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COMMON FACTORS IN THE SERIAL CORRELATION OF STOCK RETURNS

*
Eugene F. Fama and Kenneth R. French

I.INTRODUCTION

Evidence that expected stock returns vary through time is plentiful.

See, for example, Bodie (1976), Jaffe and Mandelker (1976), Nelson (1976),
Fama and Schwert (1977), Fama (1981), Keim and Stambaugh (1986), and French,
Schwert, and Stambaugh (1986). The common conclusion, usually from tests on
monthly data, is that stock returns are predictable, but the implied time-
variation of expected returns is a small fraction (usually less than 5%) of
return variances.

Fama and French (1986) find negative serial correlation in stock returns
that becomes stronger for return horizons beyond a year and that implies
stronger predictability of long-horizon returns. For example, 3-to 5-year
returns are more predictable from negative serial correlation than l-year
returns. Returns are also more predictable for small-firm portfolios than for
large-firm portfolios. Past returns explain about 25% of 3- to 5-year
variances for large-firm portfolios and about 40% for small-firm portfolios.

Our goal is to test whether the negative serial correlation of long-
horizon returns, and the substantial time-variation of expected returns it
implies, can be attributed to one or more common factors in returns. The
question is important. Most equilibrium pricing models, for example, Sharpe

(1964), Lintner (1965), Merton (1973), and Ross (1976), assume that the
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factors that explain the cross-section of expected asset returns are a subset
of the common factors that generate the correlation matrix of returns. If,
period-by period, the cross-section of expected returns is explained by common
factors, then the same common factors explain the time variation of expected
returns. If, however, the serial correlation of returns has firm-specific
components, then neither the variation through time of expected returns nor
the cross-section of expected returns can be explained in terms of common
factors. If expected returns have important firm-specific components, the
study of equilibrium pricing models becomes less interesting.

Tests on size-ranked and industry portfolios that cover all stocks on the
New York Stock Exchange (NYSE) show that the negative serial correlation of 3-
to 5-year returns is pervasive. Regression tests are consistent with the
conclusion that the strong time-variation of expected returns implied by this
negative serial correlation is due to a single common factor. Tests on the 82
individual stocks listed on the NYSE for the entire 1926-85 period produce no
evidence that firm-specific return factors are serially correlated.

De Bondt and Thaler (1985) find long-horizon reversals which are common
only to subsets of stocks. When stocks are allocated to "winner" and "loser"
portfolios on the basis of prior 3-year returns, extreme losers have reliably
higher subsequent returns than the market, but extreme winner returns are not
reliably different from market returns. Our tests indicate that their results
are sensitive to technique. When we control for size and use true cumulative
returns, we find reversal behavior for extreme winners but not for losers.
Moreover, extreme winners and especially losers are unusual in terms of size
and market betas. When we examine loser and winner portfolios that cover the
NYSE, cumulative reversals are weak and statistically unreliable. Our results

suggest that the De Bondt-Thaler reversals are not pervasive across stocks.
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This is in contrast to the pervasive negative serial correlation of long-
horizon returns identified by Fama and French (1986), which the evidence here
suggests is due to a single common factor.

The tendency toward reversal implied by negative serial correlation of
size and industry portfolio returns may reflect time-varying expected returns
generated by rational investor behavior and the dynamics of macro-economic
driving variables. On the other hand, reversal behavior may reflect waves of
over-reaction of stock prices of the kind assumed in models of an inefficient
market. We comment on this critical but unresolvable issue, after presenting

the results.

II. SERIAL AND CROSS CORRELATIONS FOR SIZE-RANKED PORTFOLIOS

A. The Data

Firm size is known to capture differences in cross correlations (Huberman
and Kandel 1985) and serial correlations (Fama and French 1986) of returns.
If multiple common factors generate the cross and serial correlations “of
returns, it seems reasonable to presume that loadings on these factors vary as
a function of firm size. Thus, we first examine size portfolios. The data
are returns for all NYSE stocks for 1926-85 from the Center for Research in
Security Prices of the University of Chicago. At the end of each year, stocks
are ranked by size (number of shares outstanding times price per share) and
allocated to ten (decile) portfolios. One-month simple portfolio returns,
with equal-weighting of securities, are calculated and transformed into
continuously compounded returns. These returns are summed to get overlapping
monthly observations on longer-horizon returns. Unless otherwise noted, the

word return implies continuous compounding.



B. Serial Correlations

Table 1 shows first-order serial correlations of returns on the decile
portfolios for return horizons (holding periods) from 1 to 10 years. The
estimates are slopes in regressions of the return on decile i from t to
t+T, ri(t,t+T), on the lagged T-year return, ri(t-T,t). These OLS slopes
have negative bias that depends on true slopes, sample sizes, and the fact
that the estimates use overlapping monthly observations on annual returns.

See Marriot and Pope (1954), Kendall (1954), and Huizinga (1984). The bias
adjustments relevant when the true slopes are 0.0 are difficult to derive.
Fama and French (1986) use simulations, constructed to mimic properties of
1926-85 NYSE returns, to estimate bias adjustments. Their corrections
(positive constants that‘increase with the return horizon and are added to OLS
slopes) are used in the bias-adjusted slopes in Table 1 and later.

The Fama-French simulations also show that unadjusted OLS slopes have
little bias when true serial correlations are negative and on the order of the
estimates for 3- to 5-year returns on size and (later) industry portfolios.

We usually show both unadjusted and bias-adjusted serial correlations.

The serial correlations in Table 1 have the U-shaped pattern observed in
Fama and French (1986). The serial correlations are negative for 2- to 5-year
returns. Minimum values occur in 3-year returns for the larger-firm deciles 7
to 10, and in 4- or 5-year returns for deciles 1 to 6. Minimum values tend to
be lower for small-firm portfolios. All bias-adjusted serial correlations
less than -0.3 and unadjusted serial correlations less than -0.4, occur in
deciles 1 to 6. Serial correlations for all deciles move toward 0.0 for
return horizons beyond 5 years. Our goal is to determine whether the U-shaped
pattern of serial correlations for increasing return horizons, also observed

later for industry portfolios, is generated by one or more common factors.
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Small effective sample sizes imply imprecise parameter estimates for
long-horizon returns. The standard errors of the serial correlations are
large -- between 0.11 and 0.16 for 3- to 5-year returns. Nevertheless, every
decile produces an unadjusted first-order serial correlation of 3-, 4-, or
5-year returns more than 2.0 standard errors below 0.0, and deciles 1 to 7
produce bias-adjusted serial correlations more than 2.0 standard errors below
0.0. The fact that the U-shaped pattern of the serial correlations is common

to all portfolios increases our confidence in its general reliability.

C. Cross Correlations

Common factors with different serial correlation can cause cross
correlations to change with the return horizon. Table 2 shows correlation
matrices for 1-, 3-, 5-, and 10-year decile returns. As Huberman and Kandel
(1985) show, correlations between l-year returns are highest for similar size
portfolios. For example, decile 10 is most correlated with decile 9 (0.98)
and least correlated with decile 1 (0.78).

More interesting, correlations between portfolios that differ much in
size decline for increasing return horizons. Pairwise correlations among
deciles 8 to 10 are high and similar across horizons (always 0.93 or greater),
but their correlations with the first 7 deciles decline for longer horizons.
Pairwise correlations among deciles 3 to 7 are high and similar across return
horizons (0.93 or greater), but their correlations with the extreme deciles
decline for longer horizons. Correlations of decile 1 with other deciles
decline most with the return horizon. The correlation between decile 1 and
decile 10 drops from 0.78 in 1l-year returns to 0.16 in 10-year returns. Thus,
there is strong correlation between the smallest and largest deciles at short

return horizons but only weak correlation at long horizons.



6
Given a linear factor model for returns, systematic changes in cross
correlations imply that the relative variances of factors change with the
return horizon because different factors have different serial correlations.
Table 2 is thus evidence on the relevance of a model in which time-series

properties differ across common factors.

