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Abstract 

The growing concern over the security of computer installations has led to the recent 
development of numerous intrusion detection systems. All of these systems rely on 
features of user and system behaviour to determine the likelihood of an attack. The choice 
of these features is somewhat arbitrary and is based solely on the opinion of an expert. 
This work surveys the existing field of feature selection in an attempt to discover efficient 
algorithms, both search procedures and eval\]ation functions, which select effective features 
for intrusion detection systems. In addition, a new search algorithm, random generation 
plus sequential selection, is presented and compared· to existing algorithms. Experiments 
show that random generation plus sequential selection, backward sequential selection, and 
beam search are the best search procedures to use in feature selection for intrusion detection 
systems. The experiments also showed that error rate evaluation functions are far superior 
to other methods of .evaluating feature subsets . . A final and surprising result is that 
backward sequential selection, although examining only a small portion of the search 
space, always found small feature subsets· of high .predictive ability and is clearly the best 
overall search algorithm. 
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I. Introduction 

Along with the current realization of the importance of computer security, a large number of . 
intrusion detection systems (IDSs) have been recently developed [1-5]. An IDS analyzes 
the audit trails produced by the computer system(s) it is monitoring in an attempt to 
recognize patterns of intrusive behaviour. One type of pattern which an IDS might look for 
is that of a doorknob attack where an attacker attempts to gain illegal access to a computer 
system by entering numerous common login I password combinations. An IDS could 
detect this type of attack by noting that a large number of audit records indicating failed 
login attempts are being produced. 

All of the current IDSs rely on features of user and system behaviour (e.g., number of files 
deleted between login and logout) as input to their analysis algorithms which then 
determine the likelihood of an attack. The choice of these features is somewhat arbitrary 
and is based solely on the experience of an expert We propose a method for selecting 
features to be used in IDSs that is based upon the experimentally derived effectiveness of 
the features at classifying users as ·attackers or non-attackers. In tum, this technique will 
improve the usefulness of current IDSs. Additionally, the complexity of features used in 
IDSs may permit the application of this algorithm to many other domains, such as 
medicinel, where fe~tures of equal or less complexity are present. 

The development of an efficient" feature selection algorithm to be used in an IDS involves 
the implementation and testing of existing feature selection methods. In addition, a new 
feature selection method is implemented and its performance is compared to that of existing 
algorithms. The results are presented in a survey format since the work is comprehensive 
when feature selection is viewed as a search problem. 

The primary goal of this work is the following: 

• discover an efficient feature selection algorithm which allows designers of 
IDSs to determine the best f eatures to monitor in their domain. 

We are supplying a tool for designers of IDSs. A designer will need to develop a database 
of attack data and normal data to be used as input to the feature selection system. The 
system will then determine which of the features present in the attack database are the most · 
valuable at distinguishing attackers from non-attackers. These are the features which 
should be monitored by the IDS. 

A sub-goal of this work is to 

• test existing feature selection search algorithms 

where a search algorithm determines which feature subsets should be evaluated in the 
search space. An entire section is devoted to search algorithms later in this document 

Also motivating this work is the desire to 

• develop a new search algorithm with improved performance, at least in 
particular domains, over existing search algorithms. 

We are particularly interested in enginee1ing a search algorithm that is more effective in the 
domain of intrusion detection. 

1 A heart disease database was used as one of the testbeds for the feature selection algorithms. The features 
contained in this database were extremely complex in nature consisting of binary, ordinal, and categoriCal 
features. 



An important component of any feature selection algorithm is the evaluation function. The 
evaluation function determines the value of feature subsets and serves to guide the search 
algorithm. This leads to an additional goal which is to 

• test existing evaluation fanctions 

for both time complexity and accuracy. Again, an entire section is later devoted to this 
topic. 

Finally, we 

• determine the best combinations of search algorithm and evaluation 
function 

by experimenting with numerous pairings. 

Section II provides the necessary background on feature selection and intrusion detection. 
Since· we are viewing feature selection in the context of a state space search problem, search 
algorithms and evaluation functions are needed, and they are discussed in Sections ID and 
IV, respectively. The databases used in testing the algorithms are described in Section V. 
They include three simulated or randomly generated databases and three machine learning 
datasets (i.e., datasets used to test the performance of machine learning algorithms). 
Section VI presents the experimental results and discusses reasonable parameter selection in 
those search algorithms which are parameterized (e.g., genetic search requires that the user 
specify numerous parameters including the population size). The conclusions which can be 
drawn from this work, in light of the goals, are presented in Section VII, and Section VIII 
provides a discussion on possible directions for future work. 
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IL Background 

This section begins with a discussion of where feature selection belongs when viewed from 
the broad perspective of machine learning. This is followed by a discussion of the 
framework of feature selection, particularly when viewed as a search problem. Open 
problems in the field of feature selection are presented next with the emphasis on those 
problems which this work is primarily addressing. Finally, we introduce intrusion 
detection, including its motivation, a general model, and the application of feature selection. 

II.A Machine Learning 

Machine learning can be grouped into the following categories: 

• concept learning 

• clustering 

• prediction 

• feature selection 

In concept learning, one is given a training and a test set of examples where each example 
includes feature values and its classification. For example, if the concept one is trying to 
learn is (X or Y), then X=l, Y=O is a positive example and X=O, Y=O is a negative 
example. The learning algorithm analyzes the training set and attempts to uncover a 
concept which accurately describes the examples it sees. We determine the accuracy of the 
learning algorithm by calculating the percentage of examples from the test set which were 
incorrectly classified using the learned concept (i.e., its error rate). A classic example of a 
concept learner is the 103 decision tree algorithm (38]. 

Clustering differs from concept learning in that the examples used in the learning process 
are not given a classification. Reverting to the examples of the previous paragraph, (X=l, 
Y=O) and (X=O, Y=O) are instances, but no indication of their class is given. The job of 
the clustering algorithm is to group together examples from the training set which are 
similar, thereby discovering the. classes. Then, the algorithm can be evaluated on a test set 
to see if new instances are placed in the correct class. An example of an effective clustering 
algorithm is presented in [39]. 

Another sub-field of machine learning, called prediction, involves determining what is most 
likely to follow given what has been seen in the past. For instance, suppose a prediction 
algorithm has been given the following set of symbols: 

$@@$@@@$@@@@$@ 

and is asked to guess what the next symbol is most likely to be. In this case, a good 
prediction algorithm would say that ' @' is the most likely candidate for the next character. 
A detailed description of a prediction algorithm can be found in [ 40]. 

The majority of the work in machine learning has. focused on concept learning. This has 
caused a large gap between the sophistication of techniques used in concept learning and 
the other three sub-fields, particularly feature selection. However, the most sophisticated 
of concept learning methods can only do as well as the fea'tures it is given. When one also 
notes that clustering and prediction depend on the.features they use to perform effectively, 
the 'need for research on feature selectiqn is apparen.t 

11.B Feature Selection 

·One can view feature selection as a search through the space of all possible combinations of 
features [6] in an attempt to find the subset of features which will provide the best 
classification performance (e.g., provides the smallest error when distinguishing between 

3 



attacks anq non-attacks). A state in this space is a specific instance of one of these various 
feature combinations. We can represent a state by a binary vector whose length is the total 
num~r of features. A '1' entry represents a feature's inclusion in a state and a 'O' 
represents its exclusion. Fig. 1 shows the search space for three features where the vector 
<l,0,1> represents the state in which features one and three are included and feature two is 
excluded. 

98 
~~ 
~~ 

es 

Fig. 1. Search space for three features. 

For the search, we need an evaluation function which tells us the effectiveness of a 
particular subset of features and an algorithm to guide .the search. A heuristic search2 is 
usually necessary since the size of the state space being searched is 2n where n is the 
number of features (i.e., a feature is either included in the set of features comprising a state 
or it is not). The next two sections present various search algorithms and evaluation . 
functions. 

Open Problems in Feature Selecti.on 

There are two major open problems in feature selection, as well as a number of less 
significant ones. We outline them below. 

Problem 1: Quickly find an optimal or near-optimal subset of features 
given an initial set of features. 

Given a certain number of features, n, the task is to choose the subset of k features (k = 1, 
... , n) which give the optimal performance. If the features are being chosen for a classifier 
(i.e., a concept learner), the subset of features which provides the lowest error rate on the 

2 A heuristic search is also referred to as a sub-optimal search since it does not examime every state in the 
search space and therefore may not find the optimal solution. 
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classification task is considered as the optimal. This has two important results. First, by 
choosing a subset of features which is smaller than the initial set, we reduce the complexity 
of the task at hand. (There is always some complexity associated with the extraction of a 
feature and its use in the given task.) ~econd, it is kn~wn that removing irrelevant or noisy 
features from data can decrease the error rate of a classification algorithm. 

In intrusion detection, this problem translates into finding the best features to extract from 
the audit trail3 given all the information which can be audited by the system. Reducing the 
number of features that need to be monitored is extremely important since auditing can be a 
significant burden (say 20% of the CPU time) on the system. Intrusion detection is also a 
classification task since it attempts to distinguish between attack and non-attack behaviour. 
This implies that it may be wise to use an error rate evaluation function when selecting 
features for an IDS. By removing irrelevant or noisy features, we should be able to 
improve the error rate of the IDS. 

Problem 2: Automatically derive features which improve the classification 
task. 

The input to an algorithm which attempts to solve this problem consists of both positive 
and negative examples of the target.concept (i.e. , the concept we are trying to learn) with 
the examples containing all available descriptive information. In other words, there has not 
been any filtering of the data to create an initial set of features so that the algorithm must 
derive the most effective features. Note how this differs from Problem 1 where we are 
selecting the best subset of features given an initial set of features. In Problem 2, we do not 
have this pre-filtering of the data yet we are still required to find a set of relevant features. 
We can thus see how Problem 2 is a generalization of Problem 1. A data analysis 
technique might be one method of solving this problem. 

For an IDS, this translates into feeding the algorithm with unfiltered a.udit data consisting of 
_both attack and non-attack behaviour. The algorithm then determines the features it can 
derive from the audit data which are the most predictive of an attack. Compare this· to 
Problem 1 where we begin with an initial set of features, selected by experts as relevant to 
detecting attacks, and then we choose the optimal subset from this initial set. Problem 2, 
on the other hand, derives the optimal subset of features from all available information in 
the audit trail. 

There are other less significant problems in feature selection that need to be addressed as 
well. · · 

Problem 3: How do we construct higher-level features which can impro~e 
the classification accuracy? 

There may be certain ways of combining features which improve the performance of a 
classifier. An example of feature construction in intrusion detection might be to combine 
the features login tirrie and number of files deleted. Fig. 2 illustrates this combination with 
a decision tree where a single node representing the new feature is created from two nodes. 

3 An audit trail is a file (or files) containing records which describe activity on the system. An example 
record might contain the name of a user, a program he executed, an input file, and other relevant 
information. · · 
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attack non-attack 

attack non-attack 

before feature construction after feature construction 

Fig. 2. Feature construction. 

There has been considerable work done on this problem in the area of machine learning 
(19]. 

Problem 4: Once we have selected an optimal set of features, how do we 
prioritize the various features? 

A feature selection algorithm gives the optimal subset of features, but it does not indicate 
.how to attach weights or importance to the features. For instance.failed login and number 
of browsing events may be selected as the optimal set of features. Further, let us assume 
that failed login is a more predictive feature (i.e., is more effective) than number of 
browsing events. Our analysis algorithm should reflect this by giving a higher weight to 
failed login. 

Feature threshold. algorithms, as in [ 17], are methods which might be applied to this 
problem. These techniques are currently used as feature selection algorithms. As each 
training example is seen, weights which correspond to the features are adjusted to reflect 
the new information given by the example. At the end of the training, only those features 
whose weight is above a certain threshold are included in the final feature subset Using 
such an algorithm to determine the feature weights is straightforward: use the_ weights 
determined by the algorithm as the weights of the features in the optimal feature subset 

11.C Intrusion Detection 

Intrusion detection is the art. of analyzing audit trails on a computer system in order to 
discover unauthorized behaviour, as determined by a security policy. Fig. 3 shows the 
process of intrusion detection. Features are extracted from the audit trails and sent to the 
various analysis components of the intrusion detection algorithm. These components, 
which are described in the following paragraph, use the features to make predictions about 
whether or not current behaviour is intrusive and then feeds these predictions to an expert 
system. The job of the expert system· is to resolve the predictions made by the analysis 
components and produce an overall intrusion score. Note that the expert system may itself 
need to extract features from the audit trail in order to resolve the various predictions. 

The current consensus among the intrusion.detection community is that there should be two 
analysis components in an intrusion detection algorithm: 1) signature analysis and 2) 
anomaly detection. Signature analysis refers to the process of matching current behaviour 

6 



to known attack scenarios stored in a database. If current behaviour closely matches one or 
more of the scenarios, it is predicted with high certainty that an attack is in progress. 
Anomaly detection refers to how closely current behaviour of a particular user statistically 
matches previous behaviour for the same user. Large differences between current and 
historical behaviour may indicate that a legitima,te user's account has been compromised or 
that the legitimate user is an insider threat. When resolving the predictions made by these 
two analysis components, more importance is given to the prediction generated by the 
signature analysis component. In other words, behaviour which closely matches a known 
attack is more indicative of intrusive activity than behaviour which is unusual. 

Signature 
Analysis 

Audit 1--­

Trails 

PrediCtions 

Expert 
S stem 

Suspicion Level 

Fig. 3. A general model of intrusion detection. 

11.C.1 Motivation 
. . 

There are two frequently asked questions about the need for intrusion detection: 

1) Do people break inio computer systems? 

2) Why not make computer systems highly secure? 

The first question can be responded to by discussing results obtained by UC Davis' 
Network Security Monitor (NSM) [4]. The NSM detected approximately 400 attacks in a 
three month period when installed on· the UC Davis Computer Science Department's 
Ethernet. In addition, when installed at an unnamed DOE site for three consecutive nights, 
it detected several attacks each night. The attacks discovered by the NSM provide a lower 
bound on the number of attacks actually occurring since the NSM only detects faidy simple 

7 



intrusion attempts such as doorknob attacks. The results obtained by the NSM are clear 
evidence that intrusions on computer systems are extremely frequent 

The second question, "Why not make computer systems highly secure?" can also be 
effectively answered. First, it is infeasible to install a highly secure system. Enonnous 
amounts of time and money have been invested in current systems. The cost of their 
removal and the purchase of the new systems would be enonnous. Making a highly secure 
system also removes much of the flexibility that helped to make the systems attractive in the 
first place (i.e., there is no way one can achieve high levels of security without placing 
severe restrictions on valid users). An example restriction is fire walling in which the 
computer system is completely separated from the outside world. How do you prove that 
there are no holes in a secure system? In other words, one cannot be certain that the new 
system will not have any security flaws. Moreover, even a highly secure system is still 
vulnerable to attacks by insiders (i.e., being able to do something is different from being 
allowed to do so by the security policy). For example, the super user has permission to 
delete all user files on his system, but is not given the right to do so by policy. As an 
alternative, we might decide to correct all the flaws in our current system. Unfortunately, it 
is impossible to find all security flaws in a system implying that the system would still be 
vulnerable to unknown fonns of attack. Intrusion detection algorithms (ID As) can be used 
to incrementally increase the security of a system by finding previously unknown security 
flaws through the detection of intrusions that exploit them. 

11.C.2 Feature Selection in Intrusion Detection 

Considering. again the intrusion detection model in Fig. 3, the role of feature selection· in an 
IDS is evident. Feature selection is used to determine which features are most beneficial in 
the prediction process of the analysis components. Features that do not relate to intrusive 
behaviour4 will hinder the most sophisticated of analysis algorithms. The expert system 
may also find it necessary to extract features from the audit trail in order to resolve 
predictions made by the analysis algorithms. Again, feature selection can be used to 
detennine the best features to use in this resolution stage. 

