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Abstract

Research Question—Is a mixture of preconception serum lipids and lipophilic micronutrients 

associated with pregnancy and live birth outcomes?

Design—In this prospective cohort study, blood serum was collected on the day of oocyte 

retrieval for 180 women undergoing IVF at an academic reproductive health center. 

Concentrations of lipids (phospholipids, total cholesterol, high- and low-density lipoproteins, and 

triglycerides) and lipophilic micronutrients (α-, δ-, and γ-tocopherols, retinol, β- and α-carotenes, 

β-cryptoxanthin, lutein, and lycopene) were determined using diagnostic reagent kits and high-

performance liquid chromatography. Using Poisson regression with robust variance estimation, we 

evaluated changes in Z-scores for the mixture of serum lipid and lipophilic micronutrient 

concentrations as predictors of embryo implantation, clinical pregnancy, and live birth, adjusted 

for age, body mass index (BMI), race, smoking status, infertility diagnosis, ovarian stimulation 

protocol, and other measured lipid and lipophilic micronutrient concentrations.
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Results—Each standard deviation (SD) higher serum triglyceride concentration was associated 

with a lower chance of live birth (RR=0.54; 95% CI=0.33-0.90) whereas a 1 SD higher serum α-

tocopherol concentration, as part of a mixture of serum lipids and lipophilic micronutrients, was 

associated with a higher likelihood for a live birth (RR=1.61; 95% CI=1.11-2.36). Serum β-

carotene concentrations were associated with live birth in a non-linear fashion; low β-carotene was 

associated with a lower chance of live birth and high β-carotene with a higher chance of live birth.

Conclusion—While components of a mixture of lipids and lipophilic micronutrients were 

associated with live birth outcomes following IVF, a larger investigation is necessary to fully 

evaluate the potential clinical implications.

Keywords

In vitro fertilization (IVF); lipids; live birth; micronutrients; alpha-tocopherol

Introduction

Lipids and lipophilic micronutrients have become of increasing interest as potential risk 

factors for in vitro fertilization (IVF) outcomes, given myriad roles played in reproduction 

(Fujimoto et al. 2010a, Arhin et al. 2017). Their various anti-oxidant and inflammatory 

activities are likely to affect female reproduction (Cetin et al. 2010, Agarwal et al. 2012). 

Characterizing the impact of lipids and lipophilic micronutrients on IVF outcomes may offer 

an opportunity for non-invasive clinical interventions to improve live birth rates.

High density lipoprotein (HDL) particles transport cholesterol to pre-ovulatory ovarian 

follicles in support of steroidogenesis and have anti-inflammatory and antioxidant properties 

(Fujimoto et al. 2010a, Yen et al. 2014). Low density lipoprotein (LDL) and triglycerides are 

necessary for post ovulatory ovarian hormone synthesis and embryonic and fetal 

development (Herrera 2002, Woollett 2011). Lipophilic micronutrients, including vitamins 

A, D, E, K, and carotenes, are sourced naturally from dietary vegetables, fruits, and animal 

products, and select forms are found in dietary supplements (U.S. Centers for Disease 

Control and Prevention 2012). Yet, circulating concentrations of vitamins E (tocopherol) and 

A (retinol) are regulated by the liver, in which they are stored. Vitamin E and the 

carotenoids, including α-carotene, β-cryptoxanthin, lutein, zeaxanthin, and others, act as 

antioxidants (Sies and Stahl 1995) and are critical for zygote implantation, placental 

maturation, and embryogenesis (Kaempf-Rotzoll et al. 2003, Jishage et al. 2005, Miller et al. 

2012). α-carotene and β-cryptoxanthin are also precursors for vitamin A (retinol) synthesis, 

which is critically important for early embryo implantation (Fazleabas et al. 1994) and 

development (Zile 2001).

Several studies have demonstrated associations between circulating lipid and lipophilic 

micronutrient concentrations and reproductive outcomes. In IVF populations, lipid 

concentrations have been associated with embryo quality and clinical pregnancy rates 

(Browne et al. 2008, Browne et al. 2009, Onyiaodike et al. 2018). Furthermore, higher 

plasma and/or follicular fluid (FF) concentrations of lipophilic micronutrients have been 

associated with a larger number of mature oocytes retrieved, better embryo quality, and 

higher pregnancy rates after IVF (Palini et al. 2014). In couples conceiving spontaneously 
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higher serum cholesterol concentrations were associated with reduced fecundability 

(Schisterman et al. 2014), and higher serum cholesterol and lower serum HDL lipid 

concentrations were associated with lower rates of implantation (Pugh et al. 2017).

