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ARTICLE

TFPa/HADHA is required for fatty acid
beta-oxidation and cardiolipin re-modeling
in human cardiomyocytes
Jason W. Miklas1,2, Elisa Clark 1,2, Shiri Levy1,3, Damien Detraux 1,3, Andrea Leonard1,4,5,

Kevin Beussman1,4,5, Megan R. Showalter6, Alec T. Smith2, Peter Hofsteen1,5,7, Xiulan Yang1,5,7,

Jesse Macadangdang1,2, Tuula Manninen8,9, Daniel Raftery 10, Anup Madan11, Anu Suomalainen 8,9,12,

Deok-Ho Kim 1,2, Charles E. Murry 1,2,5,7,13, Oliver Fiehn 6,14, Nathan J. Sniadecki 1,2,4,7,

Yuliang Wang1,15 & Hannele Ruohola-Baker1,2,3*

Mitochondrial trifunctional protein deficiency, due to mutations in hydratase subunit A

(HADHA), results in sudden infant death syndrome with no cure. To reveal the disease

etiology, we generated stem cell-derived cardiomyocytes from HADHA-deficient hiPSCs and

accelerated their maturation via an engineered microRNA maturation cocktail that upregu-

lated the epigenetic regulator, HOPX. Here we report, matured HADHA mutant cardio-

myocytes treated with an endogenous mixture of fatty acids manifest the disease phenotype:

defective calcium dynamics and repolarization kinetics which results in a pro-arrhythmic

state. Single cell RNA-seq reveals a cardiomyocyte developmental intermediate, based on

metabolic gene expression. This intermediate gives rise to mature-like cardiomyocytes in

control cells but, mutant cells transition to a pathological state with reduced fatty acid beta-

oxidation, reduced mitochondrial proton gradient, disrupted cristae structure and defective

cardiolipin remodeling. This study reveals that HADHA (tri-functional protein alpha), a

monolysocardiolipin acyltransferase-like enzyme, is required for fatty acid beta-oxidation and

cardiolipin remodeling, essential for functional mitochondria in human cardiomyocytes.
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M itochondrial trifunctional protein (MTP/TFP) deficiency
is thought to be a result of impaired fatty acid oxidation
(FAO) due to mutations in hydroxyacyl-CoA dehy-

drogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase subunit
A (HADHA HADHA/LCHAD) or subunit B (HADHB)1. A major
phenotype of MTP-deficient newborns is sudden infant death
syndrome (SIDS), which manifests after birth once the child begins
nursing on lipid-rich breast-milk. Defects in FAO have a role in
promoting a pro-arrhythmic cardiac environment; however, the
exact mechanism of action is not understood, and there are no
current therapies2,3.

Pluripotent stem cell derived cardiomyocytes (hPSC-CM)
provide a means to study human disease in vitro but have lim-
itations due to their immaturity as they are representative of
fetal cardiomyocytes (FCM) instead of adult cardiomyocytes
(ACM)4,5. Due to the lack of knowledge in how committed car-
diomyocytes transition from an immature FCM to a mature ACM,
many cardiac diseases with postnatal onset are poorly character-
ized6–11 During cardiogenesis, FCMs go through developmental
states and once past cardiomyocyte commitment exhibit: exit of
cell cycle, utilization of lactate, cessation of spontaneous beating,
and then at the postnatal stage utilization of fatty acids and car-
diolipin maturation12–17. Since immature hPSC-CMs are unable
to utilize fatty acids through FAO as an energy source, they are
limited in their use to model FAO disorders.

Current approaches to mature hPSC-CMs toward ACM focus
on prolonged culture18, physically stimulating the cells with either
electrical19 or mechanical stimulation20 or by 2D surface pattern
cues to direct cell orientation21. An emerging area of hPSC-CM
maturation is in manipulating microRNAs (miRs)22–24. Over-
expressing just one miR, Let-7, can accelerate human embryonic
stem cell derived cardiomyocyte (hESC-CM) maturation towards
an ACM-like state24. However, no maturation regimen has been
able to mature hPSC-CMs to an adult state.

In this study, we analyze mitochondrial trifunctional protein
deficiency by generating stem cell derived cardiomyocytes
from HADHA-deficient human induced pluripotent stem
cells (hiPSCs) and accelerate their maturation by our engineered
microRNA maturation cocktail. The data reveal the essential
dual role of HADHA in fatty acid beta-oxidation and as
an acyltransferase in cardiolipin remodeling for cardiac
homeostasis.

Results
Generation of MTP deficient CMs. To recapitulate the cardiac
pathology of mitochondrial trifunctional protein deficiency on the
cellular level in vitro (Fig. 1a), we used the CRISPR/Cas9 system to
generate mutations in the gene HADHA of human iPSCs. From
our wild-type (WT) hiPSC line, that serves as our isogenic control,
we generated HADHA mutant hiPSC lines using two different
guides targeting exon 1 of HADHA (Supplemental Fig. 1A, B). To
identify the phenotypes specifically caused by mutations in
HADHA and to control for potential background effects, we chose
to study a knockout (KO) HADHA (HADHAKO) and compound
heterozygote (HADHAMut) hiPSC lines that were generated using
gRNA1. We also utilized the hiPSC line HEL87.1, which was
derived from a patient carrying the founder point mutation most
common in mitochondrial trifunctional protein disorder, HADHA
c.1528G>C (Supplemental Fig. 1C, D)25.

Examining the DNA sequence of the HADHAKO line showed a
homozygous 22 bp deletion, which resulted in an early stop codon
in exon 1 (Fig. 1b and Supplemental Fig. 1E). The HADHAMut

line had a 2 bp deletion and 9 bp insertion on the first allele and a
2 bp insertion on the second allele (Fig. 1c and Supplemental
Fig. 1F). Both lines showed no off-target mutations on the top

three predicted sites (Supplemental Fig. 1G). The mutations
found in the HADHAMut line resulted in a predicted early stop
codon on both alleles (Supplemental Fig. 1H). However, when we
examined the protein in each line we found that HADHA was
expressed in the WT hiPSC line, not expressed in the HADHAKO

line and was still expressed, to a lower degree, in the HADHAMut

line (Fig. 1d). We then examined the transcript of HADHA
expressed in WT and HADHAMut lines. We found the WT line
expressed the full length HADHA transcript from exon 1–20
while the HADHAMut line skipped exons 1–3 and expressed
HADHA exons 4–20 (Fig. 1c). It is possible that the mutations
generated at the intron-exon junction induced an alternative
splicing event and a new transcript since there is no known
transcript of HADHA from exon 4–20 (Supplemental Fig. 1I).
The observed reduction in the HADHA mutant molecular weight
(Fig. 1d) supports this hypothesis. The expressed HADHAMut

protein skips the expression of exons 1–3, 60 amino acids,
generating a truncated ClpP/crotonase domain, which likely
compromises the mitochondrial localization and protein folding
of the enzyme pocket resulting in the inability to stabilize enolate
anion intermediates during FAO (Supplemental Fig. 1J).

Using a monolayer directed differentiation protocols26,27 we
generated human induced pluripotent stem cell derived cardio-
myocytes (hiPSC-CMs) from the WT and hiPSC lines with
HADHA mutations. We found that the reduction or loss of
HADHA did not hinder the ability to generate cardiomyocytes
(Fig. 1e). However, we found that all CMs, even the control CMs,
were unable to utilize long-chain FAs (Fig. 1f) and needed to be
matured14,24,28.

Screening microRNAs for hPSC-CM maturation. MicroRNAs
have recently been shown to regulate the key, opposing processes of
cardiomyocyte regeneration, maturation and dedifferentiation24,29,30.
We cross-referenced in vivo miR-sequencing data of human fetal
ventricular to adult ventricular myocardium24,31,32 and combined
multiple miRs together with Let-7 to rapidly mature hPSC-CMs by
promoting a more complete adult like transcriptome. Analyzing each
miR’s predicted targets affecting glucose and/or fatty acid metabo-
lism, cell growth and hypertrophy and cell cycle, six miRs were
chosen to assess for their CM maturation potency: three upregulated
miRs (miR-452, −208b33 and −378e34) and three downregulated
miRs (miR-122, −200a, and −205) (Fig. 2a).

Functional analysis of candidate microRNAs. These six miRs
were assessed using four functional tests to determine hPSC-CM
maturation: cell area, force of contraction, metabolic capacity, and
electrophysiology. WT D15 hiPSC-CMs were transduced with a
lentivirus to either OE a miR or KO a miR using CRISPR/Cas9.
Cells were then lactate selected to enrich for the cardiomyocyte
population and puromycin selected to enrich for the population
containing the viral vector. Functional assessment was performed
after two weeks of miR perturbation on D30 (Fig. 2b).

An important feature of cardiomyocyte maturation is an
increase in cell size. We found only miR-208b OE brought a
significant increase in cell area (Fig. 2c and Supplemental Fig. 2A).
Immature hPSC-CMs spontaneously beat at a high rate and have
a short field potential duration when studied by extracellular
micro-electrodes. Using micro-electrode arrays, we found only
miR-452 OE increased the corrected field potential duration
(cFPD) to a more adult like duration (Fig. 2d). One of the
hallmarks of cardiomyocyte maturation is the increase in
contractile force generated by the cell. We performed single cell
force of contraction analysis using a micropost platform24,35,36

and found only the KO of miR-200a brought about a significant
increase in force of contraction (Fig. 2e and Supplemental
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Fig. 2B). Finally, we assessed the metabolic capacity and found
only the KO of miR-122 brought about a significant increase in
maximum oxygen consumption rate (OCR) indicating more
active mitochondria (Fig. 2f and Supplemental Fig. 2C).

Bioinformatic analysis of candidate microRNAs. RNA-
Sequencing was performed after alterations of some of the miRs
(miR-378e OE, −208b OE, −452 OE, −122 KO, or −205 KO) to
assess their global transcriptional impact in hPSC-CMs. In each

sample, ~11,000 protein-coding genes were expressed with an
aggregated expression of at least three FPKM (fragments per
kilobase of transcript per million mapped reads) across all sam-
ples were used for principle component analysis (PCA). PCA
showed that each miR was able to bring a significant change from
their respective controls (Supplemental Fig. 2D). Furthermore,
since none of the miRs clustered with one another, each miR was
capable of inducing a unique expression signature.

Each miR’s function was then analyzed by specifically
examining pathways that are essential for cardiac maturation. A
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Fig. 1 Generation of HADHA Mutant and Knockout stem cell derived cardiomyocytes. a Schematic of fatty acid beta-oxidation detailing the four enzymatic
steps. b Schematic of HADHA KO DNA and protein sequence from WTC iPSC line showing a 22 bp deletion, which resulted in an early stop codon.
c Schematic of HADHA Mut DNA and protein sequence from WTC iPSC line showing a 2 bp deletion and 9 bp insertion on the first allele and a 2 bp
deletion on the second allele. RNA-Sequencing read counts show that the HADHA Mut expresses exons 4–20 resulting in a truncated protein. d Western
analysis of HADHA expression and housekeeping protein β-Actin in WTC iPSCs. e Confocal microscopy of WT, HADHA Mut and HADHA KO hiPSC-CMs
for the cardiac marker αActinin (green) and HADHA (red). f Seahorse analysis trace of fatty acid oxidation capacity of WT, HADHA Mut and HADHA KO
hiPSC-CMs. n= 6–7 biological replicates. Source data are provided as a Source Data file
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pathway enrichment heatmap was generated showing how each
miR influenced seven different pathways chosen as hallmarks of
cardiomyocyte maturation (Supplemental Fig. 2E).

From these data, we generated a MicroRNA Maturation
Cocktail we termed MiMaC, consisting of: Let7i OE, miR-452 OE,
miR-122 KO, and miR-200a KO. Let7i was chosen due to our
previous study showing the potency of this miR to bring about
cardiomyocyte maturation24. From each of the functional assays,
we chose a miR that brought a significant increase in maturation

to generate a cocktail that consisted of the smallest number
of miRs.

