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GLOBAL WELL-POSEDNESS FOR THE 2D BOUSSINESQ

SYSTEM WITH ANISOTROPIC VISCOSITY AND WITHOUT

HEAT DIFFUSION

ADAM LARIOS, EVELYN LUNASIN, AND EDRISS S. TITI

Abstract. We establish global existence and uniqueness theorems for the two-
dimensional non-diffusive Boussinesq system with anisotropic viscosity acting

only in the horizontal direction, which arises in ocean dynamics models. Global

well-posedness for this system was proven by Danchin and Paicu; however,
an additional smoothness assumption on the initial density was needed to

prove uniqueness. They stated that it is not clear whether uniqueness holds

without this additional assumption. The present work resolves this question
and we establish uniqueness without this additional assumption. Furthermore,

the proof provided here is more elementary; we use only tools available in

the standard theory of Sobolev spaces, and without resorting to para-product
calculus. We use a new approach by defining an auxiliary “stream-function”

associated with the density, analogous to the stream-function associated with
the vorticity in 2D incompressible Euler equations, then we adapt some of the

ideas of Yudovich for proving uniqueness for 2D Euler equations.

1. Introduction

The two-dimensional Boussinesq system of ocean and atmosphere dynamics
(without rotation), in a domain Ω ⊂ R2 over the time interval [0, T ] is given by

∂tu + (u · ∇)u = −∇p+ θe2 + ν4u, in Ω× [0, T ],(1.1a)

∇ · u = 0, in Ω× [0, T ],(1.1b)

∂tθ + (u · ∇)θ = κ4θ, in Ω× [0, T ],(1.1c)

u(x, 0) = u0(x), θ(x, 0) = θ0(x), in Ω,(1.1d)

with appropriate boundary conditions (discussed below). Here ν ≥ 0 is the fluid
viscosity, κ ≥ 0 is the diffusion coefficient. We denote problem (1.1) by Pν,κ when
κ > 0 and ν > 0. The spatial variable is denoted x = (x1, x2) ∈ Ω. The unknowns
are the fluid velocity field u ≡ u(x, t) ≡ (u1(x, t), u2(x, t)), the fluid pressure p(x, t),
and the scalar function θ ≡ θ(x, t), which may be interpreted physically as (the
fluctuation of) a density variable (e.g., when κ = 0), or a thermal variable (e.g.,
when κ > 0). We write e2 = (0, 1) for the second standard basis vector in R2. It is
worth mentioning that all the results reported here are valid in the presence of the
Coriolis rotation term.
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The main purpose of this study is to remove the additional smoothness condition
on the initial density, which was crucial to the uniqueness proof in [9]. Indeed, the
authors of [9] state:

“. . . it is not clear that those global solutions are unique if there is
no additional regularity assumption [on θ].” [9, p. 425]

In this work, we resolve this difficulty, and develop a new technique which uses a
“stream-like function,” and adapt Yudovich methods to handle the present case.
This new approach allows us to not only overcome the difficulty mentioned in [9],
but also to do so using only elementary tools from Sobolev spaces, avoiding the use
of highly-sophisticated tools from harmonic analysis.

In two dimensions, the global regularity in time of the problem Pν,κ is well-
known (see, e.g., [5, 23]), and follows essentially from the classical methods for
Navier-Stokes equations (NSE). However, in the case ν = 0, κ = 0, (P0,0), global
existence and uniqueness still remains an open problem (see, e.g., [6, 7] for studies in
this direction). The local existence and uniqueness of classical solutions to P0,0 was
established in [7], assuming the initial data (u0, θ0) ∈ H3 ×H3. In particular, an
analogous Beale-Kato-Majda criterion for blow-up of smooth solutions is established
in [7] for the inviscid, non-diffusive Boussinesq system; namely, that the smooth

solution exists on [0, T ] if and only if
∫ T

0
‖∇θ(t)‖L∞ dt <∞.

It has been shown in [6, 18] that the system Pν,0, in the case of whole space
R2, admits a unique global solution provided the initial data (u0, θ0) ∈ Hm(R2)×
Hm(R2) with m ≥ 3, m an integer. In fact, in [18], the authors only required
(u0, θ0) ∈ Hm(R2)×Hm−1(R2) with m ≥ 3. In [6], it is also shown that the problem
P0,κ admits a unique global solution provided the initial data (u0, θ0) ∈ Hm(R2)×
Hm(R2) with m ≥ 3. Global well-posedness results for somewhat rougher initial
data (in Besov spaces) is established in [16]. The requirements on the initial data
were weakened further in [10], where global well-posedness results were established
in the whole space without any smoothness assumption, namely they only require
u0, θ0 ∈ L2(R2) for both existence and uniqueness. The proof of their main results
arise under the Besov and Lorentz space setting and involves the use of Littlewood-
Paley decomposition and paradifferential calculus introduced by J. Bony [4].

In Section 3, we establish the global well-posedness of the anisotropic case in a
periodic domain T2 = [0, 1]2 = R2/Z2. More precisely, assuming initial vorticity

ω0 ∈
√
L (defined below in (1.3)), initial density (or temperature) fluctuation θ0 ∈

L∞(T2), and
∫
T2 ω0 dx =

∫
T2 θ0 dx = 0, we establish global well-posedness for the

following system (with the advection terms written in divergence form), which we
denote as Pνx,0:

∂tu +

2∑
j=1

∂j(u
ju) = ν∂2

1u−∇p+ θe2, in T2 × [0, T ],(1.2a)

∇ · u = 0, in T2 × [0, T ],(1.2b)

∂tθ +∇ · (uθ) = 0, in T2 × [0, T ],(1.2c)

u(x, 0) = u0(x), θ(x, 0) = θ0(x), in T2.(1.2d)

Our key idea in proving the uniqueness result is by writing θ = 4ξ, with
∫
T2 ξ dx =

0, for some ξ, and then adapting the techniques of Yudovich in [26] (see also [21]).
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Recently, in [9], a global well-posedness result for the system Pνx,0 (in the whole
space R2), under various regularity conditions on initial data, was successfully es-
tablished. More precisely, it is proven in [9] that, given θ0 ∈ Hs(R2) ∩ L∞(R2),
with s ∈ (1/2, 1], u0 ∈ H1(R2) and ω0 ∈ Lp(R2) for all 2 ≤ p < ∞, and such the
ω0 satisfy

‖ω0‖√L := sup
p≥2

‖ω0‖Lp(R2)√
p− 1

<∞,(1.3)

the Boussinesq system (1.2) in the whole space with anisotropic viscosity admits
a unique globally regular solution. The condition θ0 ∈ Hs with s ∈ ( 1

2 , 1] was
needed for establishing uniqueness in [9]. We relax this condition in our current
contribution. We remark again that the main idea is to write θ = 4ξ, and then
proceed using the techniques of Yudovich [26] for the 2D incompressible Euler
equations to prove uniqueness. Furthermore, our method uses more elementary
tools than those used in [9]. During the peer review process, it has been brought to
our attention that a similar approach to proving stability estimates for equations
in spaces other than the energy space has been utilized in two fairly recent papers.
One is [17] in the context of compressible fluids, where estimates for H−1 differences
in densities and L2 differences in velocities are obtained by duality from bounds
for the corresponding adjoint system. The second, more recent paper is [15], where
the 2D isotropic Boussinesq system without heat diffusion but with viscosity in all
directions of the velocity field has been studied in bounded domains. In this regard,
it is worth mention, however, that already in the 2010 arXiv version [19] of this
manuscript, we have announced and posted our current results on the 2D Boussinesq
equations without heat diffusion and with anisotropic viscosity, and where we also
proposed an inviscid α-regularization for the two-dimensional inviscid, non-diffusive
Boussinesq system of equations, which we call the Boussinesq-Voigt equations.