Despite evidence supporting associations between individual lipids and lipophilic 

micronutrients and reproductive outcomes, the results of epidemiologic studies have been 

inconsistent (Arhin et al. 2017, Haider and Bhutta 2017). To the best of our knowledge no 

studies to date have investigated a mixture of lipids and lipophilic micronutrients 

simultaneously in relation with pregnancy and live birth outcomes among women 

undergoing IVF. A mixture should more closely approximate biology than is achieved by 

evaluating isolated associations. To help to address the pending data gap, we investigated 

associations between a mixture of serum lipid and lipophilic micronutrient concentrations 

and pregnancy outcomes in an exploratory analysis of women undergoing IVF.

Materials and Methods

Sample selection and data collection

Sample selection and clinical protocols were described in detail in prior publications (Bloom 

et al. 2014, Kim et al. 2017b). In brief, we enrolled 180 of 184 (97.8%) sequential female 

patients using fresh, non-donor oocytes for IVF, at the University of California at San 

Francisco (UCSF) Center for Reproductive Health, between April 2010 and June 2011.

The women followed standard clinical protocols for controlled gonadotropin-induced 

ovarian stimulation (COS), followed by subcutaneous administration of human chorionic 

gonadotropic (hCG) when a sufficient number of follicles had developed to at least 17 

millimeters in diameter. Thirty-six hours later, oocytes were retrieved using ultrasound-

guided transvaginal fine needle aspiration. Oocytes were fertilized using fresh sperm via 

intracytoplasmic sperm injection (ICSI) or conventional IVF on the day of oocyte retrieval. 

Embryos were transferred between 2 and 5 days later, and implantation was determined 

according to initial and confirmatory serum hCG tests approximately 2 weeks later. Clinical 

pregnancy was confirmed by ultrasound visualization of ≥1 gestational sacs at 6-7 weeks 

gestation. Obstetricians were contacted at approximately 9 months gestation to identify 

delivery of at least one live born infant.

Women completed a study questionnaire to capture demographic and lifestyle factors, and 

provided a fasting blood specimen, collected on the day of oocyte retrieval. We abstracted 

primary infertility diagnosis, COS protocol, and IVF outcomes from the electronic medical 

record. We excluded n=13 without embryo transfers from the current study, leaving n=167 

analyzed.

Serum lipid and lipophilic micronutrient concentrations

Blood lipid and lipophilic micronutrient concentrations were measured by the Clinical 

Biochemistry and Oxidative Stress Laboratory at the University of Buffalo, State University 

of New York. We used FDA approved diagnostic reagent kits, calibrators, and quality 

control materials from Sekisui Diagnostics (Lexington, MA USA). Calibrators consisted of 

DC-Cal multi-analyte calibrator. Quality control (QC) for phospholipids, total cholesterol, 
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HDL-cholesterol, and triglycerides were monitored according to Sekisui’s DC-TROL three-

level QC material. Total cholesterol, HDL-cholesterol, and triglycerides were adapted to a 

Cobas Fara II automated chemistry analyzer (Hoffmann-La Roche, Basel, Switzerland). 

Phospholipids were adapted to the ABX Pentra 400 automated chemistry analyzer (Horiba 

Scientific Instruments, Ervine, CA USA). Autoanalyzers were programmed using 

application parameters provided by the kit manufacturer. Average interassay coefficients of 

variation (CVs) ranged from 4.4% for total cholesterol to 10.3% for phospholipids. We used 

the Friedewald equation to estimate LDL from total cholesterol, HDL, and triglyceride 

concentrations (Friedewald et al. 1972, Warnick et al. 1990). We used high-performance 

liquid chromatography (HPLC) to determine concentrations of lipophilic micronutrients (α-, 

δ-, and γ-tocopherols, retinol, β- and α-carotenes, β-cryptoxanthin, lutein, and lycopene) in 

serum, according to a previously described method (Browne and Armstrong 1998). Average 

interassay CVs ranged from 6.5% for retinol to 13.9% for α-carotene, across several levels 

of QC material. The Clinical Biochemistry and Oxidative Stress Laboratory successfully 

participates in the National Institute of Standards and Technology (NIST) micronutrients 

measurement quality assurance program and used reference material NIST SRM 968C, Fat-

Soluble Vitamins and Carotenoids in Human Serum.