Those features which prove to be useful to IDSs will in all likelihood include binary, 
discrete, and continuous features as well as higher-level combinations of attributes (e.g.; 
combining the change directory command with the list contents of directory command to 
create a feature called browsing behaviour). A feature must be able to handle the fact that 
there will be many negative instances (i.e., most user sessions are not attacks) and few 
positive instances (attacks). For instance, if a feature is very good at detecting positive 
instances but raises many false alarms (classifying non-intrusive behaviour as intrusive), it 
may be less valuable than a feature that is only average at detecting attacks but raises no 
false alarms. In addition, it is likely that a large number of features will be necessary since 
some features will be better than others at detecting certain kinds of intrusions. · For 
example, a large amount of 1/0 activity may be indicative of infonnation leakage whereas a 
domination of CPU time may be a denial of service attack. Another indication of the need 
for a large number of features are the varying levels of abstraction at which features might 
be useful. High-level features are combinations of features, such as browsing behaviour, 
which might be useful at characterizing the general nature of a user session. Low-level 
features, on the other hand, are the physical characteristics of a user's keystroke dynamics 

4 Features can be positively or negatively correlated to intrusive behavior. For instance, a positively 
correlated feature might be whether or not a user attempted to modify the password file. If this feature is 
positive, it may indicate that the user is an attacker. A negatively correlated feature might be whether or 
not a user read their mail since many auackers do not read the mail for accounts into which they have 
broken. 
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and could be useful at detecting masqueraders (someone other than the legitimate user who 
accesses an account). This could be done by comparing the masquerader's typing 
behaviour to a model of the legitimate user's keystroke patterns. The model may contain 
'normal' ranges for values such as overall typing speed and may also include patterns of 
frequently keyed words (e.g., login and password). The pattern of a word could include 
the time between keystrokes, the force with which keys are struck, etc. 
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III. Search Algorithms 

A search algorithm is needed to direct the feature selection process as it explores the space 
of all possible combinations of features. A search procedure usually examines a small 
portion of the search space since this space can be ·enormous. When determining which 
state to evaluate next, a search algorithm makes use of the values of previously visited 
states in order to guide the feature selection engine into those regions of the search space 
where individual states have low error rates and few included features. 

Some of the search algorithms have similar characteristics allowing us to organize them 
according to the following categories5: 

• Exhaustive Algorithms 

• Sequential Algorithms 

• Randomized Algorithms. 

The characteristics of each category are discussed and several examples from each category 
are presented in the remaind~r of this section. 

III.A Exhaustive Algorithms 

This class includes the following search algorithms: 

• Exhaustive Search (ES) 

•Branch and Bound (B&B) 

•Approximate Monotonicity with Branch and Bound (AMB&B) 

•Beam Search (BS). 

ES is a true exhaustive algorithm since it examines every state in the search space. B&B 
and AMB&B, on the other hand, do not examine every state; however, they perform 
exhaustive search in the limit. BS is a variation on the exhaustive best-first search 
algorithm. In order to keep the search within reasonable bounds, a limit is placed on the 
memory of BS. 

ID.A.1 Exhaustive Search · 

ES naively examines every state in the search space. It is an optimal search in that it is 
guaranteed to find the best feature subset, as determined by the evaluation function in use, 
if the algorithm ever terminates. As mentioned previously, ES can only be used when the 
full feature set contains a small number of features, e.g., less than 20, since the size of the 
search space is exponential in the number of features. 

The order.of this algorithm is o( 2n) as the size of the search space is 2n and ES examines 

every state in that space. Fig. 4 shows the region Qf the search space examined by ES. 
The top of the region is the empty feature subset (i.e., the subset containing no features) 
and the bottom represents the full feature subset (i.e., the subset containing all the 
features). The search space is hierarchically organized from small feature subsets to larger 
ones as we move from the empty feature subset to the full feature subset. In other words, 
feature subsets close to the full feature subset contain more features than those subsets 

5 In reference [22), the various search algo~ithms are also divided into three categories: historical 
algorithms, algorithms from artificial intelligence, and monte carlo algorithms. The monte carlo 
algorithms directly correspond to the randomized algorithms; however, the characteristics of the first two 
categories do not correspond to the exhaustive or the sequential algorithms. 
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close to the empty feature subset. Notice that the graph is entirely shaded to signify the 
completeness of ES. 

Empty Feature Set 

Full Futw"e Set 

Fig. 4. Exhaustive search. 

ill.A.2 Branch and Bound [9] 

This heuristic from the class of exhaustive algorithms is guaranteed to find the optimal 
feature set as long as the evaluation function is monotone. Monotone means that a set of a 
set of features will perform no better than any set of which it is a proper subset. In other 
words, if we remove any feature or combination of features from a set of features, the 
resulting subset performs no better and may perform worse than the original set 

There are two criteria that the B&B algorithm attempts to satisfy. The first criteria is that 
the optimal feature subset be as small as possible. (Recall from the discussion in Section 
II.B, Open Problems in Feature Selection, that removing irrelevant or noisy features not 
only reduces the.complexity but also improves the accuracy of the learning algorithm which 
makes use of the features.) The second criteria is a threshold placed on the value calculated 
by the evaluation function. For instance, if the error rate of a classifier is used as the 
evaluation function, feature subsets which have an error rate greater than the threshold are 
discarded and are not considered for the optimal feature subset. 

B&B begins its search from the full feature set. The search proceeds by removing features 
_ _.,.....,_ rom this set -u-ntil the· error rate goes beyond the threshold amount. Because of the 

monotonicity property, we know that. removing any more features from this set will not 
improve its value and the search can be cut off below this state. The algorithm now 
backtracks exploring other ways of removing features (analogous to depth-first search) 
which do not violate the threshold and which may contain fewer features. 

The threshold placed on the evaluation function is B&B's primary advantage over ES. The 
threshold allows us to ignore, during the remainder of the search, all proper subsets of any 
·state whose error is greater than the threshold. This greatly reduces the size of ·the search 
space and still guarantees that we will find the optimal feature subset. Disadvantages of 
B&B include its reliance on the monotonicity of the evali.Jation function. Most classifiers 
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do not exhibit thi~ property and therefore cannot be reliably used as evaluation functions 
with a B&B search. The other disadvantage of B&B is that, although it can significantly 
reduce the size of the search space, its complexity is still exponential in the limit. This is 
due to the fact that B&B performs exhaustive search in the portion of the search space it 
visits. 

In Fig. 5, we see that all feature subsets with an error rate less than that of the threshold are 
examined leading to an exhaustive search around the full feature subset. Also note that · 
none of the feature subsets towards the empty feature subset are examined. The 
implications of this are that good feature subsets with few features are not likely to be 
found. 

Empty Feature Set 

Full Feature Set 

Fig. 5. Branch and bound. 

111.A.3 Approximate Monotonicity with Branch and Bound 

AMB&B [20] is an improvement on the classical B&B algorithm. In the classical version, 
the search space below (i.e., proper subsets of) feature subsets which violate the threshold 
of the evaluation function may be ignored. In the modified version, the algorithm is able to 
effectively use non-monotonic evaluation functions, particularly classifiers, since the 
threshold used to terminate the search is relaxed. 

Let us assume that the evaluation function, represented by E(·), is the error rate of a 
classifier and that the threshold is 't. Further, let us assume that there is a tolerance A 
placed on the threshold. We classify a feature subset Fas [22] 

I) feasible if E(F) $; 't. 

2) conditionally feasible if 't < E(F) $; 't·(l +A). 

3) infeasible if E(F) > 't·(I + A). 

Feature subsets in Class 1 above are within the threshold placed on the evaluation function. 
From amongst these feature subsets, the best feature subset is chosen to be the one with the 
fewest number of features. Class 2 subsets are not within the threshold, but are within the 
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tolerance placed on the threshold. None of these feature subsets will be chosen as the best 
subset since their error rates are too high; however, the search is allowed to continue from 
these states. (In classical B&B, there are no Class 2 feature subsets.) Those feature 
subsets in Class 3 are beyond the tolerance level and the search is not allowed to expand 
from these states. 

The primary motivation for AMB&B is the fact that the performance of classifiers is 
frequently improved by removing irrelevant or noisy features. If one attempts to use a 
classifier as the evaluation function for B&B, some states with an error rate lower than the 
threshold may never be found. This could happen when states exist which have error rates 
lower than the threshold and are proper subsets of states whose error rates are greater than 
the threshold. In AMB&B, the search can continue beyond the original threshold so that 
feasible states containing fewer features may be found. For example, in Fig. 6, the first 
feature subset contains four features and has an error rate of 15%, feasible with both 
classical B&B and AMB&B. However, the state of three features has an error of 17% 
which is beyond the threshold of 15%. The classical algorithm will not evaluate any proper 
subsets of <0,1,1,0,l> due to the assumption of strict monotonicity. AMB&B, on the 
other hand, considers this state to be conditionally feasible since its error is within the 
tolerance level of 22.5%. The search is allowed to continue and a feasible set of only two 
features may be found. 

't = 15% 

!:,,. = 0.5 

(1+!;,,.)--t=22.5% 

Fig. 6. AMB&B example. 

AMB&B is at least as complex as B&B and is therefore an exhaustive search in the limit. 
Fig. 7 shows three regions corresponding to the three classes of feature subsets in an 
AMB&B search. The clear region contains those subsets whose value is beyond both the 
threshold and the tolerance level. Subsets in this region are not visited. Those subsets in 
the regions denoted by the thick lines are beyond the threshold but within the tolerance 
level. These .subsets are visited but cannot be chosen as the optimal feature subset. 
Finally, the region closest to the full feature subset contains those subsets whose value is 
less than the threshold. The feature subsets in this region can be chosen as the best feature 
subset. 
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Full Feature Set 

Fig. 7. Approximate monotonicity with branch and bound. 

IIl.A.4 Beam Search 

BS is a type of best-first search which uses a bounded queue to limit the scope of the 
search. The queue is ordered from best to worst with the best states placed at the front of 
the queue. The search algorithm operates by taking the state at the front of the queue, 
theoretically the most promising state, and extending the search from that state. Each new 
state which is visited is placed in its proper sorted position in the queue. 

Our current implementation of BS is fundamentally the same as FSS (see III.B.1). That is, 
as each state is removed from the head of the queue, all possible ways of adding one 
feature to that feature .subset are attempted and the resulting states are inserted in their 
proper position in the queue. For example, consider a BS with a queue size of five in a 
search space of three features (see Fig. 1) with the queue initialized to the empty feature 
subset. 

tail->(0,0,0)<-head 

The next states to be examined are (1,0,0), (0,1,0), and (0,0,1) after removing the empty 
feature subset from the queue, and they have error rates of 25%, 15%, and 27%, 
respectively. The resulting state of the queue becomes: · 

tail->(0,0, 1)->(1,0,0).->(0,1,0)<-head 

In FSS, only the state (0,1,0) would have been kept and the othe.r two states discarded. · 
Assuming that (1,0,1) is the state with minimum e1Tor, FSS will never find it since it has 
no way of backing up by removing the second feature. BS, on the other hand, still retains 
the state (1,0,0) which will lead it to the optimal state. · 

If there is no limit on the size of the queue, BS is an exhaustive search. However, by 
placing a limit on the queue size, those .states with low values (e.g~ . high error rates) will 
eventually fall off the end of the queue, effectively pruning the search at those states. It is 
interesting to note that, when the limit on the size of the queue is one, beam search is 

equivalent to FSS and has a complexity of o( n2). 
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One way of explaining BS is that it explores promising paths in the search space until they 
are exhausted. For example, consider the case where BS has found a region of the search 
space that produces feature subsets of high value. As the search is extended from the best 
subset, this region of the space will be examined until all states from this region have been 
removed from the queue. At this point, the states with lower values will have moved from 
the tail of the queue to the head and will be expanded. One of these states may lead to 
another region containing states of high value. If so, this region will also be thoroughly 
examined and so on. 

If one of the first regions examined contained states with relatively high values but was in 
reality only locally optimal, it is hoped that the search which expands from the states of 
smaller values will eventually lead to the global optimum. In effect, BS avoids local optima 
by preserving solutions from varying regions of the search space. In Fig. 8, we see how 
BS sends many fingers down into the search space as it explores various paths. 

F.mpty Featw-e Set 

Full Furure Set 

Fig. 8. Beam search. 

Parameter Selection 

The only parameter to BS is the maximum length of the queue. Our experiments with 
varying queue lengths, which were performed on all the datasets presented in Section V, 
indicate that a maximum queue size of at least the number of features is enough to obtain 
accurate results. Unfortunately, when using a slow evaluation function (e.g., a classifier 
that must be trained and tested for each subset), datasets with more than approximately 30 
attributes could not be run with a queue size greater than ten. This was because queue sizes 
greater than ten caused the search algorithm to perform a near exhaustive search. · 

ID.B Sequential Algorithms . 

The class of sequential algorithms includes the following search procedures: 

. · • Foiward Sequential Selection (FSS) 

•Backward Sequential Selection (BSS) 
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• (p, q) Sequential Selection (PQSS) 

• Bi-Directional Search (BDS). 

All these algorithms either add or remove one or more features during each iteration. FSS 
adds one feature at each step whereas BSS removes exactly one feature. PQSS alternates 
between adding features in one step and removing features in the next step. BDS 
simultaneously performs two searches: one which adds a single feature at each step and 
another that removes a single feature. 

III.B.1 Forward Sequential Selection 

The algorithm for FSS begins by adding the individual feature which obtains the best 
performance to the empty set of best features. Next, all the remaining features are tested 
with this single feature to see which combination performs the best. The pair of features 
providing the highest predictive ability is assigned to the best set of features. Continue 
adding features to the feature set in this fashion until no feature increases the value of the 
evaluation function by at least some pre-determined threshold amount The search stops at 
this point The optimal set of features returned by this heuristic are those features contained 
in the best set. 

The inability of this algorithm to remove features once they have been added allows 
features that have become obsolete, after the addition of other features, to remain in the best 
feature set. The algorithm is thus limited in that it does not examine every state in the 
search space (caused by its inability to backtrack) and may not find the best solution. 

If we were to apply FSS to the search space for three features depicted in Fig~ l; the states 
<1,0,0>, <0,1,0> and <0,0,1> would be evaluated first. If <0,0,1> was determined to be 
the state with the highest value, given the evaluation function, the next states evaluated 
would be <1,0,1>.and <0,1-,1>. Assuming that neither of these increased the value of the 
evaluation function by at least the threshold amount, FSS would stop and state <0,0,1> 
would be selected as the optimal state. This means that the combination of features which 
gives the best performance, as determined by the search algorithm and evaluation function 
in use, is feature one by itself. 

The complexity of FSS can be determined by examining the number of feature subsets 
evaluated each time a new feature is selected. Initially, no features have been selected and 
the algorithm must look at how each feature performs individually. This requires n 
evaluations. During the next stage, only those n-1 feature subsets resulting from adding 
the remaining features one by one to the current set of selected features are evaluated. 
Continuing in this fashion, the algorithm performs 1 + 2 + ... + n-1 + n calculations plus · 
one calculation for the empty subset 

(fi)+ 1 = (n+ l)·n + 1 
i=l 2 

Looking at the previous closed form expression, FSS is seen to be an o( n2 ) algorithm. 

Fig. 9 shows that part of the search space examined by FSS, denoted by the area of the 
graph containing the thick lines. We can see that most of the subsets evaluated are those 
which contain only a few features since the search is broadest near the empty feature 
subset. Towards the full feature subset, the region examined by FSS narrows as the 
options for adding features decrease because many of the features have already been 
selected. It is important to understand that, although the region of the search space 
examined by FSS narrows as the algorithm approaches the full feature set, the number of 
features in the subsets is increasing. In other words, the graph refers to the states visited 
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by the search, not the number of features per state. Note that the graph is not to scale since 
the actual size of the search space examined is much smaller. 

Fmpty Feature Set 

Full Feature Set 

_Fig. 9. Forward sequential selection. 

IILB.2 Backward Se~uential· Selection 

BSS works in . the opposite manner when compared to FSS since it removes features 
instead of adding them. At·each step in the algorithm, the feature whose removal results in 
the smallest decrease in the value of the evaluation function is removed. (In some cases, 
removing a feature may actually increase the value of the evaluation function. These 
features should clearly be removed as well.) The algorithm halts when it is impossible to 
remove any single remaining feature without a significant loss in performance. Its principal 
disadvantage is its inability to reevaluate the usefulness of a feature after it has been . 
discarded. 

The order of B SS is identical to that of FSS, o( n2). In addition, the appearance of the 

search space examined by BSS is similar to that examined by FSS, except that the majority 
of the search occurs near the full fe·ature subset instead of near the empty feature subset (see 
Fig. 10). . 
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Fmpty Feat~ Set 

Full Feature Set 

Fig. 10. Backward sequential selection. 