It is also worth mentioning that recently, in [2], the global regularity of classical
solutions to the two-dimensional Boussinesq system in the case of vertical viscosity
and vertical thermal diffusion was established.

2. Preliminaries

In this section, we introduce some preliminary material and notations which are
commonly used in the mathematical study of fluids, in particular in the study of
the NSE. For a more detailed discussion of these topics, we refer to [8, 13, 22, 24].

Let F be the set of all trigonometric polynomials with periodic domain T2 :=
[0, 1]2. We define the space of smooth functions which incorporates the divergence-
free and zero-average condition to be

V :=

{
ϕ ∈ F2 : ∇ · ϕ = 0 and

∫
T2

ϕ dx = 0

}
.

We denote by Lp, W s,p, Hs ≡ W s,2, C0,γ the usual Lebesgue, Sobolev, and
Hölder spaces, and define H and V to be the closures of V in L2 and H1 respectively.
We restrict ourselves to finding solutions whose average over the periodic box T2

is zero. Observe from (1.1b) and (1.1c), if we assume that
∫
T2 θ0(x)dx = 0, then∫

T2 θ(x, t) dx = 0 for all t ≥ 0, and also
∫
T2 u(x, t) dx = 0 for all t ≥ 0 provided∫

T2 u0(x) dx = 0. Therefore, we can work in the spaces defined above consistently.

The notation V s := Hs(T2) ∩ V will be convenient. When necessary, we write the
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components of a vector y as yj , j = 1, 2. We define the inner products on H and
V respectively by

(u,v) =

2∑
i=1

∫
T2

uivi dx and ((u,v)) =

2∑
i,j=1

∫
T2

∂ju
i∂jv

i dx,

and the associated norms |u| = (u,u)1/2, ‖u‖ = ((u,u))1/2. (We use these nota-
tions indiscriminately for both scalars and vectors, which should not be a source
of confusion). Note that ((·, ·)) is a norm due to the Poincaré inequality, (2.16),
below. We denote by V ′ the dual space of V . The action of V ′ on V is denoted by
〈·, ·〉 ≡ 〈·, ·〉V ′ . Note that we have the continuous embeddings

(2.1) V ↪→ H ↪→ V ′.

Moreover, by the Rellich-Kondrachov Compactness Theorem (see, e.g., [1, 12]),
these embeddings are compact.

Following [9], we define the spaces
√
L :=

{
w
∣∣‖w‖√L <∞} ,

where ‖ · ‖√L is defined by (1.3). This space arises naturally, due to the following
inequality, valid in two dimensions, which can be proven without using Littlewood-
Paley theory (see, e.g., [20] for such a proof, with a sharper dependence on p).

‖w‖p ≤ C
√
p− 1‖w‖H1 ,(2.2)

for all w ∈ H1(T2), for any p ∈ [2,∞), and where we denote by ‖ · ‖p the usual
Lp norm (see [9] for a proof using Littlewood-Paley theory). Note that clearly

L∞ ⊂
√
L ⊂ Lp for every p ∈ [2,∞). We also recall the following well-known

elliptic estimate, which follows from Calderón-Zygmund theory and the Biot-Savart
law for an incompressible vector field u, satisfying ∇ · u = 0, and ∇× u = ω:

(2.3) ‖∇u‖p ≤ Cp‖ω‖p
for any p ∈ (1,∞) (see, e.g., [21, 26]).

Let Y be a Banach space. We denote by Lp([0, T ], Y ) (which we also denote
as LpTYx), the space of (Bochner) measurable functions t 7→ w(t), where w(t) ∈ Y
for a.e. t ∈ [0, T ], such that the integral

∫ T
0
‖w(t)‖pY dt is finite (see, e.g., [1]). A

similar convention is used in the notation Ck([0, T ], X) for k-times differentiable
functions of time on the interval [0, T ] with values in Y . Abusing notation slightly,
we write w(·) for the map t 7→ w(t). In the same vein, we often write the vector-
valued function w(·, t) as w(t) when w is a function of x and t. We denote by

Ċ∞(T2 × [0, T ]) the set of infinitely differentiable functions in the variable x and t

which are periodic in x with
∫
T2 ϕ(·, t) dx = 0. Similarly, we denote by L̇p(T2) ={

ϕ ∈ Lp(T2) :
∫
T2 ϕ(x) dx = 0

}
.

We denote by Pσ : L̇2 → H the Leray-Helmholtz projection operator and define
the Stokes operator A := −Pσ4 with domain D(A) := H2 ∩ V . For ϕ ∈ D(A),
we have the norm equivalence |Aϕ| ∼= ‖ϕ‖H2 (see, e.g., [8, 24]). In particular, the
Stokes operator A can be extended as a linear operator from V into V ′ associated
with the bilinear form ((u,v)),

〈Au,v〉 = ((u,v)) for all v ∈ V.
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It is known that A−1 : H → D(A) ↪→ H is a positive-definite, self-adjoint, compact
operator from H into itself, and therefore it has an orthonormal basis of positive
eigenvectors {wk}∞k=1 in H corresponding to a non-increasing sequence of eigen-
values (see, e.g., [8, 22]). The vectors {wk}∞k=1 are also the eigenvectors of A.
Since the corresponding eigenvalues of A−1 can be ordered in a decreasing order,
we can label the eigenvalues λk of A so that 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · . Let
Hn := span {w1, . . . ,wn}, and let Pn : H → Hn be the L2 orthogonal projection
onto Hn. Notice that in the case of periodic boundary conditions in the torus T2

we have λ1 = (2π)−2. We will abuse notation slightly and also use Pn in the scalar
case for the corresponding projection onto eigenfunctions of −4, but this should
not be a source of confusion. Furthermore, in our case it is known that A = −4
due to the periodic boundary conditions (see, e.g., [8, 22]) and the eigenvectors wj

are of the form ake
2πik·x, with ak · k = 0.

It will be convenient to use the following standard notation for the bilinear term

(2.4) B(w1,w2) := Pσ

2∑
j=1

∂j(w
j
1w2)

for w1,w2 ∈ V. We list some important properties of B which can be found for
example in [8, 13, 22, 24].

Lemma 2.1. The operator B defined in (2.4) is a bilinear form which can be
extended as a continuous map B : V × V → V ′ such that

(2.5) 〈B(w1,w2),w3〉 =

∫
T2

(w1 · ∇w2) ·w3 dx,

for every w1,w2,w3 ∈ V. satisfying the following properties:

(i) For w1, w2, w3 ∈ V ,

(2.6) 〈B(w1,w2),w3〉V ′ = −〈B(w1,w3),w2〉V ′ ,
and therefore

(2.7) 〈B(w1,w2),w2〉V ′ = 0.