Functional assessment of MiMaC. To assess MiMaC treated
hPSC-CM maturation we performed force of contraction, cell
area, and metabolic assays (Fig. 3a). MiMaC treated hiPSC-CMs
had a statistically significant increase in twitch force and power as
compared to control cells (Fig. 3b–d). MiMaC treated hiPSC-
CMs and hESC-CMs had a statistically significant increase in cell
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Fig. 2 Cardiomyocyte maturation microRNA screen. a Schematic of the workflow performed to determine candidate microRNAs to screen for
cardiomyocyte maturation. b Schematic of the workflow performed to generate microRNA transduced stem cell derived cardiomyocytes. c Cell area
analysis of microRNA treated hiPSC-CMs. MicroRNA-208b OE lead to a significant increase in cell area while miR-205 KO led to a significant decrease. EV:
2891 μm2, 208b: 5802 μm2. *p < 0.05, one-way ANOVA on Ranks performed. n= 16–51 cells measured. d Micro-electrode array analysis of microRNA
treated hiPSC-CMs corrected field potential duration (cFPD). MiR-452 OE led to a longer cFPD. EV: 296ms, 452: 380ms. n= 3–6 biological replicates.
e Single cell twitch force analysis using a micropost assay. MiR-200a KO led to a significant increase in twitch force of hiPSC-CMs. EV: 30.8nN, miR-200a:
51.7nN. *p < 0.05, one-way ANOVA on Ranks performed. n= 12–41 cells measured. f Seahorse analysis of the maximum change in oxygen consumption
rate (OCR) due to FCCP after oligomycin treatment of microRNA treated hiPSC-CMs. MiR-122 KO led to a significant increase in maximum OCR while
miR-208b OE, −378e OE and −200a KO led to significant decreases in maximum OCR. miR-122 KO: 1.35-fold change compared to EV. **p < 0.01, ***p <
0.001, one-way ANOVA performed. n= 3–17 biological replicates. Box plot middle line represents the median, x represents mean, bottom line of the box
represents the median of the bottom half (1st quartile) and the top line of the box represents the median of the top half (3rd quartile). The whiskers extend
from the ends of the box to the non-outlier minimum and maximum value. Source data are provided as a Source Data file
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area (Fig. 3e, f and Supplemental Fig. 3A). Furthermore, both
MiMaC-treated hESC-CMs and miMaC-treated hiPSC-CMs were
able to utilize palmitate significantly greater than control CMs
(Fig. 3g and Supplemental Fig. 3B).

Transcriptional assessment of MiMaC. To gain a better
understanding of how MiMaC was affecting the transcriptome of
hiPSC-CMs we performed RNA-Sequencing comparing D30 EV
control CMs to D30 MiMaC treated CMs. Pathway enrichment
analysis using a hallmark gene set (Supplemental Table S1)
showed that many cell maturation and muscle processes were
upregulated such as: myogenesis and epithelial mesenchymal
transition37. The top downregulated pathways were associated
with cell cycle, a key feature of cardiomyocyte maturation. Using
STRING Analysis, we determined the network of significantly
upregulated and interconnected genes associated with two path-
ways: myogenesis and epithelial mesenchymal transition (Sup-
plemental Fig. 3C). STRING analysis was also used to show that
the significantly downregulated and interconnected genes were
associated with repression of cell cycle, specifically, the mitotic
spindle and G2M checkpoint (Supplemental Fig. 3D). These
findings show that the MiMaC tool promotes a more mature
transcriptome in hiPSC-CMs.

HOPX is a regulator of CM maturation. To better understand
the molecular mechanisms that are critical for cardiac matura-
tion, the overlapping predicted targets of the screened six miRs
were determined. We had previously studied the predicted targets
of Let7, insulin receptor-pathway and polycomb repressive
complex 2 function, and their role in cardiomyocyte matura-
tion24. We now found that all four downregulated miRs during
maturation had five common predicted targets. One of these
predicted targets, HOPX (Fig. 3h), is important for cardiomyo-
blast specification38. Furthermore, we have recently shown that
HOPX is involved in cardiomyocyte maturation39. However, the
regulation of HOPX expression and mechanism of HOPX action
during maturation are not understood. We found HOPX
expression was upregulated in vitro, in vivo and in MiMaC
treated hiPSC-CMs (Fig. 3i-k). We also found HOPX was upre-
gulated 6.8-fold in D30 miR-122 KO hiPSC-CMs while Let7i OE

matured hiPSC-CMs had no effect on HOPX expression (Sup-
plemental Fig. 3E). These data suggest that Let7i OE maturation
does not govern HOPX cardiac maturation pathways. This
highlights the necessity of combining multiple miRs together to
generate a robust maturation effect in hPSC-CMs.

We previously assessed the role of HOPX OE in cardiomyocyte
maturation and found that HOPX OE led to an increase in CM
size39. Using STRING analysis, we found the differentially
expressed genes associated with cell division in the HOPX OE
group generated a highly-interconnected network with key cell
cycle genes highly downregulated (Supplemental Fig. 4A). This
recapitulated the cell cycle repression we found during the
in vitro CM maturation process (MiMaC treated hiPSC-CMs).
We then generated four clusters using Kmeans clustering:
regulation of mitotic cell cycle, cell division, inhibition of cilia
and ubiquitin protein. Representative cell cycle genes, BUB1,
MKI67, and CENPE, were downregulated while the inhibitor of
many G1 cyclin/cdk complexes, CDKN1C, was significantly
upregulated in the HOPX OE condition (Supplemental Fig. 4B).
These data suggest that HOPX OE mechanistically increases cell
size by driving the exit from cell cycle and inducing cardiomyo-
cyte hypertrophy.

HOPX regulates cell cycle via SRF genes. HOPX is a home-
odomain protein that does not bind DNA but rather is recruited
to locations in the genome by serum response factor (SRF)40.
HOPX in turn recruits histone deacetylase (HDAC) and removes
acetylation marks resulting in the silencing of genes (Supple-
mental Fig. 4C). HOPX OE led to a significant down-regulation of
294 SRF targets (hypergeometric test p-value is 1.31x10−5)
(Supplemental Fig. 4D). We validated using qPCR a known SRF
target gene that should be repressed during cardiomyocyte
maturation, natriuretic peptide precursor A (NPPA). After
2 weeks of HOPX OE, NPPA was significantly repressed, while
cardiac troponin C, a non-SRF cardiac gene was unaffected by
HOPX OE. The ventricular isoform of myosin light chain, MYL2,
which is upregulated as ventricular cardiomyocytes mature,
increased 1.87-fold in expression after two weeks of HOPX OE
(Supplemental Fig. 4E).

We determined the SRF target genes in common between
HOPX OE vs. the negative control (NC) hiPSC-CMs and the

Fig. 3MiMaC accelerates hiPSC-CM maturation. a Schematic of the four microRNAs combined to generate MiMaC. b Single cell force of contraction assay
on micro-posts showed that MiMaC treated hiPSC-CMs led to a significant increase in twitch force. EV: 24nN, MiMaC: 36nN. **p < 0.01, t-test followed by
a Mann-Whitney rank sum test. n= 40–54 cells measured. c Representative trace of an EV (control) and a MiMaC treated hiPSC-CM. d Single cell force of
contraction assay on micro-posts showed that MiMaC treated hiPSC-CMs led to a significant increase in power. EV: 22fW, MiMaC: 38fW. *p < 0.05, t-test
followed by a Mann-Whitney rank sum test. n= 40–54 cells measured. e Cell size analysis showed that MiMaC treated hiPSC-CMs led to a significant
increase in area. EV: 2389 μm2, MiMaC: 3022 μm2. ***p < 0.001, t-test followed by a Mann-Whitney rank sum test. n= 220–298 cells measured.
f Representative confocal microscopy images of EV and MiMaC treated hiPSC-CMs. αActinin (green), phalloidin (red) and DAPI are shown. g Seahorse
analysis of fatty acid oxidation capacity showed that MiMaC treated hiPSC-CMs matured to a point where they could oxidize palmitate for ATP generation
while controls cells were not able to utilize palmitate. MiMaC hiPSC-CMs had a significant increase in OCR due to palmitate addition. *p < 0.05, t-test was
performed. n= 8–9 biological replicates. Error bars are standard error. h Venn diagram of KO microRNA predicted targets and the identification of HOPX
as a common predicted targeted between all KO miRs screened for cardiomyocyte maturation. i Plot of HOPX expression from RNA-Sequence data during
cardiomyocyte maturation. HOPX expression is significantly higher in D30 and 1-year hESC-CMs and 1-year hESC-CMs have significantly higher HOPX as
compared to D30 hESC-CMs. * denotes significance vs D20. # denotes significance vs D30. **p < 0.01 and *p < 0.05 are vs D20, #p < 0.05 is vs D30, one-
way ANOVA was performed. n= 2–4 biological replicates. Error bars are standard error. j HOPX expression in adult human ventricle tissue is significantly
higher than fetal human ventricular tissue. Plotted using RNA-sequencing data. *p < 0.05, a negative binomial test was used, n= 6 for fetal samples, n= 35
for adult samples. k RT-qPCR of HOPX expression showed that MiMaC treated hiPSC-CMs at D30 had a statistically significant higher level of HOPX as
compared to EV control D30 hiPSC-CMs. **p < 0.01, t-test followed by a Mann-Whitney rank sum test. n= 5–6 biological replicates. l Single cell RNA-Seq
tSNE plot of unbiased clustering of microRNA treated hPSC-CMs. m Cluster plot detailing which treatment groups are enriched in each cluster. n Heatmap
of maturation categories based on MiMaC cluster. o Heatmap of in vivo human maturation markers that are upregulated with maturation (yellow). Box plot
middle line represents the median, x represents mean, bottom line of the box represents the median of the bottom half (1st quartile) and the top line of the
box represents the median of the top half (3rd quartile). The whiskers extend from the ends of the box to the non-outlier minimum and maximum value.
Bar graphs show mean with standard error. Source data are provided as a Source Data file
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human adult vs. fetal myocardium (ventricular myocardium)
transitions. 76 SRF targets were common between the two groups
and formed a significant group of genes (hypergeometric test
p-value is 5.44x10^−24) (Supplemental Fig. 4F) with a strong
association for repression of cell cycle (Supplemental Fig. 4G).
Using STRING analysis, we determined the network of connected
genes out of the 76 genes in common and ran Kmeans clustering
to generate four clusters (Supplemental Fig. 4H); two cell cycle
clusters, DNA repair and muscle development gene clusters. The
network of SRF regulated cell cycle genes that was in common
between the HOPX OE line and adult cardiomyocytes (Supple-
mental Fig. 4I) showed genes associated with cell cycle with 7 of
the 10 genes associated with the spindle machinery. These data
indicate that MiMaC acts through HOPX to repress SRF cell cycle
targets.

scRNA-sequencing analysis of miR treated CM maturation.
Using single cell RNA-sequencing (scRNA-Seq), we utilized the
MiMaC tool to provide further insight into the underlying
mechanisms of cardiomyocyte maturation. We performed
scRNA-Seq and unbiased clustering on five groups of miR treated
CMs: EV, Let7i & miR-452 OE, miR-122 & −200a KO, MiMaC
and MiMaC+ FA. The enrichment of the miR perturbation was
analyzed in the five identified clusters (Fig. 3l, m) using a Chi-
square test. The EV group was enriched in clusters 0 and 3, Let7i
and miR-452 OE group was enriched in clusters 0 and 1, miR-122
and −200a KO group was enriched in clusters 0 and 3 and
MiMaC and MiMaC+ FA were enriched in clusters 1 and 2.
Cluster 4 mainly consisted of cells with poor read counts and was
not analyzed further. Characterizing the cell fate in each subgroup
showed the majority of cells were cardiomyocytes with a very
small subset of cells in cluster 1 displaying fibroblast (ENC1,
DCN, and THY1) and epicardial markers (WT1, TBX18) (Sup-
plemental Fig. 5A).

To rank which clusters had a higher degree of cardiomyocyte
maturation we assessed the genes highly up- and downregulated
in the MiMaC enriched cluster, cluster 2, compared to cardiac
markers, oxidative phosphorylation genes (Fig. 3n and Supple-
mental Table S2)41, and in vivo human cardiac maturation
markers (Fig. 3o and Supplemental Table S3). We found that
cluster 2 had high upregulation of genes associated with myofibril
structural proteins and in vivo maturation markers (Fig. 3n, o;
P < 2x10−16, using linear mixed effects model). We also found the
MiMaC-treated cells were the most mature (Supplemental
Fig. 5B-E and Supplemental Table S4). Based on these findings,
we ranked each cluster from least mature to most mature as
cluster: 0 < 1 < 3 < 2. Cluster 2, the most mature CM cluster
enriched for the MiMaC treated CMs, showed the highest
expression of HOPX, a gene that is upregulated in maturation
and is the predicted target of the downregulated miRs in MiMaC
(Supplemental Fig. 5F and Supplemental Table S3). Importantly,
these data indicate that the observed transcriptional maturation
mirrors normal in vivo cardiomyocyte maturation (Fig. 3o).

