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Article

Distinct Urinary Metabolite Signatures Mirror In Vivo Oxidative
Stress-Related Radiation Responses in Mice
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Abstract: Exposure to ionizing radiation disrupts metabolic pathways and causes oxidative
stress, which can lead to organ damage. In this study, urinary metabolites from mice
exposed to high-dose and low-dose whole-body irradiation (WBI HDR, WBI LDR)
or partial-body irradiation (PBI BM2.5) were analyzed using targeted and untargeted
metabolomics approaches. Significant metabolic changes particularly in oxidative stress
pathways were observed on Day 2 post-radiation. By Day 30, the WBI HDR group showed
persistent metabolic dysregulation, while the WBI LDR and PBI BM2.5 groups were similar
to control mice. Machine learning models identified metabolites that were predictive
of the type of radiation exposure with high accuracy, highlighting their potential use as
biomarkers for radiation damage and oxidative stress.

Keywords: radiation exposure; whole-body irradiation; partial-body irradiation;
metabolomics; urine metabolomics; pathway analysis; machine learning; radiation effects;
biomarkers

1. Introduction
Exposure to ionizing radiation, whether accidental, incidental, or through therapeutic

modalities, can trigger a range of biological responses, including metabolic alterations [1–5].
In particular, ionizing radiation generates reactive oxygen species (ROS), which lead to
oxidative stress—a critical mediator of cellular and metabolic dysfunction. This oxidative
stress not only damages cellular macromolecules but also disrupts metabolic pathways,
contributing to systemic responses post-radiation exposure [6]. Unlike the well-defined
radiation damage to DNA/RNA [7–9], systemic alterations in metabolite levels and in
metabolic pathways following radiation exposure in vivo are less understood, yet they
have significant translational potential [10]. For instance, metabolites generated as the final
products of cellular pathways in the body’s response to irradiation could act as potential
biomarkers of radiation exposure, i.e., as biodosimeters [11]. Additionally, oxidative
stress-related metabolic changes could provide insights into radiation-induced injuries and
identify pathways that are amenable to antioxidant-based therapeutic interventions [12].
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A detailed understanding of the biochemical and physiological mechanisms early in the
aftermath of radiation exposure is also necessary for identifying individuals at risk of
developing acute and late organ injuries. Ultimately, understanding radiation response and
the metabolites that are associated with particular pathways may offer valuable insights into
the mechanisms of radiation-induced injury and help design better mitigation strategies and
novel therapeutic targets for individuals who might experience radiation toxicity [13,14].

In this study we used a hematopoietic acute radiation syndrome (H-ARS) model
of adult C3Hf/HeJ/SED/KAM female mice in the context of different X-ray exposure
scenarios to investigate urinary metabolic changes using untargeted and targeted
metabolomics approaches. Our focus included identifying metabolic changes linked to
oxidative stress pathways and exploring their relevance to radiation-induced injuries.
We explored longitudinal alterations in metabolite levels and metabolic pathways for
up to 90 days post exposure. Whole-body irradiation at high dose rate (WBI HDR) was
compared to WBI at low dose rate (WBI LDR) and to partial-body irradiation with 2.5%
bone marrow shielding (PBI BM2.5) in terms of metabolic signatures, with the overall
goal to understand the broad as well as nuanced metabolic responses to irradiation. In
particular, we sought to determine whether metabolic shifts associated with oxidative
stress could explain dose-rate- and type-dependent radiation effects. We identified type-
and dose-rate-dependent metabolic changes after radiation exposure and discovered late
specific metabolites associated with organ damage. Using machine learning algorithms on
the urine metabolomics data, we developed predictive models for the effects of radiation,
enhancing our ability to pre-empt and possibly mitigate adverse outcomes. The overall
methodology is depicted in Figure 1.

Antioxidants 2025, 14, x FOR PEER REVIEW 2 of 16 
 

of radiation exposure, i.e., as biodosimeters [11]. Additionally, oxidative stress-related met-

abolic changes could provide insights into radiation-induced injuries and identify pathways 

that are amenable to antioxidant-based therapeutic interventions [12]. A detailed under-

standing of the biochemical and physiological mechanisms early in the aftermath of radia-

tion exposure is also necessary for identifying individuals at risk of developing acute and 

late organ injuries. Ultimately, understanding radiation response and the metabolites that 

are associated with particular pathways may offer valuable insights into the mechanisms of 

radiation-induced injury and help design better mitigation strategies and novel therapeutic 

targets for individuals who might experience radiation toxicity [13,14]. 

In this study we used a hematopoietic acute radiation syndrome (H-ARS) model of 

adult C3Hf/HeJ/SED/KAM female mice in the context of different X-ray exposure scenarios 

to investigate urinary metabolic changes using untargeted and targeted metabolomics ap-

proaches. Our focus included identifying metabolic changes linked to oxidative stress path-

ways and exploring their relevance to radiation-induced injuries. We explored longitudinal 

alterations in metabolite levels and metabolic pathways for up to 90 days post exposure. 

Whole-body irradiation at high dose rate (WBI HDR) was compared to WBI at low dose rate 

(WBI LDR) and to partial-body irradiation with 2.5% bone marrow shielding (PBI BM2.5) in 

terms of metabolic signatures, with the overall goal to understand the broad as well as nu-

anced metabolic responses to irradiation. In particular, we sought to determine whether 

metabolic shifts associated with oxidative stress could explain dose-rate- and type-depend-

ent radiation effects. We identified type- and dose-rate-dependent metabolic changes after 

radiation exposure and discovered late specific metabolites associated with organ damage. 