(ii) For w1, w2, w3 ∈ V ,

| 〈B(w1,w2),w3〉V ′ | ≤ C|w1|1/2‖w1‖1/2‖w2‖|w3|1/2‖w3‖1/2(2.8)

| 〈B(w1,w2),w3〉V ′ | ≤ C|w1|1/2‖w1‖1/2|w2|1/2‖w2‖1/2‖w3‖.(2.9)

Let us define the scalar analogue of the bilinear operator (2.4), motivated by the
transport term in the density equation.

(2.10) B(w, ψ) :=

2∑
j=1

∂j(w
jψ)

for w ∈ V and ψ ∈ F with
∫
T2 ψ dx = 0. We have the following similar properties

for B which can be proven easily as in the proof of Lemma 2.1.

Lemma 2.2. The operator B defined in (2.10) is a bilinear form which can be
extended as a continuous map B : V ×H1 → H−1, such that

(2.11) 〈B(w, ψ), φ〉H−1 = −
∫
T2

w · ∇φ ψ dx,
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for every w ∈ V and φ, ψ ∈ Ċ1. Moreover,

(2.12) 〈B(w, ψ), φ〉H−1 = −〈B(w, φ), ψ〉H−1 ,

and therefore

(2.13) 〈B(w, φ), φ〉H−1 = 0.

Furthermore, B is also a bilinear form which can be extended as a continuous map
B : D(A)× L2 → H−1.

Here and below, C,Cj , etc. denote generic constants which may change from
line to line. Cα, C(· · · ), etc. denote generic constants which depend only upon
the indicated parameters. K,Kj , etc. denote constants which depend on norms of
initial data, and also may vary from line to line. Next, we recall the Ladyzhenskaya
inequality; namely, that for f ∈ H1(T2) such that

∫
T2 f dx = 0, we have,

(2.14) ‖f‖L4 ≤ |f |1/2‖f‖1/2.
We also recall Agmon’s inequality in two dimensions (see, e.g., [3, 8]). For

w ∈ D(A) we have

(2.15) ‖w‖L∞ ≤ C|w|1/2|Aw|1/2 .

Furthermore, for all ϕ ∈W 1,p(T2), p ≥ 2, we have the Poincaré inequality

(2.16) ‖ϕ‖Lp ≤ C‖∇ϕ‖Lp ,

with C = λ
−1/2
1 if p = 2. Finally, we note a result of deRham [24, 25], which implies

that, if g is a locally integrable function (or more generally, a distribution), we have

(2.17) g = ∇p for some distribution p iff 〈g,w〉 = 0 for all w ∈ V,
which one uses to recover the pressure.

3. Global well-posedness for the 2D non-diffusive Boussinesq
equations with anisotropic viscosity (Pνx,0)

Before we prove our main result for the case Pνx,0, we record some theorems for
the fully viscous case, which we will refer to in our proof.

3.1. Known global well-posedness results for the fully viscous case. Let
us first define the weak formulation of problem Pν,κ in T2 × [0, T ]. By choosing a
suitable phase space which incorporates the divergence free condition of the Boussi-
nesq equations, we can eliminate the pressure from the equation, as is standard
in the theory of the Navier-Stokes equations. Consider the scalar test functions
ϕ(x, t) ∈ Ċ∞(T2 × [0, T ]), such that ϕ(x, T ) = 0; and the vector test functions

Φ(x, t) ∈ [Ċ∞(T2 × [0, T ])]2 such that ∇ · Φ(·, t) = 0 and Φ(x, T ) = 0. Then the
weak formulation of problem Pν,κ in T2×[0, T ] (and similarly of problem Pν,0, when
κ = 0, in T2 × [0, T ]) is written as follows:
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−
∫ T

0

(u(s),Φ′(s)) ds+ ν

∫ T

0

((u(s),Φ(s))) ds+

2∑
j=1

∫ T

0

(uju, ∂jΦ) ds

= (u0(x),Φ(x, 0)) +

∫ T

0

(θ(s)e2,Φ(s)) ds(3.1a)

−
∫ T

0

(θ(s), ϕ′(s)) ds+

∫ T

0

(uθ,∇ϕ) ds+ κ

∫ T

0

((θ(s), ϕ(s))) ds

= (θ0(x), ϕ(x, 0)).(3.1b)

Remark 3.1. It will become clear later that (3.1) will hold for a larger class of test
functions, and consequently it will be sufficient to consider only test functions of
the form

Φ(x, t) = Γm(t)e2πim·x, with Γm ∈ [C∞([0, T ])]2 and m · Γm(t) = 0,(3.2a)

and

ϕ(x, t) = χm(t)e2πim·x, with χm ∈ C∞([0, T ]),(3.2b)

for m ∈ (Z\{0})2, since such functions form a basis for the corresponding larger
spaces of test functions.

From here on, we only work on spaces of functions which are periodic and with
spatial average zero. Therefore, to simplify notation, we write L̇2 as L2, Ċk as Ck,
etc.

In the two-dimensional case, the global well-posedness of system Pν,κ in (1.1),
that is, in the case κ > 0, ν > 0, is well-known, and can be proved in a similar
manner following the work of [14] (see also [5, 23]). We have the following existence
and uniqueness results for the system Pν,κ, which will be used to prove the existence
of weak solutions for the system Pν,0.

Theorem 3.2. Let T > 0, ν > 0 be fixed but arbitrary. Then, the following results
hold:

(i) If u0 ∈ H, θ0 ∈ L2 then for each κ > 0, (1.1) has a unique solution
(uκ, θκ) in the sense of (3.1) such that uκ ∈ C([0, T ], H)∩L2([0, T ], V ), θκ ∈
Cw([0, T ], L2). Furthermore, there exists a constant K0 > 0 independent of κ
such that the following bounds hold: ‖uκ‖L2([0,T ],V ) ≤ K0, ‖uκ‖L∞([0,T ],H) ≤
K0, ‖ ddtuκ‖L2([0,T ],V ′) ≤ K0, ‖θκ‖L∞([0,T ],L2) ≤ |θ0|, ‖ ddtθκ‖L2([0,T ],H−2) ≤ K0

and
√
κ‖θκ‖L2([0,T ],H1) ≤ K0.

(ii) If the initial data u0 ∈ V and θ0 ∈ L2, then uκ ∈ C([0, T ], V )∩L2([0, T ],D(A))
and we also have the bounds: ‖uκ‖L2([0,T ],D(A)) ≤ K0, ‖uκ‖L∞([0,T ],V ) ≤ K0,

‖ ddtuκ‖L2([0,T ],H) ≤ K0 and ‖ ddtθκ‖L2([0,T ],H−1) ≤ K0.
(iii) If θ0 ∈ L∞ and u0 ∈ H, then ‖θκ‖L∞([0,T ],L∞) ≤ ‖θ0‖∞.

(iv) If u0 ∈ H3 and θ0 ∈ H2 then for each κ > 0, (1.1) has a unique solution
uκ ∈ C([0, T ], H3) ∩ L2([0, T ], H4) and θκ ∈ C([0, T ], H2) ∩ L2([0, T ], H3).