Finally, we assessed the addition of fatty acids with MiMaC to
increase cardiomyocyte maturation. Three long-chain fatty acids,
palmitate, linoleic and oleic acid were added to the basal cardiac
media used42. We found the MiMaC+ FA cells were enriched in
cluster 2. Importantly, while some studies have shown lipotoxicity
with some FAs, the analysis of our carefully optimized FA-
treatment procedure showed no increase in transcripts indicative
of apoptosis, revealing minimal lipotoxicity in this assay
(Supplemental Table S5)43. These data indicate that MiMaC
was essential for a robust transcriptional maturation of hiPSC-
CMs.

scRNA-Seq reveals an intermediate CM maturation stage. After
unbiased analysis of the miR treated CMs it was clear each miR
combination resulted in enrichment of different states of CM
maturation. Interestingly, cardiomyocyte cluster 1, enriched for
Let7i and miR-452 OE, showed a robust upregulation of
OXPHOS and Myc target genes but was not yet significantly
increased in most cardiomyocyte maturation markers (Fig. 3n, o
and Supplemental Fig. 5G,H; Supplemental Table S6). Hence,
treatment of Let7i and miR-452 OE created an intermediate
maturity CM in which metabolic maturation was the leading
force. These data suggest a possible intermediate stage is a
necessary transition stage between a fetal like CM to a more
mature CM, which requires transient up-regulation of
OXPHOS genes.

HADHA-Deficient CMs display reduced mitochondrial func-
tion. The generation of the MiMaC tool allowed us to study
HADHA CM disease etiology. First, we assessed the maximum
OCR of WT, HADHA Mut, and KO CMs. MiMaC treated WT
CMs had a statistically significant increase in maximum OCR as
compared to control cells (Fig. 4a, b). Interestingly, control and
MiMaC-treated HADHA Mut CMs had maximum OCR similar
to control WT-CMs while the HADHA KO CMs had depressed
maximum OCR. These data suggest defective mitochondrial
activity of HADHA Mut and KO CMs.

We showed that only MiMaC treated WT CMs showed a
statistically significant increase in oxygen consumption due to
palmitate addition (Fig. 4c). WT control CMs along with control
and MiMaC treated HADHA Mut and KO CMs were unable to
utilize FAs. These data show that MiMaC treated CMs have the
capacity to utilize long-chain FAs; however, MiMaC-treated
HADHA Mut and KO CMs are unable to do so.

Abnormal calcium handling of HADHA Mut CMs. MTP-
deficient infants can present with sudden, initially unexplained
death after birth44. It is possible that the stress of lipids, the main
substrate for ATP production found in a mother’s breast-milk, is
what precipitates the early infant death due to MTP deficiency.
We chose to utilize a combination of three long-chain fatty acids
supplemented to our base cardiac media which contains glucose
(Glc+ FA media): palmitate, oleic, and linoleic acid, since these
FAs are the most abundant in the serum of breastfed human
infants42,45. Palmitate, as a fatty acid substrate, is one of the most
abundant fatty acids circulating during the neonatal period,
representing 36% of all long-chain free fatty acids46. While
challenging CMs with FAs can lead to lipotoxicity, we have
carefully developed a concentration and combination of three
fatty acids that do not result in lipotoxicity (Fig. 3l and Supple-
mental Fig. 6A)42,47,48. Moreover, other groups in the field of
hPSC-CM maturation have also found that carefully chosen and
fully conjugated FAs stimulate aspects of CM maturation49.

To better understand the way in which MTP-deficient CMs
may be precipitating an arrhythmic state leading to SIDS, we
measured calcium transients in our WT and HADHA Mut CMs
(Fig. 4d and Supplemental Fig. 6B). We found, the fold change in
calcium being cycled was significantly higher in WT CMs as
compared to HADHA Mut CMs (Fig. 4e). This suggested calcium
was being cycled from the cytosol and stored in an aberrant
manner in HADHA Mut CMs. When examining the tau-decay
constant, we found HADHA Mut CMs had a higher average
value (Fig. 4f). This suggested the rate at which calcium was being
pumped back into the sarco/endoplasmic reticulum was slower in
the HADHA Mut CMs.
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Beat rate abnormalities in HADHA Mut CMs. Since HADHA
Mut CMs cultured in Glc+ FA media exhibited abnormal cal-
cium cycling, we assessed whether or not these CMs also exhib-
ited abnormal electrophysiology. Using single cell whole-cell
patch clamp, we found there was a significant increase in action
potential duration in the HADHA Mut CMs as compared to WT
CMs (Fig. 4g, h). This elongation period is seen during the pla-
teau phase of the action potential where calcium ions are
opposing the change in voltage due to potassium ions. This extent
of elongation is indicative of a pathological state and suggests
calcium handling as a potential source of this abnormal action
potential (Fig. 4d–f). Furthermore, as in the calcium handling
data, the tau-decay constant was higher in HADHA Mut CMs as
compared to WT CMs (Fig. 4i). There was no difference in
resting membrane potential (Supplemental Fig. 6C). Since, elon-
gations of action potentials have been shown to result in
arrhythmic heart conditions, phase 2 re-entry50, our whole-cell
patch clamp data suggest the HADHA Mut CMs may be in a pro-

arrhythmic state suggesting that indeed, HADHAMut CMs when
challenged with FAs could result in SIDS due to abnormal cal-
cium handling.

To assess the electrophysiology of a monolayer of cardiomyo-
cytes, as a syncytium of cardiomyocytes is more representative of
“tissue level” myocardium, we determined membrane potential
changes using a voltage-sensitive fluorescent dye, Fluovolt. We
found that while HADHA Mut CMs had no change in the
maximum change in voltage amplitude or the rate of depolariza-
tion (Fig. 4j and Supplemental Fig. 6D–H), significant differences
were observed when examining repolarization rates. We found
that the time to wave duration (WD) 50% (WD50) and 90%
(WD90) were significantly longer in the HADHA Mut CMs as
compared to WT CMs (Fig. 4j and Supplemental Fig. 6H). These
data suggest that the HADHA Mut CMs, at a monolayer level,
had impaired repolarization resulting in slightly longer action
potentials. Both the single cell and monolayer electrophysiology
data showed abnormal action potential durations, both of which
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could be caused by abnormal calcium handling found in
HADHA CMs.

We tracked the spontaneous beating of HADHA Mut CMs in
the presence of FAs and found that the HADHA Mut CMs had a
significantly higher beat interval (Fig. 4k; Supplemental Fig. 6I)
and a significantly higher change in beat-to-beat interval (ΔBI)
than controls (Fig. 4l). These data suggest that HADHAMut CMs
beat on average slower and the time between beats was more
variable. Furthermore, we quantified the percentage of ΔBI that
were greater than 250 ms and on average the HADHA Mut CMs
had a higher percentage of potentially arrhythmic ΔBIs (Supple-
mental Fig. 6J)51. Finally, we generated a Poincaré plot with fitted
ellipses (95% confidence interval) around each group’s beat
interval data (Fig. 4m). A narrow and elongated ellipse suggested
uniform beat intervals while a more rounded ellipse suggested
beat rate abnormalities. Taking the ratio of the major to minor
axis of each ellipse we found that the HADHA Mut Glc condition
had a ratio of 4.36 while the HADHA Mut Glc+ FA condition
had a ratio of 3.12 indicating that the HADHA Mut Glc+ FA
condition had a more rounded ellipse, indicating a higher beat-to-
beat variability. These data combined suggest that the FA treated
HADHA Mut CMs enter a pro-arrhythmic state potentially due
to abnormal calcium handling, which results in elongated action
potentials and abnormal repolarization.

scRNA-sequencing identifies HADHA Mut CM subpopula-
tions. Single-cell RNA-Sequencing and unbiased clustering
were performed to better understand how the HADHA Mut CM
population was behaving when challenged with FAs. A tSNE plot
detailing each of the sequenced cell groups showed a clear dis-
tinction between WT and HADHA Mut CMs, with a small but
significant overlap (Fig. 5a). When performing unbiased cluster-
ing, six clusters were found: 0 HADHA Mut CMs non-replicat-
ing, 1 an intermediate maturation population of WT and Mut
CMs, 2 HADHA Mut CMs replicating, 3 healthy CMs, 4 fibro-
blast like population and, 5 epicardial like population (Fig. 5b, c
and Supplemental Fig. 7A).

To assess the degree of maturation and disease state we
categorized each cluster based on the key categories described
above (Fig. 3n). Upregulated genes in cluster three were
associated with myofibril assembly and striated muscle cell
development. Interestingly, a subset of both WT and HADHA

Mut CMs were identified in an intermediate CM maturation
cluster, cluster 1, as described above (Figs. 3l, 5d). This cardiac
population had a high up-regulation of OXPHOS and Myc target
genes (Supplemental Fig. 7B). WT cells that further developed
from this intermediate state were identified in the more mature
CM state, cluster 3. HADHA Mut cells, however, entered two
sequential pathological states of disease. We postulate that first,
HADHA Mut cells lose many highly expressed and repressed
cardiac markers along with cell cycle inhibitor CDKN1A, as seen
in cluster 0 (Supplemental Fig. 7C). Finally, very diseased
HADHA Mut CMs in cluster 2 up-regulated genes that should
be highly repressed in mature CMs, and activated cell cycle genes
(Fig. 5d, Supplemental Fig. 7C, D and Supplemental Table S7).
We benchmarked these stages of maturation and disease
progression against in vivo mouse and human maturation
markers and found a similar trend for maturation, disease
progression and loss of cardiac identity (Fig. 5e and Supplemental
Fig. 7E–G).

Examining significantly changed hallmark pathways between
HADHA Mut CM clusters and the WT CM cluster we found
OXHPOS, cardiac processes and myogenesis, being depressed in
the mutant cells (Supplemental Table S8, S9). Furthermore, while
WT CMs showed strong expression of cell cycle repressor
CDKN1A, both HADHA Mut CM populations lost this
expression. Cluster 2, the replicating HADHA Mut CMs, had
an upregulation of DNA replication, G2M checkpoint and mitotic
spindle genes (Supplemental Table S9). Moreover, genes that are
expressed in replicating and/or endocycling cells such as MKI67
and RRM2 were expressed only in cluster 2 HADHA Mut CMs
(Supplemental Fig. 7C). To address potential pathological
outcomes of the abnormal cell cycle marker increase, we analyzed
the number of nuclei per cell in HADHA Mut CMs. Importantly,
we observed a significant increase of the nuclei per cell in
HADHAMut CMs as compared to WT CMs (Chi-square test p <
0.001) (Fig. 5f, g). The majority of WT CMs were mono- or bi-
nucleated, which is the healthy state found in vivo for nuclei
number in CMs52. However, the number of mono-nucleated
HADHA Mut CMs was significantly reduced while the number of
bi- and multi-nucleated HADHA Mut CMs were increased
suggesting a pathological state in the HADHA Mut CMs53. These
data support the surprisingly high cell cycle transcript expression
we found in a subpopulation of HADHA Mut CMs (cluster 2),

Fig. 4 Fatty acid challenged HADHA Mut CMs displayed elevated cytosolic calcium levels leading to increased beat rate irregularities. a Seahorse
mitostress assay to analyze maximum oxygen consumption rate after oligomycin and FCCP addition. MiMaC treated CMs showed a significant increase
(2.2-fold change) in maximum OCR compared to control EV CMs. *p < 0.05, one-way ANOVA on ranks vs WT-CM EV was performed. n= 1–14 biological
replicates. b Representative trace of the mitostress assay. c Seahorse analysis of fatty acid oxidation capacity showed that MiMaC treated hiPSC-CMs
matured to a point where they could oxidize palmitate for ATP generation while controls cells were not able to utilize palmitate. MiMaC hiPSC-CMs had a
significant increase in OCR due to palmitate addition. Both MiMaC treated Mut and KO hiPSC-CMs were unable to oxidize palmitate. *p < 0.05, one-way
ANOVA on ranks vs WT-CM EV was performed. n= 1–14 biological replicates. d Representative trace of the change in fluorescence during calcium
transient analysis. e Quantification of the maximum change in fluorescence during calcium transients. Mut CMs as compared to WT CMs after 12D of
Glc+ FA media treatment had a statistically significantly lower change in calcium. WT CM: 2.03, Mut CM: 1.55. ***p < 0.001, t-test was performed. n=
28–30 cells measured. f Quantification of the tau-decay constant. Mut CMs as compared to WT CMs after 12D of Glc+ FA media treatment had a higher
tau-decay constant. WT CM: 0.63 s, Mut CM: 0.76 s. n= 28–30 cells measured. g Representative trace of the change in cell membrane potential during
whole-cell patch clamp analysis. h Quantification of the APD90 in WT and HADHAMut CMs after 12D of Glc+ FA media. WT 541 ms, Mut 1068ms. *p <
0.05, t-test was performed. n= 9–10 cells measured. i Quantification of the tau-decay constant in WT and HADHA Mut CMs after 12D of Glc+ FA media.
p= 0.066, t-test followed by a Mann-Whitney rank sum test. n= 9–10 cells measured. j Time to wave duration 50% is significantly longer in Mut CMs as
compared to WT CMs after 12D of Glc+ FA media treatment. ***p < 0.001, t-test was performed. n= 18–36 cells measured. k Representative beat rate
trace of Mut CM in Glc or Glc+ FA media. l Quantification of the change in beat interval (ΔBI). Mut CMs in Glc+ FA media as compared to Mut CMs in
Glc media had a statistically significant higher ΔBI. *p < 0.05, t-test followed by a Mann-Whitney rank sum test. n= 13–16 cells measured. m Poincaré plot
showing ellipses with a 95% confidence interval for each group. The more rounded ellipse of the Mut Glc+ FA condition shows that these cells had a
greater beat to beat instability as compared to Mut Glc CMs. Box plot middle line represents the median, x represents mean, bottom line of the box
represents the median of the bottom half (1st quartile) and the top line of the box represents the median of the top half (3rd quartile). The whiskers extend
from the ends of the box to the non-outlier minimum and maximum value. Source data are provided as a Source Data file
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and suggest multiple stages of disease state in the HADHA
Mut CMs.