Using machine learning algorithms on the urine metabolomics data, we developed predic-

tive models for the effects of radiation, enhancing our ability to pre-empt and possibly mit-

igate adverse outcomes. The overall methodology is depicted in Figure 1. 

 

Figure 1. An overview of the study design, depicting the experimental workflow. Mice were sub-

jected to different radiation exposures (WBI HDR, WBI LDR, PBI BM2.5), followed by urine 

Figure 1. An overview of the study design, depicting the experimental workflow. Mice were subjected
to different radiation exposures (WBI HDR, WBI LDR, PBI BM2.5), followed by urine collection at
multiple time points (Days 0, 2, 30, and 90). The schematic outlines sample collection, metabolomics
analysis, pathway identification, and predictive modeling to determine oxidative stress-related
metabolic changes and identify biomarkers of radiation damage.
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2. Material and Methods
2.1. Animal Procedures

Female, gnotobiotic C3Hf/HeJ/SED/KAM mice were bred in-house in our AAALAC-
accredited animal facility and used for experiments at 4 months of age and 28.1 g ± 3.7 g
body weight. All X-ray irradiation treatments were performed on anesthetized mice after
i.p. injection of 80 mg/kg ketamine (KetaVed, ANADA#200–257, Vedco Inc., St. Joseph, MO,
USA) and 4 mg/kg xylazine (Rompun, NADA#047-956; Dechra, Overland Park, KS, USA)
(including sham-irradiated controls) using a Gulmay RS320 X-ray unit (Gulmay Medical
Ltd., Camberley, Surrey, UK) operated at 300 kV and 10 mA with a permanent 4 mm Be
filter plus 1.5 mm Cu and 3 mm Al beam filtration yielding a 3 mm Cu half-value layer
(HVL) and a vertical beam with an FSD of 42.3 cm and a field size of 26.8 cm in diameter.
X-rays were administered to unrestrained mice in the prone position at a dose rate of
1.312 Gy/min for whole-body irradiation at high dose rate (WBI HDR). An additional
1 mm Pb layer was placed at the beam outlet for reduced-dose-rate exposures (WBI LDR)
at 0.0883 Gy/min and 2.9 mA. Partial-body irradiation with 2.5% bone marrow shielding
(PBI BM2.5) was achieved with one leg including femur, tibia, and foot shielded under
1.4 cm Cerrobend blocks that yielded 99.5% attenuation.

The total dose for all three exposure scenarios was 6.791 Gy following LD30/30
estimates from prior prohibit analyses of H-ARS mortality, i.e., 30% mortality within
30 days. Dosimetry was performed with a Capintec ionization chamber calibrated to NIST
standards, TLDs, and film (GAFCHROMIC EBT2, International Specialty Products, Wayne,
NJ, USA) to confirm dose and field uniformity within 5% for WBI HDR and PBI BM2.5 and
within 10% for WBI LDR. Animal health checks were performed once or twice daily during
the first 30 days and then weekly until 500 days of age when heart, lung, kidneys, liver, and
spleen were taken for histopathological examination.

Urine was collected onto sterile plastic sheets, transferred into microcentrifuge tubes and
centrifuged at 12,000× g at 4 ◦C for 10 min. Supernatants were flash-frozen in LN and stored
at −80 ◦C until shipment to Georgetown University on dry ice. MicroCT scanning (Siemens
MicroCAT II CT Scanner, Knoxville, TN, USA) was used to evaluate lung damage based on
loss in aerated volume. Mice were under continuous isoflurane (1–2% in O2) anesthesia while
image acquisition was achieved over a total scan time of about 1 min plus 5–10 min image
reconstruction. The 80 kVp 500 µA X-ray source was biased to 360 projections, an exposure
time of 500 ms, detector bin mode of 4 × 4, and an effective pixel size of 0.2 mm. Regions
of interest (ROIs) were drawn using the open-access Medical Image Data Examiner Amide
(https://amide.sourceforge.net, accessed on 21 March 2022) to quantify the volume of aerated
lung volume excluding the esophagus (3D-isocontour threshold < −400 HU). Blood was
collected by cardiac puncture from euthanized animals into SST gold-top serum collection vials
and after centrifugation was sent on dry ice for serum chemistry analysis (IDEXX BioAnalytics,
Sacramento, CA, USA). Lungs were perfused with PBS followed by formalin, and together
with heart, liver, kidney, and spleen tissues, were sent for processing and histopathological
assessment by an expert pathologist who scored tissues on a 0–4 severity scale (IDEXX
BioAnalytics, Columbia, MO, USA). Experimental protocols were approved by the Institutional
Animal Care and Use Committee (IACUC) and premature humane euthanasia practices were
strictly followed according to defined criteria and in compliance with NIH guidelines.