ID.B.3 (p, q) Sequential Selection 

PQSS is a generalization 9f the forward and backward sequential selection techniques. p 
and q are both positive integers with preferring to the number of features to add at each 
step and q the number of features to remove. For instance, (2, 1) sequential selection 
begins by adding the best pair of features to the feature set. (The two best single features 
are not added, but the two features which when evaluat:ed together give the best result are 
added.) This is followed by the removal of the single worst feature from the best feature 
set. This process is continued until the desired feature set size has been reached (i.e., the 
user may want to know the best feature· subset of size k out of n features) or the best 
feature set contains all the features. Note that (0, 1) sequential selection is equivalent to 
BSS and.(1, 0) sequential selection is equivalent to FSS. 

This generalized sequential selection technique attempts to compensate for the weaknesses 
of FSS and BSS by allowing some degree of backtracking. In particular, it attempts to 
remove features that have been wrongly chosen by FSS and reconsiders features that have 
been unwisely discarded by BSS. 

Although slightly more complex than the straightforward sequential selection techniques, 
the number.of states evaluated by PQSS is only a constant factor larger than the number of 
states examined by FSS or BSS; thus, the order is the same. Fig. 11 highlights the area of . 
the search space explored by (2, I) sequential ~lection. The algorithm moves up and 
down in the search space as it-alternates between adding· and ·removing features. In this 
particular example, the search gradually approaches the full feature set since ·the number of 
features added at each step is greater than the number of features removed. If there were 
more features removed than added at each step, the algorithm would search from the full 
feature set to the empty feature set. 
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Empty Feature Set 

Full Feature Set 

Fig. 11. (p, q) sequential selection. 

111.B.~ Bi-Directional Search [22] 

In this search heuristic, both the forward and backward sequential techniques are utilized. 
FSS ·is performed from the empty feature set and BSS is performed from the full feature set 
with the two searches converging in the middle of the search space. At each step of FSS, 
care must be taken to avoid adding a feature which has already been discarded by BSS. 
Conversely, BSS must never discard a feature which has already been added by FSS. If 
either of these conditions is broken, the two algorithms will never converge to the same 
feature subset in the search space. · 

This heuristic utilizes information from both FSS and BSS by forcing the algorithms to 
·agree on a feature ·subset. Before FSS selects its next feature, it checks to see if it has been 
discarded by BSS. If ii has; this is an indication that selecting this feature is unwise and 
the second best feature is seleeted. Before BSS removes its next feature, ~t checks to see if 
that feature has aJready been add~d by FSS and, if it has, it attempts to discard its second 
worst feature. Of course, if the sec.and choice is also disallowed by the other search . 
algorithm, the third choice is attempted and so on. 

The heart of this algorithm is both BSS_ and FSS and consequently shares the same o( n2 ) 

complexity. We can see its resemblance to the basic sequential selection techniques in Fig. 
12. The only difference is that the forward and backward searches performed as part of the 
BDS halt once they meet in the middle of the space. 
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Full Feature Set 

Fig. 12. Bi-directional search. 

ID.D Randomized Algorithms 

Algorithms from this class include 

•Genetic Search (GS) 

• Simulated Annealing (SA) 

•Random Generation plus Sequential Selection (ROSS). 

The common thread linking this class of search algorithms is their use of randomness to 
escape local minima in the search space. For instance, if the error rate of a classifier is used 
as the evaluation function, we may arrive at a region of the search space where, no matter 
-which state is visited next, the error rate does not improve. It may be that another region of . 
the search space contains feature subsets with lower error rates, and, unless we can escape 
from the current region, they will never be found. Randomness allows the search to leave 
such local minima by periodically accepting moves to states with higher error rates. The 
idea is that other regions of the search space may be more fruitful and should be examined. 

Ill.D.1 Genetic Search 

Genetic algorithms are an attempt to mimic evolutionary processes in the hope of finding . 
efficient solutions to problems. They commence by constructing an initial population 
consisting of candidate solutions to the ·problem being solved. Then, the algorithm 
proceeds through a number of loops, known as generations, ·during which new solutions 
are created and evaluated. Each generation begins with the construction of a mating set, 
usually consisting of numerous copies of the best candidate solutions from the population. 
Offspring are then created in pairs from the mating set, in an operation known as 
crossover, by combining characteristics of two members of the mating set for each pair. 
Next, the offspring are mutated by some random perturbation of each member (e.g., 
randomly adding or removing a feature from a set of features). Finally, a new population 
is formed either by·selecting the best solutions from the population and the offspring or by 
selecting the best solutions from only the offspring. 

The basic algorithm is as follows. 
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initiafue population 

for if-1 to number_of_generations do 

create a mating set from the population 

perform crossover on the mating set to create the offspring 

mutate the offspring 

create a new population from the old population and the offspring 

endfor 

Fig. 13. Genetic algorithm. . 

When adapting genetic algori~hms to the task of feature selection, the population is 
initialized to contain binary vectors representing feature ·subsets. The implementation of . 
GS used for the experiments randomly generates feature vectors to initialize the population. 
Using a random number generator, a bit of a vector is initialized to one if the corresponding 
random number is less t11an 0.5 and is initialized to zero otherwise. Other possibilities exist 
for the creation of an initial population which may be more effective for different 
·experimental goals (e.g., one.can bias the initial population to contain small feature subsets 
if one is primarily interested in finding small subsets and is not as concerned with the error 
rate). However, this seemed the most general and universally applicable method of 
performing the initialization. 

After creating the initial population, the algorithm iterates through the generations. A 
mating set is created at the beginning of each generation which consists of numerous copies 
of the better feature subsets from the population. The number of copies made of a 
particular subset is proportional to the worth of the subset (i.e., the best subset will be 
more prevalent in the mating set than only a good subset). 

The breeding or crossover stage of the algorithm occurs next. This stage answers the 
question of how to combine the various members of the mating set to produce the 
offspring. The implementation used here can be described by the following algorithm: 

for if-1 to (population_size I 2) do 

end for 

select two members from the mating set 

select a crossover point 

with probability Pc, create two new members of the offspring by combining 
the members of the mating set at the crossover point 

Fig. 14. Crossover algorithm. 

At each step through the algorithm, two members (the parents) are chosen randomly from 
the mating set Next, a crossover point somewhere between one and the maximum number 
of features is randomly selected. If a random number (between 0.0 and 1.0) is · less than 
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Pc. the crossover rate, the two parents are split at the crossover point and their respective 
sections combined to create two new members of the offspring. For example, if the two 
members of our mating set are chosen to be 

<0,l,0,0,1> and <1,l,1,0,0> 

and the crossover point is chosen as two, the two offspring are 

<0,1,1,0,0> and <1,l,0,0,l>. 

Crossover on the mating set is followed by the mutation operation on the offspring. The 
implementation used for the experiments randomly flips bits in the offspring's binary 
vectors with probability Pm. the mutation probability. 

The final step during each generation is the creation of a new population from the old 
population and the offspring. The method used in our implementation selects the best 
members from both the old population and the offspring. 

The order of this algorithm can be determined by observing that, for each generation, an 
off spring set is created which is then merged with the old population to form the new 
population. Therefore, the only new subsets wh~ch need to be evaluated during each 
gene~ation are in the offspring set. In addition, an inspection of the algorithm shows that 
the offspring set size will be no· greater than the.population size. Given that g is the number 
of generations and p is the population size, the order is O(g · p). 

GS can be thought of as. exploring various solutions from the population in parallel. · A 
portion of the population may be in a particular region of the search space while other 
gr9ups lie in separate regions altogether. This parallel search is depicted in Fig. 15 by the 
numerous unconnected regions which are shaded. 

Fropty Feature Set 

' 

Full Feature Set 

Fig. 15. Genetic search. 

Parameter Selection 
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Our implementation of genetic feature selection requires that four parameters be input by the 
user6. The parameters are · 

•number of generations 

• population size 

• crossover rate 

• mutation rate. 

Optimal selection of parameters is an open problem in the field of genetic algorithms; 
however, some work on the subject has been performed [28-32]. Most of this work 
suggests that the population size is the most important choice and that optimal parameter 
selection is very dependent on the problem being solved. In addition, it appears that there 
is a connection between the selection of the number of generations and the population size. 
If the population size is small, good results can still be obtained if the number of 
generations is high. Conversely, a small number of generations can be compensated for by 
a large popl}lation size [41]. 

Reference [32] describes results from experiments which involved a rrieta-level search (also 
genetic) through the space of possible · control parameters. The testbed had five 
optimization problems, each of which was a .numerical test function. Two different optimal 
parameter settings were found based on two metrics used to evaluate the parameter vectors. 
One of the measures was obtained by taking the averaged results of performance and was 
referred to as the on-line measure. The other measure, the off-line measure, was the global 
best solution found by GS using the parameter set. Using the on-line measure, these were 
the best parameters found [32]: 

• population size = 30 

•crossover rate= .95 

•mutation probability= 0.01 

and for the off-liQe measure: 

• populati_on size = 80 

• crossover ra.te.= 0.45 

• mutation probability = 0.01. 

The number of generations was not a parameter to the algorithms since each one was tested 
by evaluating exactly 5000 solutions in the search space. The number of generations, 
therefore, was high for small populatioQs and small for large populations. 

Several interesting points about parameter seiection for genetic algorithms were made in 
[32] as well. It was pointed out that smaller populations allow .quicker convergence since 
the genetic operators of crossover and mutation are performed more rapidly. Additionally, 
small populations require· that ar lea5t one of either the crossover rate or the mutation rate 
parameters be high, else high perfonnance structures (feature subsets) quickly dominate the 
population. Also, it appears that the crossover rate is inversely proportional to the 

· population size. In other words, as the population size increases, the crossover rate should 
be decreased for better results. (This can be seen in: the two optimal settings shown above 
as one has a population size of 30 and a ·crossover rate of 0.95 whereas the other has 80 

6 Different implementations require different parameters. In general, the population size, crossover rate, and 
mutation rate are inherent in all impleme~tations'. Other parameters include the generation gap, scaling 
window, and selection strategy. See (32) for details. 
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and. 0.45, respectively.) This is probably related to the fact that a high crossover rate (or 
high mutation rate) helps keep high performance members from dominating small 
populations. Another point made was that care must be taken in choosing the mutation rate 
since values above 0.1 performed similar to pure random search. A final comment was 
that, although genetic algorithms perform well given a wide range of parameter selections, 
poorly selected control parameters can cause premature convergence to sub-optimal 
solutions. 

Another standard parameter vector for genetic algorithms is presented in [34]. The 
parameter settings are 

• population size = 50 

• crossover rate= 0.6 

•mutation probability= 0.01. 

These standard parameter settings were used to obtain a rough indication of the best 
parameters to a genetic algorithm performing feature selection. However, more weight was 
given to the results of our experiments which were specifically designed to· determine good 
parameter settings. The experiments were run on the disjunctive normal form database, 
described later in Section V.A.2, with different parameters used for each experiment. 
Basically, all parameters except one were held constant in order to individually determine 
the optimal setting for each parameter. Based on these experiments, the following values 
for the parameters were chosen and used in the remainder of the trials: 

number of generations ~ 25 

population size ~ number of features 

crossover rate= 0.75 

mutation rate = 0.1 

· In general, the .number of generations and population size should be as large as possible 
within the user's complexity constraints. It appears, however, that if these two parameters 
are at least as large as the limits given above, the results are acceptable. Choosing the 
crossover rate, since it appears to have little effect on the efficiency of the algorithm, is a 
much less.vital decision. A general rule of thumb is that this value should be reasonably 
close to LO, otherwise the size of the offspring set will may be too small. (One may also 
want to heed the previous advice of using larger crossover rates for smaller populations.) 
The mutation rate does have a significant effect on the outcome of the algoritpm. An 
optimal choice of the mutation probability will allow. the search to .focus on the more 
promising regions of the search space without becoming trapped in local minima. A large 
value (e.g., ~ 0.25) of the mutation probability will not allow the search to focus in the 
better regions of the search space and will in fact closely resemble random search. A small 
value (e.g., close to 0.0) will not allow the search to escape local minima. Experimentation 
indicated that a value of 0.1 is a. reasonable choice for this parameter. 

IIl.D.2 Simulated Annealing 

In order to understand SA, it is first helpful to understand the origin of the algorithm in 
physical annealing. Annealing concems the cooling of a substance to its low temperature . 
equilibrium. Care must be taken during the annealing process to cool slowly when 
approaching the equilibrium temperature or, instead of arriving at a crystalline structure 
with few or no defects, the resulting solid may be glassy or may even be crystalline but 
with many defects. 

References [ 44-46] all concern the process of simulating annealing; however, the 
pioneering work on the subject is attributed to Metropolis, et.al. [33]. They produced a 

24 



model which accurately simulated the behaviour of thermal systems through the use of 
random variates and a probabilistic model. In the model, changes in the system are always 
accepted if they lead to states with lower temperatures. More significantly, a system 
change leading to a higher temperature state is accepted with a certain probability. As the 
system approaches equilibrium, the probability of accepting such moves decreases in 
proportion to the system temperature. 

The analogy to feature selection is virtually straightforward. Continue to accept moves that 
lead to, for example, lower error rates. To avoid becoming trapped in local minima, 
occasionally accept moves leading to states with higher error rates. However, as the error 
rate approaches 0.0, decrease the probability of accepting moves to higher error rates as the 
search is very likely close. to the global minimum. 

A more detailed description of the algorithm follows [22]: 

pick an.annealing schedule 

· create initial solution 

current_solution f-- initial_solution 

for if--1 to steps do 

. while times_to_loop[i] -::t: 0 do 

endfor 

new_solution f-- transforrn(current_solution) 

~E = E(new_solution) - E(current_solution) 

accept the move with probability P = exp(-~F/fi) 

if "move not accepted" then 

else 

endif 

endwhile 

times_to_loop[ij f-- times_to_loop[i] - 1 

current_solution f-- new_solution 

Fig. 16. Simulated annealing algorithm. 

The initialization phase of the algorithm involves picking an annealing schedule and 
creating an initial solution. An annealing schedule is of the form [To, times_to_loop[O]], 

.... , [Tste_ps. times_to_loop[steps]] where Ti is the temperature at step i and 
times_to_Ioop[i] is the number of times unaccepted moves can be generated at the ith step 
before going to the next step. The construction of the annealing schedule requires four 
parameters from the user: the number of steps in the annealing schedule, the initial 
temperature (fQ), a constant r used to calculate the temperatures in the annealing schedule, 
and the times to loop at each step. The remaining temperatures (f1 through Tsteps) in the 
annealing schedule are derived by taking Ti+l = r·Ti. As in physical annealing, the 
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annealing schedule must be carefully constructed in order to reach optimal or near optimal 
solutions. 

The initial solution for feature selection is the feature subset from which the search 
originates. The null feature subset was used in our experiments, mainly to bias the search 
towards small feature subsets. Other initial solutions are possible and would alter the 
outcome of the search. 

Following the creation of an initial solution, the main loop of the program iterates through 
the annealing schedule. Each step of the annealing schedule is itself a loop which is 
controlled by the values of Ti and times_to_loop at that step in the annealing process. For 
instance, at step i, the temperature used to calculate the probability of accepting a move is Ti 
and the number of unaccepted moves which can be generated is times_to_loop[i]. 

Each iteration of the inner loop transforms the current solution into a new solution. The 
bits in the binary vector of the current solution were randomly flipped in order to perform 
the transformation in our experiments. Next, the difference between the error rate (AB) of 
the new solution and the cmTent solution is calculated and used, along with the temperature 
at this step, to dete1mine whether or not to accept the new solution. (Note that, if the new 
solution has a lower error rate than the current solution, the move is always accepted.) 
When the move is not accepted, the number of times to loop at this step of the annealing 
.schedule is decremented; otherwise, the current solution is set to the new solution. 

An analysis of the algorithm shows that it has a nested loop structure with the number of 
steps in the annealing schedule being the limit on the outer loop and the times to loop at 
each step the limit on the inner loop. Notice on the inner loop that times_to_loop is not 
decremented at each iteration, but only when a move is not accepted. This means that the 
algorithm may evaluate several states before generating a move that is not accepted. 
No.netheless, the number of states evaluated before a move is .not accepted .should average 
to a constant and have little effect on the order analysis. Ifs is the number· of steps in the 
annealing schedule and t is the number of times to loop at each step, the order of SA is 
O(s · t) . 