III. A FACTOR MODEL
Our goal for a factor model is to explain the U-shaped pattern of the
first-order serial correlations for increasing return horizons observed for
the decile portfolios in Table 1 and (later) for industry portfolios. We show
that a model with a single common stationary (and thus mean-reverting) price
component can explain the negative serial correlation of 2- to 5-year returns,
while random-walk (and thus permanent) price components explain the tendency

of the serial correlations to return to 0.0 for longer horizons.

A. The Mod:el

Let pi(t) be the natural log of the price of stock i at time t. The
mutually independent common factors in log prices are a mean-stationary
component, S(t), and F random-walks, Wf(t), f=1,..,F. The log price also
has an independent firm-specific random-walk, Vi(t). Thus,
(1) Py (E) = 7,5(8) + B¢ ¢, WL (£) + V, (¢),
where e and ¢if are factor loadings and Ef is a sum over f=1,..,F. The
expected change in the firm-specific random walk is 0.0, and the mean of the
common stationary price component is also 0.0. To make expected returns

positive, the common random walks are assumed to have positive mean drift.

B. The Implications of a Stationary Price Component

Since .(t) 1is the log of the stock price, the continuously compounded
P; g P

return from t to t+T is



ri(t,t+T) - pi(t+T)-pi(t)
(2) - 1is(t,t+T) + Ef ¢ifwf(t,t+T) + vi(t,t+T),
where s(t,t+T), wf(t,t+T), and vi(t,t+T) are the changes from t to ¢t+T
in S(t), Wf(t), and Vi(t)'

Random walks in prices produce white noise in returns, but the mean
reversion of the stationary price component S(t) leads to negative serial
correlation in returns. The slope in the regression of s(t,£+T) on s(t-T,t),
the first-order serial correlation between T-period changes in S(t), is
(3) a(T) = cov[s(t,t+T),s(t-T,t)]/az[s(t-T,t)].

The numerator covariance is
(4) cov[s(t,t+T),s(t-T,t)] = -az(S) + 2cov[S(t),S(t+T)]

- cov[S(t),S(t+2T)],
where az(S) is the variance of §(t). Stationarity of S(t) implies that
the covariances on the right of (4) approach 0.0 as T increases, so the
covariance on the left approaches -02(8). The denominator of (3),
(5) az[s(t-T,t)] = 202(S) - 2cov{S(t-T),S(v)],
approaches 202(5). Thus the slope in the regression of s(t,t+T) on
s(t-T,t) approaches -0.5 for large T.

For long horizons, the slope a(T) is also (minus) the proportion of the
variance of s(t,t+T) explained by mean reversion. If S(t) is stationary
with a zero mean, as T increases the expected change, Et[s(t,t+T)],
approaches -S(t), and the variance of the expected change approaches 02(5).
Thus, the ratio of the long-horizon variance of the expected change in S(t),
02(5), to the long-horizon variance of the actual change, 202(8), is 0.5.

For example, if S(t) 1is a first-order autoregression (ARl),

(6) S(t) = 6§S(t-1) + e(t), 0<6<1,

the expected change from t to t+T is



() E ls(t,t4D)] = (57 -1)s(0),
and the covariance in the numerator of a(T) is

(8) cov[s(t,t+T),s(t-T,t)] = (-1+26T-62T)a2

(s) = -(1-61%7(s).
With (7) and (8) we can infer that the covariance is minus the variance of the
T-period expected change, -02[Ets(t,t+T)]. Thus, when S(t) 1is an AR1l, the
slope in the regression of s(t,t+T) on s(t-T,t) 1is (minus) the ratio of
the variance of the expected change in S(t) to the variance of the actual
change. For other stationary processes, this interpretation of the slope is
an approximation which is valid for long return horizons.

Equation (7) shows that when § 1is close to 1.0, the expected change in
an ARl slowly approaches -S(t). Likewise, the slope a(T) 1is close to 0.0
for short return horizons and slowly approaches -0.5. This illustrates that
the slow decay of a stationary price component with high positive serial
correlation can generate serial correlations that are close to 0.0 at short
horizons but substantially negative at longer horizons. This is the pattern
observed for 1- to 5-year returns in Table 1. To explain why serial

correlations for longer horizons move toward 0.0, we consider the joint

effects of stationary and random-walk price components.

C. The Time-Series Properties of Returns

Using (2) and (3), the slope in the regression of ri(t,t+T) on

ri(t-T,t), the first-order serial correlation between T-period returns, is
(9 p;i(T) = COV[ri(t,t+T),ri(t-T,t)]/Uz[ri(t-T.t)]

22 2 2 2 2 2
(9a) - a(Mje [s(D /(7o  [s(D] + Zp ¢00° W (D] + o [v (D).
(9b) ~ 720 [E s (t,04) ) /o  [r, (¢-T, )],
where az[s(T)], az[wf(T)], and az[vi(T)] are the variances of the T-period

changes, s(t,t+T), wf(t,t+T), and vi(t,t+T).
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Equation (9a) helps predict the behavior of the slopes as the return
horizon T increases. The mean reversion of S(t) tends to push the slopes
toward -0.5 for long return horizons. However, the white-noise variances,
az[wf(T)] and az[vi(T)], grow in proportion to T, while az[s(T)]
approaches 2a2(S). Since the white-noise variances grow without bound, the
slopes in regressions of ri(t,t+T) on ri(t-T,t) move toward 0.0 for large
values of T. 1In short, the return model (2) offers the hypothesis that the
U-shaped pattern of serial correlations for increasing return horizons is due
to the interplay of a single common stationary price component S(t), which
is relatively more important in the variation of shorter-horizon returns, and
random-walk price components, which are relatively more important in the

variation of long-horizon returns.

D. The Variation of Expected and Actual Returns Due to S(t)

Expression (9b) highlights the result that, for long return horizons, the
slope in the regression of ri(t,t+T) on ri(t-T,t) measures the proportion
of the variance of T-period returns due to the time-varying expected return
generated by the stationary price component §(t). For 3-, 4- and 5-year
decile portfolio returns, simple OLS slopes (which are relatively unbiased
when the true slopes are negative) average -0.31, -0.39, and -0.37 (Table 1).
Slopes for industry portfolios, shown later, are similar. Thus, estimated
time-variation of expected returns is around 35% of 3- to 5-year return
variances, a conclusion documented with direct tests of predictive power in
Fama and French (1986).

Moreover, the limiting argument for the serial correlations says that the
variance of the expected change in S(t) approaches half the variance of the
long-horizon change in S(t). Thus, serial correlations that average -0.31 or

less estimate that 60% or more of 3- to 5-year return variances are due to the
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stationary price component S(t). These large proportions of variance
motivate our interest in tests of the hypothesis that negative serial

correlation is due to a single common factor.

IV. UNIVARIATE REGRESSIONS FOR DECILE PORTFOLIOS

A. Testing Properties of Factors: The Problem

Factor analysis and principal component methods for estimating factor
structures extract linear combinations of underlying factors. Since these
methods cannot isolate individual factors, they do not allow tests of
properties of individual factors. We work around this problem. A portfolio
presumed to load heavily on the stationary price component S(t) is used as
the explanatory portfolio in univariate regressions. If a single portfolio
absorbs the negative serial correlation observed for a range of portfolios
presumed to load differently on common factors, then the hypothesis that
negative serial correlation is due to a single common factor is consistent
with the data. N

The univariate regressions are of form,

(10) ri(t,t+T) = ai(T) + ﬂi(T)rs(t,t+T) + ci(t,t+T).
We assume that the decile portfolio i and the explanatory portfolio s are
so diversified their returns have negligible firm-specific variation,
(11) ri(t’t+T) = 7is(t,t+'1‘) + Ef ¢ifwf(t,t+T),
(12) rs(t,t+T) = -yss(t,t+T) + z:f ¢sfwf(t,t+T).
With (11) and (12), the slope ﬂi(T) in (10) is

B, (T) = covlr, (£,t+T), rs(t,t+T)]/02[rs(t,t+T)]

2 2
. 170 15D+ 3 6548 0 (4 (D)]
2o [s(D)] + 5; 42507 [we(D)]

Substituting (12) into (10) and equating the result with (11) gives an

expression for the regression residual,
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(14) si(t,t+T) - [71-7Sﬂi(T)]s(t,t+T) + Ef[¢if-¢sfﬂi(T)]wf(t,t+T) - ai(t,t+T)

We assume that the factors are independent, so serial correlations of the
residuals in (14), like serial correlations of returns, are weighted averages
of the serial correlations of the factors. The (bracketed) coefficients for
factors in (14), and the factor loadings for returns in (2), are squared in
serial correlations. Thus, positively autocorrelated factors increase the
autocorrelations of both the residuals and the returns, and negatively

autocorrelated factors reduce their autocorrelations.