Statistical analysis

We described distributions of baseline demographic and clinical factors and serum 

concentrations of lipids and lipophilic micronutrients among women who had an embryo 

transfer. We evaluated bivariate associations between serum lipid and lipophilic 

micronutrient concentrations using Spearman rank correlation coefficients, as well as 

associations with demographic and clinical factors. This allowed us to identify potential 

multicollinearity problems for our subsequent multivariable regression models. We 

identified potential confounding variables for adjustment in multivariable models a priori 
from the scientific literature, as common causes preceding both IVF outcomes and serum 

lipid or lipophilic micronutrient concentrations, and incorporated these into a directed 

acyclic graph (Greenland et al. 1999) (DAG; Supplemental Figure 1). These included: self-

reported race, categorized as Asian vs. non-Asian (Fujimoto et al. 2010b), age in years 

(Maheshwari et al. 2008, Zhang et al. 2016), BMI in kg/m2 (Supramaniam et al. 2018), self-

reported history of cigarette smoking as “ever” vs. “never” (Hughes and Brennan 1996, 

Klonoff-Cohen et al. 2001, Alberg 2002, Fuentes et al. 2010), primary infertility diagnosis 

as female factor-diminished ovarian reserve (DOR) vs. female factor-non DOR (including 

endometriosis, tubal factor, polycystic ovary syndrome, anovulation, and recurrent 

pregnancy loss) vs. male factor or preimplantation genetic diagnosis (PGD) vs. unexplained, 

and COS protocol, including antagonist protocols vs. flare protocols (including clomid flare 

and microdose flare) vs. Lupron down regulated (LDR; including long luteal, demi-halt, and 

very low dose leuprolide acetate protocols) (Bloom et al. 2014, Shrestha et al. 2015, 

Pacchiarotti et al. 2016). We did not adjust for clinical activities that took place after blood 

specimen collection in our main models, including the number of embryos transferred and 

fertilization method (ICSI vs. conventional IVF), These were intervening variables in the 

causal pathway between lipids/lipophilic micronutrients and clinical IVF outcomes 

according to our DAG (Supplemental Figure 1), and so adjustment would bias the results 

(Schisterman et al. 2009).
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Based on substantial heterogeneity in the ranges of the serum lipid and lipophilic 

micronutrient concentrations, we scaled all values to standard deviations (SDs) as Z-scores 

prior to multivariable analysis. Some participants were missing values for some variables 

(8% for lipids, 5% for race, 4% for lipophilic micronutrients, and 4% for smoking). We 

implemented a Markov chain Monte Carlo multiple imputation procedure, with 50 imputed 

data sets, to accommodate these missing values, under an assumption of missing at random 

(Hamra et al. 2013). We first specified modified Poisson regression models simultaneously 

including all serum lipid and lipophilic micronutrient concentrations as predictors of 

implantation, clinical pregnancy, or live birth, to characterize the effects conditional on other 

serum lipid and lipophilic micronutrient concentrations. We next allowed for non-linear 

associations by incorporating quadratic terms for serum lipid and lipophilic micronutrient 

concentrations into the models, retaining those with p<0.10. Lastly, we adjusted for age, 

BMI, race, smoking status, primary infertility diagnosis, and COS protocol as confounding 

variables.

We conducted sensitivity analyses to evaluate the robustness of our results. First, we further 

adjusted the final models for the number of embryos transferred and for the fertilization 

method to assess the impact. Second, we limited the analysis to non-Asian participants only 

to evaluate the possibility for modification of the associations by race. Third, we limited the 

analysis to n=144 participants with complete case information. Finally, we conducted an 

“intent-to-treat” type analysis, including all n=180 irrespective of embryo transfer 

(Messerlian and Gaskins 2017).

For all regression models, we excluded influential observations with Dfbeta > |1.96| for lipid 

or lipophilic micronutrient concentrations and repeated the analysis. We defined statistical 

significance for a two-tailed test as p<0.05 a priori. Confounder-adjusted models were 

individually corrected for multiple comparisons using the false discovery rate, which 

quantifies the likelihood for a false-positive result among the positive findings and which we 

expressed as the p-value analogous q-value (Storey 2002). We used SAS v.9.2 (SAS 

Institute, Inc. Cary, NC USA) for statistical analysis. We used PASS v.12 (NCSS, LLC 

Kaysville, UT USA) to estimate post hoc statistical power to detect associations between 

lipids/lipophilic micronutrient and live birth, adjusted for confounding variables, with 

α=0.05.

All participants completed written informed consent and the UCSF Committee on Human 

Research approved the study protocol.

Results

Distributions of demographic and clinical factors for 167 women that had an embryo 

transfer are presented in Table I. On average, women were 37.2 years old, ranging from 25 

to 45 years old, with BMI of 24.3 kg/m2. There were n=109 white, n=46 Asian, and n=3 

African American participants with embryo transfers, and most had never smoked cigarettes 

(88.8%). Clinically, the LDR ovarian stimulation protocol was used most widely (67.1 %), 

11.9 oocytes were retrieved and 6.2 embryos obtained on average. Most women had day 3 

transfers (n=46 day 2, n=90 day 3, and n=31 day 5). Most women (54.5%; n=91) achieved 
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embryo implantation, 37.1% (n=62) had a clinical pregnancy, and 28.7% (n=48) had a live 

birth during the study cycle. There were no significant associations between the infertility 

diagnosis and the implantation, clinical pregnancy, and live birth outcomes (data not shown).

