] and references therein

for the definitions, properties and proofs.

Set

E :=

∫ ∞
−∞

∫
S1

max
M

∂sH
s
t dtds.

For every C ≥ E, the homotopy induces a map of the filtered Floer homology, which

we denote by ΨH0H1 , shifting the action filtration by C:

ΨH0H1 : HF
(a,b)
∗ (H0)→ HF

(a+C,b+C)
∗ (H1). (4.1.3)

Example 4.1.3. Let Hs be an increasing linear homotopy from H0 and H1, i.e.

Hs = (1− f(s))H0 + f(s)H1

where f : R → [0, 1] is a monotone increasing compactly supported function equal to

zero near −∞ and equal to one near ∞. Since

E ≤
∫
S1

max
M

(H1 −H0) dt, (4.1.4)

we have the homomorphism ΨH0H1 for every C ≥
∫
S1

max
M

(H1 −H0) dt.
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Furthermore, we have the following continuity property for filtered homology:

let (as, bs) be a family (smooth in s) of non-empty intervals such that as and bs are

outside S(Hs) for some homotopy Hs and such that (as, bs) is equal to (a0, b0) when s

is near −∞ and equal to (a1, b1) when s is near ∞. Then there exists an isomorphism

of homology

HF (a0,b0)(H0)
∼=−→ HF (a1,b1)(H1). (4.1.5)

When the interval is fixed and the homotopy is monotone decreasing, the isomor-

phism (4.1.5) is in fact ΨH0H1 which in general is not the case.

4.1.4 Kerman’s “pinned” action selector

One important tool used in the proof of Theorem 2.1.3 is an action selector

defined for “pinned” Hamiltonians. This tool was first introduced in [Ker09, KŞ10]

for a class of Hamiltonians and manifolds which are somewhat different from those we

work with. However, the definition of the action selector is essentially the same. In

this section, we describe this action selector and a special orbit associated with it.

Let M be a rational symplectic manifold and U an open neighborhood of

the coisotropic submanifold N of M. Consider K : M → R a compactly supported

autonomous Hamiltonian such that the neighborhood U contains the support of K,

suppK, and U is displaced by a Hamiltonian H. We may assume H is non-negative

with minimum value equal to zero. Suppose that K is constant on N where it attains

its maximum value maxK =: L, the maximum value L is greater than ||H|| and that

K is strictly decreasing and C2-close to L on a small neighborhood of N.

Consider the quotient map jK : HFn(K) → HF
(L−δ,L+δ)
n (K) and define the

element [maxK ] ∈ HF (L−δ,L+δ)
n (K) as

[maxK ] := jK([M ])

where the fundamental class [M ] is seen as an element of HFn(K); recall Remark 4.1.1.

Definition 4.1.4 (“Pinned” Action Selector). For δ > 0 small and α > L+δ, consider

the inclusion map

ια : HF (L−δ, L+δ)
n (K) ↪→ HF (L−δ, α)

n (K).
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Define

c(K) := inf
δ>0

inf
{
α > L+ δ : ια([maxK ]) = 0

}
.

We have c(K) ∈ S(K) and c(K) = AK(x̄) for some capped orbit x̄ which is

called a special one-periodic orbit.

Claim 4.1.5. There exists C ∈ HF (L+δ,∞)
n+1 (K) such that ∂C = [maxK ] where

∂ : HF
(L+δ, L+δ+||H||)
n+1 (K)→ HF (L−δ, L+δ)

n (K)

is the connecting differential in the long exact sequence (4.1.2) (with a = L− δ, b =

L+ δ and c = L+ δ + ||H||).

Proof. For δ > 0 sufficiently small, namely such that L − δ > ||H||, consider the

following commutative diagram:

HF
(L+δ, L+δ+||H||)
n+1 (K)

∂
��

HF
(L−δ, L+δ)
n (K)

ι
��

HF
(L−δ−||H||, L+δ)
n (K)

Ψ◦Φ //

Φ
��

HF
(L−δ, L+δ+||H||)
n (K)

HF
(L−δ, L+δ+||H||)
n (K#H)

Ψ

44iiiiiiiiiiiiiiii
Θ // HF

(L−δ, L+δ+||H||)
n (H)

where ι is the inclusion and ∂ is the connecting differential in the long exact se-

quence (4.1.2) (with a = L− δ, b = L+ δ and c = L+ δ + ||H||). The maps Φ and Ψ

are induced by monotone homotopies between K and K#H: the map Φ is induced by

the linear monotone increasing homotopy from K to K#H (recall that H ≥ 0) where,

in Example 4.1.3, C = ||H||; the map Ψ is induced by the linear monotone decreasing

homotopy from K#H to K where, in (4.1.3), C = 0.

Since ϕH displaces suppK, the one-periodic orbits of K#H are exactly the

one-periodic orbits of H and moreover S(K#H) = S(H); see [HZ11]. Then the map

Θ is an isomorphism induced by a linear monotone homotopy between K#H and H

due to the continuity property (4.1.5) of filtered homology.

Note that the vertical part of the diagram, which consists of the maps ∂ and

ι, is part of a long exact sequence as in (4.1.2).
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Consider the projection

jH : HF (H)→ HF (L−δ,L+δ+||H||)(H).

and the image

jH([M ]) ∈ HF (L−δ,L+δ+||H||)(H)

of the class [M ] ∈ HFn(H). Since

L− δ > ||H||,

we have

0 = jH([M ]) ∈ HF(L−δ, L+δ+||H||)
n (H).