2.2. Chemicals

All LC-MS grade solvents (acetonitrile, methanol, isopropanol, and water) were purchased
from Fisher Scientific (Pittsburgh, PA, USA). High-purity formic acid (99%), ammonium acetate,
and LC–MS grade dichloromethane were obtained from Fisher Scientific. Debrisoquine and
4-nitrobenzoic acid were procured from Sigma-Aldrich (Saint Louis, MO, USA).

https://amide.sourceforge.net
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2.3. Targeted Metabolomics Analysis

The targeted metabolomics was performed in Multiple Reaction Monitoring (MRM)
mode and quantitated 270 endogenous molecules using the QTRAP® 5500 LC-MS/MS
System (Sciex, MA, USA). Identification was based on MRM transitions and expected
retention times, leveraging an established SCIEX method for metabolite detection. For this
purpose, the sample preparation was kept similar to the preparation for untargeted analysis.
A total of 5 µL of the prepared sample was injected into a Kinetex 2.6 µm 100 Å 100 × 2.1 mm
column (Phenomenex, CA, USA) using a SIL-30 AC auto-sampler (Shimadzu, Kytoto, Japan)
connected with a high-flow LC-30AD solvent delivery unit (Shimadzu, Kytoto, Japan) and
a CBM-20A communication bus module (Shimadzu, Kytoto, Japan) online, with a QTRAP
5500 (Sciex, MA, USA) operating with polarity switching in both positive and negative
modes. Binary solvents comprising water with 0.1% formic acid (solvent A) and acetonitrile
with 0.1% formic acid (solvent B) were used. The extracted metabolites were resolved at
0.2 mL/min flow rate. The LC gradient conditions were as follows: initial—100% A, 0%
B for 2.1 min; 14 min—5% A, 95% B until 15 min; 15.1 min—100% A, 0% B until 22.5 min.
The auto-sampler and oven were kept at 15 ◦C and 30 ◦C, respectively. The source and gas
settings for the method were as follows: curtain gas = 35; CAD gas = medium; ion spray
voltage = 2500 V in positive mode and −4500 V in negative mode; temperature = 400 ◦C;
nebulizing gas = 60; and heater gas = 70.

2.4. Untargeted Metabolomics Analysis

Untargeted metabolomics was performed using a UPLC-ESI-QTOF in TOFMS
acquisition mode. For the untargeted LC-MS analysis, 20 µL urine was extracted with 80 µL
50:50 water/acetonitrile with internal standards (10 µL debrisoquine (1 mg/mL in ddH2O),
100 µL of 4-nitrobenzoic acid (1 mg/mL in methanol) per 10 mL). Samples were incubated
at 4 ◦C for 20 min, then centrifuged at 15,493× g at 4 ◦C for 20 min. The supernatant was
transferred to a MS vial and 1 µL of each was injected into a 130 Å, 1.7 µm, 2.1 mm × 50 mm
Acquity UPLC BEH C18 column (Waters Corporation, MA, USA) maintained at 40 ◦C. The
mobile phases consisted of water with 0.1% formic acid (solvent A) and acetonitrile with
0.1% formic acid (solvent B). The gradient was set as follows at a flow rate of 0.5 mL/minute:
0.0 min, 5% B; 0.5 min, 5% B; 4.0 min, 20% B; 8.0 min, 95% B; 9.0 min, 95% B; 9.1 min, 5% B;
11 min, 5% B. The column eluent was introduced directly into the G2 mass spectrometer
by electrospray. Mass spectrometry was performed on a quadrupole–time-of-flight mass
spectrometer operating in either negative or positive electrospray ionization. The positive
mode had a capillary voltage of 3.00 kV and a sampling cone voltage of 30 V. The negative
mode had a capillary voltage of 2.50 kV and had a sampling cone voltage of 30 V. The
desolvation gas flow was set to 1000 L/hour and the desolvation temperature was set to
500 ◦C. The cone gas flow was 25 L/hour, and the source temperature was 120 ◦C. The data
were acquired in the sensitivity MS mode with a scan time of 0.3 s. Accurate mass was
maintained by infusing Leucine Enkephalin (556.2771 [M + H]+ and 554.2615 [M-H]−) via
the Lockspray interface every 10 s. Data were acquired in centroid mode over a mass range
of 50 to 1200 m/z.

2.5. Data Processing and Statistical Analysis

Both targeted and untargeted LC-MS-based metabolomics and lipidomics approaches
were employed to quantify the abundance of urinary metabolites in both positive
and negative ionization modes. Untargeted data were preprocessed using an in-house
implementation of XCMS [15] (Scripps Institute, CA, USA) to generate a peak intensity
table. Metabolites were annotated using the METLIN database, with matches confirmed by
accurate mass measurements. Metabolite intensities were normalized to internal standards
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and QC samples, and further processed using data pre-processing techniques including
log transformation and Pareto scaling. The differential expression of each metabolite was
calculated using a rigorous statistical analysis approach, incorporating an unpaired t-test
with a significance threshold of p < 0.05. To ensure the robustness and accuracy of the data,
stringent quality control measures were implemented, including the application of a 20%
coefficient of variation filter criteria [16] and missing value imputation techniques such as
the half-min algorithm. Additionally, analytical drift was corrected using the quality control
sample-based robust LOESS (locally estimated scatterplot smoothing) signal correction
(QC-RLSC) [17] method, resulting in highly reliable and accurate data for the identification
of biomarkers associated with radiation subgroups. Additionally, the R package MOFA2
(version 1.16.0) [18] was used to conduct the multi-omics factor analysis.

2.6. Predictive Modeling

Predictive modeling was performed using the R package caret (version 7.0) [19] to
classify radiation exposure using urine metabolomics data. The dataset was split into
training and testing sets in a 50:50 ratio to ensure balanced representation. Feature selection
was performed using the Boruta algorithm [20]. Neural Network (N-Net) and XG-Boost
algorithms were applied for classification. Optimal hyperparameters were determined
using leave-one-out cross-validation (LOOCV). Model performance was evaluated using
accuracy, precision, recall, confusion matrices, and AUC-ROC values. Representative
boxplots of metabolite intensities were plotted to illustrate variability across exposure
groups. The AUC curves comparison and optimal cut-off point phase involved plotting the
AUC curves of the different models in one figure for comparison. The optimal cut-off point
for classification was identified, and the predicted probability index plot was generated.