To ensure cell cycle was not the underlying difference between
all clusters, we examined cell cycle genes in each cluster
(Supplemental Fig. 7H). Unlike previous studies which found
that the bias imposed on cluster differences was dictated by which
state of the cell cycle the cells were in54, we found that only
cluster 2 (Fig. 5b and Supplemental Fig. 7H) showed upregulated
cell cycle genes. We also re-processed the clustering data with the

removal of cell cycle genes and all clusters remained, except for
original cluster 2, high cell cycle HADHA Mut CMs (Supple-
mental Fig. 7I). These findings suggest that cell cycle is the
underlying reason for cluster 2 phenotype, but not for the rest of
the cell populations (Fig. 5a, b).

Finally, we found two genes (BAX and MFN2) that were highly
expressed in cluster 3, MiMaC cluster, but downregulated in cells
defective for HADHA, cluster 0 (Supplemental Fig. 7J). These
findings support a recent study showing that HADHA mutants
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have defects in mitochondrial fission and fusion machinery,
specifically, they also found the gene MFN2 to be mis-regulated
leading to punctate malfunctioning mitochondria55.We postulate
three different states of pathology in HADHA Mut CMs
challenged with FAs: intermediate state(cluster1)::non-replicating
CM state(cluster 0)::replicating CM state(cluster 256). Cluster
1 showed an intermediate state of CM maturity, characterized by
elevated OXPHOS and Myc target genes (Supplemental
Table S10). Importantly, both WT and HADHA CMs are found
in cluster 1, suggesting that the HADHA CMs only manifest
pathological phenotypes that separate them from wild-type cells
later in development, during the maturation process, similar to
that seen in human development.

We performed unbiased metabolic pathway analysis, screening
68 metabolic pathways and found HADHA Mut CM clusters, 0
and 2, displayed reduced metabolic pathway gene expression in
comparison to WT CM, cluster 3 (Fig. 5h, i). Specifically,
OXPHOS was one of the most downregulated pathways followed
by cholesterol metabolism and fatty acid oxidation. Interestingly,
in cluster 2, there were two highly upregulated metabolic
pathways: nucleotide interconversion and folate metabolism,
two key metabolic processes involved in DNA synthesis (Fig. 5j).
Since HADHA Mut CMs displayed a down-regulation of many
metabolic pathways including fatty acid and OXPHOS genes, we
next wanted to examine the mitochondria and myofibrils of
these cells.

Predicted cell trajectory from healthy to diseased state. Since we
had identified two different disease states, replicating/endor-
eplicating or intermediate state, we wondered if we could find a
trajectory upon which a healthy CM follows to a disease state in
an unbiased manner. To do this, we used the CellTrails57 method
as it allows for branching. Based on CellTrails clustering, we
found six different states with a clear distinction between mutant
and WT CMs (Supplemental Figure 8A). Clusters 1 and 4 were
identified as WT cells, while clusters 2, 3, 5, and 6 were identified
as HADHA Mut CMs. To identify the intermediate states, we
utilized two hallmark maturation genes, one that goes up with
ventricular maturation (MYH7) and one that goes down with
ventricular maturation (MYL7) (Fig. 5k, l; Supplemental Fig-
ure 8B). S4, enriched for WT CMs, and S3, enriched for HADHA
Mut CMs, both had low expression of the maturation geneMYH7
and a high expression of the immature gene MYL7. S5, also
enriched for HADHA Mut CMs, had a scattered expression of
both genes, MYL7 and MYH7 suggesting further progression to a
pathological state. These data suggest that S4 and S3 are less
mature CMs, representing the previously identified intermediate
CM that can transition into a normal mature CM (S1) or fall into
a diseased state (S5).

Finally, our kinetics model identified two branches as end
states of the pathological HADHA Mut CMs, S6 and S2
(Supplemental Fig. 8C). These two branches identified the two
different HADHA Mut states from our scRNA-Seq analysis, non-
replicating (S2) and replicating/endocycling (S6) HADHA Mut
CMs. Together, these kinetics data in an unbiased manner,
identified WT CMs as one potential starting point that led,
through an intermediate CM state that had not been able to
mature to a matured WT CM, to the pathological non-replicating
and replicating/endocycling HADHA Mut CMs.

Structural and mitochondrial deficiencies of HADHA Mut and
KO CMs. When HADHA Mut and KO CMs were cultured in
glucose-media alone, no obvious defects were observed in
HADHA Mut and KO compared to the WT CMs (Supplemental
Figure 9A,B). However, when cultured 6–12 days in FA media,
sarcomere and mitochondrial defects manifested in the HADHA
Mut and KO CMs, while the WT CMs appeared normal (Fig. 6a,
Supplemental Fig. 9C). After 12D of Glc+ FA media treatment,
WT CMs had healthy myofibrils while the HADHA Mut CMs
showed sarcomere dissolution, as α-actinin staining became
punctate and actin filaments were difficult to detect (Fig. 6a). We
assessed mitochondrial health since the HADHA Mut and KO
CMs were unable to process long-chain FAs by first staining for
mitochondrial ATP synthase beta subunit to examine the pre-
sence of a mitochondrial network. We found that both the WT
and HADHA Mut CMs had many connected mitochondria while
the KO CMs, at 6D FA, had lost their mitochondrial network to
small, more circular mitochondria. To assess the functionality of
these mitochondria, we analyzed the mitochondrial proton gra-
dient via mitotracker orange staining. After 12-days of Glc+ FA
rich media, HADHA Mut CMs had highly depressed mito-
chondrial membrane proton gradient (Fig. 6a, b). Using a mito-
chondrial calcium sequestering dye, Rhod2, we examined the
relative fluorescence intensity in the mitochondria of WT and
HADHA Mut CMs and found a significant decrease in colocali-
zation and intensity of the calcium indicator dye in the HADHA
Mut CMs treated for 12-days of glucose and fatty acid medium as
compared to the WT CMs (Fig. 6c and Supplemental Fig. 9D).

To better assess the sarcomere and mitochondrial disease
phenotype we performed transmission electron microscopy
(TEM) on WT and HADHA Mut CMs after 12D of Glc+ FA
exposure (Fig. 6d). WT CMs showed abundant myofibrils, clear Z
bands but indistinct A-bands and I-bands, and no M-lines,
indicating an intermediate, normal stage of CM myofibrillogen-
esis. Furthermore, WT CMs showed healthy mitochondria with
good cristae formation. In contrast, HADHA Mut CMs showed
poor myofibrils with a disruption of Z-disk structure replaced by
punctate Z-bodies58 and disassembled myofilaments in the
cytoplasm. Interestingly, HADHA Mut CM mitochondria were

Fig. 5 scRNA-Seq reveals multiple disease states of fatty acid challenged HADHA Mut CMs. a Single cell RNA-sequencing tSNE plot of WT compared to
HADHA Mut CMs shows a clear distinction between these two groups. Four conditions of D30 CMs: 6 days of FA treated MiMaC WT CM, 6 days of FA
and SS-31 MiMaC WT CMs, 6 days of FA treated MiMaC HADHA Mut CMs and 6 days of FA and SS-31 treated MiMaC HADHA Mut CMs. b Unbiased
clustering revealed six unique groups. c Heatmap detailing the enrichment of conditions in each cluster. d Heatmap of maturation categories based on
MiMaC cluster. e Heatmap of in vivo mouse maturation markers that are upregulated with maturation. f Confocal microscopy showing that HADHA Mut
CMs have more nuclei than WT CMs. Blue—DAPI, green—ATP synthase beta subunit, and pink—Titin. Inset is of the nuclei shown in grey scale.
g Histogram of the frequency of cells with either 1, 2, 3-, or 4 or more nuclei. HADHA mutant CMs have a significant number of cells with three or more
nuclei. ***p < 0.001, Chi-square test with three degrees of freedom performed. n= 150–225 cells measured. h Downregulated metabolic pathways in
cluster 0 (non-replicating HADHA CMs) as compared to cluster 3 (WT CMs). i Downregulated metabolic pathways in cluster 2 (endoreplicating HADHA
CMs) as compared to cluster 3 (WT CMs). j Upregulated metabolic pathways in cluster 2 (endoreplicating HADHA CMs) as compared to cluster 3 (WT
CMs). Metabolic bubble plot circle size is proportional to the statistical significance. The smaller the p-value, the larger circle. Adjusted p-value 0.01 used
as cutoff. k Branching trajectory kinetics plot based on CellTrails clustering. l Heatmap detailing the enrichment of conditions in each state. Source data are
provided as a Source Data file
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small and swollen with very rudimentary cristae morphology
(Fig. 6d)59. Quantifying the WT and HADHA Mut CM
mitochondria revealed HADHA Mut mitochondria were smaller
in area and more rounded as compared to WT mitochondria
(Fig. 6e, f and Supplemental Fig. 9E, F). Finally, examining
complex I–V proteins showed that HADHA Mut CMs had
depressed complex I–IV protein expression in Glc+ FA condi-
tions (Supplemental Figure 9G). These data show HADHA, but
not control CMs lose sarcomere structure, mitochondrial
membrane potential and calcium homeostasis and morphology
when exposed to FAs.

SS-31 rescues aberrant proton leak in HADHA Mut CMs. To
better understand the pathological state of HADHA Mut and KO
CMs exposed to FAs we functionally assessed their mitochon-
dria. We found that the maximum OCR of Glc+ FA treated
HADHA Mut and KO CMs were significantly depressed as
compared to WT cells (Fig. 6g). Furthermore, HADHA Mut
CMs displayed reduced oxygen-dependent ATP production
(Fig. 6h) and reduced glycolytic capacity (Supplemental Fig. 6H).
Since exposure to FAs led to a reduction in mitochondrial
membrane potential and reduced ATP production, we postulated
that this may be due in part to an increased proton leak60,61. We
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found HADHA Mut and KO CMs had a significantly higher
proton leak than WT CMs (Fig. 6i). Previous studies have
revealed that elamipretide (SS-31), a mitochondrial-targeted
peptide can prevent mitochondrial depolarization, the proton
leak62. Interestingly, a 1 nM treatment of HADHA Mut cardio-
myocytes with elamipretide (SS-31) rescued the increased proton
leak in Glc+ FA challenged Mut CMs (Fig. 6i). These data
suggest that HADHA Mut and KO CMs exposed to FAs resulted
in reduced mitochondrial capacity due in part to increased
proton leak.