Proof. Parts (i) and (ii) are essentially proven in [5, 14, 23] following the classical
theory of Navier-Stokes equations. The uniform bounds in part (ii) will be estab-
lished explicitly in the later proofs when called for. Part (iii) can be proven using
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a maximum principle and is proven for example in [5, 23]. Part (iv) can be proved
using basic energy estimates and Grönwall’s inequality again following the classical
theory of the Navier-Stokes equations. �

3.2. Global existence for the case of anisotropic viscosity. We now consider
the Boussinesq equations with anisotropic viscosity as given in (1.2). We will first
define what we mean by weak solution to system (1.2) and then show its existence.
To set additional notation, we denote the vorticity ω := ∂1u

2−∂2u
1, which satisfies

the following equation

∂tω +∇ · (ωu)− ν∂2
1ω = ∂1θ.(3.3)

The best global well-posedness result we are aware of for problem (1.2), prior to
the present work, in the case of the whole plane R2 is stated in following theorem,
established in [9].

Theorem 3.3 (Danchin and Paicu,[9]). Let Ω = R2. Suppose θ0 ∈ L2 ∩ L∞ , and

u0 ∈ V with ω0 ∈
√
L. Then system (1.2) admits a global solution (u, θ) such that

θ ∈ CB([0,∞);L2) ∩ Cw([0,∞);L∞) ∩ L∞([0,∞), L∞) and u ∈ Cw([0,∞);H1),

u · e2 ∈ L2
loc([0,∞);H2), ω ∈ L∞loc([0,∞),

√
L), ∇u ∈ L2

loc([0,∞),
√
L). If in

addition θ0 ∈ Hs for some s ∈ (0, 1], then θ ∈ C([0,∞);Hs−ε) for all ε > 0.
Finally, if s > 1/2, then the solution is unique.

In the present work, we remove the assumption that s > 1/2 on the initial data,
and require only that θ ∈ L∞. To begin with, we weaken the notion of solution by
making the following definition.

Definition 3.4 (Weak Solutions for the Anisotropic Case). Let T > 0. Let θ0 ∈ L2,
ω0 := ∇⊥ · u0 ∈ L2. We say that (u, θ) is a weak solution to (1.2) on the interval
[0, T ] if ω ∈ L∞([0, T ];L2) ∩ Cw([0, T ];L2) and θ ∈ L∞([0, T ];L2) ∩ Cw([0, T ];L2),
u2 ∈ L2([0, T ], H2), dudt ∈ L

1([0, T ], V ′), dθdt ∈ L
1([0, T ], H−2) and also (u, θ) satisfies

(1.2) in the weak sense; that is, for any Φ, ϕ, chosen as in (3.2), it holds that

−
∫ T

0

(u(s),Φ′(s)) ds+ ν

∫ T

0

(∂1u(s), ∂1Φ(s)) ds+

2∑
j=1

∫ T

0

(uju, ∂jΦ) ds

= (u0,Φ(0)) +

∫ T

0

(θ(s)e2,Φ(s)) ds(3.4a)

−
∫ T

0

(θ(s), ϕ′(s)) ds+

∫ T

0

(θu,∇ϕ) ds = (θ0, ϕ(0)),(3.4b)

where ′ ≡ d
ds .

Remark 3.5. Following standard arguments as in the theory of the NSE (see, e.g.,
[8, 24]) one can show that the above system is equivalent to the functional form

du

dt
+ ν∂2

1u +B(u,u) = Pσ(θe2) in L2([0, T ], V ′) and(3.5a)

dθ

dt
+ B(u, θ) = 0 in L2([0, T ], H−2).(3.5b)

We now state and prove our main results for the system (1.2) (Pνx,0). The
global existence and regularity results will be stated in the theorem below and the
uniqueness theorem will follow.
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Theorem 3.6 (Global Existence and Regularity). Let T > 0 be given. Let θ0 ∈ L2

and ω0 ∈ L2. Then, the following hold:

(1) There exists a weak solution to (1.2) in the sense of Definition 3.4.
(2) If ω0 ∈ Lp, and θ0 ∈ Lp, with p ∈ [2,∞) fixed, then there exist a weak solu-

tion satisfying that additional regularity properties that ω ∈ L∞([0, T ], Lp)
and θ ∈ L∞([0, T ], Lp).

(3) Furthermore, if ω0 ∈
√
L and θ0 ∈ L∞, then there exists a solution (u, θ)

such that ω ∈ L∞([0, T ],
√
L) ∩ Cw([0, T ], L2), du

dt ∈ L2([0, T ], V ′) and
θ ∈ L∞([0, T ], L∞) ∩ C([0, T ], w∗-L∞) (where w∗-L∞ denotes the weak-
∗ topology on L∞) with dθ

dt ∈ L
∞([0, T ], H−1).

Proof. The outline of our proof is as follows. We begin by generating an approxi-
mate sequence of solutions (u(n), θ(n)) to Pνx,0 by adding an artificial vertical vis-

cosity ν
(n)
y > 0, and an artificial diffusion κ(n) > 0, where κ(n), ν

(n)
y → 0 as n→∞,

and also by smoothing the initial data. Global existence of solutions to the fully
viscous system Pν,κ, given smoothed initial condition is guaranteed (see, Theorem
3.2 part (iv)). Next, we establish uniform bounds, for the relevant norms of the
approximate sequence of solutions which are independent of the index n using ba-
sic energy estimates. We then employ the Aubin Compactness Theorem (see, e.g.,
[8, 24]) to show that the sequence of approximate solutions has a subsequence con-
verging in appropriate function spaces. This limit will serve as a candidate weak
solution. We then show that one can pass to the limit to show that the candidate
functions satisfy the weak formulation (3.4). Finally, we establish some regularity
results.

Step 1: Generating solutions to the regularized system given smoothed initial
data.

Let νx > 0 be fixed and let κ(n), ν
(n)
y be a sequence of positive numbers, con-

verging to zero. Without loss of generality, one can assume that both κ(n) ≤ νx
and ν

(n)
y ≤ νx. Let (u

(n)
0 , θ

(n)
0 ) is a sequence of smooth initial data such that

u
(n)
0 → u0 in V and θ

(n)
0 → θ0 in L2, chosen in such a way that for each n ∈ N,

‖u(n)
0 ‖ ≤ ‖u0‖ + 1

n and |θ(n)
0 | ≤ |θ0| + 1

n . Notice, since u
(n)
0 are smooth it follows

that ω
(n)
0 := ∇⊥ · u(n)

0 are also smooth functions, bounded in L2. Using Theorem
3.2 part (iii) (with a trivial modification to account for values of the viscosity which
differ in the horizontal and vertical directions), we have that for each n, there exist
(u(n), θ(n)) satisfying the following equations:
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−
∫ T

0

(u(n)(s),Φ′(s)) ds+ νx

∫ T

0

(∂1u
(n)(s), ∂1Φ(s)) ds(3.6a)

+ ν(n)
y

∫ T

0

(∂2u
(n)(s), ∂2Φ(s)) ds+

2∑
j=1

∫ T

0

(uj,(n)u(n), ∂jΦ) ds

= (u
(n)
0 ,Φ(0)) +

∫ T

0

(θ(n)(s)e2,Φ(s)) ds

∫ T

0

(θ(n)(s), ϕ′(s)) ds−
∫ T

0

(θ(n)u(n),∇ϕ) ds(3.6b)

= κ(n)

∫ T

0

(∇θ(n)(s),∇Φ(s)) ds− (θ
(n)
0 , ϕ(0)).