Fig. 17 demonstrates how SA escapes local minima by probabilistically accepting moves to 
states with higher error·rates. The search first narrows to a very ·small region of the search 
space which, let us assume, corresponds to a local minima. Then, a move to a higher error 
rate may be accepted which breaks the search out of the local minima, possibly moving it 
closer to the global minimum. Again the search may find a local optima and escape to find 
a region of even lower error rates and so on. 
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Empty Feature Set 

Full Fearure Set 

Fig. 17. Simulated annealing. 

Parameter Selection 

Numerous parameters and the implementation chosen for the transform operator strongly 
affect the performance of SA. The transform operator determines which state to visit next 
given the current solution. If the .transform operator does not depend on the current 
solution, SA reverts to random search. The implementation used for our experiments 
flipped bits in the binary vector of the current solution with probability 
mutation_probability. In general, choice of the transform function may be the most 
important decision in the implementation of a SA search algorithm. 

The parameters used in our experiments include 

• mutation probability of the transform operator 

• number of steps in the annealing schedule 

• the constant r used to calculate the temperatures in the annealing schedule 

• number of times to loop at each step 

• initial temperature. 

The number of steps in the annealing schedule is primarily an issue of complexity; the more 
the steps, the higher is the complexity and usually the more accurate are the results. 
However, the constant r (0.0 ~ r ~ 1.0), which is used in the construction of the annealing 
schedule, has a more significant effect on the search algorithm. If r is large (i.e. , close to · 
1.0), the temperatures in the annealing schedule decrease gradually, allowing moves to 
states of higher error rates to· occur more frequently. As a result, the algorithm is very 
unlikely to become trapped in local minima, but it is also very unlikely to converge to an 
optimal solution since it is frequently accepts moves to higher error rates. If r is near 0.0, 
the temperatures in the annealing schedule rapidly approach 0.0 implying that moves to 
states of higher error rates. will almost never be accepted. The search will converge 
quickly, but most often only to a locally optimal solution. .. 
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The number of times to loop at each step, much like the number of steps in the annealing 
schedule, is primarily a matter of complexity. A larger value adds to the complexity and is 
also more likely to find a ·hetter solution. The final parameter, the initial temperature, is 
similar to the constant r in its effect A high initial temperature increases the randomness of · 
the search whereas a low initial temperature may force the search to rapidly converge to a 
locally optimal solution. 

We performed extensive experimentation on the disjunctive normal form dataset, described 
in Section V.A.2, using various parameter settings to arrive at these values: 

• number of steps in annealing schedule ~ 20 

• r = 0.9 

• initial temperature = 0.1 

• times to loop ~ 50 

• mutation probability = 0.1 

Ill.D.3 Random Generation Plus Sequential Selection [ 42] 

This search algorithm is another attempt to use randomness as part Qf the feature selection 
process. In particular, it injects randomness into the classical forward and backward 
sequential selection techniques. Here is a brief description of the algorithm. 

for i(-1 to number_of_generations do 

randomly generate a feature subset 

perform FSS from this subset 

perform BSS from this subset 

end for 

Fig. 18. RGSS algorithm. 

In our implementation, a feature subset is created by generating a random number between 
0.0 and 1.0 for each bit in the subset. If the random number is less than 0.5, the bit is one 
and is zero otherwise. ·· 

FSS and BSS by themselves are plagued by the inability to backtrack and reevaluate earlier 
decisions. RGSS is an attempt to alleviate this drawback by originating the sequential 
search procedures in varying regions of the search space. One can think of the search 
space as being broken into paititions. Inside of each of these partitions, either FSS or BSS 
will obtain the locally optimal solution (i.e., the best solution in that partition). The hope is 
that one of the randomly generated subsets will fall .inside the partition containing the 

. globally optimal solution and either FSS or BSS will proceed to find it. Depending on the 
complexity of the problem, there may be many. or relatively few of these partitions. The 
number of generations should be large for problems of great complexity to increase the 
probability that a randomly generated subset will fall in a partition containing the optimal or 
a near optimal solution. 

The complexity of this algorithm is determined by observing .that, during .each generation, 
both FSS and BSS are performed. · This means that the number of states examined per 
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generation is O(n2
), the complexity of FSS and BSS individually. Thus, if g is the 

number of generations, the complexity of the algorithm is O(g · n2 
). 

The large black points in Fig. 19 are the randomly generated feature subsets. From each of 
these points, the upside-down funnels represent BSS and the upright funnels represent 
FSS. 

Empty Feature Set 

Full Feanue Set 

Fig. 19. Random generation plus sequential selection. 

Parameter Selection 

The only parameter to ROSS is the number of generations. A value of ten was used for all 
of the experiments and seemed sufficiently large to obtain accurate results. However, since 
the probability of finding an optimal feature subset increases with ~ach generation, this 
value should be as large as possible within the given complexity constraints. 

111.E Considerations When Choosing a Search Algorithm 

Choosing a search algorithm for a particular feature selection task is a complicated process 
which is highly dependent on the characteristics of the dataset (i.e., the num.ber of features, 
and whether the features are continuous, categorical, and/or binary). For instµice, if we 
have a dataset for which feature subsets can only be accurately evaluated at high costs 
(e.g., by using a neural network), we will be. forced to use one of the sequential techniques 
or a scaled down version of one of the random searches to stay within our complexity 
constraints. For example, we could use genetic search with a small population size and 
few generations. On the other hand, if your evaluation function is simple and still 
reasonably accurate on the datas.et, a more exhaustive search such as BS or B&B may be in 
order. 

It is also important to know how optimal a feature subset you wish to find and how long 
you are willing to wait for a·search algorithm to find such a subset. If you.do not require 
that a near optimal feature subset be found and you · want fast convergence to a solution, 
one of the sequential techniques may be called for. · However, if you require that a very 
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optimal subset be found and do· not care how long the algorithm executes, you may wish to 
use one of the exhaustive algorithms. · 

. In general terms, an effecti".e search algorithm has both rapid convergence and the ability to 
avoid local minima. If the algorithm does not converge rapidly, the complexity is usually 
unmanageable. On the other hand, the inability to avoid . local optima will cause the 
algorithm to find solutions that ate unacceptable due to their high degree of sub-optimality. · 
Without proper care, rapidly converging algorithms will only find a local minimum and 
algorithms which find the global minimum may perform nearly exhaustive searches. 

111.E.1 Exhaustive Algorithms 

Ill.E.1.a Exhaustive Search 

As the size of the search space is exponential in the number of features, ES can only be 
used when the number of features is less than around 15 (which yields approximately 
32,000 states). One possibility for the use of ES is to first run one of the other search 
m~thods to reduce the number of features to a workable number, and then perform ES. 

III.E.l.b Branch and Bound Techniques 

Both the B&B and AMB&B are subject to two primary drawbacks: 1) in the limit, they 
perform exponential search; 2) the evaluation function used must be absolutely monotonic 
for the B&B and nearly so for AMB&B. 

The second drawbaGk, that of requiring a monotonic evaluation function, is perhaps the 
biggest limitation of the algorithm since it biases the algorithm towards large feature 
subsets. This can readily be seen by recalling that, when using a monotonic evaluation 
function, the value of any set of features will be no greater than the value of any set of 
which it is a proper subset. Therefore, small feature subsets, which are optimal or near­
optimal, may never be found. 

B&B does not appear to be very useful as a general feature selection algorithm ~ince it is 
limited by both its complexity. and its need for a monotonic evaluation function~ This 
means that it cannot be used on large datasets (e.g., .greater than 20 attributes) or with 
classifiers that are non-monotonic. Since most classifiers improve their performance when 
irrelevant and noisy features are removed, the great majority cannot be used with B&B. 

Ill.E.1.c Beam Search 

Recall from Section III.A.4 that BS is basically an improvement over PSS. Consequently, 
BS should perform well in all situations where FSS is appropriate and give slightly better 
results. This hypothesis is supported by the experiments presented in Section VI. -

III.E.2 Sequential Algorithms 

Unlike ES which examines every state in the search space, the sequential techniques (FSS, 
BSS, PQSS, and BDS) visit only a small fraction of the space. Consequently, these 
methods can be very sub-optimal for some kinds of .datasets (e.g., datasets with a large 
number of features) since optimal or near-optimal solutions may lie in a region of the search 
space which was not visited. 

We expect that the sequential techniques may not work well in situations where the ability 
to backtrack is essential. To demonstrate where the ability to backtrack is needed, let us 
assume that we are running an experiment and are at a point where PSS has selected a set 
of five features. However, let us also assume that there is another set of five features 
which is different than the set found by FSS and provides a lower error rate. (Recall that 
this is possible since· PSS does not examine every feature subset consisting of five features, 
but only those subsets containing the previous best subset of four features plus each 
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individual remaining feature.) FSS does not have the ability to backtrack and remove 
features in order to select the features co1responding to the more effective subset. 

On the other hand, the sequential methods are likely to perform effectively on simple 
datasets describing, for example, linear functions since backtracking should not be 
necessary. In addition, sequential techniques may be the only alternative when using a 
slow evaluation function since more optimal searches are not feasible. 

111.E.3 Randomized Algorithms 

GS, SA, and RGSS all introduce a degree of randomness into their respective searches. 
This randomness can allow these algorithms to avoid local minima and converge closer to 
globally optimal solutions. Parameter selection is extremely important (especially to GS 
and SA) and exhibits a profound effect on their performance. The art of selecting these 
parameters is poorly understood at this time and is a potential limitation to their use. 
Fortunately, the algorithms are robust enough to perform reasonably well enen for 
mediocre control parameters. 

These appear to be very promising choices for a.search algorithm. It is conceivable that, 
with proper parameter selection, the algorithms can both converge rapidly (e.g., a small 
population size for genetic algorithms) and find globally optimal solutions. 

111.E.4 Summary 

Table 1 summarizes the main properties of the algorithms belonging to each of the 
categories discussed above. 

accuracy complexity advantages disadvantages 

exhaustive always find exponential high accuracy high complexity 
algorithms optimal solution 

sequential good if no quadratic simple and fast cannot backtrack 
selection backtracking 
algorithms needed 

. randomized good with generally low designed tc difficult to 
algorithms proper control escape local choose good 

parameters minima parameters 

Table 1. A summary of search algorithms. 
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IV. Evaluation Functions 

An evaluation function is needed to calculate the effectiveness of a particular set of features 
after the search algorithm has chosen it for examination. The search algorithm, whichever 
one is currently in use, utilizes the value returned by the evaluation function to help guide 
the search. For instance, FSS tries all possible ways of adding a feature to the current best 
feature subset at each step of the algorithm. The feature subset resulting in the best 
performance, according to the evaluation fanction, is made the current best subset. The 
search then continues from this current best feature subset. · 

The above example demonstrates the importance .of the evaluation function to the search 
process. If the evaluation function indicates that a particular subset of features is more 
effective than another subset when in fact it is not, the best search algorithm will be led 
astray and will in all likelihood return an inferior solution. In other words, the relative 
accuracy of the evaluation function is important, not its absolute accuracy. To demonstrate 
this, let us assume that we are using a neural network based classifier as the evaluation 
function and it determines that two feature subsets SI and S2 provide error rates of 3% 
and 5%, respectively. During another experiment, subsets SI and S2 are again evaluated, 

. this time by a Bayesian classifier, and obtain error rates of 25% and 20%, respectively. 
The neural net classifier indicates that Sl is the more effective subset whereas the Bayesian 
classifier indicates S2. Let us assume that, in reality, S2 is a more effective subset than SL 
Since the Bayesian classifier has correctly determined that S2 is the better of the two 
_subsets, it outperforms the neural net classifier in this situation although its absolute error 
rates are higher. 

Another factor to be considered is the speed of an evaluation function. Given two 
evaluation functions that are equally adept at distinguishing between the worth of feature 
subsets, the one that calculates the value of a state more rapidly is the one which should be 
used. Also note that a particular evaluation function can be used with any of the search 
algorithms (except in the case of B&B, which requires a monotonic or near monotonic 
evaluation function), although different evaluation functions may work better with 
different search algorithms. 

There are three different kinds of evaluation functions that can be used to determine the 
value of a state in the seareh. There are those that use 

• the intrinsic properties of the data 

• the classification accuracy 

• an estimate of the classification accuracy or incrementally calculate the 
classification accuracy. 

There are some fundamental differences between these three methods. For instance, using 
intrinsic measures is less costly than determining the error rate. This is because most 
intrinsic measures involve straightforward calculations of simple functions whereas 
classifie~s require training and testing on a significant amount of data. On the other hand, 
the extra effort put into evaluating.a state by using the classification accuracy is likely to 
result in a better estimate of its utility. 

The three subsections which follow give examples.and a general description of each of the 
various kinds of evaluation functions. 

IV.A Intrinsic Properties of the Data 

The term intrinsic properties refers to any information which can be extracted from the data 
and no attempt is made to classify previously unseen examples using this information. 
There are various categories of evaluation methods which are based upon the intrinsic 
properties of the data [9]: 
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• probabilistic distance measures 

• probabilistic dependence measures 

•interclass distance measures 

• entropy measures. 

The remaining subsections describe each of these in greater detail. 

IV.A.1 Probabilistic Distance Measures 

The following formula represents the general operation of probabilistic distance measures: 

J = J f(P(;/w;),P(w;)) d;, i = 1,2 

where P( e /w;) refers to the probability of feature vector~ given class W; and P( W;) is the 

a priori probability of class w; (i.e., the number of instances from class W; divided by the 

total number of instances). To qualify~ a probabilistic distance measure, the function /0 
must be defined so that the value of ]satisfies the following conditions: 1) J ~ 0, 2) 

J = 0 when P(g/w;). i = 1,2 are equal (overlapping), and 3) J is maximum when 

P( g /w; ), i = 1, 2 are well separated (non-overlapping). If the features used in the feature 
vectors are good, the gap between the conditional probabilities of the two classes for each 
feature vector will be significant and the value for J should be large. Poor features will 
likely result in nearly equal probabilities and the value for J should be small. 

One type of probabilistic distance measure is the Bhattacharyya distance [9], given by 

J =-In J ~P(~/w,)· P(g/w2 ) dg 

After a brief inspection, it can be seen that it satisfies the constraints, noted above, required 
of a probabilistic distance measure. The specific characteristics of the Bhattacharyya 
distance are that it does not use the a priori probabilities and that it takes the square root of 
the product of the conditional probabilities to calculate the value of a state. This method 
was implemented and used 'during our experimentation process. 

IV.A.2 Probabilistic Dependence Measures 

These measures calculate the dependence between the feature vector e and the class w. If 

they are independent, IP(g/w)-P(~)I will be 0 since P(g/w) = P(g) and no information 
is gained from the ·feature vector. However, when they are highly dependent, 

IP( e /w )- P( e)I will be large since class knowledge either increases or decreases the 
probability that the feature vector will occur. The dependence implies that there is 
information in the feature vector ; which distinguishes the conditional probability from the 
a priori probability. The presence of this information in tum implies that the features being 
used allow a more accurate prediction of a feature vector's membership in a particular class. 
The Patrick-Fisher method, shown below, is one example of a probabilistic dependence 
measure. 

J = P(wJ(J(P(g/w;)-P(g))Yi dg). i = 1,2 

IV.A.3 Interclass Distance Measures 
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Interclass distance measures [9], like the probabilistic measures, are methods used for 
calculating the utility of feature subsets without determining the error rate. These methods 
measure the ability of feature subsets to separate the classes and rely on the assumption that 
attribute vectors of different classes will lie in distinct regions of the search space. The · 
average pairwise distance between training examples from different classes is calculated for 
the various feature subsets with higher values of the average pairwise distance being 
translated into better feature subsets. 

An example of an interclass distance measure, the Euclidean distance, follows: 

where n is the number of features in a pattern vector and ekj is the jth feature of pattern 

vector e1 • This measure calculates the distance, Euclidean style, between attribute vectors 

ek and e,. The part of the formula inside the large parentheses is the sum of the squares of 
the differences between feature values from the two pattern vectors. The square root of this 
value is then taken and returned as the distance. 

The formula given above only calculates the distance between two individual feature 
patterns. To calculate the average pairwise distance between two classes, we must use the 
formula: 

where Ni is. the number of examples in class W; and eik is the kth pattern vector of class 
w;. d represents the distance function of which the aforementioned Euclidean distance is 
an example. 