Distributions of serum lipid and lipophilic micronutrient concentrations are presented in 

Table II. The mean (SD) concentration of phospholipids was 210.8 mg/dL (33.4), HDL was 

55.8 mg/dL (13.1), LDL was 83.8 mg/dL (23.3), and triglycerides was 113.6 mg/dL (65.6). 

Concentrations of α-tocopherol, β-carotene, β-cryptoxanthin, and lutein were higher in this 

cohort than the geometric mean levels for U.S. women 20 to 39 years of age, ranging from 

22% higher for α-tocopherol to 128% higher for β-carotene (U.S. Centers for Disease 

Control and Prevention 2012). Concentrations of retinol were similar to the general 

population, while concentrations of γ-tocopherol were 74% lower and those for α-carotene 

were 19% lower than the general population (U.S. Centers for Disease Control and 

Prevention 2012). Lipid measures for women in our study fell within age-specific clinical 

reference intervals (Burtis et al. 2013, Mayo 2018) with few exceptions (9% for 

phospholipids, 10% for HDL, 33% for LDL, and 11% for triglycerides).

The unadjusted, bivariate associations between serum lipid and lipophilic micronutrient 

concentrations with demographic and clinical factors can be found in Supplemental Table I. 

Concentrations of HDL, β-carotene, α-carotene, β-cryptoxanthin, and lutein were higher in 

women with a BMI < 25 kg/m2, whereas concentrations of LDL, triglycerides, and γ-

tocopherol were higher in women with a BMI ≥ 25 kg/m2. Furthermore, Asian women had 

higher median concentrations of triglycerides and β-cryptoxanthin compared to non-Asian 

women (108.0 vs. 92.4 mg/dL, p=0.04 and 0.14 vs. 0.09 μg/mL, p=0.004, respectively), γ-

tocopherol concentrations varied by primary infertility diagnosis (p=0.02), with the median 

level among women with a non-DOR female infertility diagnosis (0.25 μg/mL) significantly 

lower than concentrations for women with DOR, male/PGD, or unexplained primary 

infertility diagnoses. Phospholipid and triglyceride concentrations were significantly 

associated with the number of oocytes retrieved (r=0.18, p=0.02 and r=0.23, p=0.004, 

respectively) and total embryos (r=0.17, p=0.03 and r=0.26, p=0.001, respectively), and 

concentrations of LDL were significantly associated with the number of oocytes retrieved 

(r=−0.16, p=0.05).

The unadjusted bivariate associations among serum lipid and lipophilic micronutrient 

concentrations are shown in Supplemental Table II. There were multiple statistically 

significant, yet weak, correlations; the strongest correlation was for phospholipids with α-

tocopherol concentrations (r=0.61, p<0.0001).

Supplemental Table III contains the unadjusted results of modified Poisson regression 

models for clinical IVF outcomes, simultaneously including a mixture of lipids and 

lipophilic micronutrients as predictors in the same model. Table III expands upon the results 

in Supplemental Table III by adjusting for maternal age, BMI, race, smoking status, primary 

infertility diagnosis, and COS protocol. Women with 1 SD higher serum β-cryptoxanthin 

concentration were 18% less likely to achieve embryo implantation compared to women 

with average concentrations (relative risk [RR]=0.82; 95% confidence interval 

[CI]=0.68-0.99; p=0.04; q=0.55), adjusted for demographic and clinical confounders. We 
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identified a significant confounder-adjusted non-linear association for clinical pregnancy and 

β-carotene (p=0.01; q=0.16). A 1 SD higher β-carotene concentration, compared to mean 

concentrations, was associated with an overall 15% lower (RR=0.85; 95% CI=0.64-1.12) 

likelihood of clinical pregnancy, a 2 SD higher concentration was associated with a 7% 

lower (RR=0.93; 95% CI=0.59-1.46) likelihood of clinical pregnancy, and a 3 SD higher 

concentration was associated with a 31 % higher (RR=1.31; 95% CI=0.68-2.51) likelihood 

for a clinical pregnancy. A 1 SD higher lycopene concentration was associated with a 

borderline significant 20% lower likelihood for clinical pregnancy (RR=0.80; 95% CI=0.64, 