Step 2: A priori estimates and using compactness arguments to prove convergence
of a subsequence.

We next establish a priori estimates on (u(n), θ(n)) uniformly in n (independent

of ν
(n)
y and κ(n)). From the above smoothness properties of (u(n), θ(n)), we can now

derive a priori estimates using basic energy estimates in which the derivatives and
integrations are well defined. Using the fact that div u(n)=0, one easily obtains

|θ(n)(t)| ≤ |θ(n)
0 | ≤ |θ0|+ 1

n ,(3.7)

and

|u(n)(t)|2 + 2νx

∫ t

0

|∂1u
(n)(τ)|2 dτ + 2ν(n)

y

∫ t

0

|∂2u
(n)(τ)|2 dτ

≤
(
|u0|+ 1

n + t(|θ0|+ 1
n )
)2
.

The calculations above follow by a valid replacement of the test functions by θ(n)

and u(n) in (3.6) and then integrating by parts.
Next, from the evolution equation of the vorticity, namely the equation

∂tω
(n) + u(n) · ∇ω(n) − νx∂2

1ω
(n) − ν(n)

y ∂2
2ω

(n) = ∂1θ
(n),(3.8)

it follows similarly that

1

2

d

dt
|ω(n)|2 + νx|∂1ω

(n)|2 + ν(n)
y |∂2ω

(n)|2 = −(θ(n), ∂1ω
(n))

≤ νx
2
|∂1ω

(n)|2 +
1

2νx
|θ(n)|2.

Integrating in time, we have

|ω(n)|2 + νx

∫ t

0

|∂1ω
(n)|2 dτ + 2ν(n)

y

∫ t

0

|∂2ω
(n)|2 dτ(3.9)

≤
(
|ω0|+

1

n

)2

+
t

2νx

(
|θ0|+

1

n

)2

,(3.10)

which implies that ω(n) is uniformly bounded in L∞([0, T ], L2) with respect to
n, and therefore u(n) is uniformly bounded in L∞([0, T ], V ) with respect to n.
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Furthermore, (3.9) shows that ∂1ω
(n) is uniformly bounded in L2([0, T ], L2) with

respect to n. We also observe that

∂1ω
(n) = ∂2

1u
2,(n) − ∂1∂2u

1,(n) = ∂2
1u

2,(n) + ∂2
2u

2,(n) = 4u2,(n).

Therefore, 4u2,(n) is uniformly bounded in L2([0, T ], L2), so that u2,(n) is uni-
formly bounded in L2([0, T ], H2) by elliptic regularity, and thus∇u2,(n) is uniformly
bounded in L2([0, T ], H1), all with respect to n. Next we derive uniform bounds

on the derivatives (du
(n)

dt )n∈N. Note that

dω(n)

dt
= −B(ω(n),u(n)) + νx∂

2
1ω

(n) + ν(n)
y ∂2

2ω
(n) + ∂1θ

(n)

Thus,

(3.11)

∥∥∥∥dω(n)

dt

∥∥∥∥
H−2

≤ sup
‖w‖Ḣ2=1

∣∣∣〈B(ω(n),u(n)),w
〉∣∣∣+ νx sup

‖w‖Ḣ2=1

∣∣∣〈∂2
1ω

(n),w
〉∣∣∣

+ ν(n)
y sup
‖w‖Ḣ2=1

∣∣∣〈∂2
2ω

(n),w
〉∣∣∣+ sup

‖w‖Ḣ2=1

∣∣∣〈∂1θ
(n),w

〉∣∣∣
= sup
‖w‖Ḣ2=1

∣∣∣〈ω(n)u(n),∇w
〉∣∣∣+ νx sup

‖w‖Ḣ2=1

∣∣∣〈ω(n), ∂2
1w
〉∣∣∣

+ ν(n)
y sup
‖w‖Ḣ2=1

∣∣∣〈ω(n), ∂2
2w
〉∣∣∣+ sup

‖w‖Ḣ2=1

∣∣∣〈θ(n), ∂1w
〉∣∣∣

≤ C|ω(n)||u(n)|1/2‖u(n)‖1/2 + νx|ω(n)|+ νx|ω(n)|+ |θ(n)|,
Since each of the terms on the right-hand side of the inequality above is bounded
independently of n, we deduce by the Calderón-Zygmund elliptic estimate (2.3)
that ∂tu

(n) is bounded in L∞([0, T ], V ′) independently of n. Similarly, one can
show easily that

(3.12)

∥∥∥∥dθ(n)

dt

∥∥∥∥
H−2

≤ |θ(n)||u(n)|1/2‖u(n)‖1/2,

which implies also that dθ(n)

dt is bounded in L∞([0, T ], H−2) independently of n. To
summarize, we have from the above results that

(θ(n))n∈N is bounded in L∞([0, T ], L2),(3.13a)

(u(n))n∈N is bounded in L∞([0, T ], V ),(3.13b)

(u2,(n))n∈N is bounded in L2([0, T ], H2)(3.13c) (
du(n)

dt

)
n∈N

is bounded in L∞([0, T ], V ′),(3.13d) (
dθ(n)

dt

)
n∈N

is bounded in L∞([0, T ], H−2).(3.13e)

Using the Banach-Alaoglu and Aubin Compactness Theorems (see, e.g., [8, 24]),
the uniform bounds with respect to n, as stated in (3.13) imply that one can extract
a further subsequence (which we relabel with the index n if necessary) such that
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θ(n) ⇀ θ weakly in L2([0, T ], L2) and weak-∗ in L∞([0, T ], L2).(3.14a)

u(n) → u strongly in L2([0, T ], H),(3.14b)

u(n) ⇀ u weakly in L2([0, T ], V ) and weak-∗ in L∞([0, T ], V ),(3.14c)

u2,(n) ⇀ u2 weakly in L2([0, T ], H2),(3.14d)

du(n)

dt
⇀

du

dt
weakly in L2([0, T ], V ′) and weak-∗ in L∞([0, T ], V ′),(3.14e)

dθ(n)

dt
⇀

dθ

dt
weakly in L2([0, T ], H−2) and weak-∗ in L∞([0, T ], H−2).(3.14f)

Step 3: Passing to the limit in the system.
It remains to show that (3.14) is enough to pass to the limit in (3.6) to show that

(u, θ) satisfies (3.4). To do this, in accordance with Remark 3.1 and Definition 3.4,
we only consider test functions of the form (3.2), which we note is sufficient for
showing that (u, θ) satisfies (3.4). For the linear terms, it is straightforward to pass

to the limit (κ(n), ν
(n)
y → 0) in (3.6), by the weak convergence in (3.14c) and (3.14a)

It remains to show the convergence of the remaining non-linear terms. Let

I(n) :=

2∑
j=1

∫ T

0

(uj,(n)u(n),Γm(s)∂je
2πim·x) ds−

2∑
j=1

∫ T

0

(uju,Γm(s)∂je
2πim·x) ds

J(n) :=

∫ T

0

(u(n)(s)θ(n)(s), χm(s)∇e2πim·x )ds−
∫ T

0

(u(s)θ(s), χm(s)∇e2πim·x )ds.