IV.A.4 Entropy Measures 

This type of measure is very similar to the methods of probabilistic dependence except that 
the a posteriori probabilities, P( w/ e}. are used to determine the dependence between a 
feature vector and the various classes. (Recall that the probabilistic dependence measures 
use the probability of a feature vector given a class to assess the dependence.) -Given a 
particular attribute vector, if all classes are equally probable, then the uncertainty is a 
maximum and little has been learned from the feature vector. A large variance between the 
a posteriori probabilities for a pattern vector indicates that the dependence is high and the 
features used to represent the attribute vectors are effective. One example of this kind of 
measure is the Quadratic: 

IV.B Classification Error Rate 

The second type of evaluation function is a classifier. The idea is to train a classification 
system (e.g:, back-propagation neural network, Bayesian classifier, decision tree, etc.) 
with some of the available data and test it on the remaining data. (Standard machine 
learning methodology is to train on two-thirds of the data and test on the remaining one­
third.) The data are vectors of feature values where each vector is labeled with the class to 
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which it belongs. During the training, a classifi<;ation algorithm attempts to learn the 
appropriate concept (e.g., rules distinguishing bet\Yeen attacks and non-attacks). The 
accuracy of the learned concept is then tested to determine the error rate. If the classifier 
performs well using a particular subset of features, it is a strong indication that this is a 
predictive combination of attributes. 

It might be argued that using classifiers as evaluation functions is really no different than 
using measures which rely on intrinsic properties of the data since the classification 
algorithms themselves are trained by analyzing properties of the data (e.g., Bayesian 
learning uses statistical properties of the dataset to construct a classifier). However, the 
goal of feature selection is to extract the optimal feature set to be used in a classification 
system (e.g., an intrusion detection system where users are classified by their level of 
suspicion) and it is thus reasonable to consider the classification error rate as an evaluation 
function for feature selection 7. 

The two types of classifiers used in our experiments are a Bayesian classifier& and the 
decision tree classifier C4 [43]9. These two classifiers were chosen because they are 
symbolic learning algorithms and are easier to train than other types of classifiers such as 
neural networks. The Bayesian classifier operates by counting the number of occurrences 
of the various values of each feature for all the classes. For instance, assume that we are 
using binary valued attributes and have five initial features. Given the following three 
attribute vectors for a particular class, · 

• <0,l,1,1,l> 

• <l,0,0,1,1> 

• <0,0, 1,0,0>, 

the count vector for that Class will be 

• <[2, l],[2, 1 ],(1,2] ,[ 1,2].[ 1,2]>. 

This can be translated as meaning that 'O' has occurred twice as the value of the first feature 
and 'l' has occurred once. The second feature has taken on the value 'O' twice and has 
taken on the value 'l' once, and likewise for the remaining features. What is important to 
note is that these counts only need to be calculated once, not each time a new state is 
examined; therefore, they can be calculated before the search begins. When determining 
the value of the current search state, only those counts corresponding to the features 
contained in the state are used to classify examples from the testing set. 

Once the counts have been derived from the training data, the algorithm in Fig. 20 is used 
to classify instances from the test set. · 

highest_probability (- 0.0 

for i(-1 to number_of_classes do 

1 If we are selecting features to be used with a particular classifier and want to know which features work 
the best with that classifier, the most effective evaluation function is the classifier itself. 

8 A Bayesian classifier written by Doug Mayfield, graduate student at UC Davis, was modified and used for 
the evaluation function. 

9 Thanks go to Wray Buntine and NASA Ames Research Center for the use of the IND Tree Package (35). 
The package allows tl1e user to specity options which control the characteristics of the decision tree. 
The particular options chosen implement Ross Quinlan's C4 algorithm. 

I 
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end for 

current_probability f- P( W;) 
for jf-1 to number_of_features do 

if feature_subset(j] = 1 then 
current_probability f- current_probability * 

(counts[iJU][ current_ vector(j]] I number_in_class[i]) 
end if 

end for 

if current_probability > highest_probability then 
class f- i 

end if 

Fig. 20. Testing algorithm of the Bayesian classifier. 

The algorithm works by determining the probability that a feature vector will belong to each 
of the various classes. The class which obtains the highest probability is returned as the 
predicted class of the test example. For each class, we initialize the probability that the 
testing example occurred in that class· with the probability of the class itself (i.e., the 
number of occurrences of this class in the. training set divided by the total number of 
examples in the training set). This means that, given no information from the features (i.e., 
in the case of the null feature subset), we return the most frequently occurring class as the. 
predicted class. The step following initialization examines feature_subset, which denotes 
the current state in the search, to determine which features to use and which to ignore when 
calculating the probability of the class. When a ·position infeature_subset has the value of 
one, it means that the feature is included in the subset and we can utilize that feature in the 
calculation .of the probability. We use a feature by multiplying current_probability by the 
probability of occurrence of the particular value of the feature given in the current testing 
example, current_vector. The probability of a feature value occurring is the number of 
times that value occurred for the feature for the particular class in question divided by the 
number of times examples from this class were seen in the training set. 

Our implementation of the Bayesian classifier was not engineered to handle missing feature 
values (i.e., the values of features are unknown) or non-numerical data (e.g., the names of. 
files accessed). As a result, the Bayesian classifier could only be applied to the simulated 

. databases and not the machine learning databases, since the latter has both missing features 
and nominal data io. 

C4 is a decision tree classifier [ 43] and is generally considered by the machine learning 
community to perform well. It uses pessimistic pruning, thus generating fairly small trees, 
and calculates the information gain as its splitting criterion; 

IV.C Estimated or Incremental Error Rate 

Training and testing a -classifier for each examined state in the search space can put severe · 
limitations on the size of the search. If the error rate can somehow be estimated or 
incrementally calculated with little loss in accuracy, the computational savings will allow a 

1 O The databases are described in Section V. 
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more thorough analysis of the search space. Terrance Goan, a graduate student at UC 
Davis, performed part of his thesis work on developing a decision tree classifier that allows 
features to be incrementally added or removed without retraining on the entire dataset (10]. 
This could result in substantial savings during the search since a decision tree would not 
need to be built entirely from scratch each time a new feature subset was evaluated. 
Unfortunately, the results of his work were not available in time to be used for our 
experimentation. 

IV.D Considerations when Choosing an Evaluation Function 

Two primary factors should be studied before selecting an evaluation function: 

• search algorithm used 

• characteristics of dataset 

The s.earch algorithm places a complexity constraint on the evaluation function. For 
example, with expensive search algorithms (e.g., simulated annealing with a large number 
of steps in the cooling schedule), slow evaluation functions cannot be used. The 
characteristics of the dataset determine what kinds of evaluation functions may give 
accurate results. A neural net classifier may be more suited to speech recognition than a 
decision tree classifier, but the decision tree may be more appropriate for learning numerical 
functions. 

We now discuss factors specific to each of the va1ious evaluation functions. 

IV.D.1 Intrinsic Properties of the Data 

The main attractiveness of this type of evaluation function is its speed. Using any of the 
various intrinsic measures allows a more optimal search (i.e., closer to exhaustive) since it 
takes less time to calculate the utility of individual states. On the other hand, these 
functions are usually less effective than slower evaluation functions such as classifiers. 

Another drawback to these evaluation functions is their monotonicity. Recall that this 
means the value of a feature subset is non-increasing when features are removed from it. 
In other words, the feature subset with the highest value will always be the full feature 
subset. It is then up to the system designer to make an arbitrary cutoff on the number of 
features to be used in his particular IDS. Since one of the purposes of feature selection is 
to avoid these ad-hoc decisions whenever possible, this is a serious limitation to the 
usefulness of these measures in feature selection. 

IV.D.2 Classification Error Rate 

This type of evaluation function may be the most directly suitable to the feature selection 
task since the system for which the features are being chosen is itself a classifier. 
Classifiers are also non-monotonic implying that their perfo1mance will often degrade when 
irrelevant or noisy features are used in the classification task. This takes a good deal of the 
guessing out of feature selection since the algorithms will not always return the full feature 
subset as the one with the highest value, but may return that feature subset which contains 
the most relevant and the fewest irrelevant features. Unfortunately, training and testing a 
classifier for each state in the search may prove to be too costly for a more optimal search, 
dictating that we use one of the less expensive searches such as FSS. 

IV.D.3 Estimated or Incremental Error Rate 

Estimating or calculating the error rate incrementally is an attempt to combine the speed of 
the intrinsic measures with the accuracy of the classifiers. As such, when they can be 
used, they may be the best choice for the evaluation function. Unfortunately, their 
applicability has one major limitation: only those searches which add or subtract a few 
features at a time from the current best search state (e.g., BSS) can be used. Otherwise, 
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the feature subsets vary so greatly from step to step (i.e., few features overlap) that the 
classifier cannot be updated in an incremental fashion, nor can the error rate of the new 
state be estimated from that of the old. 

IV.D.4 Summary 

Table 2 summarizes the main properties of the evaluation functions belonging to each of the 
categories discussed above. 

accuracy complexity advantages disadvantages 

intrinsic properties of low low very fast inaccurate and 
the data monotonic 

classification error very high high very accurate slow 
rate 

estimated or high moderate high accuracy restricts type 
incremental error rate and fast of search 

algorithm 

Table 2. A summary of evaluation functions. 
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V. Experimental Databases 

Two types of databases were used in the experiments. The first variety, the simulated 
databases, describe simple to reasonably complex boolean functions and are artificial in the 
sense that the examples were created with the use of a random number generator. An 
example is first generated, then it is tested in order to determine its classification. These 
simulated databases were designed so that we would know which of the features used to 
represent the examples are relevant and which are irrelevant. In other words, only some of 
the features in a database pertain to the boolean function while the others are noise. This 
allows us to determine exactly how well the feature selection algorithms perform since we 
can determine the number of relevant and irrelevant features contained in feature subsets. 
The other databases are used primarily in machine learning and should indicate how well 
the algorithms perform on real world data. The attributes in these datasets are both 
categorical (discrete) and continuous and are more like the features we foresee to be needed 
in IDSs. Since we do not know the best feature subset for these datasets, the best subsets 
found by the feature selection algorithms are compared to the subset containing all the 
features. We expected to see an improvement in the error rate while reducing complexity 
since the feature subsets found by the algorithms should .have fewer irrelevant or noisy 
features. 

All the databases are split into a training set and a testing set with the training set generally 
twice as large as the testing set. 

V.A Simulated Databases 

All of the simulated databases consist of randomly generated positive and negative 
examples of boolean functions. Each example consists of the class followed by- the values 
of each of the features. Although the features are only binary valued, these databases give 
us a very good indication of how well a feature selection algorithm performs since we 
know exactly which features are relevant and which are not. 

V.A.1 Disjunction Database 

These are the characteristics of this database: 

• size of training set: 200 instances 

• size of testing set: 100 instances 

• number of classes: 2 

• features: 10 binary features, fl, ... 'no 
• relevant: 5 

• irrelevant: 5 

•learned function: fl V f2 V f3 V f4 V f5 (Vis the OR operator.) 

• sample instances: 

positive < 0 1 0 0 0 1 0 0 0 1 > 

negative < 0 0 0 0 0 0 1 1 0 1 > 
Looking at the learned function above, we see that when any of the features fl through f5 
have the value of '1', an example is classified as positive and is negative otherwise. The 
values of features f6 through no do not affect the classification of an example. In the first 
example shown under sample instances, observe that features f2, f6, and flO have the 
value of '1 '. Features f6 and fl 0 are irrelevant and do not affect the classification. 
However, since f2 is '1' and it is one of the first five features, the example is positive. 
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None of the first five features are '1' in the second example and it is negatively classified. 
Positive and negative examples were generated with equal probability. 

V.A.2 Disjunctive Normal Form Database 

The following are the characteristics of this database: 

• size of training set: 1000 instances 

• size of testing set: 500 instances 

• number of classes: 2 

•features: 30 binary features, fl, ... , f30· 

• relevant: 9 

•irrelevant: 21 

• learned function: 

(fl A fl2 A fl5) V (fl? A f21 A f23) V (f24 A f25 A f26) 

•sample instances: 

positive< 1 1 0 0 0 0 1 1 1 1 11 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 > 
negative< 0 0 0 0 1011 1 1100 1 1 1 0 0 100 101100 0 1 0 > 

The learned function is a three term disjunctive nonnal form, 3-DNF. The positive instance 
above satisfies the function as features fl, fl 2, and fl 5 are 'l'. Again, positive and 
negative examples were generated with equal probability. 

V.A.3 Attack Database 

These are the characteristics of this database: 

• size of training set: 1000 instances 

• size of testing set: 500 instances 

• number of classes: 2 

•features: 50 binary features, fl, ... , f50 

• relevant: 13 

• irrelevant: 37 

• learned function: 

If any 5 of f6, fl 7, f28, f29, f40, f42, and f43 are '1' 

then class is positive 

else if any 4 of fl, fl 7, f20, f33 and f 49 are '1' 

then class is positive 

else if all 3 of f5, f6 and f37 are 1 

then class is positive 

else 

class is negative 

end if 
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•sample instances: 

negative < 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 0 O 1 1 O O 
001011010110> 

positive < 0 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 O O 
110100001000> 

This dataset was constructed by giving it the characteristics which we think an actual attack 
database would have. The features are binary and resemble the bernouli vector used by 
Haystack Laboratories in their IDS, Haystack [1]. A 'l' value for a feature signifies that 
the feature value is out of range or abnormal. Haystack determines that a value is out of 
range by establishing limits inside of which 90% of historical activity has occurred. A 
value is abnormal if it falls outside of these limits. For instance, if a user logs in 90% of 
the time between 8:00 am and 9:00 am in the morning, a login by that user before 8:00 am 
or after 9:00 am would result in a 'l' for the feature representing login time. 

Each clause in the. learned function represents a -different method of attack. For instance, 
features f5, f6 and f37 _might represent number_of_attempted_logins, login_location, and 
time_of_login, respectively. If all three of these features are abnormal, the system will 
classify the.user as. an attacker who is trying to gain illegal entry by attempting numerous 
login/password combinations. 

·Notice that feature fl 7 overlaps between the first and second clauses and that feature f6 
overlaps between clauses one and three. In other words, some features may be useful at 
catching numerous kinds of attack.- login_location, f6, may help to find not only doorknob 
attacks, but also attacks which are detected because they originate from suspicious sources. 

Some dependencies between features have been inserted into the data. In the first clause, if 
f28=1, then f42 is strongly biased to be '.1' and if f17=1, then f29 is biased to be 'l'. The 
second clause has a dependency between f20 and f33 where if f20=1, f33 is very likely. 
'1 '. The dependencies were inserted to make the data more closely resemble real attack 
data since we suspect that there will be features which, when simultaneously abnormal, are 
indicative of an attack (e.g., when time_af_Jogin is abnormal, login_location is likely to be 
abnormal and, when occurring together, the likelihood of an attack is high). The method 
for generating the dependencies was to first generate the value for a feature on which 
another feature depends. If the value was 'l' (e.g., if fl 7=1), then the other feature (e.g., 
f29) was set to 'l' with a 90% probability. · 

Except for the last clause, it is not necessary for all features to be '1' for the instance to be 
classified as positive. R~ther, if most of the features are '1 ', the example is positive. This 
characteristic enables the dataset to resemble real world· attack data where only a majority of 

. features which indicate a particular intrusion type need to be abnormal to flag an instance as 
an attack. 

On the average, an equal number of positive and negative examples are generated. 

V.B Machine Learning Databasesll 

Three machine learning databases were used to test the feature selection algorithms on real 
world data . . Binary, categorical (discrete) and continuous valued attributes are all present in 
these databases and there are unknown feature values. (It is also likely that many feature 
values are incorrect and that a significant number of features are irrelevant.) In general, we 
do not know which features in these databases are relevant and which are not. Therefore, 

11 The databases were obtained. via anonymous ftp from UC Irvine at ics.uci.edu in the directory 
pub/machine-learning-databases. 



we will evaluate the effectiveness of the algorithms by comparing the best feature subset 
found by an algorithm to the full feature set. If the error rate of the feature subset is less 
than. the full set of features and it contains considerably fewer features, we can conclude 
that the feature selection algorithm has performed well. · 

For example, consider the case where we are trying to find the optimal feature subset from 
an initial set of five features and we know that the full feature set has an error rate of 13%. 
Assume that a feature selection algorithm determines that features four and five together 
form the optimal feature subset having an error of only 6%. Clearly, the algorithm has 
performed well since the error rate has dropped by 7% and we have reduced the size of the 
feature subset from five to two features. This decrease in size will reduce the complexity of 
the algorithm for which the features are being chosen since fewer features are used in its 
calculations .. 