3. Results
3.1. Metabolomic Analyses Yield a Robust Radiation Signature

Adult, female C3Hf/HeJ/SED/KAM mice were randomly assigned to the following
four treatment groups representing different radiation exposure scenarios: WBI HDR
(n = 15), WBI LDR (n = 15), PBI BM2.5 (n = 14), or sham-irradiated control mice (n = 20).
Urine samples were collected over a period of 90 days, beginning with baseline data
collection 14 days prior to treatment, followed by Day 2, 30, and 90 post-irradiation to
capture immediate and delayed metabolic responses to radiation exposure. A combination
of LC-MS-based targeted and untargeted approaches were used to understand the
differential radiation responses. Given the known role of oxidative stress in radiation
biology, we also explored metabolic pathways associated with ROS; as such, the
in-depth understanding of molecular changes will enable the development of medical
countermeasures with antioxidant properties to reverse metabolic shifts and thus alleviate
radiation-induced acute and late organ damage.

The matched comparison of radiation versus sham exposures over time exhibited
robust radiation effects with most metabolites showing downregulation on Day 2, as
illustrated in the volcano plots (Figure 2A). The early downregulation of metabolites on Day
2 likely reflects oxidative damage and disruptions in pathways related to redox balance and
antioxidant defense repair mechanisms. As detailed in Supplementary Table S1, by Day 30,
the number and magnitude of changes in metabolite abundance had drastically reduced
in the WBI LDR and PBI BM2.5 groups. By Day 90, all the irradiated groups presented
metabolite signatures that more closely matched with those of the sham-irradiated controls
(Supplementary Table S1). In fact, these trends were also reflected in the principal
component analysis (PCA) comparing the urinary metabolomic profiles of sham-treated
vs. irradiated mice (Figure 2B,C). A clear group separation was confirmed on Day 2 post
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exposure but less so by Day 30, when the PBI BM2.5 and WBI LDR groups significantly
overlapped with controls while the WBI HDR mice did not. These differences may be
partially attributable to persistent oxidative stress and impaired repair mechanisms in the
WBI HDR group, leading to prolonged metabolic disturbances. By Day 90 post-irradiation,
PCA indicated minimal divergence in metabolite levels among all groups, suggesting that
the majority of the radiation-induced metabolic alterations had been resolved and/or a new
metabolic equilibrium had been established (Supplementary Table S1). The resolution of
early oxidative stress-associated metabolic changes by Day 90 supports the hypothesis
that redox homeostasis is gradually restored post-irradiation. The initial (acute) separation
highlights the immediate metabolic alterations triggered by radiation across all groups, but
different repair or recovery kinetics for different types of exposure scenarios also emerged,
with WBI HDR driving particularly prolonged metabolic changes, i.e., presumably more
persistent damage.
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Figure 2. Radiation exposure induces robust and dose-dependent urinary metabolite alterations.
Untargeted metabolomics analysis reveals significant metabolite alterations following radiation
exposure. (A): Volcano plots indicate downregulation of most metabolites on Day 2. (B,C): Principal
component analysis (PCA) demonstrates group separation on Day 2, with WBI HDR showing greatest
separation from controls. By Day 30, WBI LDR and PBI BM2.5 groups exhibit metabolic recovery,
while WBI HDR remains distinct. At Day 90, metabolic profiles converge with controls across all
groups, indicating resolution of radiation-induced perturbations.

3.2. Pathway Analysis Identifies Radiation-Induced Pathway Perturbations

We performed pathway analysis using the Mummichog Python package (version
2.06) [21] to identify metabolic pathways perturbed by radiation exposure (Figure 3).
Radiation exposure resulted in the upregulation of antioxidant pathways including retinol
metabolism in the PBI BM2.5 group, sialic acid metabolism in the WBI LDR group,
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and vitamin B5 metabolism in the WBI HDR group, possibly as a response to combat
radiation-induced oxidative stress. These antioxidant pathways likely reflect the activation
of protective mechanisms aimed at mitigating ROS-mediated damage caused by radiation.
On the other hand, multiple pathways associated with energy, redox, and amino acid
metabolism were downregulated in the three groups. The downregulation of redox-related
pathways may indicate an early depletion of repair mechanisms necessary for maintaining
oxidative balance post-radiation exposure.
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Figure 3. Pathway analysis identified radiation-specific metabolic perturbations, including oxidative
stress-related pathways. Metabolic pathway analysis revealed radiation-specific changes across
exposure groups. (A–C): Upregulated pathways included retinol metabolism (PBI BM2.5), sialic acid
metabolism (WBI LDR), and vitamin B5 metabolism (WBI HDR), indicative of antioxidant responses
to oxidative stress. (D–F): Downregulated pathways encompassed energy metabolism, redox balance,
and amino acid metabolism in WBI HDR group, reflecting sustained metabolic dysregulation.

We also observed the disruption of tyrosine metabolism across all radiation exposure
groups (Figure 3A–C). This could have wide-ranging implications in vivo, affecting several
essential biochemical pathways that rely on tyrosine, including the synthesis of thyroid
hormones [22], melanin, and several key neurotransmitters such as L-DOPA, dopamine,
adrenaline, and noradrenaline, in line with physiological and cognitive changes [23,24].
Another intriguing pathway that ranks high in all radiation groups is galactose metabolism;
D-galactose is known to promote mitochondrial function and cellular tolerance to oxidative
stress [25]. This suggests that galactose metabolism may play a compensatory role in
cellular defense against oxidative damage induced by radiation.