B. Choosing the Explanatory Portfolio

Our goal is to choose an explanatory portfolio that produces residuals
that have little of the serial correlation of s(t,t+T), the common component
assumed to generate all negative serial correlation in returns. Equation (14)
implies that such a portfolio must produce slopes ﬂi(T) close to 11/75 in
3- to 5- year returns. If Bi(T) is to be close to 7i/7s for a wide range
of portfolios i, then (13) says that the explanatory portfolio’s loadings on

the common random walks, must be small relative to Vg its loading on

Y
the common stationary component. Equivalently, variation in returns on the
explanatory portfolio must be heavily weighted toward s(t,t+T).

The serial correlations in Table 1, and the limiting arguments for serial
correlations in Section III, imply that mean-reversion in prices explains more
of the variation of returns for small-firm portfolios. Concretely, serial
correlations less than -0.4 for small-firm portfolios suggest that az[s(T)]
is 80% or more of 3- to 5-year return variances. Thus, univariate regressions
should do better extracting negative serial correlation generated by s(t,t+T)

-- the negative serial correlation of returns should be less evident in

residuals -- when the explanatory portfolio is a small-firm portfolio.
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If negative serial correlation of decile (and later, industry) returns is
due to multiple factors on which firms load differently, a single explanatory
portfolio is unlikely to absorb the serial correlation of returns for all
deciles (and industries). Thus, residual serial correlations can reject the
hypothesis that negative serial correlation is due to one common factor when
the hypothesis is false. Moreover, even if negative serial correlation is due
to one common factor, a small-firm explanatory portfolio may not load enough
on s(t,t+T) to absorb the serial correlation s(t,t+T) generates in other
portfolio returns. Thus, the tests are probably biased toward rejecting the
hypothesis that negative serial correlation is due to one common factor when

the hypothesis is true.

B. Residual Serial Correlations

Table 3 shows serial correlations of residuals from regressions of
deciles 2 to 10 on decile 1 (smallest firms). The bias-adjusted serial
correlations are all positive. This finding, that a single portfolio absorbs
the negative serial correlation of returns for all deciles, is consistent with
the hypothesis that the serial correlation, and the time-variation of expected
returns it implies, is due to one common factor.

Equation (14) implies that when the explanatory portfolio absorbs the
negative serial correlation of s(t,t+T), regression residuals have
information about the serial correlation of other factors. The bias-adjusted
residual serial correlations in Table 3 are all positive and are often large
in magnitude and relative to standard errors. Moreover, when true residual
serial correlations are positive, the Fama-French (1986) bias adjustments (for
models with no serial correlation) are too small and the "bias-adjusted"
serial correlations are biased downward. See Kendall (1954) or Marriot and

Pope (1954). In short, the residual serial correlations suggest that one or
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more of the common "random-walks", Wf(T), f=1,..,F, generate positive serial
correlation in returns. Time-variation of expected returns is richer than

implied by the model of (1) and (2).

C. Regression Slopes

Table 4 shows the slopes from the regressions of deciles 2 to 10 on
decile 1 (smallest firms). For comparison, slopes from the regressions of
deciles 1 to 9 on decile 10 (largest firms) are also shown. When the
explanatory portfolio is decile 1, deciles 2 to 10 produce slopes that are
less than 1.0 and decline with the return horizon. For example, ﬂi(T) for
decile 10 starts at 0.40 in l-year returns and drops to 0.09 in 10-year
returns. In contrast, when the explanatory portfolio is decile 10, the slopes
for deciles 1 to 7 start out greater than 1.0, decline with the return
horizon, and decline more for smaller deciles. For example, Bi(T) drops
from 1.48 for l-year returns on decile 1 to 0.38 for 10-year returns.

Previous work on monthly returns (Banz 1981 and Huberman and Kandel
1985), shows that slopes are higher when small-firm portfolios are regressed
on large-firm portfolios and correlations are higher for portfolios of firms
similar in size. The new evidence in Tables 2 and 4 is that correlations and
slopes for portfolios of firms that differ much in size decline with the
return horizon. This behavior is consistent with the following view of (2):
(a) larger short-horizon correlations -and slopes for firms that differ a lot
in size are due to the mean-reverting price component S(t), which becomes
less important in the variation of long-horizon returns, and (b) other common

factors in returns for the largest and smallest firms are largely independent.
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IV. TESTS ON INDUSTRY PORTFOLIOS
If firms in each industry are distributed across deciles, industry
factors that generate negative serial correlation may look like a single
market factor in decile portfolios. Tests on industry portfolios may overturn

the conclusion that negative serial correlation is due to one common factor.

A. Properties of Industry Portfolios

We form 17 industry portfolios using Standard Industrial Classification
codes. One (necessarily vague) criterion in defining an industry is that it
contains firms in similar activities. The other criterion is that the
industry produces diversified portfolios during the 1926-85 period. Table 5
shows the number of firms and the average of the deciles of firms in each
industry at 10-year intervals. Each industry has at least 7 firms (15 after
1929), and the number of firms per industry is usually greater than 30.

The average of the deciles of firms in an industry ranges from 3.8 to
8.3; most are between 4.0 and 7.0. The detailed distribution of firms across
deciles at the end of 1985 in Table 5 (distributions for other years are
similar) confirms that within industries there is little concentration of
firms in specific deciles. Size and industry are not proxies. Thus industry
portfolios can provide additional evidence on the hypothesis that negative

serial correlation is due to one common factor.

B. Serial Correlation of Returns

Table 6 shows first-order serial correlations for the industry portfolios
for return horizons from 1 to 10 years. The U-shaped pattern of serial
correlations for increasing return horizons observed for the decile portfolios

(Table 1) is clear in industry portfolios. As for the deciles, bias-adjusted
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serial correlations of 3- to 5-year industry returns are negative and usually
large in magnitude and relative to standard errors.

If true serial correlations are negative and on the order of the
estimates for 3- to S5-year industry returns, unadjusted serial correlations
are relatively unbiased. (See Fama and French 1986.) Using the analysis in
Section III, the average serial correlations of 3-, 4-, and 5-year industry
returns, -.35, -.45, and -.46, suggest that around 80% of the variances of 3-
to 5-year returns are due to stationary (and thus mean-reverting) price
components, and time-varying expected returns generated by stationary price

components account for about 40% of 3-to 5-year return variances.

C. Serial Correlation of Residuals

If negative serial correlation of returns is due to a single stationary
price component S(t), an explanatory portfolio, decile 1, that loads heavily
on S(t) is again a candidate to absorb the serial correlation. The evidence
from regressions of industry returns against decile 1 is similar to that for
the deciles. The bias-adjusted residual serial correlations for the
industries (Table 7) are mostly positive. Again, these results are consistent
with the hypothesis that negative serial correlation of portfolio returns is
due to one (and the same) stationary component of prices.

As for the deciles, residual serial correlations for industry portfolios
are mostly positive, and some are large in magnitude and relative to their
standard errors. There is again the suggestion that when the common factor
that generates negative serial correlation is removed, other factors on
balance generate positive serial correlation in returns. Time variation of

expected returns seems to be a multi-factor phenomenon.
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V. TESTS ON 82 STOCKS LISTED FOR 1926-85

Since the decile and industry portfolios are diversified, firm-specific
factors contribute little to the variation of their returns. The evidence
that negative serial correlation of 3- to 5-year portfolio returns is due to
one common factor does not rule out serial correlation in individual stock
returns due to firm-specific factors. If the serial correlation of returns
has important firm-specific components, then neither the variation through
time of expected returns nor the period-by-period cross-sections of expected
returns can be explained in terms of common factors. Evidence of important
firm-specific serial correlation would substantially diminish the general
enthusiasm for parsimonious equilibrium pricing models.