The primary factor influencing the choice of databases was that they had to contain features 
which had ·Some intuitive meaning. Although this does not allow for a rigorous 
determination of what features are relevant, it can give us a feeling for the effectiveness of 
the algorithm based upon our intuitive notions of which features should be relevant. Also 
affecting the selection of databases was the desire to determine the generality of the feature 
selection algorithms by analyzing their performance on databases with differing 
characteristics: one database contains only binary features; another contains only discrete 
features; the remaining database contains binary, discrete, and continuous features; and the 
sizes of the databases vary from 16 to 75 attributes. It is a strong indication that an 
algorithm will perform well on varying types of datasets if it performs well on all three 
databases. 

One database, the heart disease database, was chosen because it has a large number of 
features (75) and a mixture of binary, categorical, and continuous attributes. Since we 
expect effective attack databases to contain large numbers of features of varying types, the 
performance of the feature selection algorithms on 'this dataset should be indicative of their 
performance on an actual attack dataset 

V.B.1 Congressional Voting Records Database [36] 

These are the characteristics of this database: 

. • size of trainin& set: 290 instances 

•size of testing set: 145 instances 

• number of classes: 2 

• republican, 38.6% of instances 

•democrat, 61.4% of instances 

• features: 16 binary features, corresponding to yes or no votes on issues. 

• missing feature values.: yes 

• sample .instances: 

republican nynyyynnnnnyyyn? 

democrat ?yy?yynnnnynyynn . 

'y' is a positive stance on a vote, 'n' is a negative stance, and '?' is an 
unknown disposition. 

This dataset contains votes on key issues, as determined by the Congressional Quarterly 
Almanac (CQA), for each of the U.S. House of Representatives Congressman during the 
98th Congress, Second Session, 1984. There are nine different types of votes identified 

42 



by the CQA. Those translating into a 'yes' vote are voted for, paired for, and announced 
for . . 'no' votes were derived from voted against, paired against, and announced against 
Finally, unknown positions (?) were obtained from voted present, voted present to avoid 
conflict of interest, and did not vote or otherwise make a position known. 

Section 1 of Machine Leaming Database Features in the Appendix describes each of the 16 
key votes. 

V.B.2 Soybean Disease Database[37] 

These are the characteristics of this database: 

• size of training set: 307 instances 

•size of testing set: 376 instances 

The ratio of the size of the training set to the size of the test set is not 2: 1 
since the data we obtained was already broken into training and test sets 
containing 307 and 376 instances, respectively. 

•number of classes: 19 

It is typical for researchers to use only 15 of the classes since the other four 
classes are only represented by a few samples. 

• features: 35 discrete features are used to describe the condition of a soybean 
plant 

• missing feature values: yes 

•sample instances: 

diaporthe-stem-canker 6 0 2 1 0 1 1 1 0 0 1 1 0 2 2 0 0 0 1 1 3 1 1 1 0 0 0 0 
4000000 

charcoal-rot 6 0 0 2 0 1 3 1 1 0 1 1 0 2 2 0 0 0 1 0 0 3 0 0 0 2 1 0 
4000000 

rhizoctonia-root-rot 1 1 2 0 0 2 1 2 0 2 1 0 0 2 2 0 0 0 1 0 1 1 0 1 1 0 0 3 
4000000 

This is one of the more well-known machine learning datasets and was chosen precisely for 
its familiarity. It is hoped that by using such a familiar dataset, further work on feature 
selection will also use this dataset thereby providing an invaluable comparison of various 
works. See Section 2 of Machine Leaming Database Features in the Appendix for a 
complete description of the classes and features. · 

V.B.3 Heart Disease Database 

These are the characteristics of this database: 

• size of training set: 600 instances 

• size of testing set: 299 instances 

• number of classes: 5 

The class attribute is integer valued from zero to four. Zero corresponds to 
no heart disease and four is severe heart disease. 

· • features: 75 binary, discrete, and continuous features are used to describe the 
heart condition of a patient. 

• missing feature values: yes 
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• sample instances: 

no heart disease: 0 (class) 1 0 63 1 ? ? ? ? 1 145 1 233 ? 50 20 1 ? 1 2 2 
3 81 0 0 0 0 0 1 10.5 6 13 150 60 190 90 145 85 0 0 
2.3 3 ? 172 0 ? ? ? ? ? ? 6 ? ? ? 2 16 81 1 1 1 ? 1 ? 1 ? 
1 1 1 1 1 1 1 ? ? name 

severe heart disease: 4 (class) 26 0 60 1 ? ? ? ? 4 130 1 206? 50 32 0? 0 2 
5 19 81 0 1 0 0 0 1 5 3 7 132 83 140 80 130 88 1 0 
2.4 2 ? 24 2 ? ? ? ? ? ? 7 ? ? ? 5 20 81 2 1 1 ? 2 ? l . ? 2 
1 1 1 I 1 1 ? ? name 

This database is the combination of four individual heart disease databases from various 
institutions12. The results obtained with this database, along with the simulated attack 
database, will be given the.most weight when determining good combinations of search 
algorithms and evaluation criteria to be used in selecting features for intrusion detection 
systems. This is because the characteristics of the dataset (i.e., many features of varying 
types) are considered to be similar to the characteristics of data that one would need to 
analyre in order to detect intrusive behaviour. · 

12 Section 3 of the Appendix Machine Learning Database Features gives the names of the institutions and 
the principal investigators responsible for gathering the data. . 
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VI. Experimental Results 

This section presents the results of our experiments using various combinations of search 
algorithms and evaluation functions on the simulated and machine learning databases. Line 
graphs are used to present the results with the x:-axis referring to the number of features in a 
subset (referred to as the level) and the y-axis denoting the value of the evaluation function. 
For a point in a graph, the y value refers to the best value, as determined by the evaluation 
function, of all feature subsets examined which contained the number of features denoted 
by the point's x value. For example, the point (3, 0.15) signifies that the best error rate 

. found for all the feature subsets examined containing exactly three features was 15%. The 
range of the x-axis is 0 (no features) to the number of features in the full feature subset. 
The range of the y-axis is between 0.0 and 1.0 for the error rate evaluation functions; 
greater than 0.0 for the Euclidean distance, and is not bounded from either above or below 
for the Bhattacharyya distance. 

The overall effectiveness of the search algorithms will be judged by both their complexity 
and accuracy. The complexity of an algorithm is determined by the number of states 
examined in the search space and is shown in the legend of each figure. For example, the 
legend in Fig. 21 shows that FSS examined 56 states during its search on the disjunction 
database. The accuracy is calculated by comparing the error and number of features in the 
full feature set to tho~ of. the best feature subset (i.e., the subset with the best combination 
of low error rate and small number of features) found by the search algorithm. In addition, 
a further analysis of the effectiveness of the alg01ithms on the simulated databases can be 
.dete1mined since we know exactly which features are relevant and which are not. How 
many of the relevant features were found? How many irrelevant features are -included in 
the best feature subset? 

When selecting that search algorithm which performed the best on a particular experiment, 
we need to combine the complexity and accuracy of the algorithms into one overall 
measure. The criteria used was first to select the search algorithm(s) which found the best 
feature subsets (those with the lowest error rates). Tl)en, f~om these algorithms, the one 
which examined the fewest states was determined to be -the top performer. For example, 
assume that GS and FSS both found feature subsets with the lowest overall error rate when 
run on the DNF database. using the decision tree · classifier as · the evaluation function. 
However, if we also assume that FSS examined one-half the number of states as GS, FSS 
is superior on this database with this evaluation function. 

We determine the effectiveness of the various evaluation functions also by creating a 
combined measure of their complexity and accuracy. For evaluation functions, complexity 
refers to the amount of work ·needed to evaluate one state in the search space. The accuracy 
of an evaluation function is its ability to distinguish between good and bad feature subsets. 
The evaluation function with the lowest complexity of those algorithms obtaining the 
highest accuracy is considered as the best. 

When examining the search graphs where an error rate evaluation function was used, we 
noticed the tendency of the error rate to increase as the level approaches that of the full 
feature subset. The i1Televant and noisy features included at these high levels tend to 
worsen the performance of the classifiers. 

The following is a list of the search alg01ithms implemented: 

•exhaustive search (depth-first) 

• beam search 

•forward sequential selection 

• backward sequential selection 
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•random generation plus sequential selection 

•_genetic searcl} 

•simulated annealing 

An inspection of this list will show that two of the exhaustive algorithms, two of the 
sequential algorithms, and three of the randomized algorithms were implemented. 
Implementing at least two methods from each class of algorithms allowed us to compare 
the performance of algorithms from different classes and study the general characteristics of 
each class. In addition, since the exhaustive and sequential algorithms are already well 
understood, it was deemed better to place more emphasis on the randomized searches; 
hence, an additional algorithm from this generation was implemented. 

The following four subsections are organized so that each subsection presents only those 
results using a particular evaluation function. . The first two pertain to. the intrinsic 
measures and show only the performance of the FSS algorithm on the simulated datasets. 
Although other search algorithms were tested with the intrinsic measures, the intrinsic 
measures were so ineffeetive at evaluating .subsets that only the results using FSS on the 
simulated databases are shown. The last two subsections .Present the results of using the 
C4 decision tree and ·the Bayesian classifier as the evaluation function. The focus in these 
sections is to compare the various search algorithms using the same evaluation function and 
dataset. 

VI.A Euclidean Distance 

The results of using the Euclidean distance wfrh PSS on the simulated databases is shown 
in the following three subsections. 

VI.A.I Disjunction Database 

Fig. 21 shows the results of running FSS on the disjunction database using the Euclidean 
distance as the evaluation function. 
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Fig. 21. Eucl.idean distance I FSS I disjunction database. 

46 



With only 56 states expanded, the complexity of FSS on. the disjunction database is very 
low. Choosing the best feature subset found by the algorithm in order to evaluate its 
accuracy is difficult due to the monotonicity of the Euclidean distance. This is because 
there is no clear point at which adding features no longer improves the value of a feature 
subset. Going strictly by the value of the Euclidean distance, the best feature subset is the 
full feature set. However, since we are using a monotonic evaluation function, the best 
value at each level increases even when irrelevant features are added. Therefore, when 
deciding on the best feature subset, it is wise to select the one which corresponds to the 
point on the graph where the slope is decreasing and the change in the slope is the most 
drastic. 

In Fig. 21, there appears to be a significant drop in the slope between levels five and six 
which might prompt a user to select the feature subset at level five as the best set of 
features. The best feature subset at level five, however, does not contain any of the 
relevant features (i.e., fl, ... , f5) and contains all of the irrelevant features. (Recall that 
since this is one of the simulated databases, we know exactly which features are relevant 
and which are not.) This means that the user, if guided by the Euclidean distance, may 
choose the worst possible feature subset as the best. The reason for this anomaly can be 
found by examining the characteristics of the disjunction database. In order to produce an 
equivalent number of positive and negative instances, fl through f5 were generated as 'O' 
most of the time (87%) and 'l' only a small fraction of the time. As the Euclidean distance 
determines which features give the largesrseparation in values between the classes, it will 
not choose any of the first five features as the most relevant since they are 'O' the majority 
of the time for both classes. An examination of the following two sample instances from 
the disjunction database highlights this. anomaly: 

• positive < 0 1 0 0 0 1 0 0 0 1 > 

• negative< 0 0 0 0 0 0 1 1 0 1 > 

Comparing these two instances, we see that only one bit differs in the first five features 
whereas three bits differ in the last five. When this effect is averaged over the entire · 
dataset, the algorithm assumes that the last five. features are better at distinguishing between 
the two classes since they give a greater separation between the classes. 

VI.A.2 Disjunctive Normal Form Database 

Fig. 22 presents the results of running FSS on the DNF database using the Euclidean 
distance as the evaluation function. 
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Fig. 22. Euclidean Distance I FSS I DNF database. 

As always with the sequential selection techniques, the complexity is very low. Out of a 
possible 230 feature subsets, only 466 are examined. To determine the accuracy, we must 
choose which feature subset evaluated by the algorithm is the best. Since we know.that 
there are nine relevant features in this dataqase, one way of determining the effectiveness of 
this evaluation function is to calculate the number of relevant and irrelevant features at level 
nine. If the function is performing effectively, it will have a high proportion of relevant 
features at this level. 

Here is the best feature subset found at level nine: 

101000000000 100110101000010100 

Relevant features fl 7, f21, . and f26 were found in addition to six irrelevant features. The 
algorithm appears to do little better than ~andom draw since three out of the nine features 
selected were relevant whereas there are nine relevant features out of 30 overall, a ratio of 
one to three for both. As with the disjunction database, the poor performance of the 
Euclidean distance can be explained by examining the characteristics of the data. All 
features, regardless of class, are '1' or 'O' with equal probability in the DNF database 
which means that, according to the Euclidean distance, each feature is equally_ effective at 
separating the two classes. This causes the algorithm to randomly pick the bes.t feature 
subset at each level sin~e there is no guidance from the individual features. 

VI.A.3 Attack Database 

Finally, Fig. 23 shows the results of using FSS on the attack database. 
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Fig. 23. Euclidean distance I FSS I attack database. 

Let us judge the accuracy of this experiment by comparing the features included in the 
subset at level 13 to the 13 relevant features in the database. This is the best subset" found 
at level 13: 

00000110100000000001000101000110000010000011110000 

Four .out of the 13 relevant features are included in this subset. As for the DNF database, 
this is no better than random draw since the fraction of relevant features for the full feature 
set, 13/50, is approximately the same. 

VI.A.4 Remarks 

Other experiments were run using the Euclidean distance with different search algorithms 
and similar poor results were obtained. The main problem appears to be the assumption 
that the relevance of a feature subset can be determined by calculating the difference of 
feature values between the classes for those features included in the subset. As we saw in 
the three examples above, this is often an erroneous assumption. 

VI.B Bhattacharyya Distance 

The performance of the Bhattacharyya distance on the simulated databases using FSS is 
presented below. 

VI.B.1 Disjunction Database 

The results of FSS on the disjunction database are shown in Fig. 24. 
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Fig. 24. Bhattacharyya distance I FSS I disjunction database. 

Fig. 24 is almost identical to Fig. 21 which used the Euclidean distance with FSS on the . 
disjunction database. Once again the features subset at level five appears to be the best 
choice and as before contains only irrelevant features. The reasons for this are similar to 
those discussed before. Namely, features fl through f5 are 'O' most of the time for both 
classes _leading the function to conclude that they are poor features for determining the 
probabilistic distance between the classes. 

VI.B.2 Disjuncti.ve Normal Form Database 

The Bhattacharyya distance, however, does perform sigl)ificantly better than the Euclidean 
distance on. the DNF dataset 
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Fig. 25. Bhattacharyya distance I FSS I DNF database. 

An inspection · of Fi.g. 25 provides no indication of which feature subset is the most 
effective since the slope never changes. The feature subset at level nine turns out to be 

000000100001001010001011110000 
in which all nine relevant features are included. A designer of a system who knows 
approximately how many features in his dataset are relevant or who can only use a certain 
number of features due to complexity constraints, may find use for this evaluation function. 
He can simply choose the feature subset at the .level he believes to be appropriate. 

· Unfortunately, in applications such as intrusion detection, it is very unlikely that a system 
designer will know how many features are relevant. To select a level arbitrarily will 
undoubtedly catµ;e some relevant features to be. discarded or some irrelevant features to be 
included. 

VI.B.3 Attack Database 

Let us examine one final graph of the Bhattacharyya distance, this time with FSS on the 
simulated attack database (Fig. 26). 
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Fig. 26. Bhattacharyya distance I FSS I attack database. 

Since there is again no way of detennining from the figure which feature subset is the most 
effective, we count the number of relevant features at level 13. (There are 13 relevant 
features in the attack database.) The subset at level 13 is 

10001100000100001001000000010000010010010010100010 

which contains ten of the 13 relevant features. Examining only 1,276 states, this algorithm 
found all but three of the relevant features at level 13. 

VI.B.4 ·Remarks 

Other experiments were performed with the Bhattacharyya distance, but the same problems 
remained: Namely, the figures ofthe Bhattacharyya distance vs: level give no indication of 
the·correct size to pick for the feature subset. As mentioned previously; this will probably 
cause irrelevant features to be chosen or relevant features to be discarded since a feature 
subset may be chosen that is· either too large or too small. In addition, the Bhattacharyya 
evaluation function, like the Euclidean distance~ measures the distance that·a feature subset 
separates the various classes. (The Bhattacharyya distance is a probabilistic distance 
measure whereas the Euclidean distance is an interclass distance measure.) The results 
from the disjunction datab~e where all five irrelevant features were chosen demonstrate 
that this is not always an effective measure of the value.of a feature subset. 