Taken together, early metabolic changes in response to radiation may provide insights
into a coordinated systemic response to radiation and biochemical aberrations that can be
targeted to protect or reverse radiation damage and/or assist recovery. The identification
of pathways related to oxidative stress and antioxidant defenses underscores the critical
role of redox balance in shaping metabolic responses to radiation.
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3.3. Multi-Modal Evaluation of Radiation-Induced Organ Damage

Next, we used multi-omics factor analysis (MOFA) to identify key factors that capture
the multi-dimensional variance within complex datasets, such as metabolite concentrations,
lipid levels, and other measured outcomes of radiation exposure including serum chemistry
and CT aerated volume, all measured at the same time points as the urine metabolites.
Initially, the dataset was centered along a one-dimensional axis at zero that revealed
a balanced distribution of factors with minimal skewness or bias, suggesting the amenability
of this dataset for MOFA (Figure 4A).
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Figure 4. MOFA identifies factors linked to radiation-induced organ damage and oxidative
stress. MOFA highlights key factors driving metabolic and phenotypic variance post-radiation.
(A): Scatter plots confirm minimal skewness across factors, supporting robustness of dataset.
(B): Correlation heatmap identifies significant associations between Factors 2, 3, 5, and 7 and
radiation-induced outcomes, such as kidney inflammation and spleen degeneration. (C,D): Violin
plots show distribution of Factors 5 and 7, highlighting metabolites positively (red) and negatively
(blue) correlated with radiation effects. Oxidative stress-related metabolites including cis-aconitate,
glucosamine-6-phosphate are enriched in these factors.

Using MOFA and a significance threshold of p < 0.05, Factors 2, 3, 5, and 7 were
identified as significantly correlated with radiation tissue damage (Figure 4B). The X-axis
represents measured endpoints and the Y-axis illustrates the degree of influence or correlation
each sample or observation holds with a specific latent factor. For example, Factor 1 was
strongly linked to spleen and kidney degeneration, while Factor 5 was associated with kidney
inflammation as well as premature death, highlighting their close correlation with different
but specific types of organ damage observed post-irradiation. Interestingly, the prediction of
radiation type was associated with multiple Factors including 2, 3, 5 and 7, which corroborates
the notion that radiation exposure causes a pleiotropic response systemically. This systemic
response likely includes oxidative stress, which contributes to organ-specific damage by
disrupting metabolic and cellular homeostasis.

Next, we examined a subset of factors to enable a biological understanding of
radiation outcomes. For example, Figure 4C highlights key urinary metabolomic markers
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associated with Factor 5 that show a strong correlation with radiation-induced kidney
inflammation, including mannose, alpha-D-glucose, NAD, glucosamine-6-phosphate, and
butyrylcarnitine. Several of these metabolites are linked to oxidative stress pathways,
suggesting their role in mediating tissue-specific damage induced by radiation. Additionally,
it includes CT aerated volume and relevant serum chemistry endpoints such as conjugated
bilirubin and creatinine. Figure 4D, focusing on Factor 7, delineates other significant
markers in the context of radiation subgroups. Taken together, MOFA indicates that
radiation-induced organ damage may depend on a combination of several orthogonal
factors that when combined provide a more specific prediction model.

Further analysis of MOFA2 Factors 5 and 7 revealed sub-structures in our multi-modal
dataset that are best illustrated in inter-factor plots with top-weighted features, especially
when combining Factors 5 and 7 (Figure 5). These plots visually represent the relationships
between factors and their influence on data variability. Key features linked to oxidative
stress and antioxidant defenses, such as cis-aconitate and alpha-tocopherol, were identified
among the top-weighted features, underscoring the importance of redox balance in shaping
radiation responses. The top-weighted features in the MOFA2 Factor 5 and 7 analyses show
the significance of these factors and highlight those metabolic alterations that are most
affected by radiation. Specifically, in this dataset, they reveal unique patterns for each of the
radiation subgroups and suggest that the combined effects of Factors 5 and 7 are superior
at distinguishing these groups than each factor alone. Overall, the analysis reveals distinct
metabolic changes following radiation exposure in vivo, including significant alterations
in pathways related to oxidative stress, inflammation, and cellular metabolism. Increased
levels of alpha-tocopherol, 5-methionine, SAH, and cis-aconitate have been associated with
organ-specific damage in the kidney, linked to premature aging and inflammation across
tissues and indicative of persistent oxidative stress that contributes to prolonged metabolic
alterations and tissue-specific damage.

Antioxidants 2025, 14, x FOR PEER REVIEW 9 of 16 
 

suggesting their role in mediating tissue-specific damage induced by radiation. Addition-

ally, it includes CT aerated volume and relevant serum chemistry endpoints such as con-

jugated bilirubin and creatinine. Figure 4D, focusing on Factor 7, delineates other signifi-

cant markers in the context of radiation subgroups. Taken together, MOFA indicates that 

radiation-induced organ damage may depend on a combination of several orthogonal fac-

tors that when combined provide a more specific prediction model. 