(This last equality is proved similarly to Lipschitz continuity of the action selector with

respect to the Hofer norm.) Hence

HF(L−δ, L+δ+||H||)
n (K) 3 Ψ ◦Θ−1 ◦ jH([M ]) = ι([maxK ]) = 0

where the first equality follows from the fact that jH([M ]) is equal to the image Θ◦Φ◦
j([M ]) of the class [M ] seen as an element of HFn(K) and the map j is the projection

j : HFn(K)→ HF (L−δ−||H||,L+δ)
n (K).

Then

0 = [maxK ] ∈ HF(L−δ, L+δ)
n (K)

and, since ι and ∂ are part of a long exact sequence, it follows that there exists C ∈
HF

(L+δ,L+δ+||H||)
n+1 (K) such that

∂C = [maxK ] ∈ HF(L−δ, L+δ)
n (K).

Consider a small non-degenerate perturbation K ′ : S1 ×M → M of K with

maxK ′ = L attained at a point p ∈ N (which does not depend on the perturbation

K ′) and such that

HF
(a0,a1)
j (K) := HF

(a0,a1)
j (K ′) (4.1.6)

with a0, a1 6∈ S(K), S(K ′); recall definition (4.1.1).
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Consider the class [maxK′ ] := jK′([M ]) ∈ HF (L−δ,L+δ)
n (K ′) and define

c(K ′) := inf
δ>0

inf
{
α > L+ δ : ια([maxK′ ]) = 0

}
.

where ια : HF
(L−δ, L+δ)
n (K ′) ↪→ HF

(L−δ, α)
n (K ′) is the inclusion map. We have c(K ′)→

c(K) as K ′ → K and c(K ′) = AK′(x̄′) for some capped orbit x̄′. A special one-periodic

orbit x̄′ for K ′ is obtained explicitly the following way: by (4.1.6) and Claim 4.1.5, we

obtain a class [c̄′] ∈ HF (L+δ,∞)
n+1 (K ′) such that ∂[c̄′] = [maxK′ ]. Within each chain c̄′

pick a capped orbit with the largest action and then among the resulting capped orbits

choose a capped orbit x̄′ with the least action. Moreover, we have µCZ(x̄′) = n+ 1.

Remark 4.1.6. The orbit x̄′ does not have to be connected with the constant orbit

(γp, up) by a Floer downward trajectory (where γp is the constant loop p and up is its

trivial capping). However, there exists a capped orbit ȳ′ with this property and such

that

L ≤ AK(ȳ′) ≤ AK(x̄′).

The orbit ȳ′ is given explicitly by the following construction: take all chains c̄′ such

that ∂[c̄′] = [max′K ]. Within each chain consider a capped orbit connected to (γp, up)

with the least action and among these orbits consider one with the least action, ȳ′.

For a Hamiltonian K as above, consider a sequence (Kj) such that Kj is

as K ′ above and Kj → K as j → ∞. By the Arzela-Ascoli theorem, there exists a

subsequence of special one-periodic orbits x̄j which converges to an orbit x̄ of K which

is called a special one-periodic orbit of K. Recall that c(Kj) → c(K) as j → ∞ and

µCZ(x̄j) = n+ 1.

The following results give upper and lower bounds for the action of a special

one-periodic orbit.

Lemma 4.1.7. For a special one-periodic orbit x̄ of K, we have the following action

upper bound:

AK(x̄) ≤ L+ ||H||. (4.1.7)

Proof. Since ι([maxK ]) = 0 (proved in Claim 4.1.5), c(K) ≤ L+ ||H||. By the definition

of Kerman’s “pinned” action selector, we have c(K) ≥ L. Then the result follows

immediately from the fact that x̄ is a carrier of the action selector c.
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Lemma 4.1.8. A capped loop x̄ as in Lemma 4.1.7 satisfies

AK(x̄)− L ≥ ε (4.1.8)

where ε > 0 is independent of K.

Proof. Consider a sequence (Kj) as above. Let uj be a Floer downward trajectory

connecting the orbit ȳj defined in Remark 4.1.6 and the constant orbit (γp, up). If

E(uj) is below h0, then we may apply a similar argument to that in lemmas 6.2 and 6.4

in [Gin07] which draws heavily from [Bol96, Bol98] and we obtain

d < E(uj) = AKj (ȳj)−AKj (γ̄p)

where d > 0 is independent of Kj . Define

ε := max{h0, d} > 0.

Then E(uj) = AKj (ȳj)−AKj (γ̄p) ≥ ε and, since AKj (ȳj) ≤ AKj (x̄j), it follows that

AKj (x̄j)− L ≥ ε. (4.1.9)

Then take (4.1.9) to the limit when j →∞ and we obtain the desired result

AK(x̄)− L ≥ ε.

4.2 Floer homology for symplectomorphisms

In this section, we recall the construction of the Floer homology for symplec-

tomorphisms following [LO95] (references therein and [Ono06]).

4.2.1 Definition of Floer-Novikov homology

Let φ be a symplectomorphism (isotopic to the identity) defined on a strictly

monotone manifold M , consider an almost complex structure J on M and fix an almost

complex structure J̃ on M̃ corresponding to J . Consider the Hamiltonian H̃ associated

with φ as in (3.3.8) and recall that we denote by P(H̃) the set of contractible periodic
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orbits of the Hamiltonian system associated with H̃ and by P̃(H̃) := j̃−1(P(H̃)) (see

Section 3.3.1). The maps ũ : R× S1 → M̃ which satisfy the equation

∂sũ+ J̃(ũ)(∂tũ−XH̃
(ũ)) = 0 (4.2.1)

with boundary conditions

lim
s→±∞

ũ(s, t) = [x̃±, ṽ±] (4.2.2)

and

[x̃−, ṽ−#ũ] = [x̃+, ṽ+] (4.2.3)

form the space of connecting orbits on L̃M̃ . The energy of a connecting orbit in this

space is given by

E(ũ) =

∫ ∞
−∞

∫ 1

0
|∂sũ|2dtds = A

H̃
([x̃−, ṽ−])−A

H̃
([x̃+, ṽ+]) (4.2.4)

Denote by M([x̃−, ṽ−], [x̃+, ṽ+]) := M([x̃−, ṽ−], [x̃+, ṽ+]; H̃, J) the space of

solutions of (4.2.1), (4.2.2) and (4.2.3) with [x̃±, ṽ±] ∈ P̃(H̃).