1.003; p=0.05; q=0.31), adjusted for confounders. In the confounder-adjusted live birth 

models, women with 1 SD higher triglyceride levels were 46% less likely to have a live birth 

relative to women with average triglyceride levels (RR=0.54; 95% CI=0.33, 0.90; p=0.02; 

q=0.05). Furthermore, women with 1 SD higher α-tocopherol concentrations were 61 % 

more likely to have a live birth compared to women with average α-tocopherol 

concentrations (RR=1.61; 95% CI=1.11-2.36; p=0.01; q=0.05). Lastly, consistent with the 

clinical pregnancy model, we identified a statistically significant confounder-adjusted non-

linear association for live birth and β-carotene (p=0.03; q=0.05), which, in conjunction with 

the linear effect for β-carotene, led to overall 17% lower (RR=0.83; 95% CI=0.59-1.16), 9% 

lower (RR=0.91; 95% CI=0.54-1.52) , and 31 % higher (RR=1.31; 95% CI=0.67-2.56) 

likelihoods for a live birth per 1, 2, and 3 Z-score higher β-carotene concentrations, 

respectively. However, only the associations described in the live birth models remained 

statistically significant when adjusting for multiple comparisons using the false discovery 

rate.

To assess the impacts of our assumptions, we conducted sensitivity analyses. Supplemental 

Table IV presents the results of modified Poisson regression models simultaneously 

including multiple serum lipids and lipophilic micronutrient concentrations as predictors, 

adjusted for confounders as well as for the number of embryos transferred. The results were 

similar to those for the models without adjustment for the number of embryos transferred, 

although the association for β-cryptoxanthin with implantation was of borderline statistical 

significance (RR=0.84; 95% CI=0.69-1.01; p=0.07). Results were also similar when we 

adjusted the models for fertilization method (data not shown). Supplemental Table V 

presents the results of the main models limited to n=112 non-Asian participants. Results 

were similar, although less precise, than for the overall study population. However, the live 

birth association was stronger for γ-tocopherol (RR=1.51; 95% CI=1.03, 2.22) and weaker 

for α-tocopherol (RR=1.34; 95%CI=0.70, 2.56) and triglycerides (RR=0.57; 95% CI=0.25, 

1.32) relative to the overall study population, suggesting that the effects may vary by race. 

Supplemental Table VI presents the results of modified Poisson regression models limited to 

n=144 with complete case data. Overall, the results were similar to those generated using 

multiple imputation. We also identified similar effects for serum lipid and lipophilic 

micronutrient concentrations on IVF outcomes when including n=180, irrespective of 

embryo transfer, in an “intention-to-treat” type analysis (Supplemental Table VII).

According to a post hoc power analysis (Supplemental Table VIII) our sample size was 

sufficient for detecting statistically significant associations between live birth and serum 

concentrations of HDL, triglycerides, α- and γ-tocopherols, and retinol. Moderate increases 

in sample size, between 2- and 6-fold, will be necessary to detect associations for live birth 
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with serum phospholipids, β-cryptoxanthin, lutein, and lycopene at α=0.05. In contrast, 

much larger sample size increases of more than 100-fold would be necessary for detecting 

statistically significant associations between live birth and serum concentrations of LDL and 

α-carotene.

Discussion

The results of this prospective cohort study suggest that women with higher preconception 

serum α-tocopherol levels were more likely to experience a live birth from IVF than women 

with lower levels, and that women with higher triglyceride levels were less likely to have a 

live birth than women with lower levels. We also found a non-linear association between β-

carotene levels and live birth. These results were adjusted for other serum lipids and 

lipophilic micronutrients, demographic and clinical confounders, and multiple comparisons, 

and were robust to sensitivity analyses. To our knowledge, this is the first study of 

preconception measurements of a comprehensive mixture of serum lipids and lipophilic 

micro nutrients simultaneously considered as predictors of clinical pregnancy outcomes 

from IVF.

Few previous observational studies have investigated the association between lipid and 

lipophilic micronutrient concentrations and clinical IVF outcomes. An earlier study of 25 

women undergoing IVF (Palini et al. 2014) reported significantly higher pre-pregnancy (i.e., 

day of oocyte retrieval) mean plasma α-tocopherol and β-carotene concentrations among 8 

women who achieved pregnancies (20.05 μmol/L and 0.66 μmol/L, respectively) compared 

to 15 women without pregnancy (16.98 μmol/L and 0.39 μmol/L, respectively). Although we 

did not detect associations for α-tocopherol or β-carotene in relation to implantation, our 

findings of an association between higher α-tocopherol and β-carotene and a higher 

likelihood of live birth are consistent with the overall pattern of previous associations found 

between α-tocopherol and β-carotene and number of oocytes retrieved, number of mature 

oocytes, and implantation (Palini et al. 2014). The discrepant results regarding implantation 

might be attributed to our adjustment for other lipids and lipophilic micronutrients as well as 

for confounding variables, and our diverse study population, comprised of approximately 

30% Asian women. Moreover, our results are not consistent with our own prior findings that 

higher levels of FF HDL, δ-tocopherol, and γ-tocopherol were associated with better 

embryo quality (Browne et al. 2008, Browne et al. 2009, Kim et al. 2017a). Alternatively, 

the discrepancy may reflect the different lipid and micronutrient concentrations in serum and 

FF. A future analysis of FF lipid and lipophilic micronutrient concentrations in association 

with pregnancy and live birth will help to clarify this discrepancy.