VI.C Bayesian Classifier 

Missing feature values. and non-numerical data cannot be handled by our implementation of 
the Bayesian classifier. Consequently, only results from the simulated databases are 
presented since the machine learning databases contain missing features and nominal data. 

The Bayesian classifier, as- noted in Section IV, only needs to be trained once, not for every 
feature subset, and is thus a modestly efficient evaluation function even though it is a 
classifier. This fact allowed us to take the average performance of the randomized 
algorithms (RGSS, GS, and SA) over ten runs. Since all the algorithms from this class 
obtain different results for each run, a better idea of their performance is obtained. by taking 
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such an average. No averages were taken for the disjunction database since the optimal 
feature subset was found by all the algorithms in a single run. 

VI.C.1 Disjunction Database 

Fig. 27 shows the performance of the various search algorithms on the disjunction database 
using a Bayesian classifier as the evaluation function. 
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Fig. 27. Bayesian classifier I disjunction database. 

All seven of the search algorithms found the feature subset consisting of all the relevant 
features, fl, ... , f5, and none of the irrelevant features. Only GS and SA strayed from the 
base line for smaller feature subsets due to their random nature. The line denoted by All 
Others is used to represent the.results obtained by the other five search-algorithms since 
they are identical. The number of states expanded was 1024 for ES and 56 for both FSS 
and BSS. The number of states expanded was not determined for the other search 
algorithms. 

The primary advantage of feature selection here is not the decrease in error rate (i.e., the 
error is 0% for all levels from five to ten). Rather, it is the fact that we can obtain the same 
performance as the full feature set with five fewer features. 

VI.C.2 Disjunctive Normal Form Database 

The search algorithms were run on the DNF database using the Bayesian classifier and the 
results are shown in Fig. 28. 
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Fig. 28. Bayesian classifier I DNF database. 
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FSS. and BS perform nearly identically on this .database. (This is, in fact, not a surprising 
result since BS is based upon FSS.) Both algorithms improve rapidly with the addition of 
the first few features and then level off around.a 30% error rate. GS and SA exhibit ·the 
chaotic behaviour near levels zero or 30. The reason for this is that these algorithms tend to 
focus their search in the middle levels of the search space and rarely venture towards the 

' extremes. In other words, GS and SA do not examine many states with a number of 
included features near zero or 30, thereby decreasing the chances that a good subset will be 
found at these levels. In fact, some points· for these algorithms near levels zero and 30 are 
missing altogether since no feature subsets corresponding to the levels at these points were 
visited. SA and GS do, however, obtain excellent error rates but -at the cost' of larger 
feature sets. 

The best performance is obtained using either BSS or RGSS. Both steadily decrease their 
error rate until leveling off around level nine. This makes intuitive sense since the DNF 
database has nine relevant features. The algorithms correctly choose the best feature 
subsets at each level until no more relevant features can be added at level ten. The similar 
performance can be explained by the use of BSS in RGSS once a feature subset has been 
randomly generated. In effect, RGSS is just a variation on both BSS and FSS. A 
comparison of only these two searches is given in Fig. 29. 

54 



B BSS, 466 

RGSS, 2483.9 

0.1-+---...----...---.----.-------.~----r-----r----. 

0 10 20 30 40 

Level 

Fig. 29. Bayesian classifier I DNF database I BSS and ROSS. 

No significant differences between the two algorithms are visible, although BSS appears to · 
have a slightly lower error rate at most levels. The best subset found by BSS at level nine, 
the point at which the curve levels out, is 

000000100001001010001011110000 

which has an error rate of 18.6% and contains all nine of the relevant features and no 
irrelevant features. 

The full feature subset in this database has 30 features and an error rate of 19.1 %. Feature 
selection has not only reduced our error rate by 0.5%, but more importantly has reduced 
the number of features from 30 to nine. 

VI.C.3 Attack Database 

The results of running the search algorithms with the Bayesian classifier on the attack 
database are shown in Fig. 30. ·-
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Fig. 30. Bayesian classifier I attack database. 
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Inspection of the figure shows that many of the search algorithms performed in a similar 
fashion on the DNF database. For instance, GS and SA again tend to focus their search 
around the middle levels and obtain low error . rates. Also, BSS and ROSS appear to 
perform well as they did before. The main difference is the performance of FSS and BS 
which seem to do as well aS any of the other algorithms. In an attempt to find the algorithm 
which gives the lowest error rate with the fewest features, Fig. 31 omits data points with 
error greater than 20% and excludes GS and SA. · 
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Fig. 31. Bayesian classifier I attack database I FSS, BSS, BS and RGSS. 



ROSS is the obvious winner when a more detailed look at the graph is taken. It performs 
better than all the other algorithms at all levels with the exception of levels 47 - 50. Here is 
the global best subset found by ROSS: 

10001100000000001001000000000000000010010110000010 

It is at level ten and has an error rate of 13.6%. The subset contains ten of the 13 relevant 
features and no irrelevant features. 

The full feature set has 50 features and an error rate of 18.1%. We have reduced the 
number of features from 50 to ten and decreased the error rate by 4.5%. 

VI.C.4 Remarks 

The experiments demonstrated that the Bayesian classifier can be used as an accurate 
evaluation function on databases with binary features. The best subsets found contained 
most of the relevant features and none of the irrelevant ones. In addition, BSS and ROSS 
were the top performing search algorithms and seem to work well with the Bayesian 
classifier. 

VI.D Decision Tree Classifier 

One of the primary differences between the decision tree classifier and the Bayesian 
classifier is speed. Recall that the Bayesian classifier only needs to be trained once, not for 
every feature subset, and it performs simple calculations to classify new instances. The 
decision tree classifier, on. the other hand, needs to be retrained for every feature subset. In 
addition, it is a much more sophisticated algorithm than the Bayesian classifier because of 
the splitting rule {information gain) and pruning algorithm (pessimistic pruning) employed 
during creation of the tree13. The result is that the decision tree classifier is much slower 
than the Bayesian classifier, talcing a few seconds to train and test for each feature subset 
compared to the milliseconds needed by the Bayesian classifier to test a subset. The runs 
of the randomized algorithms are therefore· not averaged as they were with the Bayesian 
classifier. 

The C4 .algorithm [43] is considerably more robust than our implementation of the 
Bayesian classifier . .. In particular, C4 can easily handle missing feature values and non­
numerical data (e.g., the names of files accessed) whereas our Bayesian classifier cannot. 
Consequently, we can apply the decision tree algorithm to real-world data, such as the 
machine learning databases, in addition to simulated data. 

The results from experiments run on the disjunction database are not presented since all the 
search algotithms readily found the optimal feature subset. 

VI.D.1 Disjunctive Normal Form Database 

The decision tree classifier was used as the evaluation function in combination with the 
various .search algorithms on the DNF database and the corresponding results are shown in 
Fig. 32. 

l3 See [43] for details of lhe C4 decision tree classifier. 
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Fig. 32. Decision tree classifier I DNF database. 
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One thing to notice from Fig. 32 is the lower eiTor rates obtained by the feature subsets 
when evaluated with the decision tree classifier, as compared to the error rates obtained by 
the Bayesian classifier in Fig. 28. The error rates appear to reach their lowest values at 2% · 
using the decision tree classifier but they never drop below 18% using the Bayesian 
classifier. This does not imply that the C4 algorithm is better suited for feature selection. 
The only requirement we have is that an evaluation function recognize when one feature 
subset performs better than another. In other words; we are not interested in the absolute 
error rate, but the relative error rate between feature subsets. 

Another difference between this e·vaiuation function and the Bayesian classifier is the 
performance of SA. Although it obtains low error rates using the Bayesian classifier, the 
feature subsets with the low error rates contain many irrelevant features. Using the C4 
algorithm, SA finds· the subset that not only provides the lowest error rate, but also 
contains fewer features (eight) than all other subsets with identical error rates. The BSS 
algorithm, as expected, also performs well and Fig. 33 is a comparison of only BSS and 
SA. 
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Fig. 33. Decision tree classifier I DNF database I BSS and SA. 
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SA perfonns slightly better since it found the feature subset providing the lowest error rate 
with the fewest features. Here is that subset: 

100010010101000010000000101000 
It obtains an error rate of only 1.6%, but surprisingly contains only three of the nine 
relevant features in the database. The reason for this anomaly is not entirely clear. It is 
possible that, for the specific data used in training and testing, the three relevant features 
found by the algorithm give the lowest error rate. Unfortunately, the algorithm has not 
done what we want it to do; namely, find the best features in general, not just for the 
particular instances in the training and testing set 

Given this new information, let us examine the best subset found by the BSS search 
algorithm: 

000000100001001010001011110000 
It has all nine of the relevant features and no irrelevant features with an error rate of only 
1.6%. Although the error rate is the same as that obtained by SA, the fact that BSS found 
all the relevant features is an indication that it is perfonning the feature selection task much 
more effectively. Also, SA examines nine times as many states as BSS. Given the added 
complexity of SA and the fact that BSS found all nine of the relevant features, BSS appears 
to be a much better choice on this database when using the C4 decision tree as the 
evaluation function. 

The full feature subset obtained an error rate of 1.6%, identical to the error rate of the best 
feature subset found. However, feature selection has reduced the number of features from 
30 to nine. 

VI.D.2 Attack Database 

Fig. 34 shows the accuracy of the search algorithms with the decision tree classifier on the 
attack database. 
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Fig. 34. Decision tree classifier I attack database. 
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GS and SA do not find small feature subsets of low error rates. More interesting is the 
nearly exact resemblance of the curves of the other four algorithms. Let us take a closer 
look at these algorithms (FSS, BSS,.BS, and RGSS) in Fig. 35. 
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Fig. 35. Decision tree classifier I attack database I FSS, BSS, BS and RGSS. 
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BS outperforms all the other algorithms and for the first time, FSS does better than BSS. 
From the figure, we see that the feature subset with the lowest error rate occurs at level 20 
of BS. However, if we allow only a slightly larger error rate, we can remove seven 
features to obtain the following highly accurate feature subset of only 13 features 

10001100010000001001000001000000000010010110000011 

which has an error rate of 8.6% and contains ten of the 13 relevant features. 

14.4% was the error rate obtained by the full feature subset. The best feature subset found 
by feature selection improves the error rate by 5.8% and reduces the number of features by 
37 since there are 50 features in the attack database .. 

VI.D.3 Congressional Voting Records Database 

The decision tree classifier is used as the evaluation function for the various search 
algorithms on the voting records database in Fig. 36. 
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Fig. 36. Decision tree classifier I voting records database. 

With only one feature, most of the search algorithms obtained an error rate of 3% implying 
that one of the voting issues is very good at distinguishing between democrats and 
republicans. The error rate improved again for most of the algorithms around four 
features. A more detailed look at the algorithms is shown in the following figures (Figs. 
37 through 39). 
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Fig. 37. Decision tree classifier I voting records database I FSS and BSS. 
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Fig. 38. Decision tree classifier I voting records database I BS and RGSS. 
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Fig. 39. Decision tree classifier I voting records database I GS and SA. 

The lowest error rate of 2.1 % is obtained at level four by both BSS and GS. · However, the 
lower complexity of BSS, 137 to 1024 states expanded, makes it a better choice than GS. 

Here are the features subsets found by BSS at levels one and four: 

0001000000000000 

0011001000100000 
with error rates of 3.4% and 2.1 %, respectively. The lone feature in the first feature subset · 
refers to the vote on whether or not to freeze the fees of physicians. The republicans 
tended to vote yes and the democrats tended to vote no. The four features ·in the second 
subset are 'adoption of the budget resolution', 'physician fee freeze', 'anti-satellite test 
ban', and 'synthetic fuels corporation cutback'. 

The error rate was 2.1 % for the full feature subset. Using feature selection, we·obtained 
the.same error rate at level four giving us a decrease of 12 features (there are 16 features in 
the voting records database) with no loss in perfonnance. 

VI.D.4 Soybean Disease Database 

The results of running the various search algorithms on the soybean disease database with 
the decision tree classifier as the evaluation function are shown in Fig. 40. 
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Fig. 40. Decision tree classifier I soybean disease database. 
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Other than GS and SA, the algorithms all follow the same basic curve. Let us take a closer 
look at FSS, BSS, BS, and RGSS in Fig. 41 to determine which one is the most effective. 
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Fig. 41. Decision tree classifier I soybean disease database I FSS, BSS, BS & RGSS. 

BSS and RGSS are the most effective algorithms on this database. The best subset appears 
to be that found by BSS at level 14: · 



01100001001000110010100100100111001 

which has an error rate of 13.6%. The features included in this subset are described in 
Section 2 of the Appendix Machine Learning Database Features. It would be interesting to 
see whether or not an expert in the field of soybean diseases would agree that these are the 
most relevant features. 

We can again see the benefits of feature selection by comparing the best subset found to the 
full feature subset which has a 24.5% error rate and 35 features. Feature selection 
improved the error rate by 10.9% and reduced the number of features from 35 to 14. 

VI.D.5 Heart Disease Database 

Fig. 42 compares the performance of the search algorithms on the heart disease database 
when the decision tree classifier is the evaluation function. 
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Fig. 42. Decision tree classifier I heart disease database. 

RGSS and BSS are clearly superiorto the other search ·algorithms on the heart disease 
database. Of these two, Fig. 43 shows the superiority of RGSS over BSS. 
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Fig. 43. Decision tree classifier I heart disease database I BSS and RGSS. 

The best feature subset found by BSS has an en-or rate of 8.4% at level eight, but RGSS 
found a subset with an error rate of only 6. 7% at level ten. The subset found by RGSS is 

<000000000000000000000000000000000000010 
000000000000000001111011101100000000> 

The features included in this subset are described in Section 3 of the Appendix Machine 
Learning Database Features. 

Feature 38, which is included, says that whether or not you feel pain in your chest when 
exercising is an important factor in determining heart disease. Also, the year in which 
cardiac catheterization 14 was performed seems to be a valuable feature. The fact that the 
process of catheterization, an observatory procedure, is linked to the presence of heart 
disease should dictate that it be used only when absolutely necessary. The most interesting 
result, however, is that eight of the ten most important features are whether or not certain 
vessels have experienced greater than a 50% narrowing in diameter. The implication is that 
the majority of tests that are performed and questions that are asked in an attempt to 
discover heart disease may not be worthwhile. A simple subset of these tests, consisting 
primarily of the determination of narrowing in certain vessels, appears to be sufficient in 
order to make predictions about heart disease. 

Comparing with the full feature subset, which had an error rate of 46.8%, we have 
improved the en-or rate by 40.1 % and reduced the number of features from 75 to ten. This 
is truly · an outstanding result and attests to the need for effective feature selection 
algorithms. 

VI.D.6 Remarks 

14 Cardiac catheterization is a procedure which begins by pushing a tube through a vein or artery into the 
heart. Once in the heart, a dye is injected tJuough tJ1e tube for the purpose of taking an angiogram, an 
Xray view of the radiopaque dye. The Xray is examined for any anomalies such as a faulty valve or 
irregular blood flow. 



A decision tree classifier is a wise choice for an evaluation function. Given a good set of 
features, the C4 algorithm invariably produced a low error rate. The error rate of the 
classifier also reflected poor sets of features by producing high error rates. 
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VII. Conclusions 

• backward sequential selection had the best overall performance of the 
search algorithms. 

In the eight different comparisons of the search algorithms (five using the decision tree 
classifier and three using the Bayesian classifier), BSS outperformed all the other 
algorithms four times. It was also very close to the performance of the best algorithms in 
the remaining comparisons. What is perhaps most surprising is that BSS obtains such 

good results examining such a small fraction of the search space (n2 /2n). Except for GS 
on the attack and heart disease databases, BSS and FSS examine the fewest number of 
states of the search algorithms. 

The reason for the effectiveness of BSS is not clearly understood. One possible 
explanation for this is that, since BSS begins its search from the full feature set, it has 
information on all of the features from the outset. In other words, BSS is able to analyze 
the effect of removing a feature from the full feature set which gives it immediate 
knowledge of how· the feature performs in combination with all the other features. 
Contrast this to FSS which only analyzes the individual performance of features during the 
initial step of the algorithm. It therefore does not know how a feature would affect 
performance when used as part of a group of features. 