HADHA c.1528G > C CMs display structural and mitochon-
drial abnormalities. To test if observed HADHA Mut and KO
CM disease pathology resembled the human clinical disease and
to ensure the phenotype was not due to off-target gRNA muta-
tions, we analyzed a hiPSC line that was derived from a patient
that has the founder point mutation most common in mito-
chondrial trifunctional protein disorder, HADHA c.1528G > C
(Fig. 6j and Supplemental Fig. 1C, D). We differentiated the
HADHA c.1528G > C hiPSCs to cardiomyocytes to assess their
sarcomere structure and mitochondria in the presence and
absence of fatty acids. HADHA c.1528G > C CMs cultured in
glucose have well-formed myofibrils and sarcomeres as seen by
phalloidin and α-actinin staining (Fig. 6k). When HADHA
c.1528G > C CMs were cultured in Glc+ FAs for 12-days, we
found the same sarcomere dissolution and loss of mitochondrial
potential gradient, as shown via mitotracker, as we previously had
shown with our HADHA Mut CM line (Fig. 6k, l and Fig. 6a, b).
These data show a cardiac disease phenotype in human patient
cells with the founder mutation, HADHA c.1528G > C, in a cell
culture model. Furthermore, this third, independent HADHA
mutant line, with a different background from our CRISPR/Cas9
modified hiPSC lines with only a single point mutation in the
gene HADHA at c.1528G > C, recapitulated the disease phenotype
found in our HADHA Mut and KO CMs. Consequently, the data
show CRISPR/Cas9 disease phenotype phenocopies that of the
human clinical phenotype.

Loss of HADHA leads to long-chain fatty acid accumulation.
To assess the disruption of long-chain fatty acid oxidation in

HADHA Mut and KO CMs, we performed untargeted lipidomic
analysis to characterize global lipidomic changes. We found an
increase in long-chain acyl-carnitines in HADHA Mut and KO
CMs as compared to WT CMs with no significant change in
medium-chain acyl-carnitine levels (Fig. 7a, b and Supplemental
Figure 10A). These data suggest that a mutation in HADHA led
to an accumulation of long-chain FAs in the mitochondria.
During the first step of long-chain FAO, saturated FAs will be
processed into FAs with a single double bond, for instance:
14:0→14:1, 16:0→16:1 and 18:0→18:1, while unsaturated FAs, on
the carboxyl end, will go through the first step of FAO and gain
another double bond, for instance: 18:1→18:2 and 18:2→18:3.
Accordingly, we found minimal variation in the levels of the
saturated FAs: 14:0, 16:0 and 18:0 (Supplemental Fig. 10B–D) but,
large increases in the abundance of 14:1, 16:1, 18:1 in the
HADHA Mut and KO CMs along with slight increases in 18:2
and 18:3 in the HADHA KO CMs (Fig. 7c–e and Supplemental
Fig. 7E,F). We also examined the total abundance of triglycerides,
neutral lipids, in the HADHA Mut and KO CMs and found those
to be significantly higher than WT CMs suggesting FAs are not
being catabolized and are instead being packaged for storage due
to their accumulation (Fig. 7f). These data recapitulate the in vivo
findings from short lived HADHA KO mice serum levels of
elevated FA species44.

One of the hallmarks for clinically testing whether a patient has
MTP deficiency is to examine if there are increased levels of
hydroxylated long-chain FAs in patient blood serum or cultured
fibroblasts3,63–65. We found a significant increase in the sum of all
hydroxylated long-chain FAs in the HADHA KO CMs as
compared to the WT CMs (Fig. 7g) while little increase in
medium-chain hydroxylated FAs (Supplemental Fig. 10G). We
next identified all hydroxylated fatty acid species found within
our WT, HADHA Mut, and HADHA KO CM samples. We
identified 14 hydroxylated fatty acid compounds, many more
than what has been previously published for either human or
mouse studies. We found the fold increase of many long-chain
hydroxylated fatty acids to be significantly elevated as compared
to the WT CMs (Table 1). These data re-exemplify the specificity
of mutations in HADHA resulting in long-chain fatty acid
disruption. Furthermore, these data match well with in vivo
mouse data from short lived HADHA KO mice along with data

Fig. 6 Fatty acid challenged HADHA Mut CMs displayed swollen mitochondria with severe mitochondrial dysfunction. a Representative confocal images of
WT and Mut CMs in 12D of Glc+ FA media. b Quantification of mitotracker and ATP synthase β colocalization and intensity. ***p < 0.001, t-test followed
by a Mann-Whitney rank sum test. n= 40 cells per group measured. c Quantification of Rhod-2 and ATP synthase β colocalization and intensity. ***p <
0.001, t-test followed by a Mann-Whitney rank sum test. n= 53–66 cells measured. d Transmission electron microscopy images of WT and Mut CMs
after 12D of Glc+ FA media showing sarcomere and mitochondria structure. e Histogram of mitochondria circularity index for WT and HADHA Mut CMs
after 12 days of Glc+ FA media showed HADHA Mut CMs mitochondria are rounder. n= 81–251 mitochondria measured. f Histogram of mitochondria
area for WT and HADHA Mut CMs after 12 days of Glc+ FA media showed HADHA Mut CMs mitochondria are smaller. g Quantification of maximum
OCR from mitostress assay. Mut and KO CMs as compared to WT CMs after 12D of Glc+ FA media had a significantly lower max OCR. WT CM: 359
pmoles/min/cell, Mut CM: 190 pmoles/min/cell, KO CM: 125 pmoles/min/cell. ***p < 0.001, one-way ANOVA was performed vs WT 12D Glc+ FA. n=
6–19 biological replicates. h Quantification of ATP production from mitostress assay, calculated as the difference between baseline OCR and OCR after
oligomycin. Mut and KO CMs as compared to WT CMs after 12D of Glc+ FA media had significantly lower ATP production. WT CM: 93 pmoles/min/cell,
Mut CM: 51 pmoles/min/cell, KO CM: 43 pmoles/min/cell. ***p < 0.001, one-way ANOVA was performed vs WT 12D Glc+ FA. n= 6–18 biological
replicates. i Quantification of proton leak from mitostress assay, calculated as the difference between OCR after oligomycin and OCR after antimycin &
rotenone. Mut and KO CMs as compared to WT CMs after 12D of Glc+ FA media had significantly higher proton leak. SS-31 treated Mut CMs after 12D of
Glc+ FA had a significantly lower proton leak and non-treated Mut CMs. WT CM: 3.64 pmoles/min/cell, Mut CM: 7.66 pmoles/min/cell, KO CM: 10.52
pmoles/min/cell. **p < 0.01, ***p < 0.001, one-way ANOVA was performed vs WT 12D Glc+ FA. n= 4–19 biological replicates. j Schematic of patient
harboring the point mutation, c.1528G > C, in the gene HADHA and the process of obtaining patient skin cells, reprograming them into iPSCs and then
differentiating them into iPSC-CMs. k Representative confocal images of HADHA c.1528G > C CMs treated for 12-days of Glc or Glc+ FA media.
l Quantification of mitotracker and ATP synthase β colocalization and intensity. ***p < 0.001, t-test followed by a Mann-Whitney rank sum test. n= 31–35
cells measured. Box plot middle line represents the median, x represents mean, bottom line of the box represent the median of the bottom half (1st
quartile) and the top line of the box represents the median of the top half (3rd quartile). The whiskers extend from the ends of the box to the non-outlier
minimum and maximum value. Source data are provided as a Source Data file
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from MTP-deficient and/or LCHAD deficient patient serum and
cultured fibroblasts3,63–65.

These data show that disruption and KO of HADHA leads to a
specific long-chain FA intermediate accumulation. Yet, one of the
striking phenotypes we observed were rounded and collapsed
mitochondria and not bursting mitochondria due to potential FA
overload66. We therefore decided to examine another phospho-
lipid category that regulates mitochondrial structure, cardiolipins.

HADHA and TAZ act in series to mature cardiolipin. Cardi-
olipin (CL) is a phospholipid essential for optimal mitochondrial

function and homeostasis as it maintains electron transport chain
function along with other mitochondrial functions67,68. CL is the
major phospholipid of the mitochondrial inner membrane that is
synthesized in the mitochondria and is dynamically remodeled
during postnatal development and disease16,17. The most abun-
dant species of CL in the human heart is tetralinoleoyl-CL (tetra
[18:2]-CL)69. In cardiac diseases such as diabetes, ischemia/
reperfusion and heart failure, or due to a specific mutation in a
cardiolipin remodeling enzyme tafazzin (TAZ), which leads to
Barth syndrome, tetra[18:2]-CL levels are abnormal70–73. Using
targeted lipidomics, we analyzed WT CMs supplemented with
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and without FAs. We found that FA treated WT CMs resulted in
a significant increase in tetra[18:2]-CL (Fig. 7h), similar to pre-
viously observed findings during in vivo cardiomyocyte postnatal
maturation16,17. These data show that CL maturation in cardio-
myocytes can be induced in vitro. However, the HADHA KO
CMs, after FA treatment, were unable to increase the amount of
tetra[18:2]-CL as compared to WT FA treated CMs. Furthermore,
as shown in postnatal in vivo development, WT CMs shift their
CL profile to a more mature CL profile showing a significant
decrease in CLs with [16:1] and increased CLs with carbons
greater than 18, including the intermediate [18:1][18:2][18:2]
[20:2]16. However, HADHA KO CMs and patient derived
HADHA c.1528G > C CMs were unable to remodel their CL
profiles as efficiently as WT CMs (Fig. 7i). These data show that,
surprisingly, HADHA, in addition to its role in long-chain FAO,
is also required for the cardiomyocyte CL remodeling process.

Since HADHA KO CMs showed a CL remodeling defect, we
next analyzed the cardiolipin species in more detail in WT,
HADHA Mut and KO CMs using full lipidomics. Reinforcing our

targeted lipidomics results, we found that HADHA Mut and KO
CMs challenged with FAs showed an increased abundance of
lighter chain CLs and a depletion of heavier chain CLs (Fig. 7j
and Supplemental Figure 10H). Three CL species, tetra[18:1],
[18:1][18:1][18:1][18:2] and [18:1][18:1][18:2][18:2] were signifi-
cantly enriched in the HADHA Mut and KO CMs (Fig. 7j).
Interestingly, [18:1][18:1][18:2][18:2] CL is specifically depleted
in Barth syndrome patients who have a mutation in TAZ74,75.

It has been previously shown that the HADHA protein has a
similar enzymatic function to monolysocardiolipin acyltransfer-
ase (MLCL AT)76,77. MLCL AT transfers mainly unsaturated
fatty acyl-chains to lyso-CL. It therefore seems plausible that
HADHA has a direct role in remodeling cardiolipin to produce
mature tetra[18:2]-CL species in cardiomyocytes. If TAZ and
HADHA are acting in parallel to produce remodeled CL, they
should both be equally depleting the MLCL pool. When TAZ is
KO’d, there is a dramatic increase in MLCL, showing the direct
usage of MLCL by TAZ to generate mature CL78,79. However,
when HADHA is KO’d, there is no change in the MLCL pool
(Supplemental Fig. 10I). This would suggest that HADHA does
not remodel MLCL but rather CL. If TAZ and HADHA are acting
in parallel, the KO of each should not result in the inverse
accumulation relationship to specific CL intermediates. For
instance, TAZ KO results in the decrease of [18:1][18:1][18:2]
[18:2] CL74,75. Yet in our HADHA KO we see an accumulation of
the same species. We propose that TAZ first remodels MLCL to
an intermediate of CL such as [18:1][18:1][18:2][18:2] and then
HADHA continues to remodel the CL species to tetra[18:2]-CL.