Several clinical trials have reported on associations between lipophilic micronutrient 

supplementation in women and IVF endpoints, although with inconsistent results. A 

supplementation trial demonstrated significantly higher pregnancy rates from an 

administered daily dose of tocopherol in conjunction with vitamin D3 in women with 

polycystic ovary syndrome (Fatemi et al. 2017). Moreover, supplementation of β-carotene 

and tocopherol was found to be associated with a shorter time to pregnancy in women 

treated for unexplained infertility (Ruder et al. 2014). However, in other studies, tocopherol 

supplementation was not found to be associated with implantation or ongoing pregnancy 

Jamro et al. Page 8

Reprod Biomed Online. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rates (Cicek et al. 2012), and similarly, no association was revealed between 

supplementation of multivitamins and minerals and oocyte quality or pregnancy rates in 

women undergoing IVF/ICSI (Youssef et al. 2015). Several systematic reviews have also 

concluded that tocopherol supplementation did not lower the risk of fetal loss or stillbirth 

(Rumbold et al. 2015), including in the presence of vitamin C (Polyzos et al. 2007, Rumbold 

et al. 2008) or vitamin A (Balogun et al. 2016). Our findings are consistent with positive 

associations reported for α-tocopherol and β-carotene and pregnancy in supplementation 

trials. However, given the overall inconsistency across studies, additional investigation is 

needed.

The mechanisms behind these associations between lipids and lipophilic micronutrients and 

reproductive outcomes are unknown; however, lipid accumulation in non-adipose tissues, or 

lipotoxicity, leading to mitochondrial dysfunction and reduced fecundability, may be a 

contributing factor (Wu et al. 2010). Furthermore, of eight recognized structural tocopherol 

isomers, α-tocopherol is the most potent and the only form of vitamin E recognized to meet 

human needs (Traber 2013), while the less potent γ-tocopherol form of vitamin E 

constitutes 70% of the tocopherol intake in the American diet (Swanson et al. 1999, Dietrich 

et al. 2006). However, α-tocopherol supplementation trials have demonstrated inverse 

correlations between serum γ- and δ-tocopherol concentrations and the more potent α-

tocopherol isomer (Huang and Appel 2003, Gutierrez et al. 2009). This is likely due to 

binding competition for hepatic tocopherol transfer protein (Hosomi et al. 1997), resulting in 

preferential secretion of α-tocopherol into circulation (Traber 2013). Higher levels of α-

tocopherol and lower levels of γ-tocopherol in this cohort, as compared to the general 

population, suggest compliance with clinician recommended micronutrient supplementation 

during the IVF cycle by means of a prenatal vitamin.

Our findings are limited by several factors. First, our study was insufficiently powered to 

detect associations for some lipids/lipophilic micronutrients with live birth. However, we 

achieved approximately 80% power to detect statistically significant associations with HDL, 

triglycerides, α- and γ-tocopherols, and retinol. The exponential increase in participant 

numbers needed to detect statistically significant associations for LDL and α-carotene 

suggests their implausibility in the source population. Our limited sample size also 

precluded a stratified assessment of associations according to race, although the results of 

our sensitivity analysis limited to non-Asian participants suggested the possibility for 

modification by race. A larger diverse study population will be necessary for more definitive 

results. Second, to limit our analysis to women ”at risk” for pregnancy and live birth, we 

excluded n=13 without embryo transfers, a potential source of bias (Messerlian and Gaskins 

2017). However, we found similar results when including n=13 without embryo transfers in 

a sensitivity analysis. Second, we cannot rule out residual confounding from our imprecise 

assessment of cigarette smoking (i.e., ever vs. never), rather than using a biomarker for 

tobacco exposure, and use of estimated, rather than measured, LDL. The use of estimated 