To show I(n) → 0 as n → ∞, we write I(n) = I1(n) + I2(n), the definitions of
which are given below. We have

|I1(n)| :=

∣∣∣∣∣∣
2∑
j=1

∫ T

0

((uj,(n)(s)− uj(s))u(n)(s), ∂je
2πim·x)Γm(s) ds

∣∣∣∣∣∣
≤
∫ T

0

|u(n)(s)− u(s)||u(n)(s)||∇e2πim·xΓm(s)| ds

≤ ‖u(n) − u‖L2
THx
‖u(n)‖L∞T Hx‖∇e

2πim·xΓm‖L2
TL
∞
x
→ 0,

as n→∞, since u(n) → u strongly in L2([0, T ], H) and u(n) is uniformly bounded
in L∞([0, T ], V ) and hence in L∞([0, T ], H) . Similarly, for I2, we have that as
n→∞

I2(n) :=

2∑
j=1

∫ T

0

(
uj(s)(u(n)(s)− u(s)), ∂je

2πim·x
)

Γm(s) ds→ 0.

To show J(n)→ 0 as n→∞, we write J(n) = J1(n) + J2(n). We have

J1(n) :=

∫ T

0

((u(n)(s)− u(s))θ(n)(s),∇e2πim·x)χm(s) ds→ 0,
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as n → ∞, since u(n) → u strongly in L2([0, T ], H), and also θ(n) → θ weakly in
L2([0, T ], H). For J2, we have

J2(n) :=

∫ T

0

(
u(s)(θ(n)(s)− θ(s)),∇e2πim·x

)
χm(s) ds→ 0,

by the weak convergence in (3.14a) and the fact that u ∈ L2([0, T ], H). This estab-
lishes the existence of weak solution to the system Pνx,0 when u0 ∈ H1 and θ0 ∈ L2.
Step 4: Show that ω ∈ Cw([0, T ];L2).

By the Arzela-Ascoli Theorem, it suffices to show that (a) {ω(n)(t)}n∈N is a
relatively weakly compact set in L2(T2) for a.e t ≥ 0 and (b) for every φ ∈ L2(T2)
the sequence {(ω(n)(t), φ)}n∈N is equicontinuous in C([0, T ]). Condition (a) follows
from the uniform boundedness of ω(n) in L2(T2) for a.e. t ≥ 0 given in (3.9).
Next, we show that condition (b) is satisfied. We start by assuming that φ ∈ F .
Integrating (3.8) in time, we estimate

|(ω(n)(t2), φ)− (ω(n)(t1), φ)|

≤ νx
∫ t2

t1

|∂1ω
(n)||∂1φ| dt+ νx

∫ t2

t1

|ω(n)||∂2
2φ| dt

+ ‖∇φ‖∞
∫ t2

t1

|u(n)||ω(n)| dt+

∫ t2

t1

|θ(n)||∇φ| dt

≤ |∇φ|∞||t2 − t1|1/2νx‖∂1ω
(n)‖L2

TL
2
x

+ νx|∂2
2φ|∞|t2 − t1|‖ω(n)‖L∞T L2

x

+ ‖∇φ‖∞|t2 − t1|
(
‖u(n)‖L∞T L2

x
‖ω(n)‖L∞T L2

x
+ ‖θ(n)‖L∞T L2

x

)
,

where we recall we have assumed without loss of generality that ν
(n)
y < νx. Due

to the uniform boundedness of ω(n) (3.9) and θ(n) (3.7), the right-hand side can be
made small when |t2−t1| is small enough. Thus, the set {(ω(n), φ)} is equicontinuous
in C([0, T ]) for ϕ ∈ F . One can then extend this result for all test functions φ in
L2(T2) using a simple density argument as before. This completes the proof of part
(1) of Theorem 3.6.
Step 5: Proof of part (2) of Theorem 3.6.

As in Step 1, we choose a sequence of smooth initial data ω
(n)
0 → ω0 and similarly

θ
(n)
0 → θ0 in every Lp with p ≥ 2 chosen in such a way that for each n ∈ N,

‖ω(n)
0 ‖p ≤ ‖ω0‖p+ 1

n and ‖θ(n)
0 ‖p ≤ ‖θ0‖p+ 1

n . From Theorem 3.2, we obtain for each

n, a solution u(n) such that u(n)(t) ∈ H3 for a.e. t, which then gives us ω(n)(t) ∈ H2,
which is a Banach algebra in two dimensions, hence |ω(n)(t)|p−2ω(n)(t) ∈ H2 for
a.e. t. We take the inner product of (3.8) with |ω(n)|p−2ω(n). Integrating by parts,
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we obtain
1

p

d

dt
‖ω(n)‖pp + νx(p− 1)

∫
T2

|∂1ω
(n)|2|ω(n)|p−2 dx

+ ν(n)
y (p− 1)

∫
T2

|∂2ω
(n)|2|ω(n)|p−2 dx

≤ (p− 1)

∫
T2

|θ(n)||∂1ω
(n)||ω(n)|p−2 dx

≤ νx(p− 1)

∫
T2

|∂1ω
(n)|2|ω(n)|p−2 dx+

p− 1

4νx

∫
T2

|θ(n)|2|ω(n)|p−2 dx

≤ νx(p− 1)

∫
T2

|∂1ω
(n)|2|ω(n)|p−2 dx+

p− 1

4νx
‖θ(n)‖2p‖ω(n)‖p−2

p .

Therefore,

1

p

d

dt
‖ω(n)‖pp ≤

p− 1

4νx
‖θ(n)‖2p‖ω(n)‖p−2

p ≤ p− 1

4νx

(
‖θ0‖p +

1

n

)2

‖ω(n)‖p−2
p .

It follows that

d

dt
‖ω(n)‖2p ≤

p− 1

2νx
‖θ(n)

0 ‖2p ≤
p− 1

2νx

(
‖θ0‖p +

1

n

)2

.

Integrating in time, we obtain

‖ω(n)(t)‖2p ≤ ‖ω
(n)
0 ‖2p +

p− 1

2νx

(
‖θ0‖p +

1

n

)2

t(3.15)

≤
(
‖ω0‖p +

1

n

)2

+
p− 1

2νx

(
‖θ0‖p +

1

n

)2

t.