The Conley-Zehnder index µCZ of a non-degenerate periodic solution [x̃, ṽ] ∈
L̃M̃ satisfies

0 6= |∆
H̃

([x̃, ṽ])− µCZ([x̃, ṽ])| < n. (4.2.5)

and is Γ1-invariant (where Γ1 is π1(M)/ ker Iθ), i.e. µCZ([x̃, ṽ]) = µCZ(a · [x̃, ṽ]) for any

a ∈ Γ1. This index satisfies the following identities:

i) µCZ([x̃, ṽ#A]) = µCZ([x̃, ṽ]) + Ic1(A)

ii) dim M([x̃−, ṽ−], [x̃+, ṽ+]) = µCZ([x̃−, ṽ−#A])− µCZ([x̃+, ṽ+#A])

for A ∈ π2(M).

Denote by P̃k(H̃) the subset of P̃(H̃) of periodic solutions with µCZ([x̃, ṽ]) = k.

Consider the chain complex whose k-th chain group Ck(H̃) consists of all formal sums∑
ξ[x̃,ṽ] · [x̃, ṽ]

with [x̃, ṽ] ∈ P̃k(H̃), ξ[x̃,ṽ] ∈ Z2 and such that, for all c ∈ R,

#
{

[x̃, ṽ] | ξ[x̃,ṽ] 6= 0, A
H̃

([x̃, ṽ]) > c
}
<∞.

40



For a generator [x̃, ṽ] in Ck(H̃), the boundary operator ∂k is defined as follows

∂k([x̃, ṽ]) =
∑

µCZ([ỹ,w̃])=k−1

n2([x̃, ṽ], [ỹ, w̃])[ỹ, w̃]

where n2([x̃, ṽ], [ỹ, w̃]) ∈ Z2 is the modulo-2 reduction of the number of elements in the

quotient space M([x̃, ṽ], [ỹ, w̃])/R. The boundary operator ∂ satisfies ∂2 = 0 and we

have the homology groups

HFNk(θt) =
ker ∂k

im ∂k+1
. (4.2.6)

Moreover, this homology is invariant under exact deformations (see Theorem 4.3 in

[LO95]).

4.2.2 Filtered Floer-Novikov homology

The (total) chain Floer complex C∗(H̃) =: C
(−∞,∞)
∗ (H̃) admits a filtration

by R. Define S(H̃) the set of values of the functional A
H̃

(defined in (3.3.9)) which

is called the action spectrum. For each b ∈ (−∞,∞] outside S(H̃), the chain complex

C
(−∞,b)
∗ (H̃) is generated by equivalence classes of capped loops [(x̃, ṽ)] with action A

H̃

less than b. For −∞ ≤ a < b ≤ ∞ outside S(H̃), set

C
(a,b)
∗ (H̃) := C

(−∞,b)
∗ (H̃)/C

(−∞,a)
∗ (H̃).

The boundary operator ∂ : C∗(H̃) → C∗−1(H̃) descends to C
(a,b)
∗ (H̃) and hence the

filtered Floer-Novikov homology HFN
(a,b)
∗ (θ) is well defined.

This construction also extends by continuity to all symplectomorphisms in

Symp0(M,ω). For an arbitrary φ ∈ Symp0(M,ω), set

HFN
(a,b)
∗ (θ) := HFN

(a,b)
∗ (θ′) (4.2.7)

where [θ′] := F̃lux(φ̃′) with φ′ a non-degenerate perturbation of φ and−∞ ≤ a < b ≤ ∞
outside the closure of the action spectrum of a Hamiltonian corresponding to φ obtained

as in (3.3.8). Observe that since the symplectic manifold (M,ω) and the flux are

rational (in the sense of Section 3.1) the action spectrum is nowhere dense (see e.g.

[HZ11, Sch00]) and hence we may assume a and b are just outside the action spectrum

of the referred Hamiltonian. This definition does not depend on the perturbation.
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4.3 Quantum homology

The quantum homology of M , HQ∗(M), is an algebra over the Novikov ring,

Λ. In this section we recall their definitions; see (Chapter 11 in) [MS12] for more

details. Here we follow (Section 2.2 in) [GG12b].

4.3.1 Novikov ring and quantum homology

In the case where M is strictly monotone, the Novikov ring Λ is the group

algebra of a group Γ over Z2, Z2[Γ]. The group Γ is the quotient of π2(M) by the

equivalence relation ∼ where A ∼ B if Ic1(A) = Ic1(B), or equivalently, if Iω(A) =

Iω(B), i.e.

Γ = π2(M)/ ker Iω = π2(M)/ ker Ic1 .

An element in Λ is a formal finite linear combination,∑
αAe

A,

where αA ∈ Z2. We set the degree of eA, for A ∈ Γ, as Ic1(A) which grades the ring

Λ. We have Γ ' Z and denote by A0 the generator of Γ with Ic1(A0) = −2N . Then

q := eA0 ∈ Λ has degree −2N and the Novikov ring is the ring of Laurent polynomials

Z2[q−1, q].