Reliable inferences about the serial correlations of long-horizon returns
require long sample periods, but the population of NYSE stocks changes through
time. Our solution to this problem is to study the 82 stocks listed for the
entire 1926-85 period. Table 8 summarizes first order serial correlations on
the 82 stocks, and on an equal-weighted portfolio of the stocks, for return
horizons from 1 to 10 years.

Since more of the variation of individual stock returns is due to firm-
specific factors, serial correlations for individual stocks need not replicate
the pattern observed for portfolios. If firm-specific factors have positive
or no serial correlation, negative serial correlation of long-horizon returns
is weaker for individual stocks than for portfolios. On the other hand,
stationary components of individual stock prices due to over-reaction to firm-
specific information (market inefficiency) can mean that long-horizon returns
on individual stocks have more negative serial correlation than portfolios.

The portfolio of the 82 stocks produces a U-shaped pattern of serial

correlations similar to those observed for decile and industry portfolios.
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The bias-adjusted serial correlations of 3-, 4-, and 5-year returns on this
portfolio (Table 8) are -0.38, -0.38, and -0.29, and they are at least 2.4
standard errors below 0.0. The serial correlation of returns on the 82
individual stocks is weaker. The averages of the (82) 3-, 4-, and 5-year
bias-adjusted serial correlations are -0.16, -0.14, and -0.07, and the serial
correlations are on average -1.12, -1.10, and -0.62 standard errors from 0.0.

Table 8 also summarizes serial correlations of residuals from regressions
of the 82 stocks, and the portfolio of the 82, on decile 1. Again, decile 1
absorbs the strong negative serial correlation of the 3- to 5-year portfolio
returns; the regression residuals for the portfolio of the 82 stocks show no
evidence of negative serial correlation. More interesting, even the hint of
negative serial correlation of the individual stock returns disappears in the
regression residuals. The average residual serial correlations for the 82
stocks are close to 0.0 for all return horizons, and the distributions of the
serial correlations are roughly symmetric about 0.0. Thus, the residuals for
the 82 stocks also do not show the positive residual serial correlation
observed for decile and industry portfolios.

Heavy-handed conclusions from this rather special sample of stocks are
inappropriate, but the results are consistent with the hypothesis that the
firm-specific components of stock returns have no serial correlation. This

evidence is heartening for proponents of parsimonious pricing models.

VI. TESTS ON "WINNER" AND "LOSER" PORTFOLIOS
Negative serial correlation indicates a tendency toward reversal. When
long-horizon returns are low relative to their means, future returns tend to
be high, and vice versa. The tests are consistent with the hypothesis that

the reversal tendency in decile and industry returns is market-wide and due to
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a single factor. The tests that follow look for contemporaneous reversals

that have opposite signs for different portfolios and so are not market-wide.

A. The Extreme 35

The first tests are similar to De Bondt and Thaler's (1985). At the end
of each of 19 non-overlapping 3-year periods, 1926-28,..,1980-82, the 35
stocks with the highest returns for the period are put in a winner portfolio;

the 35 with the lowest returns are a loser portfolio. Portfolio formation
periods end in November. Returns for the following 3 years, beginning in
January, are examined for reversals. We skip a month to avoid spurious
reversals due to any tendency for loser (winner) portfolios to choose stocks
that happen to trade at bid (ask) prices at the end of formation periods.

The average 3-year continuously compounded return (Table 9) for the loser
portfolio for the 19 portfolio formation periods is -1.11, a loss in value of
67%. The average return for the winner portfolio is 1.34, a gain in value of
380%. As such wealth changes suggest, firms in the loser portfolio tend to be
smaller when portfolios are formed than firms in the winner portfolio. The
average of the vitile ranks (1/20th of the NYSE in ascending order of size) of
stocks in the loser portfolio at the end of the portfolio formation periods is
5.25, versus 11.77 for the winners (and 10.5 for all stocks on the NYSE).

Since average returns are inversely related to size (Banz 1981),
comparison of post-formation returns on loser and winner portfolios might
suggest reversals (the losers do better than the winners) because the losers
tend to be smaller. We compare post-formation returns on the winner or loser
portfolio to returns on matching portfolios of firms similar in size when
portfolios are formed. The control portfolio for the losers matches each with
the firm smaller but closest in size. If there is no smaller firm (the 35

losers often include several of the 10 smallest firms), the larger firm



19
closest in size is chosen. The control portfolio for the winners matches each
with the firm larger but closest in size.

The matching portfolios have average firm sizes and market betas similar
to the winner and loser portfolios. Average values of winners or losers are
usually within 2% of average values of firms in the matching portfolios
(Table 9). Betas for the winner portfolio and its matching portfolio,
calculated by regressing monthly post-formation returns for 1929-85 against
the NYSE value-weighted market portfolio, are 1.22 and 1.24. Betas for the
loser portfolio and its matching portfolio are 1.51 and 1.45.

Part A of Table 10 shows average returns on the winner and loser
portfolios, net of size-matched portfolio returns, for the 3 Januaries
following portfolio formation. Like De Bondt and Thaler (1985), we find
January reversals. The differences between size-adjusted January returns on
the loser and winner portfolios are greater than 4.3% and more than 2.3
standard errors from 0.0. Relative to control portfolios similar in size and
market beta, there are reversals in winner and loser returns for at least
three Januaries after portfolio formation.

Since securities are held throughout the year, we are more interested in
reversals in cumulative returns. Post-formation cumulative size-adjusted
returns on the loser portfolio (Part B of Table 10) are always positive.
After the first January, however, cumulative loser returns (those shown and
not shown) are never close to 2.0 standard errors from 0.0. After 3 years,
the cumulative size-adjusted return on the loser portfolio is 5.18% and 0.64
standard errors from 0.0. In contrast, the 3-year size-adjusted return on the
winner portfolio is -14.81% and 2.42 standard errors from 0.0. Cumulative
size-adjusted return reversals are larger and more reliable for the winner

portfolio. The difference between the 3-year size-adjusted returns on the
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loser and winner portfolios is 19.99% and 1.70 standard errors from 0.0 --
suggestive but not overwhelming evidence of a reliable difference.

Our results differ some from those of De Bondt and Thaler (1985). For
example, they find reliable reversals for losers but not for winners. The
differences have many sources. Our sample is larger (19 versus 16 3-year
periods). They use average simple returns, and we use compound returns, which
are more relevant for hypotheses about long-term price reversals. We control
for size; they use market-adjusted (equal-weighted NYSE) returns. When we
market-adjust (Part B of Table 10), 3-year return reversals are similar for
losers (14.1%) and winners (-16.8%), and the difference (30.8%) is 2.2
standard errors from 0.0 -- results more similar to theirs, and subject to
criticism for failure to control for differences in winner and loser firm
sizes. The fact that results are sensitive to technique means that even for

extreme winners and losers, evidence of return reversals is not strong.

B. Winners and losers within Deciles

The winner and loser portfolios focus on the outliers of the two groups.
In contrast, the decile and industry tests identify common reversal behavior
for portfolios that cover all stocks. We test next for a general tendency
toward reversals among winners and losers. At the end of non-overlapping
3-year periods, the stocks in each decile are placed in three portfolios,
based on returns for the 3-year period. The 25% with the highest returns are
the winner portfolio for the decile. The 25% with the lowest returns are the
loser portfolio. The remaining 50% are the control portfolio for the decile.

Table 11 shows means and their t's for differences between the January
return on the winner or loser portfolio of each decile and the return on the
decile control portfolio. For the three Januaries after portfolio formation,

size-adjusted returns on loser portfolios are positive and usually large
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relative to their standard errors, even for large-firm deciles. For winner
portfolios, size-adjusted returns are negative and typically large relative to
their standard errors for the first two Januaries after portfolio formation.
Thus, as in Chan (1985) and Grier (1985), January returns suggest reversal
behavior that is pervasive across deciles and persists for several years.