Further analysis of MOFA2 Factors 5 and 7 revealed sub-structures in our multi-

modal dataset that are best illustrated in inter-factor plots with top-weighted features, 

especially when combining Factors 5 and 7 (Figure 5). These plots visually represent the 

relationships between factors and their influence on data variability. Key features linked 

to oxidative stress and antioxidant defenses, such as cis-aconitate and alpha-tocopherol, 

were identified among the top-weighted features, underscoring the importance of redox 

balance in shaping radiation responses. The top-weighted features in the MOFA2 Factor 

5 and 7 analyses show the significance of these factors and highlight those metabolic al-

terations that are most affected by radiation. Specifically, in this dataset, they reveal 

unique patterns for each of the radiation subgroups and suggest that the combined effects 

of Factors 5 and 7 are superior at distinguishing these groups than each factor alone. Over-

all, the analysis reveals distinct metabolic changes following radiation exposure in vivo, 

including significant alterations in pathways related to oxidative stress, inflammation, 

and cellular metabolism. Increased levels of alpha-tocopherol, 5-methionine, SAH, and 

cis-aconitate have been associated with organ-specific damage in the kidney, linked to 

premature aging and inflammation across tissues and indicative of persistent oxidative 

stress that contributes to prolonged metabolic alterations and tissue-specific damage. 

 

Figure 5. Inter-factor analysis reveals oxidative stress-associated metabolic features. Inter-factor 

plots between MOFA Factors 5 and 7 display relationships among key metabolic features. Top-

weighted features include cis-aconitate, alpha-tocopherol, and glucosamine-6-phosphate, indicative 

of oxidative stress and antioxidant responses. These features distinguish radiation exposure types 

and provide insights into persistent metabolic alterations. 

Next, group classification was confirmed through the correlation analysis of individ-

ual MOFA2 factor features. The top 12 weighted metabolomic features in mouse urine, 

associated with Factor 7, each demonstrated significant correlations with this factor, as 

reflected in their respective p-values (Figure 6). Both positive and negative correlations 

were noted, indicating an increase or a decrease, respectively, in metabolite levels with 

Figure 5. Inter-factor analysis reveals oxidative stress-associated metabolic features. Inter-factor plots
between MOFA Factors 5 and 7 display relationships among key metabolic features. Top-weighted
features include cis-aconitate, alpha-tocopherol, and glucosamine-6-phosphate, indicative of oxidative
stress and antioxidant responses. These features distinguish radiation exposure types and provide
insights into persistent metabolic alterations.
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Next, group classification was confirmed through the correlation analysis of individual
MOFA2 factor features. The top 12 weighted metabolomic features in mouse urine, associated
with Factor 7, each demonstrated significant correlations with this factor, as reflected in
their respective p-values (Figure 6). Both positive and negative correlations were noted,
indicating an increase or a decrease, respectively, in metabolite levels with respect to Factor 7,
underscoring the nuanced nature of metabolic alterations induced by radiation. Importantly,
MOFA2 correlation analysis revealed distinct patterns for each treatment group, supporting
the idea that Factor 7 can differentiate radiation exposure types. In Figure 6, each sub-panel
represents a scatter plot of a specific metabolite’s normalized intensity (Y-axis) against the
values of Factor 7 (X-axis). Positive and negative correlations indicate whether the metabolite
levels increase or decrease with respect to Factor 7. For example, metabolites like phenyllactate
and glucosamine-6-phosphate show strong positive correlations with Factor 7, while others
like methyladenosine exhibit negative correlations. The presence of metabolites linked to
redox balance, such as glucosamine-6-phosphate, further supports the role of oxidative stress
in shaping group-specific responses to radiation. These unique patterns among various
metabolites highlight how different treatment groups respond to radiation exposure, showing
specific metabolic profile changes that are dependent on the type and dose of radiation.
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Figure 6. Correlations of top metabolites with MOFA Factor 7 highlight radiation-specific metabolic
responses. Scatter plots show correlations between Factor 7 and normalized intensities of key
metabolites. Points are color-coded by treatment group (Control, PBI BM2.5, WBI HDR, and WBI
LDR). Positive correlations including phenyllactate and glucosamine-6-phosphate and negative
correlations including methyladenosine reflect group-specific metabolic shifts linked to oxidative
stress. These metabolites serve as indicators of radiation exposure and oxidative imbalance.

3.4. Predictive Modeling of Radiation Exposure

One of the goals of the study was to leverage the metabolomics data for the
classification of radiation exposure. We used a multi-model-based machine learning
approach to stratify controls from irradiated animals in different study groups including
’WBI LDR’, ’WBI HDR’, and ’PBI BM2.5’ at the Day 2 time point. To ensure balanced
representation, the data were split evenly into training and testing sets. We used algorithms,
including Neural Network (N-net) and Gradient Boosting (XG-boost), for classification to
obviate bias. Feature selection was performed using Boruta (version 8.0.0), and each model
was trained to differentiate between individual radiation exposure groups and the control.
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The predictive models incorporated a 6-metabolite panel for Day 2 and 19-metabolite
panel for Day 30, including the metabolites atrolactate, cAMP, hydroxyphenyllactate, and
succinylcarnitine, among others. Many of these metabolites are involved in oxidative
stress-related pathways, such as succinylcarnitine, which plays a role in mitochondrial function,
and indolepropionate, a known antioxidant with protective effects against radiation-induced
damage. Details of the complete panel, including p-values and fold changes, are provided in
Supplementary Table S7. To illustrate the variability in metabolite intensities across exposure
groups, representative box plots in Supplementary Figure S1 highlight the differences in
metabolic profiles among the WBI-LDR, WBI-HDR, and PBI-BM2.5 groups. For instance,
metabolites such as carbamoylaspartate and phenyllactate showed pronounced upregulation
in the WBI-HDR group, suggesting heightened oxidative stress and disrupted metabolic
homeostasis under high-dose-rate conditions. As illustrated in Figure 7, the area under the
receiver operating characteristic (AUROC) scores and performance metrics (e.g., Sensitivity,
Specificity, Precision, Recall, F1 Score, and Balanced Accuracy) showed a high accuracy of
exposure classification. For Day 2, XG-boost generally outperformed N-net for the PBI-BM2.5
(AUROC 0.961) and WBI-HDR (AUROC 0.956) groups. By Day 30, the N-net model showed
improvement across classes, while XG-boost also showed a slight increase in AUROC values
for all classes. These performance metrics underscore that each model has distinct strengths in
predicting specific radiation types, with both models exhibiting balanced accuracy close to
or above 0.7 across classes. However, the difficulty in accurately classifying WBI-LDR may
reflect subtler metabolic changes related to oxidative stress, as indicated by lower levels of
redox-active metabolites such as succinylcarnitine in this group compared to WBI-HDR.
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profiles. Performance of machine learning models (N-net and XGBoost) in classifying radiation exposure