The quantum homology of M is defined by

HQ∗(M) = H∗(M)⊗ Λ

(where Λ is the Novikov ring) where the degree of the generator α⊗ eA is deg(α)+

Ic1(A) (α ∈ H∗(M), A ∈ Γ,). The product structure is given by the quantum product :

α ∗ β =
∑
A∈Γ

(α ∗ β)Ae
A (4.3.1)

where (α ∗ β)A ∈ H∗(M) is defined via some Gromov-Witten invariants of M and has

degree deg(α) + deg(β)− 2n− Ic1(A). Thus

deg(α ∗ β) = deg(α) + deg(β)− 2n.

When A = 0, (α ∗ β)0 = α∩ β, where ∩ stands for the intersection product of ordinary

homology classes.
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Recall that in (4.3.1) it suffices to restrict the summation to the negative cone

Iω(A) ≤ 0 and, under our assumptions on M , we can write

α ∗ β = α ∩ β +
∑
k>0

(α ∗ β)kq
k,

where deg((α ∗ β)k) = deg(α) + deg(β)− 2n+ 2Nk and the sum is finite.

The product ∗ is a Λ-linear, associative, graded-commutative product on

HQ∗(M). The fundamental class [M ] is the unit in the algebra HQ∗(M). Thus

aα = (a[M ]) ∗ α, where a ∈ Λ and α ∈ H∗(M) is canonically embedded in HQ∗(M).

The map Iω extends to HQ∗(M) as

Iω(α) = max
{
Iω(A) | αA 6= 0

}
= max

{
− h0k | αk 6= 0

}
where α =

∑
αAe

A =
∑
αkq

k. We have

Iω(α+ β) ≤
{
Iω(α), Iω(β)

}
(4.3.2)

and

Iω(α ∗ β) ≤ Iω(α) + Iω(β).

4.3.2 Quantum product action

We describe an action of the quantum homology on the filtered Floer-Novikov

homology. We follow [GG12b, Section 2.3] for the Floer-Novikov setting; see [LO96,

Section 3] for more details. Let [σ] ∈ H∗(M). Denote byM([x̃, ṽ], [ỹ, w̃];σ) the moduli

space of solutions ũ of (4.2.1), (4.2.2) and (4.2.3) with [x̃, ṽ], [ỹ, w̃] ∈ P̃(H̃) and such

that u(0, 0) ∈ σ where σ is a generic cycle representing [σ] and π ◦ ũ = u.

Then the dimension of this moduli space is given by

dimM([x̃, ṽ], [ỹ, w̃];σ) = µCZ([x̃, ṽ])− µCZ([ỹ, w̃])− codim(σ).

and let m([x̃, ṽ], [ỹ, w̃];σ) ∈ Z2 be the parity of #M([x̃, ṽ], [ỹ, w̃];σ) when this moduli

space is zero-dimensional and zero otherwise.

For any c, c′ 6∈ S(H̃), there is a map

Φσ : C
(c,c′)
∗ (H̃)→ C

(c,c′)

∗−codim(σ)
(H̃)
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induced by

Φσ([x̃, ṽ]) =
∑
[ỹ,w̃]

m([x̃, ṽ], [ỹ, w̃];σ)[ỹ, w̃].

This map commutes with the Floer-Novikov differential ∂ and descends (independently

of the choice of the cycle representing [σ]) to a map

Φ[σ] : HFN
(c,c′)
∗ (θ)→ HFN

(c,c′)

∗−codim(σ)
(θ).

The action of the class α = qν [σ] ∈ HQ∗(M)

Φα : HFN
(c,c′)
∗ (θ)→ HFN

(c,c′)+Iω(α)
∗−2n+deg(α)(θ). (4.3.3)

is induced by the map

Φqνσ([x̃, ṽ]) :=
∑
[ỹ,w̃]

m(qν [x̃, ṽ], [ỹ, w̃];σ)[ỹ, w̃]

where q is as in Section 4.3.1 and qν [x̃, ṽ] is [x̃, w̃] ∈ P̃H̃ where w = π ◦ w̃ is obtained

by recapping v = π ◦ ṽ the following way w = v#(νA0) (where A0 is the generator of

the group Γ defined in Section 4.3.1).

By linearity over Λ, the map Φα can be extended with α ∈ HQ∗(M) so that

(4.3.3) holds.

The maps Φα also give an action of the quantum homology on the filtered

Floer-Novikov homology. We have the following properties:

Φ[M ] = id

and

ΦβΦα = Φβ∗α. (4.3.4)

Remark 4.3.1. Observe that in the multiplicative property (4.3.4) the maps on the two

sides of the identity have, in general, different target spaces. For any interval (a, b),

consider the following diagram:

HFN
(c,c′)
∗ (θ)

Φα //

Φβ∗α ((QQ
QQQ

QQQ
QQQ

QQQ
HFN

(c,c′)+Iω(α)
∗−2n+deg(α)(θ)

Φβ // HFN
(c,c′)+Iω(α)+Iω(β)
∗−4n+deg(α)+deg(β)(θ)

��

HFN
(c,c′)+Iω(β∗α)
∗−2n+deg(β∗α)(θ)

// HFN
(a,b)
∗−2n+deg(β∗α)(θ)

(4.3.5)

where a ≥ c + Iω(α) + Iω(β) and b ≥ c′ + Iω(α) + Iω(β). Then the identity (4.3.4)

should be understood as that the diagram (4.3.5) commutes.
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Chapter 5

Proofs of the main results

5.1 Rigidity of the coisotropic Maslov index

In this section we focus on the rigidity result of the Maslov index for coisotropic

submaniofolds. The proof of Theorem 2.1.3 is presented in Section 5.1.1. As a corollary

of the main theorem we obtain the nearby existence theorem (Theorem 2.1.4) which is

proved in Section 5.1.2.