Again, since stocks are held throughout the year, we are more interested
in cumulative reversals. Table 12 shows average 3-year returns for the winner
and loser portfolios of the deciles. There is no evidence of reversals in
size-adjusted returns on loser portfolios; the returns split evenly (5 deciles
each) between positive and negative. All size-adjusted 3-year returns on the
winner portfolios are negative, but only two (deciles 2 and 10) are more than
2.0 standard errors from 0.0. Returns (not shown) for horizons less than 3
years are similar. Unlike the curious January returns, cumulative returns for
winner and loser portfolios of the deciles show little evidence of reversals.

To put the results in perspective, when 3-year returns are averagedl
across deciles (last column of Table 12), the difference between post-
formation returns on loser and winner portfolios is 5.27% (1.08 standard
errors from 0.0). The difference between average 3-year returns on the winner
(78.5%) and loser portfolios (-40.2%) during portfolio formation periods is
118.7%. Thus post-formation returns on average reverse less than 5% of the
difference between formation period returns on winners and losers. This is
much weaker and statistically less reliable than the 25-40% average return
reversals implied by the negative serial correlation of 3- to 5-year decile
and industry returns.

De Bondt and Thaler (1986) interpret their reversal results in terms of
market over-reaction (inefficiency). Even putting aside the issues raised

above about the robustness and pervasiveness of the evidence, market



22
inefficiency is not the only possibility. Higher returns on losers than on
winners may imply the discovery of dimensions of risk and rational time-
varying expected returns not captured by market betas or firm size.

Moreover, the evidence does not lean clearly toward inefficiency. For
example, reversals are always measured using market-adjusted returns (theirs)
or size-adjusted returns (ours). Negative adjusted returns on the winner
portfolios do not imply negative raw returns. Even for January (Tables 10 and
11), unadjusted average winner returns are almost always positive. Cumulative

unadjusted returns (Tables 10 and 12) are always substantial and positive.

VI. CONCLUSIONS

There is a U-shaped pattern in first-order serial correlations of
portfolio returns for increasing return horizons. Serial correlations become
negative for 2-year returns, reach minimum values in 3- to 5- year returns,
and then move back toward 0.0 for longer return horizons. This pattern is
interpreted with a model in which stock prices are a mix of random walks and a
slowly decaying, highly autocorrelated, stationary component. The negative
serial correlation of returns generated by a slowly decaying price component
is weak at the short return horizons common in empirical work, but it becomes
substantial as the return horizon increases. Eventually, random-walk price
components dominate the variation of returns, and long-horizon serial
correlations move back toward 0.0.

The point estimates of the serial correlations, and the tests of forecast
power in Fama and French (1986), suggest that the stationary price component
generates a substantial fraction of return variation. Serial correlations in
the neighborhood of -0.25 to -0.40 suggest that 25-40% of the variances of 3-

to 5-year returns is due to time-varying expected returns generated by the
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mean reversion of the stationary price component, and the stationary price
component generates 50-80% of the variances of 3- to 5-year returns.

In regression tests, a single explanatory portfolio, decile 1 (smallest
firms), presumed to load heavily on the stationary price component, absorbs
the negative serial correlation of all decile and industry portfolio returns.
This evidence is consistent with the hypothesis that the pervasive negative
serial correlation of returns is due to a single common factor. Positive
serial correlation of regression residuals then suggests that other factors on
balance generate positive serial correlation in returns. Time-variation of
expected returns is a multi-factor phenomenon.

The equal-weighted portfolio of the 82 stocks listed on the NYSE for the
entire 1926-85 period produces a U-shaped pattern of serial correlations much
like the decile and industry portfolios. For the 82 individual stocks, the
pattern is weak, at best. Moreover, residuals from regressions of the 82
individual stocks on decile E;show no evidence of serial correlation, positive
or negative. These results are consistent with the hypothesis that the serial
correlation of portfolio returns (both the negative serial correlation of raw
portfolio returns and the positive serial correlation of regression residuals)
is due to common factors. Since evidence to the contrary would imply firm-
specific variation in expected returns, these results are heartening for
enthusiasts of equilibrium pricing models.

The tendency toward reversal implied by the negative serial correlation
of decile and industry portfolio returns may reflect time-varying expected
returns generated by rational investor behavior and the dynamics of common
macro-economic driving variables. On the other hand, reversals generated by a
stationary component of prices may reflect market-wide waves of over-reaction

of the kind assumed in models of an inefficient market. The fact that tests
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of market efficiency are not possible without arbitrary restrictions on the
behavior of equilibrium expected returns means that the issue is not
resolvable. See Fama (1970).

In short, Fama and French (1986), and the results presented here are
evidence of predictable variation in long-horizon returns stronger than
measured in previous studies that concentrate on short-horizon (daily or
monthly) returns. Whether predictability reflects market inefficiency or
time-varying expected returns generated by rational investor behavior is, and

will remain, an open issue.
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Table 1 - OLS and Bias-Adjusted First-Order Serial Correlations for Deciles

Return Horizon

Decile 1Yr. 2Yr. 3¥r. 4Yr. 5Yr. 6Yr. 8Yr. 10Yr.
Part A: OLS Serial Correlation
Small 1 .00 -.17 -.33 -.51 -.51 -.29 .02 .09
2 .02 -.11 -.29 -.51 -.58 -.44 -.34 -.32
3 -.02 -.12 -.26 -.41 -.42 -.30 -.29 -.31
4 .00 -.16 -.31 -.46 -.49 -.37 -.31 -.25
5 -.03 -.19 -.29 -.39 -.42 -.30 -.25 -.25
6 -.02 -.17 -.33 -.40 -.39 -.26 -.20 -.22
7 -.05 -.24 -.36 -.37 -.33 -.18 -.12 -.20
8 -.02 -.17 -.27 -.25 -.21 -.05 . -.02 -.10
9 -.01 -.20 -.32 -.28 -.18 -.01 .03 -.11
Large 10 -.03 -.22 -.34 -.27 -.15 .02 .10 -.07
Mean -.02 -.18 -.31 -.39 -.37 -.22 -.14 -.17
Part B: Blas-Adjusted Serial Correlations
Small 1 .02 -.12 -.25 -.41 -.39 -.13 .23 .36
2 .04 -.06 -.21 -.41 -.45 -.29 -.13 -.06
3 .00 -.08 -.19 -.30 -.30 -.15 -.08 -.05
4 .02 -.11 -.24 -.35 -.36 -.22 -.10 .02
5 -.02 -.14 -.22 -.29 -.29 -.15 -.04 .02
6 .00 -.12 -.25 -.30 -.26 -.10 .01 .05
7 -.03 -.19 -.28 -.27 -.20 -.03 .09 .07
8 .00 -.13 -.20 -.15 -.08 .10 .19 .17
9 .01 -.16 -.24 -.18 -.06 .15 .24 .15
Large 10 -.01 -.17 -.26 -.17 -.02 .18 .31 _ .19
Mean .00 -.13 -.23 -.28 -.24 -.06 .07 .10
Part C: Standard Errors
Small 1 .11 .15 .16 .15 .16 .19 .26 .24
2 .11 .15 .16 .12 .12 .16 .22 .23
3 .11 .15 .15 .12 .13 .16 .20 .21
4 .11 .15 .15 .11 .12 .15 .19 .20
5 .11 .15 .15 .12 .13 .16 .21 .24
6 .11 .15 .16 .12 .13 .17 .21 .24
7 11 .14 .15 11 .13 .16 .21 .24
8 11 .15 .15 .12 .13 .15 .19 .20
9 11 .15 .15 .13 .16 .19 .27 .31
Large 10 .11 .14 .15 .12 .14 .17 .25 .29

Note: OLS serial correlations in Part A are slopes in regressions of the
return, r,(t,t+T), on the lagged T-year return, r.(t-T,t). The serial
correlations in Part B use the bias adjustments (positive constants that
increase with the return horizon and are added to the OLS slopes) of Fama
and French (1985). The bias adjustments are relevant when true serial
correlations are 0.0. Standard errors in Part C are adjusted for the
overlap of monthly observations on T-year returns with the method of Hansen
and Hodrick (1980). Since the bias adjustment is a constant for any given
return horizon, standard errors apply to both OLS and bias-adjusted slopes.
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Table 2 - Cross Correlations of Decile Portfolio Returns