The use of several types of evaluation functions, based upon both intrinsic properties of the 
data and classification error rate, lead to this observation: 

• evaluation functions based upon the error rate ate far superior to those 
based upon intrinsic properties of the datal5. 

The experiments using either the Bhattacharyya distance or the Euclidean distance as the 
evaluation function demonstrated two major drawbacks to the intrinsic measures. The first 
is that, since the intrinsic measures are monotonic, the feature subset with the highest value 
will always be the full feature subset. In other words, there is no point at which adding 
more features actually reduces the value returned by the evaluation function. The lack of 
such a point forces the user of the feature selection algorithm to either guess the right size 
of the feature subset or base the size on his complexity constraints. The result is likely to 
be a feature set which is too small (i.e., is missing relevant features) or is too large (i.e., 
contains irrelevant features). 

The second problem with the intrinsic measures is that the method of evaluating features 
may have little to do with how relevant the features are to the cla5sification tas~. Recall 
from the experiments on the disjunction database that both the Bhattacharyya distance and 
the Euclidean distance found the feature subset containing all five irrelevant features as the 
best subset. The reason for this was that the difference of feature values between the two 
classes (the larger the difference the better the feature is supposed to be) had nothing to do 
with the learned function. 

Those measures using the classification error rate, on the other hand, suffer from neither of 
these problems. The error rate tends to be lowest when all the relevant features are present 
and all the irrelevant ones are excluded. The reason for this is that classifiers tend to 
perform worse when irrelevant or noisy features are used in training and testing. This can 
give the user of the algorithm a clear point at which either adding or removing features 
increases the error rate. (The e1rnr rate may increase when relevant features are removed or 

l5 This result is not surprising since the evaluation functions based upon intrinsic properties of the data can 
be thought of as approximating the error rate. 
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irrelevant features are added.) The feature subset at this point can then be chosen as the 
best features subset. 

The intrinsic measures suffered from faulty assumptions about how to determine the worth 
of features or feature subsets. Classifiers make no such assumptions and only rely on how 
well the features aid the classification task. Since classification is precisely what the 
features are to be used for, this is intuitively (and the experimental results show that this is) 
the most effective method of evaluating feature subsets. 

• the search algorithm with the best performance depended on the database 
and the evaluation function. 

Although BSS outperformed all the search algorithms on four of the eight comparisons, 
RGSS, SA, BS, and GS all were the best or nearly the best with certain database I 
evaluation function combinations: RGSS was the best for two of the comparisons and 
nearly the best on two others; SA was nearly the best on the DNF database using the 
decision tree classifier; BS was the best on the attack database with the C4 algorithm; and 
GS was nearly the best on the voting records database when the decision tree algorithm 
was the evaluation function. The fact that different algorithms performed well in different 
situations implies that 

• several combinations of a search algorithm and an evaluation fu.nction 
should be used to determine the optimal feature subset for a particular 
database. 

It is recommended that at least BSS and RGSS be used with two different error rate 
evaluation functions to arrive at a reasonably optimal subset. 

We would also like to infer from the experiments the appropriate search algorithms and 
evaluation functions to use when selecting features for IDSs. For this purpose, let us 
examine the results from the simulated attack database and the heart disease database. 
Using the Bayesian classifier on the attack database, RGSS was the top performer. When 
the C4 decision tree was the evaluation function on the same database, BS obtained the best 
feature subset. Finally, RGSS was the best search alg.orithm on the heart disease database 
using the C4 algorithm. This, in addition to the generally good performance of both BSS 
and the error rate evaluation functions, allows us to conclude that 

• random generation plus sequential selection, backward sequential 
selection, and beam search should be used with at least two different 
error rate evalu.ationfimctions to determine the optimal set of features to 
be used in an intrusion detection system. ·· 
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VIII. Future Directions 

There are several areas for extending the work presented in this paper. 

• bias genetic and simulated annealing search algorithms towards small 
feature subsets. 

The main problem with GS and SA is not that they do not find subsets with low error rates. 
On the contrary, they almost always find feature subsets with the lowest or close to the 
lowest error rates. The problem is that they don't find feature subsets of low error rates 
which have a small number of features. In fact, the results shown in the figures clearly 
demonstrate that these algorithms focus their search in that part of the space where subsets 
contain approximately one-half of the total features. If the algorithms can be reworked so 
that the search leans toward those feature subsets with a small number of features, low 
error rates and small feature subsets may be obtained. 

There are a couple of ways that GS can be biased towards small feature subsets. The first 
method would involve a slight modification to the mutation operator which, in the current 
implementation, flips l's to O's and O's to l's in feature subsets with equal probability (the 
mutation probability). The change would simply require having a higher probability of 
flipping l's to O's than O's to l's so that feature subsets would tend to decrease in size. 
Another way of installing the bias would be by creating an initial population consisting of 
primarily small feature subsets. This could be done by initializing the population to contain 
only empty feature subsets or subsets with only a few features. Currently, each bit in the 
initial population is 'l' with 50% probability which on the average creates an equal number 
of 1 'sand O's in the feature subsets. 

SA might lend itself to this bias in the transfo1m operator. The implementation used in our 
experiments randomly switched the bits of the feature subset, corresponding to the current 
state in the search, to generate a new state. The transfoim operator could be modified in a 
fashion similar to the mutation operator of genetic search so that feature subsets of smaller 
sizes are more likely to be produced by the transfoim operator. 

• modify beam search so that the underlying algorithm is backward instead 
of forward sequential selection. 

BS in our implementation expands its search from the state at the head of the queue by 
perfoiming FSS. Each way of adding one feature to the subset at the head of the queue is 
attempted with the resulting states being inserted into their proper positions in the queue. If 
the queue length is set at one, BS performs identically to FSS. During the experiments, it 
became extremely apparent that BSS was a better choice of search algorithm than FSS as it 
performed better in all but one of the experiments. It is expected that the perfoimance of 
BS would improve significantly if the hea11 of the algorithm were BSS instead of FSS. In 
this case, the worst performance of the algorithm would be when the queue length were 
one, in essence BSS. For larger queue sizes, it is expected that the performance of the 
algorithm would improve on (and certainly be no worse than) BSS. 

Other methods of expanding the feature subset at the head of the queue are possible and 
should be tested as well. For instance, we might use something like the transfoim operator 
of SA which randomly flips bits in the current feature subset to expand the search. 

• test search algorithms on a real-world attack database. 

The conclusion referring to which search algorithms would work well on attack data were 
made based upon experiments on a simulated attack database and a heart disease database. 
Stronger statements about the proper search algorithms and evaluation functions to use for 
IDSs can be made if experiments are pe1formed on actual attack data. 
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• implement an estimated or incremental error rate evaluation function. 

Neither an estimated nor an incremental error rate evaluation function were implemented for 
the experiments. With such an implementation, it may be possible to use a near exhaustive 
search (e.g., B&B) and still obtain the benefits of a using an error rate evaluation function. 
The slowness of training and testing a classifier for each feature subset prohibits such a 
combination for standard error rate evaluation functions. 

• implement other search algorithms for a more complete comparison. 

BDS, classical B&B, AMB&B, and PQSS were not implementedl6. Implementing these 
algorithms would allow a more complete testing of existing feature selection search 
algorithms. 

16 However, at least one algorithm from each of their respective generations was implemented and 
evaluated. For instance, BS belongs to the same generation as BOS (both are neo-classical algorithms) 
and was implemented. 
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Appendix 

Machine Learning Database Features 

This appendix describes the classes and features in the various machine learning databases. 
Also shown are the features included in the best feature subset found by the search 
algorithms. 

1. Congressional Voting Records Database 

This dataset contains votes on key issues, as determined by the Congressional Quarterly 
Almanac (CQA), for each of the U.S. House of Representatives Congressman during the 
98th Con~ress, Second Session, 19.84. 

Classes: republican and democrat. 

Features: 

l. handicapped infants: y or n 

2. water project cost sharing: y or n 

3. adoption of the budget resolutiol'): y or n 

4. physician fee freeze: y or n 

5. El Salvador aid: y or n 

6. religious groups in schools: y or n 

7. anti-satellite test ban: y or n 

8. aid to Nicaraguan contras: y or n 

9. MX-Missile: y or n 

10. immigration: y or n 

11. synfuels corporation cutback: y or n 

12. education spending: y or n 

13. superfund right to sue: y or n 

14. crime: y or n 

15. duty free exports: y or n 

16. export administration act South Africa: y or n 

2. Soybean Diseases Database 

Classes: diaporthe stem canker, charcoal rot, rhizoctonia root rot, phytophthora rot, brown 
stem rot, powdery mildew, downy mildew, brown spot, bacterial blight, bacterial pustule, 
purple seed stain, anthracnose, phyllosticta leaf spot, alternarialeaf spot, frog eye leaf spot, 
diaporthe pod & stem blight, cyst nematode, 2 4 d injury, and herbicide injury. 

Features: Note that the value of 'dna' means does not apply. 

1. date: april, may, june, july, august, september, october, ?. 

2. plant stand: normal, It normal,?. 

3. precipitation: It norm, norm, gt norm,?. 

4. temperature: It norm, norm, gt norm,?. 

5. hail: yes, no,. ? . 
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6. crop history: diff 1st year, same 1st yr, same 1st two yrs, same 1st sev yrs,?. 

7. area damaged: scattered, low areas, upper areas, whole field,?. 

8. severity: minor, pot severe, severe, ?. 

9. seed tmt: none, fungicide, other, ?. 

10. germination: 90-100%, 80-89%, It 80%, ?. 

11. plant growth: norm, abnorm, ? . 

12. leaves: norm, abnorm. 

13. leafspots halo: absent, yellow halos, no yellow halos,?. 

14. leafspots marg: w s marg, nows marg, dna, ?. 

15. leafspot size: It 1/8, gt 1/8, dna, ?. 

16. leaf shread: absent, present,?. 

17. leaf malf: absent, present, ? . 

18. leaf mild: absent, upper surf, lower surf,?. 

19. stem: norm, abnorm, ?. 

20. lodging: yes, no, ? . 

21 . stem cankers: absent, below soil, above soil, above sec nde, ? . 

22. canker lesion: dna, brown, dk brown blk, tan, ?. 

23. fruiting bodies: absent, present,?. 

24. external decay: absent, firm and dry, watery, ?. 

25. mycelium: absent, present, ?. 

26. int discolor: none, brown, black,?. 

27. sclerotia: absent, present,?. 

28. fruit pods: norm, diseased, few present, dna, ?. 

29. fruit spots: absent, colored, brown w/blk specks, distort, dna, ?. 

30. seed: norm, abnorm, ?. 

31. mold growth: absent, present, ?. 

32. seed discolor: absent, present, ?. 

33. seed size: norm, It norm, ?. 

34. shriveling: absent, present,?. 

35. roots: norm, rotted, galls cysts,? . . 

Features included in the best feature subset found by the feature selection algorithms: 

2, 3, 8, 11, 15, 16, 19, 21, 24, 27, 30, 31, 32, and 35. 

3. Heart Disease Database 

Institutions and Principal Investigators: 

1. Hungarian Institute of Cardiology. Budapest: Andras Janosi, M.D. 

2. University Hospital, Zurich, Switzerland: William Steinbrunn, M.D. 
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3. University Hospital, Basel, Switzerland: Matthias Pfisterer, M.D. 

4. V.A. Medical Center, Long Beach and Cleveland Clinic Foundation: Robert Detrano, 
M.D., Ph.D. 

Classes: 0, 1, 2, 3, and 4. The absence of heart disease is 'O' and severe heart disease is '4'. 
This class feature is known as the angiographic disease status. 

Features: 

1 id: patient identification number 

2 ccf: social security number (I repl_aced this with a dummy value of 0) 

3 age: age in years 

4 sex: sex (1=male;0 =female) 

5 painloc: chest pain location (1=substemal;0 =otherwise) 

6 painexer (1 =provoked by exertion; 0 =otherwise) 

7 relrest (1 =relieved after rest; 0 =otherwise) 

8 pncaden (sum of 5, 6, and 7) 

9 cp: chest pain type 

-- Value 1: typical angina 

-- Value 2: atypical angina 

-- Value 3: non-angina! pain 

-- Value 4: asymptomatic 

10 trestbps: resting blood pressure (in mm Hg on admission to the hospital) 

11 htn 

12 chol: semm cholestoral in mg/dl 

13 smoke: I believe this is 1 = yes; .0 = no (is or is not a smoker) 

14 cigs (cigarettes per day) 

15 years (number of years as a smoker) 

16 fbs: (fasting blood sugar> 120 mg/dl) (1 = ·true; 0 =false) 

17 dm {l =history of diabetes; 0 =no such history) 

18 famhist: family history of coronary artery disease (1 =yes; 0 =no) 

19 restecg: resting electrocardiographic results 

-- Value 0: normal 

-- Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation 
or depression of> 0.05 m V) 

-- Value 2: showing probable or definite left ventricular hypertrophy by Estes' 
criteria 

20 ekgmo (month of exercise ECG reading) 

21 ekgday(day of exercise ECG reading) 

22 ekgyr (year of exercise ECG reading) 



23 dig (digitalis used furing exercise ECG: 1 =yes; 0 =no) 

24 prop (Beta blocker used during exercise ECG: 1=yes;0 =no) 

25 nitr (nitrates used during exercise ECG: 1 =yes; 0 =no) 

26 pro(calcium channel blocker used during exercise ECG: 1 =yes; 0 =no) 

27 diuretic (diuretic used used during exercise ECG: 1 =yes; 0 =no) 

28 proto: exercise protocol 

1 =Bruce 

2 = Kottus 

3 =McHenry 

4 =fast Balke 

5 =Balke 

6 =Naughton 

7 =bike 150 kpa min/min (Not sure if "kpa min/min" is what was written!) 

8 =bike 125 kpa min/min 

9 =bike 100 kpa min/min 

IO= bike 75 kpa min/min 

11 = bike 50 kpa min/min 

12 =arm ergometer 

29 thaldur: duration of exercise test in minutes 

30 thaltime: time when ST measure depression was noted 

31 met: mets achieved 

32 thalach: maximum heart rate achieved 

33 thalrest: resting heart rate 

34 tpeakbps: peak exercise blood pressure (first of 2 parts) 

35 tpeakbpd: peak exercise blood pressure (second of 2 parts) 

36dummy 

37 trestbpd: resting blood pressure . 

38 exang: exercise induced angina (1=yes;0 =no) 

39 xhypo: (1 =yes; 0 =no) 

40 old peak = ST depression induced by exercise relative to rest 

41 slope: the slope of the peak exercise ST segment 

-- Value 1: upsloping 

-- Value 2: flat 

-- Value 3: downsloping 

42 rldv5: height at rest 

43 rldv5e: height at peak exercise 
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44 ca: number of major vessels (0-3) colored by flourosopy 

45 restckm: irrelevant 

46 exerckm: irrelevant 

47 restef: rest raidonuclid (sp?) ejection fraction 

48 restwm: rest wall (sp?) motion abnormality 

0 =none 

1 = mild or moderate 

2 = moderate or severe 

3 = ak:inesis or dyskmem (sp?) 

49 exeref: exercise radinalid (sp?) ejection fraction 

50 exerwm: exercise wall (sp?) motion 

51 thal: 3 = no1mal; 6 = fixed defect; 7 = reversable defect 

52 thalsev: not used 

53 thalpul: not used 

54 earlobe: not used 

55 cmo: month of cardiac cath (sp?) (perhaps "call") 

56 cday: day of cardiac cath (sp?) 

57 cyr: year of cardiac cath (sp?) 

Attributes 58 through 67 are vessels. 

-- Value 0: < 50% diameter narrowing 

-- Value 1: > 50% diameter narrowing 

58 lmt 

59ladprox 

60 laddist 

61 diag 

62cxmain 

63 ramus 

64oml 

65om2 

66 rcaprox 

67 rcadist 

68 lvx 1: not used 

69 lvx2: not used 

70 lvx3: not used 

71 lvx4: not used 

72 lvf: not used 
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73 cathef: not used 

74 junk: not used 

75 name: last name of patient (replaced with the dummy string "name") 

Features included in the best feature subset found by the feature selection algorithms: 

38, 57, 58, 59, 60, 62, 63, 64, 6 6, and 67. 
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