5.1.1 Proof of Theorem 2.1.3

Fix R such that UR = N ×Bk
R is defined by Proposition 3.4.9. Consider ε > 0

small and 0 < r < R/2. Assume Ur is displaced by some Hamiltonian H and consider

L > e(Ur). Let KL,r,ε : [0, R]→ R be a smooth decreasing map such that

• KL,r,ε ≥ 0

• KL,r,ε(0) = L

• KL,r,ε is strictly decreasing and C2-close to L on [0, ε]

• KL,r,ε is concave on [ε, 2ε]

• KL,r,ε is linear decreasing from L− ε to ε on [2ε, r − ε]

• KL,r,ε is convex on [r − ε, r]

• KL,r,ε ≡ 0 on [r,R].
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We also denote by KL,r,ε the Hamiltonian

KL,r,ε : M → R

defined by KL,r,ε(|p|) on UR and equal to zero outside UR.

Fix r and consider the family of functions KL,ε depending smoothly on the

parameters L and ε. These Hamiltonians have the same properties as the Hamiltonian

K in the previous subsection.

The key to the proof, as in [Gin11], is the following result which gives the

location of a sequence of special one-periodic orbits x̄i.

Lemma 5.1.1 ([Gin11]). There exists L > e(UR) and a sequence εi → 0 such that a

special one-periodic orbit of KL,εi x̄i satisfies

|p(xi)| ∈ [εi, 2εi]

where p = (p1, . . . , pk) are the coordinates introduced in Proposition 3.4.9.

Remark 5.1.2. In [Gin11], the result of Lemma 5.1.1 is proved for a class of Hamiltonians

which is slightly different from the one we work with. However the above lemma holds

for the same reasons as the result in the referred paper.

Consider L and the sequences εi and x̄i as in Lemma 5.1.1. By Proposi-

tion 3.4.10, if we reparametrize x̄i and reverse its orientation, then x̄i can be viewed as

a periodic orbit x̄−i of ρ. Since the slopes of the Hamiltonians KL,εi are bounded from

above (for instance, by 2L/r), then (by the Arzela-Ascoli theorem) we define

γ̄ : = limit of (a subsequence of) (π(x−i ), ûi
−).

where µ(π(x−i ), ûi
−) = −∆ρ(x

−
i , u

−
i ) by (3.4.6). Then, by (3.2.2),

−n ≤ µCZ((x−i , u
−
i )′)−∆(x−i , u

−
i ) ≤ n

and hence

−n ≤ µ(π(x−i ), u−i ) + µCZ((x−i , u
−
i )′) ≤ n

‖

−µCZ((xi, ui)
′) = −(n+ 1)
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where the first equality uses the fact that xi is in the region where KL,εi is concave,

i.e., where |p(xi)| ∈ [εi, 2εi] and we obtain the following bounds for the Maslov index

of (π(x−i ), ûi
−):

1 ≤ µ(π(x−i ), u−i ) ≤ 2n+ 1. (5.1.1)

Considering the limit (of a subsequence) of (5.1.1), we have

1 ≤ µ(γ̄) ≤ 2n+ 1. (5.1.2)

By Proposition 3.4.9, we obtain

AKL,εi (x̄i) = KL,εi(x̄i)−
∫
ui

ω

= KL,εi(x̄i)−
∫
ûi

ω − |p(xi)|l(π(xi)) (5.1.3)

where ûi is constructed as in Section 3.4.3; see Figure 3.2.

Moreover, by (4.1.7), (4.1.8) and (5.1.3), we have

0 < ε ≤ KL,εi(x
−
i )−

∫
û−i

ω − |p(x−i )|l(π(x−i ))− L ≤ e(Ur). (5.1.4)

The limit (of a subsequence) of −
∫
û−i
ω is Area(γ̄) since the (sub)sequence of the sym-

plectic areas C0-converges and the norm of the derivative of ûi is uniformly bounded.

Since |p(x−i )| ∈ [εi, 2εi], KL,εi(x
−
i ) ∈ [εi, L− εi] and the sequence l(π(x−i )) is bounded

(since the slope of KL,εi is bounded), then, taking the limit (of a subsequence) of (5.1.4),

we obtain

0 < ε ≤ Area(γ̄) ≤ e(Ur). (5.1.5)

Recall that ε is independent of εi. Then, taking r > 0 sufficiently small, we have

0 < Area(γ̄) ≤ e(N) + ε.

Hence, we have the desired bounds for the area of γ̄. To obtain the Maslov

index bounds as presented in the theorem (which go beyond (5.1.2)), we will first prove

that the orbit γ is non-trivial. Assume the contrary, that is, that γ is a trivial orbit.

Then, by (5.1.5), the capping v of γ must be non-trivial. Recall that we have one of

the following conditions:
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• W is negative monotone,

• e(N) < h0,

• 2n+ 1 < 2N .

Suppose that W is negative monotone. Then, 〈c1, v〉 and Area(γ̄) have opposite signs.

However, by (5.1.2) and (5.1.5), they are both positive and we obtain a contradiction.

If e(N) < h0 or 2n + 1 < 2N , we obtain contradictions by the definition of the

rationality constant h0 and (5.1.5) or by the definition of the minimal Chern number

N and (5.1.2), respectively. Therefore, γ is a non-trivial orbit. Furthermore, there

exists a (sub)sequence of non-trivial orbits xi as in Lemma 5.1.1 which converges to γ.