Correlations of 1-Year Returms

Decile 1 2 3 4 5 6 7 8 9
2 .96
3 .94 .98
4 .93 .98 .99
5 .91 .97 .98 .99
6 .89 .95 .97 .98 .98
7 .89 .94 .97 .98 .98 .99
8 .85 .92 .95 .96 .97 .97 .99
9 .84 .90 .93 .94 .96 .97 .98 .99
10 .78 .85 .88 .90 .92 .94 .95 .96 .98
Correlations of 3-Year Returns
Decile 1 2 3 4 5 6 7 8 9
2 .93
3 .87 .98
4 .87 .98 .99
5 .85 .96 .99 .99
6 .81 .93 .96 .98 .98
7 .81 .92 .96 .97 .98 .99
8 .74 .88 .95 .95 .97 .97 .99
9 .74 .85 .91 .92 .94 .97 .98 .98
10 .62 .75 .82 .85 .87 .91 .93 .94 .97
Correlations of 5-Year Returnms
Decile 1 2 3 4 5 6 7 8 9
2 .90 -
3 .80 .96
4 .81 .97 .99
5 .79 .96 .99 .99
6 .74 .93 .98 .98 .99
7 .73 .91 .98 .97 .98 .99
8 .61 .85 .95 .94 .95 .97 .98
9 .62 .83 .92 .91 .93 .96 .97 .97
10 .48 .72 .82 .83 .86 .90 .92 .94 .97
Correlations of 10-Year Returns
Decile 1 2 3 4 5 6 7 8 9
2 .80
3 47 .87
4 .57 .92 .97
5 .52 .88 .97 .97
6 47 .84 .97 .96 .98
7 .39 .77 .96 .93 .97 .99
8 .15 .63 .92 .86 .90 .93 .96
9 .27 .64 .87 .83 .89 .94 .96 .94
10 .16 .53 .81 .77 .83 .89 .93 .93 .98
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Table 3 - Serial Correlations of Residuals from Regressions of Decile

Portfolios on Decile 1

Return Horizon

Decile 1Yr. 2¥Yr. 3¥r. 4Yr. 5Yr. 6Yr. 8Yr. 10Yr.
Serial Correlation
Small 2 .30 .40 .32 .15 .03 -.05 -.09 .19
3 .35 .48 .46 .41 31 .21 .03 .09
4 .33 .32 .27 .17 .07 -.02 -.07 .03
5 .24 .21 .16 .18 A1 .04 -.03 .15
6 .32 .18 .10 .13 .12 .10 .02 .09
7 .23 .13 .10 .21 .20 .17 .07 .11
8 .23 .25 .20 .28 .25 .22 .07 .06
9 .25 .15 .09 17 .22 .23 .11 .09
Large 10 .25 .12 -.04 .00 .07 .13 .13 .07
Bias-Adjusted Serial Correlation
Small 2 .32 .45 .39 .25 .16 .10 .12 .07
3 .37 .52 .54 .51 Ny .37 .24 .18
4 .35 .37 .35 .27 .19 .14 14 .23
5 .25 .25 .24 .28 24 .20 .18 .12
6 .34 .23 .17 .23 .25 .26 .23 .18
7 .25 .17 .18 .31 .33 .32 .28 .16
8 .25 .29 .28 .38 .38 .38 .28 .21
9 .27 .20 .16 .27 .34 .38 .32 .18
Large 10 .27 .17 .04 .10 .20 .29 .34 .20
Standard Error
Small 2 .11 Jd4 0 7 17 .17 .18 .19 .22 .24
3 11 .14 .15 .13 .15 .17 .20 .19
4 .11 .16 .18 .16 .16 .17 .19 .19
5 .11 .17 .18 .16 .17 .20 .23 .24
6 .11 .17 .20 .17 .16 .18 .22 .24
7 11 .17 .19 .15 .15 .17 .22 .23
8 .11 .17 .18 .14 .14 .16 .19 .20
9 .11 .17 .20 .17 .18 .21 .28 .31
Large 10 .11 .17 .20 .17 .16 .19 .26 .30

Note: The bias adjustments of the serial correlations (positive constants

that increase with the return horizon and are added to the OLS serial
correlations) are from Fama and French (1985).
adjustments when the true serial correlations are 0.0.

They are the proper bias

When the true serial

correlations are positive, the bias adjustments are too small and the "bias-
adjusted" serial correlations are still biased downward.

or Marriott and Pope (1954).

See Kendall (1954)
The standard errors of the serial correlations

are adjusted for the overlap of monthly observations on T-year returns with
the method of Hansen and Hodrick (1980).
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Table 4 - Slopes in Regressions of Decile Portfolios on Decile 1 or 10

Return Horizon

Decile 1Vr. 2Yr. 3Yr. 4Yr. 5Yr. 6Yr, 8Yr. 10Yr.
OLS Slope: Explanatory Variable is Decile 1

Small 2 .81 .80 .80 .80 .78 74 .61 .56
3 .75 .72 .70 .67 .63 .57 .38 .33

4 .69 .67 .65 .62 .58 .52 .37 .34

5 .64 .61 .58 .56 .53 .48 .36 .33

6 .61 .57 .55 .51 .48 .42 .30 .29

7 .59 .55 .52 .48 a4 .38 .26 .24

8 .53 .49 .46 .40 .36 .28 .13 .10

S .49 .46 .42 .38 .34 .28 .18 .18

Large 10 .40 .36 .31 .26 .22 .17 .08 .09

OLS Slope: Explanatory Variable is Decile 10

Small 1 1.48 1.38 1.19 1.13 1.00 .74 .32 .38
2 1.37 1.32 1.26 1.31 1.29 1.17 .79 .71

3 1.36 1.31 1.28 1.34 1.36 1.32 1.10 1.04

4 1.29 1.28 1.24 1.28 1.27 1.20 .95 .87

5 1.24 1.20 1.16 1.18 1.18 1.14 .98 .91

6 1.24 1.22 1.20 1.23 1.23 1.20 1.09 1.04

7 1.21 1.19 1.15 1.16 1.15 1.12 1.03 1.01

8 1.15 1.14 1.13 1.15 1.16 1.16 1.10 1.05

Large 9 1.10 1.10 1.10 1.11 1.11 1.11 1.12 1.13

Standard Error of Slope: Explanatory Variable is Decile 1

Small 2 .03 .04 .06 .07 .07 .09 .10 .09
3= .03 .05 .07 .08 .09 .11 .15 .15

4 .03 .05 .07 .08 .09 .10 .12 .11

5 .03 .05 .07 .07 .08 .09 .12 .12

6 .04 .05 .07 .08 .09 .10 .13 .14

7 .04 .05 .07 .07 .08 .09 .13 14

8 .04 .06 .08 .08 .09 .11 .14 .15

9 .04 .05 .07 .08 .08 .10 .14 .17

Large 10 .04 .05 .07 .08 .08 .09 .13 .15
Standard Error of Slope: Explanatory Variable is Decile 10

Small 1 .14 .21 .27 .33 .38 42 .54 .60
2 .10 .15 .20 .24 .26 .28 .30 .30

3 .08 .12 .16 .19 .19 .20 .20 .18

4 .07 .11 .14 .16 .18 .19 .19 .18

5 .06 .09 .12 .14 .15 .16 .18 .17

6 .05 .07 .09 .11 .12 .13 .14 .13

7 .05 .07 .08 .10 .11 .11 .11 .10

8 .04 .06 .07 .08 .09 .09 .11 .11

Large 9 .03 .04 .05 .05 .06 .06 .06 .05

Note: The standard errors of the OLS slopes are adjusted for residual serial
correlation induced by the overlap of monthly observations on T-year returns
with the method of Hansen and Hodrick (1980).
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Table 5 - Number of Firms and Average Decile for Industry Portfolios

Industry (Names Below)