Hence, ω(n) is uniformly bounded in L∞([0, T ], Lp) for each p ∈ [2,∞), independent
of n. It follows from the Banach-Alaoglu Theorem and a standard diagonalization
argument that there exists a further subsequence which we also denote as ω(n)

converging weak-∗ in L∞([0, T ], Lp) to some limit which we denote as ω. ω also
enjoys the limit of the upper bound in (3.15), that is

‖ω‖2p ≤
(
‖ω0‖p +

1

n

)2

+
p− 1

2νx

(
‖θ0‖p +

1

n

)2

t.(3.16)

This implies that ω ∈ L∞([0, T ];Lp) for all p ∈ [2,∞). Similarly, one finds that

‖θ(n)(t)‖p ≤ ‖θ(n)
0 ‖p ≤ ‖θ0‖p +

1

n
,(3.17)

which implies that θ(n) converges weak-∗ in L∞([0, T ];Lp) to θ ∈ L∞([0, T ];Lp)
for all p ∈ [2,∞), and ‖θ‖L∞([0,T ],Lp) ≤ ‖θ0‖p.
Step 6: Proof of part (3) of Theorem 3.6.

We divide both sides of (3.16) by p − 1 and then take the supremum over all

p > 2 of both sides to find that ω ∈ L∞([0, T ],
√
L) provided that ω0 ∈

√
L and

θ0 ∈ L∞. Next, we want to show θ ∈ C([0, T ];w∗-L∞). We will use the Arzela-
Ascoli theorem as in Step 4. Notice that if θ0 ∈ L∞ then (3.17) holds uniformly
for all p ∈ [2,∞) and hence

‖θ(n)(t)‖∞ ≤ ‖θ0‖∞ +
1

n
.(3.18)
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This implies that the sequence θ(n)(t) is a relatively compact set in the weak−∗
topology of L∞([0, T ] × T2). It suffices to show that the sequence {

(
θ(n), φ

)
} is

equicontinuous in C([0, T ]) for every φ ∈ L1. It follows automatically from the
previous result and the density of L2(T2) in L1(T2) that θ ∈ Cw([0, T ], L2). Finally,
we would like to show that dθ

dt ∈ L
∞([0, T ], H−1) and hence dθ

dt ∈ L
2([0, T ], H−1).

Since ω ∈ L∞([0, T ],
√
L), we have in particular that ω ∈ L∞([0, T ], L3), and

hence u ∈ L∞([0, T ],W 1,3) ⊂ L∞([0, T ], L∞) by (2.3), (2.16), and the Sobolev
Embedding Theorem. From equation (3.5b), using the fact that θ ∈ L∞([0, T ], L2),
we obtain, ∥∥∥∥dθdt

∥∥∥∥
H−1

= sup
‖w‖=1

|〈B(u, θ), w〉| ≤ ‖u‖∞|θ| <∞ a.e t ∈ [0, T ].(3.19)

This completes the proof of part (3) of Theorem 3.6. �

3.3. Uniqueness for the case of anisotropic viscosity.

Theorem 3.7 (Uniqueness for the Anisotropic Case). Let θ0 ∈ L∞, ω0 ∈
√
L.

Then, for every T > 0, there exists a unique solution (ω, θ) to (1.2), such that

ω ∈ L∞([0, T ],
√
L) ∩ Cw([0, T ];L2) and θ ∈ L∞([0, T ], L∞) ∩ C([0, T ]), w∗-L∞).

Proof of Theorem 3.7. Let T > 0 arbitrary. The existence of solution on the in-
terval [0, T ] is established above, therefore it suffices to show uniqueness. We note
that some very important a priori estimates that we need in the beginning of this
proof were first elegantly derived in [9]. We recall those estimates that we have
borrowed from [9]. We have derived them rigorously in the previous theorem and
we derive them here again formally to make the proof of uniqueness self-contained.
First, one may easily show that for any p ∈ [2,∞], we have

‖θ(t)‖p ≤ ‖θ0‖p,(3.20)

so θ ∈ L∞([0, T ], Lp), p ∈ [2,∞]. Given that ω0 ∈
√
L, and hence ω0 ∈ L2, we have

1

2

d

dt
|ω|2 + ν|∂2

1ω| = −(θ, ∂1ω) ≤ ν

2
|∂1ω|2 +

1

2ν
|θ|2.

Integrating in time yields

|ω(t)|2 + ν

∫ t

0

|∂1ω|2 dτ ≤ |ω0|2 +
t

ν
|θ0|2.

This implies that ω ∈ L∞([0, T ], L2), and therefore u ∈ L∞([0, T ], V ). Further-
more, ∂1ω ∈ L2([0, T ], L2). Using the divergence free condition (1.2b), we observe
that

∂1ω = ∂2
1u

2 − ∂1∂2u
1 = ∂2

1u
2 + ∂2

2u
2 = 4u2.

Therefore, 4u2 ∈ L2([0, T ], L2), so that u2 ∈ L2([0, T ], H2) by elliptic regularity,
and thus ∇u2 ∈ L2([0, T ], H1). By inequality (2.2), we have

‖∇u2‖p ≤ C
√
p− 1‖∇u2‖H1 .(3.21)

so that ∇u2 ∈ L2([0, T ],
√
L).

Next, we recall that we have global in time control over the ‖ω‖√L. Taking the

inner product of (3.3) with |ω|p−2ω for some p > 2 and integrating by parts, and
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integrating in time, we have

‖ω(t)‖2p ≤ ‖ω0‖2p +
p− 1

2ν
‖θ0‖2pt.(3.22)

This shows that ω ∈ L∞([0, T ],
√
L). Using this, and the facts that ∂1u

1 =
−∂2u

2 (by (1.2b)) and ∂2u
1 = ∂1u

2 − ω, we have thanks to (3.21) that ∇u1 ∈
L2([0, T ],

√
L). Combining this with (3.21) shows that

∇u ∈ L2([0, T ],
√
L).(3.23)

We recall again that all the estimates above were first derived in [9] for the case
where Ω = R2.

Let T > 0 be arbitrary. The existence of solutions on the interval [0, T ] is
established above; therefore, it suffices to show uniqueness. Suppose (u1, θ1) and
(u2, θ2) are two solutions to (3.4) on the interval [0, T ], with the same initial data

(u0, θ0), then they must be the equal. Define ũ := u1 − u2, θ̃ := θ1 − θ2, and

ξ` := 4−1θ`, ` = 1, 2,
∫
T2 ξ` dx = 0, and ξ̃ := ξ1 − ξ2. Based on Remark 3.5, these

quantities satisfy the following functional equations.

dũ

dt
+ ν∂2

1 ũ +B(ũ,u1) +B(u2, ũ) = Pσ(4ξ̃e2) in L2([0, T ], V ′) and(3.24a)

d4ξ̃
dt

+ B(ũ,4ξ1) + B(u2,4ξ̃) = 0 in L2([0, T ], H−1).(3.24b)

Taking the action of (3.24a) on ũ in L2([0, T ], V ) and of (3.24b) in L2([0, T ], H−1)

on ξ̃ ∈ L2([0, T ], H2), thanks to the properties of the operator B in Lemma 2.1 and
the operator B in Lemma 2.2, we obtain the following:

1

2

d

dt
|ũ(t)|2 + ν‖∂1ũ‖2 =

2∑
j=1

(ũjũ, ∂ju1) + (4ξ̃e2, ũ)

1

2

d

dt
‖ξ̃(t)‖2 = −(ũ4ξ1,∇ξ̃)− (u24ξ̃,∇ξ̃),

where we have used Lions-Magenes Lemma (see, e.g., [24]) to have
〈
dũ
dt , ũ

〉
=

1
2
d
dt |ũ(t)|2 and

〈
d4ξ̃
dt , ξ̃

〉
= 1

2
d
dt‖ξ̃(t)‖

2. Next, observe that, due to the divergence

free condition, e1 · ∂1ũ = −e2 · ∂2ũ, we have

|(4ξ̃e2, ũ)| ≤
∫
T2

(
|∂1ξ̃e2 · ∂1ũ|+ |∂2ξ̃e2 · ∂2ũ|

)
dx

=

∫
T2

(
|∂1ξ̃e2 · ∂1ũ|+ |∂2ξ̃e1 · ∂1ũ|

)
dx

≤ 1

ν
|∂1ξ̃|2 +

ν

4
|e2 · ∂1ũ|2 +

1

ν
|∂2ξ̃|2 +

ν

4
|e1 · ∂1ũ|2.