LDL may also account in part for the large proportion of participants outside of age-specific 

clinical reference intervals, and variation from clinical reference intervals may reflect, in 

part, effects of COS (Bloom et al. 2014, Palini et al. 2014). Still, there were very few 

smokers in our cohort and the Friedewald equation for LDL estimation is accurate across a 

wide range of serum triglyceride levels (<400 mg/dL) (Burtis et al. 2013), encompassing the 
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vast majority of our study participants (98.8%). Furthermore, we cannot rule out 

confounding by diet and supplement use, as well as other unconsidered lifestyle factors for 

which data were unfortunately unavailable. A future investigation incorporating dietary and 

lifestyle data will be necessary for more definitive results. Third, we were unable to 

incorporate paternal data into the analysis, which may also impact IVF outcomes, given that 

higher male cholesterol levels have been associated with reduced fecundability (Schisterman 

et al. 2014). Thus, a future “couples-based” investigation to simultaneously consider 

maternal and paternal lipids and lipophilic micronutrients is merited. Furthermore, prior 

studies have shown that HDL is increased at the time of oocyte retrieval (Brizzi et al. 2003) 

and concentrations of α-tocopherol, γ-tocopherol (Aurrekoetxea et al. 2010), and β-carotene 

decrease after COS (Palini et al. 2014), so additional investigation is needed to determine 

whether our findings can be extrapolated to pre-COS serum concentrations.

The generalizability of our results may also be limited. This cohort of women was referred 

to a single center for IVF (Buck Louis et al. 2005) and women undergoing IVF tend to be 

wealthier, more educated, and more likely to be non-Hispanic white or Asian compared to 

the general population (Katz et al. 2011, Datta et al. 2016). Furthermore, this cohort had a 

high proportion of Asian participants, who are known to have poorer IVF outcomes than 

their white counterparts (Langen et al. 2010) and distributions of some lipophilic 

micronutrients varied from those reported for similarly aged women in the general U.S. 

population.

Our findings are the first to report a higher likelihood for live birth after IVF among women 

with lower serum triglyceride and higher serum α-tocopherol and β-carotene concentrations, 

as part of a mixture of lipids and lipophilic micronutrients. While the mechanisms behind 

this association are unclear, our results suggest potential opportunities for clinical 

intervention. Serum lipid and lipophilic micronutrient data are readily available to clinicians 

treating infertile patients, and modification of constituents, if effective, might be achieved 

through supplementation or other non-invasive means. Still, the results of clinical 

supplementation trials that include tocopherols have been inconsistent regarding 

implantation and pregnancy maintenance, and supplementation is not without risks 

(Hovdenak and Haram 2012), so it should be considered as a potential intervention with 

caution.

In conclusion, while components of the mixture of lipids and lipophilic micronutrients were 

found to be associated with live birth outcomes following IVF in this exploratory analysis, a 

more definitive investigation with a larger number of participants is necessary to more fully 

evaluate the potential clinical implications.
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Key Message

A preconception mixture of serum lipids and lipophilic micronutrient concentrations 

appears to be important for live birth outcomes after IVF. These serum data are available 

to clinicians treating infertile patients, and modification of constituents, if effective, 

might be a potential target for non-invasive clinical interventions to improve live birth 

rates.
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TABLE I.

Distribution of demographic and clinical factors for women undergoing IVF

Participant Characteristics n Mean (SD) or %

Demographic Characteristics

 Age, years 167 37.2 (4.3)

 BMI, kg/m2 167 24.3 (4.6)

 Race

  Not Asian 112 70.9%

  Asian 46 29.1%

 Smoking

  Never 143 88.8%

  Ever 18 11.2%

Clinical Characteristics

 Primary infertility diagnosis

  Male factor / PGD 60 35.9%

  Unexplained 45 27.0%

  Female factor, non-DOR 34 20.4%

  Female factor, DOR 28 16.8%

 Stimulation protocol

  LDR 112 67.1%

  Antagonist 42 25.2%

  Flare 13 7.8%

 Fertilization method

  ICSI 125 74.9%

  Conventional 42 25.2%

 Oocytes retrieved 167 11.9 (6.3)

 Total embryos 167 6.2 (4.3)

 Embryos transferred 167 2.6 (1.5)

 Implantation

  No 76 45.5%

  Yes 91 54.5%

 Clinical Pregnancy

  No 105 62.9%

  Yes 62 37.1%

 Live Birth

  No 119 71.3%

  Yes 48 28.7%

Abbreviations: BMI, body mass index; DOR, diminished ovarian reserve; ICSI, intracytoplasmic sperm injection; LDR, long down regulation; 
PGD, preimplantation genetic diagnosis
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TABLE II.

Distribution of serum lipid and lipophilic micronutrient concentrations for women undergoing IVF

n
a Mean SD Min. 25th %tile 50th %tile 75th %tile Max.