Loss of HADHA function does not augment ALCAT1 func-
tion. To garner a better understanding of how the cardiolipin
profile was changing due to the lack of HADHA, we examined
which new CL species became enriched in the HADHA Mut and
KO CMs. CL species that had fatty acid acyl-chains of saturated
fatty acids, such as 14:0 and 16:0, were enriched in the HADHA
Mut and KO CMs (Fig. 7k, l). We did not identify any CL acyl-
chains that had 18:0. Typically, nascent CL with multiple satu-
rated fatty acid acyl-chains (CLSat), have been synthesized from
cardiolipin synthase (CLS) (Fig. 7m)80. During the remodeling
process of CLSat, the saturated fatty acid acyl-chains are replaced

Fig. 7 Fatty acid challenged HADHA KO and Mut CMs have elevated fatty acids and abnormal cardiolipin profiles. a Model of long-chain FA intermediate
accumulation after the first step of long-chain FAO due to the loss of HADHA. b The sum of all long-chain acyl-carnitines in WT, Mut and KO FA treated
hPSC-CMs. *p < 0.05, one-way ANOVA was performed vs WT 12D Glc+ FA. n= 2–6 biological replicates. c Amount of physeteric acid in the free fatty
acid state in WT, Mut and KO FA treated hPSC-CMs. ***p < 0.001, one-way ANOVA was performed vs WT 12D Glc+ FA. n= 2–6 biological replicates.
d Amount of palmitoleic acid in the free fatty acid state in WT, Mut and KO FA treated hPSC-CMs. ***p < 0.001, one-way ANOVA was performed vs WT
12D Glc+ FA. n= 2–6 biological replicates. e Amount of oleic acid in the free fatty acid state in WT, Mut and KO Glc+ FA treated hPSC-CMs. **p < 0.01,
***p < 0.001, one-way ANOVA was performed vs WT 12D Glc+ FA. n= 2–6 biological replicates. f The sum of all triglycerides in WT, Mut and KO FA
treated hPSC-CMs. ***p < 0.001, one-way ANOVA was performed vs WT 12D Glc+ FA. n= 2–6 biological replicates. g The sum of all hydroxylated long-
chain acyl-carnitine species found in WT, Mut and KO Glc+ FA treated hPSC-CMs. ***p < 0.001, one-way ANOVA was performed vs WT 12D Glc+ FA.
n= 2–6 biological replicates. h Relative amount of tetra[18:2]-CL in WT and HADHA KO CMs treated with either Glc or Glc+ FA. ***p < 0.001, one-way
ANOVA was performed vs WT 12D Glc+ FA. n= 3 biological replicates. i Cardiolipin profile generated from targeted lipidomics for WT, HADHA KO and
HADHA c.1528G > C CMs treated with either Glc or Glc+ FA. *p < 0.05, **p < 0.01, ***p < 0.001, one-way ANOVA was performed vs WT 12D Glc. n= 3
biological replicates. j Cardiolipin profile generated from global lipidomics for WT CMs 12D Glc+ FA, HADHAMuts CM 6D and 12D Glc+ FA and HADHA
KO CMs 12D Glc+ FA. *p < 0.05, **p < 0.01, ***p < 0.001, one-way ANOVA was performed vs WT 12D Glc+ FA. n= 2–6 biological replicates. k The sum
of all CLs that have myristic acid (14:0) in their side chain in WT, HADHA Mut and HADHA KO CM FA treated hPSC-CMs. **p < 0.01, ***p < 0.001, one-
way ANOVA was performed vs WT 12D Glc+ FA. n= 2–6 biological replicates. l The sum of all CLs that have palmitic acid (16:0) in their side chain in WT,
HADHA Mut and HADHA KO CM FA treated hPSC-CMs. ***p < 0.001, one-way ANOVA was performed vs WT 12D Glc+ FA. n= 2–6 biological
replicates. m Schematic diagram of how HADHA works in series with TAZ to remodel CL. Box plot middle line represents the median, x represents mean,
bottom line of the box represents the median of the bottom half (1st quartile) and the top line of the box represents the median of the top half (3rd
quartile). The whiskers extend from the ends of the box to the non-outlier minimum and maximum value. Bar graphs show mean with standard error.
Source data are provided as a Source Data file

Table 1 Hydroxylated FA Species Fold-Change Abundance
Compared to WT 12D Glc+ FA

Hydroxylated
species

WT 12D
Glc+ FA

Mut 6D
Glc+ FA

Mut 12D
Glc+ FA

KO 6D
Glc+ FA

C6:0 1 1.79 5.82* 2.85
C8:0 1 3.61** 9.28** –
C10:0 1 2.36 4.49 1.8
C12:0 1 2.70** 5.17*** 6.08***
C14:1 1 4.84* 16.52*** 10.52***
C14:0 1 1.98 6.82 24.15***
C16:1 1 3.58 14.07 102.47***
C16:0 1 3.05 9.97 189.69***
C18:3 1 2.33 11.08* 55.36***
C18:2 1 3.72 10.14 446.42***
C18:1 1 5.37 14.32 449.16***
C18:0 1 3.01 7.63 209.22***
C20:1 1 1.62 3.98 96.82***
C20:0 1 1.37 6.35 149.29***

One-way ANOVA, n= 2–6 biological samples. *p < 0.05, **p < 0.01 and ***p < 0.001
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by unsaturated fatty acid acyl-chains. Our data suggest a nascent
CLSat accumulation in HADHA mutants.

We next examined ALCAT1 (acyl-CoA:lysocardiolipin acyl-
transferase-1) as a means for the HADHA Mut and KO CMs to
utilize for CL remodeling. Since ALCAT1 has no preference for
fatty-acyl substrate, it should utilize whichever fatty-acyl-CoA
substrate is present81,82. Hallmarks of ALCAT1 activity are an
increase in polyunsaturated fatty acid acyl-chains being incorpo-
rated to CL83. However, when we examined the CL species that
had acyl-chains with fatty acids with a carbon length 20 or
greater, the majority of the HADHA Mut and KO CMs actually
had less species as compared to WT CMs (Fig. 7j). Furthermore,
there was no increase in CL species that had multiple acyl-chains
with fatty acids with a carbon length 20 or greater in any of the
groups. Consequently, these data suggest that ALCAT1 is not
being engaged in the HADHA Mut and KO CMs to compensate
for the loss of HADHA.

Discussion
We have generated the first human MTP-deficient cardiac model
in vitro utilizing MiMaC matured hiPSC-CMs and discovered
that a TFPα/HADHA defect in long-chain FAO and CL remo-
deling results in disease like erratic beating suggesting a pro-
arrhythmic state. We further showed a mechanism of action;
mutations in HADHA resulted in abnormal composition of the
prominent phospholipid, CL due to HADHA’s acyl-CoA trans-
ferase activity76.

CL is important for mitochondrial architecture, it has been
shown to function in organizing the cristae and electron transport
chain (ETC) higher order structure, important for ETC activity,
and acts as a proton trap on the outer leaflet of the inner mito-
chondrial membrane84. CMs with defective HADHA are unable
to generate large amounts of tetra[18:2]-CL, due to their inability
to remodel nascent CL during CM maturation. Hence the
mitochondrial morphology becomes rounded in HADHA Mut,
KO and c.1528G > C CMs. These data suggest that FAO pheno-
types alone might not explain the defects observed in HADHA
Mut, KO and HADHA c.1528G > C CMs and that CL remodeling
is particularly important during the CM maturation process.
Hence, we propose that a mutation in the HADHA enzyme
during the CM maturation process results in an over accumula-
tion of immature CL-saturated species, that may be causal for the
observed mitochondrial defects and pathology (Fig. 7m).

Here we have shown that the MTP-deficient pathology in CMs
leads to an abnormal cardiolipin pattern that results in severe
mitochondrial defects and calcium abnormalities that pre-dispose
CMs to erratic beating in HADHAMut CMs. We identified SS-31
as a therapy to rescue the proton leak phenotype of FA challenged
HADHA Mut CMs. This suggests that SS-31, or other cardiolipin
affecting compounds, may serve as a potential treatment to help
mitigate aspects of mitochondrial dysfunction in MTP deficiency.

Methods
hESC and hiPSC and cardiac differentiation. The hESC line RUES2 (NIHhESC-
09–0013, WiCell, RUESe002-A) and hiPSC line WTC #11 (Coriell Institute,
GM25256), previously derived in the Conklin laboratory85, were cultured on
Matrigel growth factor-reduced basement membrane matrix (Corning) in mTeSR
media (StemCell Technologies). A monolayer-based directed differentiation pro-
tocol was followed to generate hESC-CMs and hiPSC-CMs, as done previously26.
hiPSC-CM cardiolipin assay was done with a small molecule monolayer-based
directed differentiation protocol, as done previously27. Fifteen days after differ-
entiation hPSC-CMs were enriched for the cardiomyocyte population using a
lactate selection process86. We generated cardiomyocyte populations ranging from
40–60% that were then enriched to 75–80% cardiomyocytes after 4 days of lactate
enrichment.

HADHA line creation. Using LentiCrisprV2 plasmid87 (lentiCRISPRV2 was a gift
from Feng Zhang (Addgene plasmid # 52961) two different gRNAs targeted to

Exon 1 of HADHA were designed using CRISPRScan88. Sequences for the gRNAs
can be found in Supplemental Table S12. The gRNA and Cas9 expressing plasmids
were transiently transfected into the WTC line using GeneJuice (EMD Millipore).
Twenty-four hour after transfection, WTCs were puromycin selected for 2 days
and then clonally expanded. DNA of the clones was isolated, the region around the
targeting guides was PCR amplified (see guides in Supplemental Table S12) and
sequenced to determine the insertion and deletion errors generated by CRISPR-
Cas9 system in exon 1 of HADHA. Western analysis was performed to determine
the levels of HADHA protein in HADHA mutants. Thirty-one clones were sent for
sequencing from gRNA1 experiment, six clones (19%) had no mutations while 25
clones (81%) were found to have mutations. Twenty-four clones were sent for
sequencing from gRNA2, one clone had no mutations (4%) while 23 clones (96%)
were found to have mutations. Two of the mutant lines were analyzed further in
this study.

CRISPR off-target. The potential off-targets of the HADHA gRNA were identified
using Crispr-RGEN’s Cas-OFFinder tool89. The top predicted off-targets were then
amplified by GoTaq PCR and sequenced. Off-target primers can be found in
Supplemental Table S13. Sequencing for primer pair #1 can be found in Supple-
mental Fig. 1G.

HADHA c.1528G > C patient and the cell line. The patient manifested the disease
during the first months after birth with hypoketotic hypoglycemia and failure to
thrive, with metabolic acidosis, cardiomyopathy, and hepatomegaly. The skin
sampling to obtain fibroblast cultures was performed with informed consent of the
parents, as approved by the ethical review board of Helsinki University Hospital,
and according to Helsinki Declaration. The HEL87.1 LCHAD patient cell line was
isolated from skin fibroblasts and reprogrammed, by Sendai vector-based Cyto-
Tune-TM method as previously described25. Their stemness characteristics were
confirmed by immunohistochemistry (expression of pluripotent markers OCT4,
SSEA4, Tra-1–60). Quantitative PCR was used to assess the expression levels of
endogenous stem cell markers and to confirm removal of transgene vectors. The
karyotype was confirmed to be diploid, 46XY. The HEL87.1 iPSCs were cultured
and differentiated as described above for hiPSCs and hESCs. Point mutation was
confirmed via Sanger sequencing by amplifying a region around the c.1528G > C
mutation using primers found in Supplemental Table 16.

RNA extraction and qPCR analysis. RNA was extracted from cells using Trizol
and analyzed with SYBR green qPCR using the 7300 real-time PCR system
(Applied Biosystems). Primers used are listed in Supplemental Table S14. Linear
expression values for all qPCR experiments were calculated using the delta-delta Ct
method.

Protein extraction and western blot analysis. Cells were lysed directly on the
plate with a lysis buffer containing 20 mM Tris-HCl pH 7.5, 150 mM NaCl, 15%
Glycerol, 1% Triton X-100, 1 M β-Glycerolphosphate, 0.5 M NaF, 0.1 M Sodium
Pyrophosphate, Orthovanadate, PMSF and 2% SDS90. 25U of Benzonase Nuclease
(EMD Chemicals, Gibbstown, NJ) was added to the lysis buffer right before use.
Proteins were quantified by Bradford assay (Bio-rad), using BSA (Bovine Serum
Albumin) as Standard using the EnWallac Vision. The protein samples were
combined with the 4x Laemmli sample buffer, heated (95 °C, 5 min), and run on
SDS-PAGE (protean TGX pre-casted 4%-20% gradient gel, Bio-rad) and trans-
ferred to the Nitro-Cellulose membrane (Bio-Rad) by semi-dry transfer (Bio-Rad).
Membranes were blocked for 1 h with 5% milk and incubated in the primary
antibodies overnight at 4 °C. The membranes were then incubated with secondary
antibodies (1:10,000, goat anti-rabbit or goat anti-mouse IgG HRP conjugate (Bio-
Rad) for 1 h and the detection was performed using the immobilon-luminol
reagent assay (EMD Millipore). Full blots can be found in the source data file.
Primary antibodies are as follows: Alpha tubulin antibody Cell Signalling Tech-
nologies (2144) 1:2000, Beta tubulin Promega (G7121) anti-mouse 1:4000, Beta
Actin Cell Signalling Technologies (4970) 1:4000, HADHA Abcam (ab54477 anti-
rabbit 1:1000, UCP3 Abcam (ab3477) anti-rabbit 1:200, SLC25A4 (ANT1) Sigma
(SAB2105530) anti-rabbit 1:1000, OXPHOS MitoSciences (MS604/G2830) anti-
mouse 1:1000, anti-GFP Invitrogen (A-11122) anti-rabbit 1:1000.

microRNA overexpression and Knockout. We used LentiCrisprV2 plasmid
(Addgene 52961) to KO microRNAs-141, −200a, −205, and −122. gRNAs for
each miR that had either the protospacer adjacent motif (PAM) NGG cut site
adjacent or in the seed region of the mature microRNA were chosen to test. gRNAs
can be found in Supplement Table S12. The global reduction of each miR was
assessed via TaqMan RT-qPCR with probes specific against the mature form of
each respective miR.