Then, by Proposition 3.4.11, we have

−µ(π(x−i ), u−i )− n ≤ µCZ((x−i , u
−
i )′) ≤ −µ(π(x−i ), ûi

−) + n− k

‖

−µCZ((xi, ui)
′) = −(n+ 1)

where the first equality uses the fact that xi is in the region where KL,εi is concave,

i.e., where |p(xi)| ∈ [εi, 2εi]. Then

1 ≤ µ(π(x−i ), ûi
−) ≤ 2n+ 1− k

and considering the limit (of a subsequence) we obtain the desired bounds for the

Maslov index of γ̄:

1 ≤ µ(γ̄) ≤ 2n+ 1− k.

5.1.2 Proof of the nearby existence theorem

We prove the existence of an orbit (with the required properties) in a level

Na arbitrarily close to N0 and the wanted result follows immediately. Consider K :=

f(F1, . . . , Fk) where f : Rk → R is a bump function supported in a small neighborhood

of the origin in Rk and such that the maximum value of f is large enough. Since the

support of f is small, we may assume that the support of K is displaceable and all

a ∈ supp f are regular values of
−→
F . Hence the coisotropic submanifolds Na are compact

and close to N0 when a ∈ Rk is near the origin. By lemmas 4.1.7 and 4.1.8, there exists

a capped one-periodic orbit of K (in some regular level Na) such that

maxK < AK(x̄) ≤ maxK + ||H|| (5.1.6)
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where H displaces suppK. The capped orbit x̄ can be approximated by non-degenerate

capped orbits with Conley-Zehnder index equal to n+1 and hence, by (3.2.2), we obtain

1 ≤ ∆(x̄) ≤ 2n+ 1.

Since one of the three conditions mentioned in the statement of the theorem is satisfied,

the orbit x is non-trivial. Indeed, assume that x is a trivial orbit. Then (5.1.6) is

equivalent to

0 < Area(x̄) ≤ e(N).

Then using the area and (mean) index bounds on x̄ and assuming one of the above three

conditions, we obtain a contradiction (following the same reasoning as in Section 5.1.1).

Furthermore, since the Hamiltonian K Poisson-commutes with all Fj , the

orbit x is tangent to the characteristic foliation Fa on Na.

5.2 Hyperbolic points and periodic orbits of symplecto-

morphisms

In this section we focus on the result on hyperbolic fixed points and perio-

dic orbits of symplectomorphisms. The proof of the main theorem of this section

(Theorem 2.2.1) relies on an important feature of hyperbolic fixed points of symplec-

tomorphisms which is described in Section 5.2.1. The proof of Theorem 2.2.1 is then

presented in Section 5.2.2. In Section 5.2.3, we prove Proposition 2.2.2.

5.2.1 Ball-crossing energy theorem

Here, we describe the key property of hyperbolic periodic orbits which sup-

ports the proof of the main theorem (see [GG12b, Section 3] for more details including

the proof of the Ball-crossing energy Theorem).

Let φ be a symplectomorphism (isotopic to the identity) on a symplectic

manifold (M,ω) and fix a one-periodic in time almost complex structure J compatible

with ω. We consider solutions ũ : Σ→ M̃ of the equation (4.2.1) where Σ ⊂ R × S1
k

is a closed domain (i.e. a closed subset with non-empty interior). By definition, the

energy of ũ is

E(ũ) :=

∫
Σ
||∂sũ||M̃ dtds
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where ||∂sũ||M̃ is ||∂s(π ◦ ũ)|| where || · || stands for the norm with respect to 〈·, ·〉 =

ω(·, J ·).
Let γ be a hyperbolic one-periodic solution of (3.3.6) in M and γ̃ a lift of

γ to M̃ , i.e. γ̃ ∈ P(H̃) hyperbolic. Recall the definition of the covering space M̃ in

Section 3.3.1 and of the Hamiltonian H̃ associated with φ in (3.3.8).

We say that ũ is asymptotic to γ̃k as s→∞ if Σ contains a cylinder [s0,∞)×
S1
k and ũ(s, t)→ γ̃k(t) C∞-uniformly in t as s→∞.

Let U be a (sufficiently small) neighborhood of γ with smooth boundary and

define Ũ := π−1(U).

Theorem 5.2.1 (Ball-Crossing Energy Theorem; [GG12b]). There exists a constant

c∞ > 0 (independent of k and Σ) such that for any solution ũ of the equation (4.2.1),

with ũ(∂Σ) ⊂ ∂Ũ and ∂Σ 6= ∅, which is asymptotic to γ̃k as s→∞, we have

E(ũ) > c∞. (5.2.1)

Moreover, the constant c∞ can be chosen to make (5.2.1) hold for all k-periodic almost

complex structures (varying in k) C∞-close to J̃ uniformly on R× Ũ .

5.2.2 Proof of Theorem 2.2.1

As mentioned in the introduction, to simplify the setting, we may assume

that γ is a constant orbit. This is due to the fact that there exists a one periodic

loop of Hamiltonian diffeomorphisms ψt defined on a neighborhood of γ such that

ψt(γ(0)) = γ(t). We may think of γ(t) ≡ γ(0) as a fixed point of (ψt)−1 ◦ φt (see

Section 5.1 in [Gin10] for more details). Furthermore, attach a capping w to γ and fix

a lift, γ̂ := [γ̃, w̃] ∈ L̃M̃, so that

∆
H̃

(γ̂) = 0 = A
H̃

(γ̂). (5.2.2)

Remark 5.2.2.

1. To ensure condition (5.2.2), we may have to consider an iteration of φ which we

continue denoting by φ: in fact, by passing if necessary to an iteration, we can

guarantee that the mean index of γ with respect to any capping is divisable by

2N . Then there exists a capping such that the mean index is zero and finally

by adding a constant to the obtained associated Hamiltonian we can assume the

action is also zero.
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2. Observe that since γ is hyperbolic, the mean index ∆
H̃

(γ̂) is equal to the Conley-

Zehnder index µCZ(γ̂) and hence µCZ(γ̂) = 0.