Phospholipids, mg/dL 154 210.80 33.44 137.00 190.00 208.50 227.50 314.00

HDL, mg/dL 154 55.84 13.05 30.10 46.66 56.20 63.71 90.61

LDL, mg/dL
b 154 83.83 23.32 34.17 68.70 82.13 95.71 156.14

Triglycerides, mg/dL 154 113.56 65.64 35.92 75.12 95.66 128.42 419.73

α-Tocopherol, μg/mL 160 12.36 3.76 5.83 9.90 11.80 13.67 31.54

δ-Tocopherol, μg/mL 160 0.01 0.02 0.00 0.00 0.00 0.00 0.15

γ-Tocopherol, μg/mL 160 0.49 0.42 0.00 0.23 0.41 0.65 2.21

Retinol, μg/mL 160 0.50 0.11 0.24 0.43 0.51 0.56 1.06

β-Carotene, μg/mL 160 0.28 0.21 0.03 0.15 0.22 0.33 1.17

α-Carotene, μg/mL 160 0.02 0.03 0.00 0.01 0.02 0.03 0.32

β-Cryptoxanthin, μg/mL 160 0.13 0.11 0.005 0.06 0.10 0.17 0.68

Lutein, μg/mL 160 0.19 0.10 0.05 0.13 0.17 0.22 0.62

Lycopene, μg/mL 160 0.41 0.15 0.05 0.30 0.39 0.51 0.85

a
Includes only women without missing values for lipids and lipophilic micronutrients.

b
Estimated using Friedewald equation.

Abbreviations: HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; %tile, percentile
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TABLE III.

Adjusted risk ratios [95% CI] for the associations between serum lipid and lipophilic micronutrient 

concentrations (Z-scores) and IVF outcomes (n=167)
a

Implantation Clinical Pregnancy Live Birth

Risk Ratio [95% CI] P-value Risk Ratio [95% CI] P-value Risk Ratio [95% CI] P-value

Phospholipids 1.09 [0.83, 1.42] 0.54 0.88 [0.59, 1.30] 0.51 1.10 [0.68, 1.78] 0.70

HDL 0.96 [0.75, 1.22] 0.73 1.002 [0.71, 1.40] 0.99 0.68 [0.45, 1.03] 0.07

LDL
b 1.10 [0.91, 1.33] 0.31 1.09 [0.78, 1.51] 0.61 1.05 [0.73, 1.51] 0.78

Triglycerides 0.996 [0.78, 1.27] 0.98 0.76 [0.53, 1.09] 0.13 0.54 [0.33, 0.90] 0.02
c

α-Tocopherol 1.03 [0.83, 1.28] 0.79 1.14 [0.75, 1.72] 0.54 1.61 [1.11, 2.36] 0.01
c

δ-Tocopherol 1.01 [0.91, 1.13] 0.80 1.03 [0.91, 1.16] 0.62 1.12 [0.97, 1.30] 0.13

γ-Tocopherol 1.09 [0.90, 1.32] 0.37 1.08 [0.74, 1.58] 0.69 1.29 [0.95, 1.74] 0.10

γ-Tocopherol2 d - - 1.07 [0.92, 1.25] 0.39 - -

Retinol 0.96 [0.81, 1.15] 0.68 1.03 [0.79, 1.34] 0.83 0.89 [0.65, 1.21] 0.44

β-Carotene 1.05 [0.88, 1.25] 0.62 0.74 [0.52, 1.06] 0.10 0.72 [0.47, 1.12] 0.14

β-Carotene2 d - - 1.14 [1.03, 1.26] 0.01 1.15 [1.02, 1.30] 0.03
c

α-Carotene 0.92 [0.77, 1.10] 0.36 0.92 [0.72, 1.16] 0.48 0.98 [0.74, 1.30] 0.91

β-Cryptoxanthin 0.82 [0.68, 0.99] 0.04 0.96 [0.76, 1.20] 0.70 1.09 [0.86, 1.40] 0.47

Lutein 0.98 [0.86, 1.13] 0.81 0.90 [0.72, 1.13] 0.38 0.87 [0.67, 1.14] 0.31

Lycopene 0.94 [0.81, 1.09] 0.40 0.80 [0.64, 1.003] 0.05 0.87 [0.66, 1.14] 0.30

NOTE: All lipids and lipophilic micronutrients simultaneously included as predictors in modified Poisson regression model models of IVF 
outcomes; values imputed for n=23 women with missing data for some variables; associations with p < 0.05 in bold typeface.

a
Adjusted for mother’s age (years), body mass index (kg/m2), race (Asian vs. non-Asian), smoking status (ever vs. never), primary infertility 

diagnosis (female non-diminished ovarian reserve (DOR) vs. female DOR vs. male or preimplantation genetic diagnosis vs. undetermined), and 
ovarian stimulation protocol (antagonist vs. clomid flare or microdose flare vs. long luteal or demi-halt or very low dose leuprolide acetate)

b
Estimated using Friedewald equation.

c
False discovery rate Q-value < 0.05.

d
Quadratic term indicates a non-linear association with the outcome.

Abbreviations: HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol
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