We used the pLKO.1 TRC vector (pLKO.1—TRC cloning vector was a gift from
David Root (Addgene plasmid # 10878) to OE a microRNA91. The genomic
sequence 200 bp up- and downstream of the mature microRNA was amplified and
purified. Primers for each microRNA can be found in Supplemental Table S15. The
amplicons were cloned between AgeI and EcoRI sites of pLKO.1 TRC vector under
the human U6 promoter.
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Viral production. HEK 293FT cells were plated one day before transfection. On the
day of transfection, the OE or KO plasmid of choice was combined with packaging
vectors psPAX2 (psPAX2 was a gift from Didier Trono Addgene plasmid # 12260)
and pMD2.G (pMD2.G was a gift from Didier Trono Addgene plasmid # 12259) in
the presence of 1 μg/μL of polyethylenimine (PEI) per 1 μg of DNA. Medium was
changed 24 h later and the lentiviruses were harvested 48 and 72 h after trans-
fection. Viral particles were concentrated using PEG-it (System Biosciences, Inc).

hiPSC-CM transduction and selection. hiPSC-CMs were transduced on day 14
post-induction in the presence of hexadimethrine bromide (Polybrene, 6 μg/ml).
Lentivirus was applied for 17–24 h and then removed. Cells were cultured for an
additional two weeks. Lactate selection was employed to obtain an enriched
population of cardiomyocytes86. Puromycin selection was used to select for cells
that have positively incorporated the vector. After 2 weeks of culture, cells were
harvested for end point analysis. For the MiMaC group, hiPSC-CMs were trans-
duced with a lower dose of the four different lentiviruses concurrently while
controls were transduced with both control vectors: pLKO.1 and the Lenti-
CRISPRv2 empty vector.

Immunocytochemistry and morphological analysis. Cells were fixed in 4%(vol/
vol) paraformaldehyde, blocked for an hour with 5% (vol/vol) normal goat serum
(NGS), and incubated overnight with primary antibody in 1% NGS, followed by
secondary antibody staining in NGS. Measurements of CM area were performed
using Image J software. Quantification of mitotracker intensity were performed
using Image J software and following previously published methods on colocali-
zation quantification92. Analysis was done on a Leica TCS-SPE Confocal micro-
scope using a ×40 or ×63 objective and Leica Software. Primary antibodies used
were: αActinin 1:250 Sigma A7811 anti-mouse, HADHA 1:250 abcam ab54477
anti-rabbit, ATP Synthase β 1:250 abcam ab14730 anti-mouse, Titin 1:300 Myo-
medix TTN-9 (cTerm) anti-rabbit, GFP 1:300 Invitrogen A-11122 anti-rabbit.
Secondary antibodies and other reagents used were: DAPI at a concentration of
0.02 μg/mL, phalloidin alexa fluor 568 1:250, alexa fluor 488 or 647-conjugated goat
anti-mouse and anti-rabbit secondary antibodies 1:500 (Molecular Probes). Mito-
trackerCMTMRos Life technologies (M7510) used at a final concentration of
300 nM in RPMI with B27 plus insulin supplement, incubated with cells for 45 min
prior to fixation.

Mitochondrial calcium. HADHA Mut and WT CMs were plated following lactate
enrichment at 20,000 cells per Matrigel-coated well in a 24 well, glass bottom plate
(Cellvis) and treated with Glc+ FA medium for 12 days. Cells were stained using
4.5 mM Rhod-2 (Thermofisher R1244) in DMSO and 2 nM Mitotracker green
(Thermofisher M7514) in DMSO for 30 min93. Cells were rinsed with PBS and
returned to culture medium for imaging on the heated, 5%CO2 stage of an inverted
Nikon eclipse Ti equipped a Yokogawa W1 spinning disk. Colocalization analysis
was performed as previously described92.

Micro-electrode array. Electrophysiological recording of spontaneously beating
cardiomyocytes was collected for 2 min using the AxIS software (Axion Biosys-
tems). After raw data collection, the signal was filtered using a Butterworth band-
pass filter and a 90μV spike detection threshold. Field potential duration was
automatically determined using a polynomial fit T-wave detected algorithm.

Microposts (force of contraction and beat rate). Arrays of polydimethylsiloxane
(PDMS) microposts were fabricated as previously described36. The tips of the
microposts were coated with mouse laminin (Life Technologies), and cells were
seeded onto the microposts in Attoflour® viewing chambers (Life Technologies) at
a density of approximately 75,000 per cm2 in RPMI medium with B27 supplement
and 10% fetal bovine serum. The following day, the media was removed and
replaced with serum-free RPMI medium, which was exchanged every other day.
Once the cells resumed beating (typically 3–5 days after seeding), contractions of
individual cells were imaged (at a minimum of 70 FPS) using a Hamamatsu
ORCA-Flash2.8 Scientific CMOS camera fitted on a Nikon Eclipse Ti upright
microscope using a ×60 water-immersion objective. Prior to imaging, the cell
culture media was replaced with a Tyrode buffer containing 1.8 mM Ca2+, and a
live cell chamber was used to maintain the cells at 37 °C throughout the imaging
process. A custom-written matlab code was used to track the deflection, Δi , of each
post i underneath an individual cell, and to calculate the total twitch force,

Ftwitch ¼ P# posts

i¼1
kpost ´Δi

36, where kpost ¼ 56:5nN=μm and the spacing between

posts was 6 μm.

Seahorse assay. The Seahorse XF96 extracellular flux analyzer was used to assess
mitochondrial function as previously described24. The plates were pre-treated with
1:60 diluted Matrigel reduced growth factor (Corning). At around 28 days after
differentiation, cardiomyocytes were seeded onto the plates with a density of 50,000
cells per XF96 well. The seahorse assays were carried out 3 days after the seeding
onto the XF96 well plate. One hour before the assay, culture media was exchanged
for base media (unbuffered DMEM (Seahorse XF Assay Media) supplemented with

sodium pyruvate (Gibco/Invitrogen, 1 mM) and with 25 mM glucose (for MitoS-
tress assay), 25 mM glucose with 0.5 mM Carnitine for Palmitate assay. Injection of
substrates and inhibitors were applied during the measurements to achieve final
concentrations of 4-(trifluoromethoxy) phenylhydrazone at 1 μM (FCCP; Seahorse
Biosciences), oligomycin (2.5 μM), antimycin (2.5 μM) and rotenone (2.5 μM) for
MitoStress assay; 200 mM palmitate or 33 μM BSA, and 50 μM Etomoxir (ETO) for
palmitate assay. The OCR values were further normalized to the number of cells
present in each well, quantified by the Hoechst staining (Hoechst 33342;
Sigma–Aldrich) as measured using fluorescence at 355 nm excitation and 460 nm
emission. Maximal OCR is defined as the change in OCR in response to FCCP
compared to OCR after the addition of oligomycin. ATP production was calculated
as the difference between the basal respiration and respiration after oligomycin.
Proton leak was calculated as the difference between respiration after oligomycin
and after antimycin and rotenone. Cellular capacity to utilize palmitate as an
energy source was calculated as the difference between the average OCR after
second palmitate addition and the final respiration value before the second addi-
tion of palmitate. The reagents were from Sigma, unless otherwise indicated.

Whole-cell patch clamp analysis. WT and Mut CMs were plated as single cells
onto Matrigel-coated glass coverslips and treated with Glc+ FA medium for
12 days. Whole-cell patch clamp recordings were performed on an inverted DIC
microscope (Nikon) connected to an EPC10 patch clamp amplifier and computer
running Patchmaster software (HEKA). Coverslips were loaded onto the stage and
bathed in a Tyrode’s solution containing 140 mM NaCl, 5.4 mM KCl, 1.8 mM
CaCl2, 1 mM MgCl2, 10 mM glucose, and 10 mM HEPES. The intracellular
recording solution (120 mM L-aspartic acid, 20 mM KCl, 5 mM NaCl, 1 mM
MgCl2, 3 mM Mg2+ -ATP, 5 mM EGTA, and 10 mM HEPES) was loaded into
borosilicate glass patch pipettes (World Precision Instruments). Patch pipettes with
a resistance in the range of 2–6 MΩ were used for all recordings. Offset potentials
were nulled before formation of a gigaΩ seal and fast and slow capacitance was
compensated for in all recordings. Membrane potentials were corrected by sub-
traction of a 20 mV tip potential, calculated using the HEKA software. Voltage-
clamp and current-clamp experiments were then performed. To generate a single
action potential, a 5 ms depolarizing current pulse of sufficient intensity was
applied in current-clamp mode. Inward and outward currents were evoked by a
series of 500 ms depolarizing steps from −120 to +70 mV with +10 mV incre-
ments in voltage-clamp mode. Gap-free recordings of spontaneous activity of
patched cardiomyocytes were performed for 30 s with 0 pA current injection to
provide a measure of the maximum diastolic potential (resting membrane poten-
tial) held by the cell without current input. All recordings and analyses were
performed using the HEKA Patchmaster software suite.

RNA-sequencing. Day-30 hiPSC-CMs were harvested for RNA preparation and
genome wide RNA-seq (>20 million reads). RNA-seq samples were aligned to hg19
using Tophat, version 2.0.1394. Gene-level read counts were quantified using htseq-
count95 using Ensembl GRCh37 gene annotations. Genes with total expression
above 1 normalized read count across RNA-seq samples in each binary comparison
were kept for differential analysis using DESeq96. Princomp function from R was
used for Principal Component Analysis. TopGO R package97 was used for Gene
Ontology enrichment analysis. To assess the effects of miR perturbation on cardiac
maturation pathways, each condition was compared against their empty vector
(EV), and upregulated genes (>1.5-fold change) and downregulated genes were
identified (<−1.5-fold change). A hypergeometric test was performed on up- and
downregulated genes separately for enrichment against a curated set of pathways
that are beneficial for cardiac maturation, resulting in a m by n matrix, where m is
the number of pathways (m= 7) and n is the number of conditions (n= 6,
including EV). The negative log10 of the ratio between enrichment p-value for up-
and downregulated genes were calculated to represent the overall net “benefit” of a
treatment: large positive value (>0) means the treatment results in more upregu-
lation of genes in cardiac maturation pathways than downregulation of these genes,
and more negative values means the treatment results in more downregulation of
genes in cardiac maturation pathways. Human fetal and adult ventricular data was
obtained from the Roadmap Epigenomics Consortium98.

Single-cell RNA-sequencing. Raw single-cell RNA-seq data are processed through
the CellRanger pipeline from 10X Genomics. Output of the CellRanger pipeline is
further analyzed using Seurat R package99. Cells with more than 40% of reads
mapped to mitochondrial genes, less than 200 detected genes or less than 2000
Unique Molecular Identifiers (UMIs) are removed. Remaining cells are scaled by
number of UMIs and % mapped to mitochondrial genes. Parameters for tSNE
analysis of maturation single cell RNA-seq data were 2905 top variable genes, top
10 principal components, and resolution 0.5. Parameters for tSNE analysis of
HADHA mutant single cell RNA-seq data were 3375 top variable genes, top 10
principal components, and resolution 0.4. Cell cycle genes from Kowalczyk et al54.
and the CellCycleScoring function in the Seurat package were used to assess the
effects of cell cycle on clustering. Genes detected in at least 25% of cells in either
cluster and have false discovery rate <0.1 are defined as differentially expressed.
Expression values are normalized for each gene across all cells plotted in the heat
maps (i.e., Z-scores). Human in vivo maturation markers are based on genes
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upregulated in adult heart compared to fetal heart in the Roadmap Epigenomics
Project98. Mouse in vivo maturation markers are based on genes upregulated in the
in vivo cardiomyocyte single cell RNA-seq data from Delaughter et al.41. We also
used PCA projection to assess the maturity of our MiMac single cell RNA-seq data
to single cell RNA-seq of human fetal heart development100. We selected genes
significantly higher in adult heart compared to fetal using DESeq (2 fold higher in
adult, FDR < 0.05). We then intersected these genes with the top 30 most highly
expressed genes in each scRNA-seq cluster to get the final gene list for heatmap in
Fig. 3o. Gene Ontology enrichment is performed using the TopGO package97. We
used the CellTrails method57 to further dissect the dynamics of HADHA pertur-
bation. CellTrails is a new algorithm that uses lower-dimensional manifold learning
for de novo chronological ordering. The parameter for gene selection were keeping
genes with fano factor >1.2; parameters for clustering were min_size= 0.02,
min_feat= 10, max_pval= 1e-2, min_fc= 1.5 (each cluster should include at least
2% of all cells, and contain at least 10 genes that are expressed 1.5 fold higher in
that cluster compared to others). The yEd graph editor (https://www.yworks.com/
products/yed) was used to generate visualization of single cell dynamic trails, as
recommended by the CellTrails algorithm.