Arguing by contradiction, assume that φ has finitely many periodic orbits.

Consider an iteration of φ, still denoted by φ, so that p is sufficiently large, namely,

(2p− 3)h0 − λ(n+ 1) > 0 (5.2.3)

where λ is the monotonicity constant of M . The r-th iteration φr (where r is defined

in Theorem 2.2.1) has finitely many periodic orbits and we denote them by x1, . . . , xm.

Remark 5.2.3.

1. Observe that F̃lux(φ̃r) = rF̃lux(φ̃).

2. The periodic orbit γr of φr is hyperbolic and we keep the notation γ for this orbit

and φ for the iteration φr.

Fix a one-periodic in time almost complex structure J
′

(and denote by J̃ ′

the corresponding almost complex structure on M̃). Let U be a neighborhood of γ

such that no periodic orbit of φ except γ intersects U . By Theorem 5.2.1, there exists

a constant c∞ > 0 such that, for all k, all non-trivial k-periodic solution of (4.2.1)

asymptotic to γ̃k as s→∞ has energy greater than c∞.

For each i = 1, . . . ,m, attach a capping vi to the loop xi, fix a lift [(x̃i, ṽi)] =:

x̂i ∈ L̃M̃ and define

ai ∈ S1
h0

by A
H̃

(x̂i) mod h0,

ai ∈ S1
ph0

by Ã
H̃

(x̂i) mod ph0.

Remark 5.2.4. Observe that ai and ai are independent of the initially attached capping

and fixed lift. (The second follows from Remark 5.2.3 (1).)

Take ε, δ > 0 small, namely,

2(ε+ δ) < λ and ε < c∞. (5.2.4)

Then, by Kronecker’s Theorem, there exists k (large) such that for all i = 1, . . . ,m

||kai||h0 < ε and ||kai||ph0 < δ.
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Here ||a||h ∈ [0, h/2] stands for the distance from a ∈ S1
h = R/hZ to 0. Observe that k

depends on ε (and δ), hence on c∞ and ultimately on the neighborhood U .

Consider a non-degenerate perturbation φ
′

of φk such that (4.2.7) holds and

the Hamiltonian K̃ associated to φ
′

(in the sense of (3.3.8)) satisfies the following

properties:

• K̃ is k-periodic and C2-close to H̃\k,

• K̃ coincides with H̃\k on the neighborhood U and

• K̃ is non-degenerate.

If φk is non-degenerate, we can take φ
′

= φk. Then, by Remark 5.2.4 and assuming

δ < h0, there exists k (large) such that for all x̂ k-periodic solution of K̃∥∥Ah0
K̃

(x̂)
∥∥
h0
< ε (5.2.5)

and

either
∣∣Ã

K̃
(x̂)
∣∣ < δ or

∣∣Ã
K̃

(x̂)
∣∣ > (p− 1)h0 (5.2.6)

where Ah0
K̃

(x̂) stands for A
K̃

(x̂) mod h0.

For any k-periodic almost complex structure J̃ sufficiently close to (the k-

periodic extension of) J̃ ′ , all non-trivial k-periodic solutions of the equation (4.2.1) for

the pair (φ
′
, J̃) asymptotic to γ̃k as s→∞ have energy greater than c∞.

Lemma 5.2.5. [GG12b, Lemma 4.1] Let τ := (p−1)h0− λ
2 (n+1). The orbit γ̂k is not

connected by a solution of (4.2.1) to any x̂ ∈ P̃ (K̃) with relative index ±1 with action

in (−τ, τ).

In particular, γ̂k is closed in C
(−τ,τ)
∗ (K̃) and 0 6= [γ̂k] ∈ HFN (−τ,τ)

∗ (θ
′
). More-

over, γ̂k must enter every cycle representing its homology class [γ̂k] in HFN
(−τ,τ)
∗ (θ

′
).

Proof. Assume the orbit γ̂k is connected, by a solution ũ of (4.2.1), to some x̂ ∈ P̃ (K̃)

with index µCZ(x̂) = ±1 with action in (−τ, τ).

Consider the first case in (5.2.6), i.e.
∣∣Ã

K̃
(x̂)
∣∣ < δ: since

i)
∥∥Ah0

K̃
(x̂)
∥∥
h0
< ε (by (5.2.5)),

ii) E(ũ) > c∞ > ε (by Theorem 5.2.1 and (5.2.4)) and
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iii) A
K̃

(γ̂k) = 0 (by (5.2.2)),

we have ∣∣A
K̃

(x̂)
∣∣ > h0 − ε.

Then, by the definition of augmented action (3.3.10) and since

i)
∣∣Ã

K̃
(x̂)
∣∣ < δ and

ii) 2(ε+ δ) < λ (by 5.2.4),

we have ∣∣∆
K̃

(x̂)
∣∣ > 2

λ
(h0 − ε− δ) = 2N − 2(ε+ δ)

λ
> 2N − 1.

Thus, by (4.2.5), ∣∣µCZ(x̂)
∣∣ > 2N − 1− n ≥ n+ 2− 1− n = 1

where the second inequality follows from the requirement that N ≥ n/2 + 1. We

obtained a contradiction since µCZ(x̂) = ±1.

Consider now the second case in (5.2.6), i.e.
∣∣Ã

K̃
(x̂)
∣∣ > (p − 1)h0: by the

definition of augmented action (3.3.10), we obtain∣∣A
K̃

(x̂)
∣∣ > (p− 1)h0 −

λ

2

∣∣∆
K̃

(x̂)
∣∣ > (p− 1)h0 −

λ

2
(n+ 1) =: τ

where the second inequality follows from the fact that
∣∣∆

K̃
(x̂)
∣∣ < n + 1 (which holds

since µCZ(x̂) = ±1 and by (4.2.5)). Hence the action of x̂ is outside the interval (−τ, τ)

and we obtained a contradiction.