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Number of Firms in Industry Portfolio
1925 43 24 23 33 16 30 11 16 29 19 91 35 12 46 22 43
1935 61 30 35 63 27 37 32 37 54 23 99 60 20 15 57 31 40
1945 72 38 38 66 36 47 39 38 69 35 111 82 29 18 69 32 37
1955 83 46 36 73 56 44 52 47 87 96 119 102 40 18 78 32 47
1965 83 60 52 83 84 33 71 80 107 115 96 168 46 31 62 35 46
1975 81 61 49 111 102 37 92 224 153 147 79 179 42 33 53 33 56
1985 51 40 45 88 91 27 76 264 186 142 68 179 41 30 45 33 66
Average of Deciles for Firms in Industry Portfolio
1925 5.2 3.4 5.9 4.9 5.1 54 55 53 53 7.8 5.8 5.6 5.3 4.3 5.6 4.5 6.5
1935 6.4 5.0 6.9 3.9 5.2 6.7 6.2 5.8 6.0 5.3 5.7 5.2 4.7 7.8 4.9 5.7 4.3
1945 6.0 3.8 6.2 5.5 5.4 5.1 5.6 54 4.8 7.1 54 53 6.4 4.5 5.0 4.9 7.6
1955 4.9 3.4 5.3 4.5 4.9 4.2 57 5.8 5.1 7.6 5.3 5.1 6.7 4.9 6.0 4.9 8.3
1965 5.3 4.0 6.8 4.7 50 5.3 4.9 4.7 5.6 7.5 5.6 5.0 6.3 4.1 5.7 5.0 7.6
1975 5.9 3.9 7.5 5.2 4.9 5.8 4.9 4.6 5.3 7.0 5.3 5.2 7.0 4.6 5.5 6.3 7.5
1985 6.4 3.8 7.5 5.7 5.2 5.8 4.7 5.1 5.8 6.7 5.8 4.9 6.7 4.8 4.3 5.1 5.6
Decile Number of Firms in Each Industry by Decile:1985
1 6 10 0 9 12 2 14 34 12 1 5 19 3 4 7 4 6
2 2 4 3 8 7 3 2 38 20 6 4 31 2 3 7 2 6
3 2 5 3 8 10 2 14 31 11 11 5 19 1 4 7 3 11
4 3 7 4 7 10 4 11 22 21 8 7 21 3 3 3 3 10
5 3 3 4 10 12 4 6 22 19 19 12 15 3 3 6 5 1
6 8 4 0 10 9 2 5 21 26 18 9 16 2 4 2 6 5
7 6 4 3 6 9 0 10 20 19 19 4 18 7 5 10 3 4
8 4 1 4 11 9 1 5 28 17 22 7 18 7 2 0 6 5
9 8 2 8 9 1 3 8 27 22 25 9 10 8 1 1 0 5
10 9 0 16 10 12 6 1 21 19 13 6 12 5 1 2 1 13
Industry Standard Industrial Classification Codes
1 Food 100-299, 2000-2099, 5140-5159, 5180-5189, 5191
2 Apparel 2200-2399, 3140-3149, 5130-5139
3 Drugs 2100-2199, 2830-2849, 5122, 5194
4 Retail 5230-5999
5 Durables 2500-2599, 3000-3099, 3172, 3630-3669, 3860-3949, 3960-3969,
5020-5029, 5040-5049, 5064, 5094-5099
6 Autos 3710-3719, 3792, 5010-5019
7 Construction 1500-1799, 2400-2499, 2850-2859, 2952, 3200-3299, 3420-3439,
5030-5039, 5070-5075, 5198, 5211
8 Finance 6000-6999
9 Miscellaneous 2600-2799, 2990-2999, 3110-3119, 3190-3199, 3980-3999, 4800-4899,
5090, 5093, 5110-5119, 5199, 7000-8999, 9910, 9999
10 Utilities 4900-4999
11 Transportation 3720-3789, 3790, 3799, 4000-4799
12 Business Equipment 3500-3629, 3670-3699, 3800-3859, 3950-3959, 5060-5069, 5078-5089
13 Chemicals 2800-2829, 2860-2899, 5160-5169
14 Metal Products 3410-3419, 3440-3499, 5080-5089
15 Metal Industries 3300-3399
16 Mining 1000-1299, 1400-1499, 5050-5059
17 0il 1300-1399, 2910-2919, 5170-5179
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Table 6 - OLS and Bias-Adjusted Serial Correlations for Industries

Return Horizon
Industry 1¥r. 2Yr. 3¥r. 4Yr. 5Yr. 6Yr. 8Yr. 10Yr.

Part A: OLS Serial Correlation

Food -.01 -.23 -.38% -.50% -.53% - . 40% -.40 -.40
Apparel -.08 -.15 -.22 -.36% -.44% -.41% -.55% -.65%
Drugs -.02 -.13 -.26 -.33% -.39% -.34 -.34 -.35
Retail .01 -.14 -.31 -.40% -.45% -.36% -.39 -.43
Durables .04 -.13 -.29 -.41% -.41% -.24 -.20 -.16
Autos -.04 -.20 -.37% -.48% -.43% -.26 -.25 -.28
Construction .01 -.12 -.31 -.51% -.54% -.38% -.10 -.17
Finance .01 -.15 -.29 -.34% -.27 -.11 -.10 -.16
Miscellaneous -.01 -.11 -.26 -.43% -.47% -.34% -.27 -.28
Utilities -.03 -.14 -.28 -.28 -.13 .08 -.13 -.27
Transportation -.08 -.17 -.25 -.36% -.36% -.25 -.31 -.30
Bus. Equipment .03 -.23 -.46% - 54% -.52%  -.40% -.23 -.18
Chemicals -.04 -.36% -.52% -.56% -.57% - 44% -.27% -.18
Metal Products .01 -.23 -.47% -.64% -.70% -.59% -.46% -.28
Metal Industries -.08 -.30% -.45% -.51% -.51% -.37% -.07 -.12
Mining -.09 -.31% -.46% -.59% -.65% -.50* -.26 -.17
0il .01 -.21 -.30% - 44% -.43% -.27 -.07 -.20
Averages -.04 -.20 -.35 -.45 -.46 -.33 -.26 -.27
Part B: Bias-Adjusted Serial Correlation
Food .01 -.18 -.31% - 40* - . 40% -.24 -.19 -.13
Apparel -.06 -.11 -.14 -.26 -.31 -.25 -.34 -.38
Drugs .00 -.08 -.18 -.23 -.26 -.19 -.13 -.08
Retail .03 -.10 -.23 -.30% -.32% -.20 -.18 -.17
Durables .06 -.08 -.21 -.31% -.28% -.09 .01 .11
Autos -.02 -.16 -.30% -.38%* -.30% -.10 -.04 -.01
Construction .03 -.07 -.23 -.41% -.41*% -.23 .11 .09
Finance .03 -.11 -.21 -.24 -.14 .05 L11 11
Miscellaneous .01 -.06 -.19 -.33% -.34% -.19 -.06 -.01
Utilities -.01 -.09 -.21 -.18 .00 .23 .08 .00
Transportation -.07 -.12 -.17 -.26% -.23 -.10 -.10 -.03
Bus. Equipment .04 -.18 -.38% - b4% -.39% -.24 -.02 .09
Chemicals -.02 -.32% - 45% -.46% - . 44% -.28% -.06 .09
Metal Products .03 -.18 -.40% -.54% -.57% - b4* -.25 -.01
Metal Industries -.06 -.25 -.37% -.41* -.39% -.22 14 .15
Mining -.07 -.26% -.38% -, 49% -.53*% -.35% -.06 .09
0il .03 -.16 -.22 -.34% -.31% -.12 .14 .07
Averages -.00 -.15 -.27 -.35 -.33 -.17 -.05 -.00

Note: Serial correlations in Part A are slopes in regressions of the return on
portfolio i from t to t+T, r, (t,t+T), on the lagged T-period return, ri(t-T,t).
Serial correlations in Part use the bias adjustments of Fama and French (1986),
which are relevant when true serial correlations are 0.0. Starred (¥*) serial
correlations are two standard errors from 0.0. Standard errors in these
comparisons are adjusted for overlap of monthly observations on T-year returns
with the method of Hansen and Hodrick (1980).
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Table 7 - OLS and Bias-Adjusted First-Order Serial Correlations of Residuals
from Regressions of Industry Portfolios on Decile 1