Calcium transient analysis method. Cardiomyocytes were plated on Matrigel-
coated round glass coverslips. The cardiomyocytes were incubated for 25min at
37 °C with 1mM Fluo-4 AM (Life Technologies, F14201) in Tyrode’s buffer (1.8 mM
CaCl2, 1 mM MgCl2, 5.4 mM KCl, 140mM NaCl, 0.33mM NaH2PO4, 10mM
HEPES, 5 mM glucose, pH to 7.4). The substrate was then transferred to a 60mm
Petri dish fresh with pre-warmed Tyrode’s buffer for imaging. Samples were imaged
using a Hamamatsu ORCA-Flash2.8 Scientific CMOS camera fitted on a Nikon
Eclipse Ti upright microscope. Videos were taken with a ×40 water-immersion
objective at a framerate of at least 20 frames per second. The fluorescence power was
adjusted to ensure adequate capture of fluorescence change during depolarization
without bleaching, and the same fluorescence power was used for all experiments.
The cardiomyocytes were biphasically stimulated at 5 V/cm with carbon electrodes
(Ladd Research, 30250) at either 0.5 Hz or 1 Hz, and at least five beats were captured
during each video for analysis.

Videos were analyzed with a custom MATLAB code; calcium transients were
obtained finding the cell boundary and averaging the fluorescence within the
boundary for each video frame. The background fluorescence was determined
automatically for each video frame and subtracted from the calcium transients. The
calcium transients were then analyzed to find the peak fluorescence (F), baseline
fluorescence (F0), time to peak (Tpeak), and time to 50 and 90% relaxation (T50R, T90R).
The rates to peak, 50%, and 90% relaxation (Rpeak, R50R, R90R) were calculated by
dividing the respective fluorescence change by the respective time. An exponential
decay function (e�t=τ ) was fit to the relaxation between 10 and 90% relaxation to
determine the relaxation coefficient, τ. All of these measurements were obtained for at
least four beats in each video and averaged for comparison.

TEM. Cells were fixed in 4% glutaraldehyde in sodium cacodylate buffer, post fixed
in osmium tetroxide, en bloc stained in 1% uranyl acetate, dehydrated through a
series of ethanol, and embedded in Epon Araldite. 70 nm sections were cut on a
Leica EM UC7 ulta microtome and viewed on a JEOL 1230 TEM.

Glucose and fatty acid media. The base media, which we are calling Glucose
Media, is RPMI supplemented with B27 with insulin. The fatty acid media is the
glucose media with oleic acid conjugated to BSA (Sigma O3008): 12.7 μg/mL,
linoleic acid conjugated to BSA (Sigma L9530): 7.05 μg/mL, sodium palmitate
(Sigma P9767) conjugated to BSA (Sigma A8806): 52.5 μM and L-carnitine:
125 μM. Fatty acid (FA) experiments used this B27+ insulin+ the three FAs (oleic
acid, linoleic acid and palmitic acid), in RPMI media. This media was changed
every other day during the 6-days or 12-days of treatment.

Elamipretide (SS-31). SS-31 came from Stealth BioTherapeutics and was dissolved
in PBS. A final concentration of 1 nM was used in experiments.

Box plots. The ‘x’ in each box plot denotes the average value while the horizontal
bar denotes the median value, no outlier values are shown. * denotes P < 0.05.

Bar graphs. Bar graphs show the mean with error bars showing standard error.

STRING analysis. Protein association maps were generated using STRING version
10.5. In each diagram, genes connected to one another have an association with one
another. There are three action effects: arrow – > positive,–| − negative and line
with a circle on the end—unspecified. There are also eight different action types
that are denoted by line color: green—activation, blue—binding, cyan—phenotype,
black—reaction, red—inhibition, purple—catalysis, pink—post-translational mod-
ification, and yellow—transcriptional regulation. Kmeans clustering was used to
identify the significantly changed genes due to MiMaC for: muscle structure
development and extracellular matrix organization. Markov Clustering Algorithm
(MCL) was used to identify genes MiMaC had downregulated to control cell
division.

Statistical ānalysis. P-values were calculated using student t-test or one-way
ANOVA. For one-way ANOVA analysis that failed the normality test, ANOVA a
Kruskal-Wallis one-way ANOVA of Variance on Ranks was performed. All sta-
tistical tests used an α= 0.05.

Targeted cardiolipin analysis Using LC-MS/MS. We used WT hiPSC-CMs
treated for 12D Glc+ FA media and HADHA Mut hiPSC-CMs treated for 6D and
12D Glc+ FA media. Immediately before extraction, each cell pellet was dissolved
in 40 μL DMSO and the membranes were disrupted by sonication. Cells were
subjected to sonication using 3 cycles consisting of 20 s on, 10 s off. Care was taken
to keep the cells on ice during sonication. After shaking, the suspension was
transferred into a 2 mL glass LC vial.

For cardiolipin extraction, an extraction mixture consisting of 20 mL
chloroform/methanol mix (2:1 v/v) and 30 µL internal standard solution (5 mg PC
(18:0/18:1(9Z)) (Avanti Polar Lipids, Inc., Alabaster, AL) was prepared. Next,
600 μL of the extraction mixture was added to the samples, followed by vortexing
and incubation at −20 °C for 20 min. The samples were then sonicated in an ice
bath for 15 min. Purified water (100 µL) was added, and the samples were shaken
for 30 min at room temperature. After centrifugation at 12,000 × g for 10 min at
4 °C. The bottom phase was transferred to a new glass LC vial and dried under
vacuum. The residue was then reconstituted by adding 150 µL acetonitrile/
isopropanol/H2O (65:30:5, v/v/v), and centrifuged at 20,000 × g for 10 min at 4 °C.
The supernatant was transferred to individual glass vials for MS analysis.

For targeted cardiolipin measurements, 2 µL of each prepared sample was
injected into a 6410 Agilent Triple Quad LC-MS/MS system for analysis using an
electrospray ionization source and negative ionization mode. Chromatographic
separation was achieved on an Agilent 300 SB-C8 RRHD column (1.8 μm, 2.1 ×
50 mm). The mobile phase A was 10 mM ammonium acetate in acetonitrile/H2O
(6:4, v/v), and mobile phase B was 10 mM ammonium acetate in isopropyl alcohol/
acetonitrile/H2O (90:10:1, v/v/v). The mobile phase composition changed from
60% A to 1% A over the 12 min separation, followed by a rapid increase to 60% A
and equilibration to prepare for the next injection. The total experimental time for
each injection was 20 min. The flow rate was 0.26 mL/min, the auto-sampler
temperature was 4 °C, and the column compartment temperature was set to 55 °C.
Targeted MS/MS data were acquired using multiple-reaction-monitoring (MRM)
mode. MassHunter Workstation Software Quantitative Analysis for QQQ B.07.00
(Agilent) was used to integrate extracted MRM peaks.

Untargeted lipidomic analysis. One million cells were extracted with 225 µl of
methanol at −20 °C containing an internal standard mixture of PE(17:0/17:0), PG
(17:0/17:0), PC(17:0/0:0), C17 sphingosine, ceramide (d18:1/17:0), SM (d18:0/
17:0), palmitic acid-d3, PC (12:0/13:0), cholesterol-d7, TG (17:0/17:1/17:0)-d5, DG
(12:0/12:0/0:0), DG (18:1/2:0/0:0), MG (17:0/0:0/0:0), PE (17:1/0:0), LPC (17:0),
LPE (17:1), and 750 µL of MTBE (methyl tertiary butyl ether) (Sigma–Aldrich) at
−20 °C containing the internal standard cholesteryl ester 22:1. Cells were vortexed
for 20 sec, sonicated for 5 min and shaken for 6 min at 4 °C with an Orbital Mixing
Chilling/Heating Plate (Torrey Pines Scientific Instruments). Then 188 µl of LC-
MS grade water (Fisher) was added. Samples were vortexed, centrifuged at 14,000
rcf (Eppendorf 5415D). The upper (non-polar, organic) phase was collected in two
350 µL aliquots and evaporated to dryness. One organic phase aliquot was re-
suspended in 100 µL of methanol:toluene (9:1, v/v) mixture containing 50 ng/mL
CUDA ((12-[[(cyclohexylamino)carbonyl]amino]-dodecanoic acid) (Cayman
Chemical). Samples were then vortexed, sonicated for 5 min and centrifuged at
16,000 rcf and prepared for lipidomic analysis. Method blanks and pooled human
plasma (BioreclamationIVT) were included as quality control samples. WT FA CM
and HADHA Mut 12D FA were N= 2 with each N being a pool of 1–3 samples.
Mut 12DFA #1, #3 and #4 were averaged as 1 sample and WT 12DFA #1, #2 and
#4 were averaged as 1 sample.

HADHA KO CM were N= 3 and HADHA Mut 6D FA was n= 6 where N= 2
with 3 technical replicates per N.

Chromatographic and mass spectrometric conditions for lipidomic RPLC-
QTOF analysis. Re-suspended samples were injected at 3 µL and 5 µL for ESI
positive and negative modes respectively, onto a Waters Acquity UPLC CSH C18
(100 mm length × 2.1 mm id; 1.7 µm particle size) with an additional Waters
Acquity VanGuard CSH C18 pre-column (5 × 2.1 mm id; 1.7 µm particle size)
maintained at 65 °C was coupled to a Vanquish UHPLC System. To improve lipid
coverage, different mobile phase modifiers were used for positive and negative
mode analysis101. For positive mode 10 mM ammonium formate and 0.1% formic
acid were used and 10 mM ammonium acetate (Sigma–Aldrich) was used for
negative mode. Both positive and negative modes used the same mobile phase
composition of (A) 60:40 v/v acetonitrile:water (LC-MS grade) and (B) 90:10 v/v
isopropanol:acetonitrile. The gradient started at 0 min with 15% (B), 0–2min 30%
(B), 2–2.5 min 48% (B), 2.5–11min 82% (B), 11–11.5min 99% (B), 11.5–12min
99% (B), 12–12.1min 15% (B), and 12.1–15min 15% (B). A flow rate of 0.6 mL/min
was used. For data acquisition a Q-Exactive HF Hybrid Quadrupole-Orbitrap Mass
Spectrometer was used with the following parameters: mass range, m/z 100–1200;
MS1 resolution 60,000: data-dependent MS2 resolution 15,000; NCE 20, 30, 40;
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4 targets/MS1 scan; gas temperature 369 °C, sheath gas flow (nitrogen), 60 units,
aux gas flow 25 units, sweep gas flow 2 units; spray voltage 3.59 kV.

LC-MS data processing using MS-DIAL and statistics. Untargeted lipidomic
data processing was performed using MS-DIAL102 for deconvolution, peak picking,
alignment, and identification. In house m/z and retention time libraries were used
in addition to MS/MS spectra databases in msp format103. Features were reported
when present in at least 50% of samples in each group. Statistical analysis was done
by first normalizing data using the sum of the knowns, or mTIC normalization, to
scale each sample. Normalized peak heights were then submitted to R for statistical
analysis. ANOVA analysis was performed with FDR correction and post-hoc
testing.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All of our RNA-Seq (bulk and single cell) can be found at the following GEO Submission
number: GSE135595. Full lipidomics data can be found at the NIH Metabolomics
Workbench Study ID: ST001246.
The source data underlying Figs. 1D, 1F, 2C-F, 3B, D, E, G, I-K, 4A, C, E, F, H, I, J, L,

5G, 6B, C, E-I, L, 7B-L and Supplementary Figs 1A, B, 3A, B, E, 4B, E, 6C, E-J, 9E-H,
10A-I.
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