Antioxidants 2025, 14, 24 12 of 16

types. (A,B): Area under the receiver operating characteristic curves demonstrate high predictive
accuracy, especially for PBI BM2.5 and WBI HDR groups at Days 2 and 30. (C,D): Confusion
matrix summarizes classification outcomes, showing robust performance of XGBoost. (E,F): Model
performance metrics (Sensitivity, Specificity, Precision, Recall, F1 Score, Balanced Accuracy) showing
XGBoost’s high predictive capability.

4. Discussion
The present study provides a comprehensive view of metabolic signatures in urine

collected from mice after different types of radiation exposures and their impact on organ
damage. We used a mouse model of exposure to different radiation types in conjunction
with a LC-MS-based comprehensive urinary metabolomics profiling approach to identify
significant changes in metabolite levels and metabolic pathways following exposure. The
underlying idea was to identify early indicators of organ damage as well as identify changes
within the first 48 h of irradiation to develop models of exposure classification.

Our analysis revealed that the most pronounced metabolic changes occurred at Day 2
post-radiation, underscoring the immediate impact of radiation exposure on the body’s
metabolic processes. These early changes likely reflect oxidative stress, a key mechanism
underlying radiation-induced damage, which disrupts redox balance and alters metabolic
homeostasis. WBI HDR was found to induce sustained metabolic dysregulation up to Day
30 post-radiation, while both LBI HDR and PBI BM2.5 demonstrated fewer significant
changes in metabolic profiles at this time point and beyond. This finding highlights the role
of dose rate in modulating oxidative stress, as high-dose-rate exposures may exacerbate
ROS production and the associated metabolic disruptions. These findings suggest that the
dose rate and the hematopoietic reserve matter in terms of the extent and duration of the
metabolic radiation signal. Urine metabolite profiles showed unique temporal changes
in WBI vs. PBI, particularly for metabolites such as methionine sulfoxide and norvaline.
The assumption is that some, if not all, of these systemic metabolic changes originate from
specific organ dysfunction. Persistent alterations in oxidative stress-related metabolites
provide further evidence of systemic redox imbalance contributing to organ dysfunction.

The identification of key radiation-induced metabolites, such as methionine sulfoxide,
succinylcarnitine, and carbamoylaspartate, underscores their role in oxidative stress and
organ-specific damage. These metabolites provide potential biomarkers for radiation
exposure and injury. Importantly, the dysregulation of metabolites like succinylcarnitine
suggest disrupted mitochondrial function, while the dysregulation of methionine sulfoxide
reflected oxidative protein damage. Taken together, these findings imply that antioxidant-
based therapies targeting oxidative stress pathways could mitigate radiation-induced
injuries and improve recovery. Further validation in preclinical and clinical settings
is essential to establish these metabolites as robust biomarkers for early detection and
therapeutic intervention. Several of these metabolites are directly involved in oxidative
stress pathways, suggesting their potential role in mitigating or exacerbating organ injury.
These metabolites may play a role in organ injury. Furthermore, the alterations in multiple
key metabolic pathways we identified highlight the complex and multifaceted nature of
radiation-induced injury and emphasize the need for further validation to correlate with
biological effects.

More research is needed, particularly on the role of important metabolites such
as carbamoylaspartate, methionine sulfoxide, and succinylcarnitine. These metabolites,
known for their roles in redox regulation and mitochondrial function, are particularly
relevant for understanding the oxidative stress response following radiation exposure.
Further validation will be required to confirm a link between these metabolic alterations
and their pathophysiological relevance that may point to new therapeutic options and/or
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their use as accurate biomarkers for organ-specific defects. Another limitation of this study
is that only female mice were used; as such, it is imperative to test the generalizability of
these findings using male cohorts.