The previous lemma also holds for qγ̂k with the shifted range of actions

(−τ, τ) − h0. For an interval (a, b) contained in the intersection of the action inter-

vals (−τ, τ) and (−τ, τ)− h0, Lemma 5.2.5 holds for both tailed -capped orbits γ̂k and

qγ̂k and the interval (a, b).

Remark 5.2.6. Observe that such an interval (a, b) exists since −τ < τ − h0 due to our

initial assumption on p, namely, (2p− 3)h0 − λ(n+ 1) > 0 (5.2.3).

For the sake of completeness, we state the result in the following lemma.
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Lemma 5.2.7. The orbits γ̂k and qγ̂k are not connected by a solution of (4.2.1) to

any x̂ ∈ P̃ (K̃) with relative index ±1 with action in

(a, b) ⊂ (−τ, τ) ∩ (−τ − h0, τ − h0).

In particular, γ̂k and qγ̂k are closed in C
(a,b)
∗ (K̃) and [γ̂k] 6= 0 6= [qγ̂k] ∈

HFN
(a,b)
∗ (θ

′
). Moreover, the orbits γ̂k and qγ̂k must enter every cycle representing

their homology classes, respectively [γ̂k] and q[γ̂k], in HFN
(a,b)
∗ (θ

′
).

Recall that, by (5.2.5), all periodic orbits of φ
′

have action values in the ε-

neighborhood of h0Z. With the following lemma we obtain a contradiction and the

main theorem follows.

Lemma 5.2.8. The symplectomorphism φ
′

has a periodic orbit with action outside the

ε-neighborhood of h0Z.

Proof. For ordinary homology classes α, β ∈ H∗(M) with deg(α), deg(β) < 2n as

in the statement of Theorem 2.2.1, consider Φβ∗α([γ̂k]) as an element of the group

HFN
(a,b)
∗ (θ

′
) with (a, b) = (−τ, τ). Since β ∗ α = q[M ], then by (4.3.4) and (4.3.5) we

have

ΦβΦα([γ̂k]) = Φβ∗α([γ̂k]) = Φq[M ]([γ̂
k]) = qΦ[M ]([γ̂

k]) = q[γ̂k].

Take σ and η generic cycles representing the ordinary homology classes α and β, res-

pectively. The chain ΦηΦσ(γ̂k) represents the homology class q[γ̂k] and hence the orbit

qγ̂k enters the chain ΦηΦσ(γ̂k) (by Lemma 5.2.7). Hence, (see Figure 5.1) there exists

an orbit ŷ in the chain Φσ(γ̂k) which is connected to both γ̂k and qγ̂k by trajectories

which are solutions of (4.2.1). By the Ball-Crossing Energy Theorem 5.2.1, (5.2.4) and

i) A
K̃

(γ̂k) = 0

ii) A
K̃

(qγ̂k) = −h0,

we obtain

−ε > A
K̃

(ŷ) > −h0 + ε.
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Orbit Action

γ̂k

qγ̂k

ŷ

0

−h0

Φσ

Φη

ε-neighborhood of 0

ε-neighborhood of −h0

Figure 5.1: The ε-neighborhood of h0Z

5.2.3 Proof of Proposition 2.2.2

We will prove this proposition in four steps. In the first three we assume γ is

a constant loop and in the fourth step we consider the general case.

Step 1: Assume that γ is a constant loop, i.e. γ(t) ≡ p. Then there exists a Hamiltonian

H : S1×M →M such that φt(p) = ϕtH(p) where ϕtH is the Hamiltonian flow associated

with H. (Observe that dH is given by d
dtφt(p) = XHt(φt(p)).) The point p is a fixed

point of the composition (ϕtH)−1 ◦ φt. Notice that the flux of this composition is equal

to the flux of φt since (ϕtH)−1 is the flow of some Hamiltonian usually denoted by H inv.

We keep the notation φt for this composition.

Step 2: There exists a Hamiltonian H
′
: S1×M →M such that φt = ϕt

H′
near p since

θt = dH
′
t near p for some H

′
. The composition (ϕt

H′
)−1 ◦φt ≡ id near p. (Observe that

the flux of {φt} is equal to the flux of {(ϕt
H′

)−1 ◦ φt}.) Again, keep the notation φt for

this composition.

Step 3: Consider a Hamiltonian K : S1×M →M such that p is a hyperbolic fixed point

of ϕK . We have obtained an isotopy ϕtK ◦ φt (with the same flux as {φt}) such that

γ(t) ≡ p is a hyperbolic fixed point of the symplectomorphism ϕK ◦ φ1. We continue

denoting the composition ϕtK ◦ φt by φt.

Step 4: Consider now the general case where γ(t) is a loop and denote γ(0) by p.

Applying steps 1 through 3 to the point p, we obtain a symplectic path φt such that p
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is a fixed point of φ1. There exists a loop of Hamiltonian diffeomorphisms ηt such that

ηt(p) = γ(t) (see e.g. [Gin10, Section 5.1] for more details). Then γ is a hyperbolic

periodic orbit of the time-one map of the composition ηt ◦ φt.
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variété symplectique, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 1,

83–86.

[Bol98] , A contact condition for p-codimensional submanifolds of a sym-

plectic manifold (2 ≤ p ≤ n), Math. Z. 227 (1998), no. 2, 211–230.

[CGG11] M. Chance, V. L. Ginzburg, and B. Z. Gürel, Action-Index Relations for
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