Combining the above estimates, we find

1

2

d

dt
|ũ|2 + ν|∂1ũ|2 ≤

∫
T2

|∇u1| |ũ|2 dx +
2

ν
‖ξ̃‖2 +

ν

2
|∂1ũ|2

≤ ‖ũ‖2/p∞
∫
T2

|∇u1| |ũ|2−2/p
dx +

2

ν
‖ξ̃‖2 +

ν

2
|∂1ũ|2

≤ ‖∇u1‖p‖ũ‖2/p∞ |ũ|2−2/p +
2

ν
‖ξ̃‖2 +

ν

2
|∂1ũ|2
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where we have used Hölder’s inequality. Similarly, by Lemma 2.2

1

2

d

dt
‖ξ̃‖2 ≤

∣∣∣∣∫
T2

ũ · ∇ξ̃4ξ1 dx
∣∣∣∣+

∫
T2

|∇u2||∇ξ̃|2 dx

≤ |ũ||∇ξ̃|‖4ξ1‖∞ + ‖∇u2‖p‖∇ξ̃‖2/p∞ |∇ξ̃|2−2/p.

From the estimates above we can now adapt the well-known Yudovich argument for
the 2D incompressible Euler equations (see, e.g., [26]) to complete the uniqueness

proof. Let X2 := |ũ(t)|2 + ‖ξ̃(t)‖2 + η2 for some arbitrary η > 0. Adding the above
two inequalities and using Young’s inequality gives,

1

2

d

dt
X2 +

ν

2
|∂1ũ|2

≤ Kν

(
|ũ|2 + ‖ξ̃‖2 + η2

)
+ (‖∇u2‖p + ‖∇u1‖p)

(
‖ũ‖2/p∞ + ‖∇ξ̃‖2/p∞

)(
|ũ|2−2/p + |∇ξ̃|2−2/p

)
≤ KνX

2 + C (‖∇u2‖p + ‖∇u1‖p)
(
‖ũ‖2/p∞ + ‖∇ξ̃‖2/p∞

)
X2−2/p,

where Kν = 2/ν + (1/2)‖∆ξ1‖∞. Neglecting the term ν
2 |∂1ũ|2, dividing by X,

and making the change of variables Y (t) = e−KνtX(t), we have after a simple
calculation,

Ẏ ≤ Ce−2Kνt/p (‖∇u2‖p + ‖∇u1‖p)
(
‖ũ‖2/p∞ + ‖∇ξ̃‖2/p∞

)
Y 1−2/p.

Integrating this equation and using the fact that e−2Kνt/p ≤ 1, we find

Y (t)

≤
[
η2/p + C

∫ t

0

1

p
(‖∇u2(s)‖p + ‖∇u1(s)‖p)

(
‖ũ(s)‖2/p∞ + ‖∇ξ̃(s)‖2/p∞

)
ds

]p/2
.

Letting η → 0 we discover that for all t ∈ [0, T ],

|ũ(t)|2 + ‖ξ̃(t)‖2 ≤
(
‖ũ‖L∞T L∞x + ‖∇ξ̃‖L∞T L∞x

)
·
(
C

∫ t

0

1

p
(‖∇u2(s)‖p + ‖∇u1(s)‖p) ds

)p/2
.(3.25)

Thanks to the fact that 4ξ̃ = θ̃ ∈ L∞([0, T ], L∞) ⊂ L∞([0, T ], L4), we have by

elliptic regularity that ξ̃ ∈ L∞([0, T ],W 2,4), and therefore ∇ξ̃ ∈ L∞([0, T ],W 1,4).

Thus, by the Sobolev Embedding Theorem, we have ∇ξ̃ ∈ L∞([0, T ],W 1,4) ⊂
L∞([0, T ], C0,γ), for some γ ∈ (0, 1). Furthermore, ω̃ ∈ L∞([0, T ],

√
L) implies,

for instance that ũ ∈ L∞([0, T ],W 1,4) by the Calderón-Zygmund elliptic estimate
(2.3). Using the Sobolev Embedding Theorem again, we have ũ ∈ L∞([0, T ], C0,γ),
for some γ ∈ (0, 1). Therefore, the first factor on the right-hand side of (3.25)

is bounded. Now, since ∇u` ∈ L2([0, T ],
√
L), ` = 1, 2 by (3.23), we have by

Cauchy-Schwarz∫ t

0

‖∇u`(s)‖p
p

ds ≤

(
t

∫ T

0

sup
p≥2

‖∇u`(s)‖2p
p− 1

ds

)1/2

.
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Let M` =

∫ T

0

sup
p≥2

‖∇u`(s)‖2p
p− 1

ds, ` = 1, 2 and M = max{M1,M2}. Thus, from the

above, for every fixed τ ∈ (0, T ] we have

|ũ(t)|2 + ‖ξ̃(t)‖2 ≤ K(2CMτ)p/4, for all t ∈ [0, τ ],(3.26)

where the constant C is the same constant which appears in (3.25) and

K =
(
‖ũ‖L∞T L∞x + ‖∇ξ̃‖L∞T L∞x

)
.

Now choose τ = τ0 = min{T, 1
4CM }, and consider (3.26) on [0, τ0]. Taking the limit

as p → ∞, we get that |ũ(t)|2 + ‖ξ̃(t)‖2 ≤ 0 for all t ∈ [0, τ0]. Restarting the time
at t = τ0 and noting the fact that∫ t+τ0

τ0

‖∇u`(s)‖p
p

ds ≤

(
t

∫ T

0

sup
p≥2

‖∇u`(s)‖2p
p− 1

ds

)1/2

,

we have from an analogue of (3.25) on [τ0, T ] that |ũ(t)|2 +‖ξ̃(t)‖2 ≤ K(2CMτ0)p/2

for all t ∈ [τ0, 2τ0]. Since we defined τ0 ≤ 1
4CM , we take the limit p→∞ and find

that on the interval [τ0, 2τ0], we also have that |ũ(t)|2 + ‖ξ̃(t)‖2 ≤ 0. We can
continue this argument on the intervals [2τ0, 3τ0], [3τ0, 4τ0], and so on. Thus, we

have |ũ(t)|2 + ‖ξ̃(t)‖2 ≤ 0 for all t ∈ [0, T ]. This implies that, |ũ(t)| = 0 and

‖ξ̃(t)‖ = 0 for all t ∈ [0, T ]. �
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