One of the novel approaches described herein pertains to the use of MOFA for
the prediction of organ damage; we found that factors comprising multimodal data
were better predictors of organ damage while metabolite markers were very effective
markers of radiation exposure in the acute phase. MOFA analysis also highlighted
oxidative stress-related pathways as critical contributors to radiation-induced tissue injury,
particularly through Factors 5 and 7. The use of multiple machine learning algorithms,
including Boruta, N-Net, and XG-boost on urine metabolomics data has showcased
their potential value in predicting radiation types (WBI/PBI). These models successfully
predicted radiation effects and their subgroups, introducing a novel method for assessing
radiation-induced metabolic changes. The multi-modal evaluation of radiation-induced
organ damage, illustrated in Figure 5, highlighted significant correlations between various
factors, particularly the top features of Factors 5 and 7 in radiation-induced kidney
inflammation subgroups. Key features linked to oxidative stress, such as succinylcarnitine
and glucosamine-6-phosphate, were prominent contributors to these factors, underscoring
their relevance in predicting tissue-specific damage. These features, comprising urinary
metabolomics markers, CT aerated volume, and serum chemistry markers, emphasize the
importance of a multi-modal approach in assessing radiation-induced organ damage,
providing a holistic view of systemic changes—metabolic or otherwise—caused by
radiation. Although the focus of this study was to evaluate metabolic dysregulation
in a biodefense scenario, some of the pathways identified in this study, including
retinol metabolism, vitamin B5 metabolism, and sialic acid metabolism, associated with
cellular defense mechanisms against oxidative stress are suggestive of radiation response
irrespective of radiation type. For example, studies focused on understanding the molecular
mechanism underlying FLASH-radiation therapy (defined as the ultrafast delivery of
radiation to achieve better tumor control while sparing normal tissue toxicity) suggest
reduction in oxidative stress, redox balance and mitochondrial dysfunction in normal
tissues [26,27]. These data suggest that the upregulation of antioxidant pathways observed
in the WBI HDR and WBI LDR groups in this study could parallel the mechanisms
underlying the protective effects of FLASH irradiation. Further investigation into how
these pathways are modulated under ultra-high-dose-rate conditions is warranted.

5. Conclusions
This study has provided a comprehensive exploration of the systemic metabolic

alterations induced by different types and doses of radiation. Utilizing both targeted and
untargeted metabolomics approaches, we have identified significant changes in metabolite
levels and metabolic pathways post-radiation exposure. Many of these changes were
associated with oxidative stress and its downstream effects, reflecting a critical role for redox
imbalance in shaping the metabolic response to radiation, thus underscoring the potential
of antioxidants for use as radiation protectors and/or mitigators. The temporal pattern of
these alterations, with the most pronounced changes observed at Day 2 post-radiation,
underscores the immediate and lasting impact of radiation on the body’s metabolic
processes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox14010024/s1, Figure S1: (A) Box plots of selected urine
metabolites showing radiation dose rate/type differences at Day 30 post-irradiation. Each box plot
represents normalized intensity values across four treatment groups: Control, PBI-BM2.5, WBI-LDR,
and WBI-HDR, highlighting group-specific metabolite intensity patterns. (B) Heat map of selected
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urine metabolites showing radiation dose rate/type differences across Days 2 and 30. Each row
represents a metabolite, with color intensity reflecting normalized metabolite levels. Warmer colors
(red) indicate higher levels, while cooler colors (blue) represent lower levels, illustrating temporal
and dose-specific variations in metabolite profiles; Figure S2: Evaluation of prediction models for
multi-class outcomes using neural network (N-net) algorithm. (A,B) Multi-class confusion matrix for
Day 2 and Day 30 using the N-Net model. (C,D) Performance metrics for classification models using
N-Net model at Day 2 and Day 30 respectively; Table S1: Test statistics for untargeted metabolomics;
Table S2: Test statistics for untargeted metabolomics—comparing to baseline; Table S3. Test statistics
for targeted metabolomics; Table S4. Test statistics for targeted metabolomics—comparing to baseline;
Table S5. Pathway analysis—up regulated; Table S6. Pathway analysis—down regulated; Table S7.
Boruta variable selection results.
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Abbreviations

WBI HDR Whole-Body Irradiation at High Dose Rate
WBI LDR Whole-Body Irradiation at Low Dose Rate
PBI BM2.5 Partial-Body Irradiation with 2.5% Bone Marrow Shielding
ROS Reactive Oxygen Species
LC-MS Liquid Chromatography–Mass Spectrometry
TIC Total Ion Chromatogram
MRM Multiple Reaction Monitoring
QC Quality Control
MS Mass Spectrometry
H-ARS Hematopoietic Acute Radiation Syndrome
MOFA Multi-Omics Factor Analysis
PCA Principal Component Analysis
AUC-ROC Area Under the Receiver Operating Characteristic Curve
N-Net Neural Network
XG-Boost Gradient Boosting Algorithm
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LOOCV Leave-One-Out Cross-Validation
HU Hounsfield Unit
PBS Phosphate-Buffered Saline
FDR False Discovery Rate
NIST National Institute of Standards and Technology
HPLC High-Performance Liquid Chromatography
SST Serum Separator Tube
CEs Cholesterol Esters
DAGs Diacylglycerols
TAGs Triacylglycerols
SMs Sphingomyelins
PCs Phosphatidylcholines
PEs Phosphatidylethanolamines
LPCs Lysophosphatidylcholines
LPEs Lysophosphatidylethanolamines
PIs Phosphatidylinositols
LPIs Lysophosphatidylinositols
PSs Phosphatidylserines
PAs Phosphatidic Acids
LPAs Lysophosphatidic Acids
MAGs Monoacylglycerols
ACs Acylcarnitines
CERs Ceramides
DCERs Dihydroceramides
HCERs Hexosylceramides
LCERs Lactosylceramides
FSD Focus-to-Surface Distance
HVL Half-Value Layer
m/z Mass-to-Charge Ratio
LN Liquid Nitrogen
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