Return Horizon

Industry 1¥r. 2Yr. 3Yr. 4Yr, 5Yr. 6Yr. 8Yr. 10Yr.
Part A: OLS Serial Correlation
Food -.03 .02 -.02 .12 .21 .08 -.07 -.29
Apparel .06 .00 .09 .25 .30 .13 -.12 -.38
Drugs .12 .16 .21 .19 .10 -.01 -.14 -.29
Retail 11 .05 -.01 .03 -.01 -.04 .01 -.21
Durables .32% .35% .29 .21 .10 .03 -.02 .00
Autos .14 .11 .22 .31% .29% .22% .07 -.01
Construction .13 .23 .29 .15 .06 .00 .05 -.18
Finance .26% .19 .10 .10 .17 .20 .08 -.10
Miscellaneous L23% .31 .32 .23 .14 .08 .02 -.12
Utilities .19 .04 -.14 -.14 .05 .21 -.01 -.22
Transportation .21 .29 .30 .23 .16 .10 -.04 -.06
Bus. Equipment .22 -.02 -.18 -.16 -.15 -.16 -.12 -.12
Chemicals .14 -.17 -.24 -.16 -.23 -.33 -.28 -.20
Metal Products .05 .03 .00 .01 -.05 -.12 -.32 -.22
Metal Industries .20 .02 -.19 -.22 -.28 -.28 -.14 -.26
Mining .07 -.20 -.32 -.17 -.18 -.15 -.11 .03
0il .19 -.01 -.04 -.07 -.07 -.03 -.01 -.14
Part B: Bias-Adjusted Serial Correlations
Food -.01 .07 .05 .22 .34 .24 .14 -.02
Apparel .08 .04 .17 .35 .43 .28 .09 -.12
Drugs .14 .21 .28 .29 .22 .14 .07 -.02
Retail .13 .09 .07 .13 .12 .12 .22 .06
Durables L34% .30% .36% .31+ .23 .19 .18 .27
Autos .16 .15 .29 42% L42% .38% .28% .26
Construction .15 .28 .36% .25 .19 .16 .26 .09
Finance .28% .24 .17 .20 .30 .35 .29 .16
Miscellaneous L24% .36% L40% .33 .27 .24 .23 .15
Utilities .21 .09 -.06 -.03 .18 .37 .20 .05
Transportation .23 .34% .38 .33 .29 .26 .17 .21
Bus. Equipment L24% .03 -.11 -.06 -.02 .00 .09 .15
Chemicals .16 -.13 -.16 -.06 -.10 -.17 -.07 .07
Metal Products .07 .08 .08 .11 .08 .03 -.11 .05
Metal Industries .21 .06 -.11 -.11 -.15 -.13 .07 .01
Mining .09 -.16 -.25 -.07 -.05 .01 .10 .30
0il .21 .03 .03 .03 .06 .13 .20 .12

Note: Serial correlations in Part B use the bias adjustments of Fama and French
(1986), relevant when true serial correlations are 0.0. Starred (¥) serial
correlations are two standard errors from 0.0. Standard errors in these
comparisons are adjusted for overlap of monthly observations on T-year returns
with the method of Hansen and Hodrick (1980).



Table 8 - OLS and Bias-Adjusted First-Order Serial Correlations of

(A) Returns and (B) Residuals from Regressions of Returns on Decile 1
for 82 Individual Stocks Listed over the Entire 1926-85 Sample Period
and for an Equally Weighted Portfolio of These Stocks

Return Horizon

1Yr. 2¥r. 3¥r. 4Yr ., 5Yr. 6Yr. 8Yr. 10Yr.
Part A: Returns
OLS Serial Correlations
Portfolio -.06 -.28 -.46 -.48 -.42 -.20 -.05 -.13
Average of 82 .01 -.13 -.24 -.24 -.20 -.14 -.16 -.23
Bias-Adjusted Serial Correlations

Portfolio -.04 -.23 -.38 -.38 -.29 -.04 .16 .14
Average of 82 .03 -.08 -.16 -.14 -.07 .01 .05 .03
Fractile: .05 -.14 -.29 -.38 -.39 -.37 -.35 -.31 -.30
.25 -.03 -.16 -.30 -.29 -.24 -.15 -.09 -.11

.50 .03 -.07 -.18 -.16 -.06 .00 .08 .05

.75 .07 .00 -.04 -.02 .04 .20 .21 .19

.95 .20 .17 .22 .29 .38 .42 .41 .40

t-Statistics for Bias-Adjusted Serial Correlatlons

Portfolio -.41 -1.68 -2.84 -4,02 -2.40 -.29 .72 .53
Average of 82 .24 -.61 -1.12 -1.10 -.62 -.02 .17 .12
Fractile: .05 -1.31 -2.17 -2.74 -3.46 -3.16 -2.63 -1.50 -1.32
.25 -.31 -1.16 -1.99 -2.14 -1.65 -.84 -.29 -.47

.50 .29 -.51 -1.14 -1.04 -.34 .02 .26 .17

.75 .65 -.02 -.18 -.10 .21 .92 .87 .69

.95 1.91 1.09 1.16 1.70 1.78 1.98 1.95 1.97

Part B: Residuals from Regressions of Returns against Decile 1
OLS Serial Correlations
Portfolio .19 .09 -.02 .04 .08 .11 .08 -.09
Average of 82 .10 .02 - .04 -.03 -.04 -.07 -.16 -.26
Bias-Adjusted Serial Correlations

Portfolio .21 .14 .05 .14 .21 .27 .29 .18
Average of 82 .12 .07 .03 .07 .09 .09 .05 .01
Fractile: .05 -.08 -.26 -.25 -.28 -.25 -.34 -.31 -.32
.25 .05 -.04 -.13 -.09 -.07 -.11 -.08 -.12

.50 .13 .09 .04 .06 .08 .10 .08 .03

.75 .21 .19 .21 .20 .25 .27 .21 .15

.95 .31 s .41 .53 .54 .49 44 .36

t-Statistics for Bias-Adjusted Serial Correlations

Portfolio 1.90 .84 .29 .83 1.14 1.34 1.11 .62
Average of 82 1.07 .40 .13 .30 .43 .38 .14 .03
Fractile: .05 -.74 -2.07 -1.56 -1.72 -1.71 -2.03 -2.02 -1.31
.25 .40 -.23 -.68 -.54 -.46 -.44 -.31 -.51

.50 1.15 .61 .22 .28 .40 .40 .34 .15

.75 1.99 1.26 1.02 .94 1.22 1.15 .92 .62

.95 2.94 3.02 2.34 3.40 3.18 3.15 1.77 1.53

Note: Estimates for

firms 4, 20, 41, 62, and 79 are reported for fractiles.
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Table 9 - Characteristics of Portfolios of 35 Highest (Win) and Lowest (Lose)
Return Stocks and Their Size-Matched Control Portfolios
for 3-year Portfolio Formation Periods

Prior 3 Yr. Matching Portfolio
Period Return Average Vitile Equity Value Equity Ratio
Formed Loser Winner Loser Winner Loser Winner Loser Winner
1926-28 -.85 1.67 3.14 12.91 5.1 237.0 1.02 1.13
1929-31 -3.63 .00 2.60 16.23 .6 134.5 1.02 1.32
1932-34 -1.52 1.76 6.63 10.60 6.1 22.3 1.01 .98
1935-37 -1.10 1.35 4.77 11.57 3.4 51.5 1.01 .98
1938-40 -1.70 1.08 3.06 11.40 2.0 21.1 1.00 .99
1941-43 -.44 1.48 8.31 7.40 14.5 16.2 1.01 .99
1944-46 -.04 1.63 11.03 7.83 62.4 26.6 1.08 .99
1947-49 -1.10 .91 3.51 12.03 5.5 40.2 1.01 .99
1950-52 -.41 1.41 4.20 11.66 22.2 86.3 1.00 .99
1953-55 -.39 1.48 4.43 12.49 18.2 210.1 1.01 .97
1956-58 -.58 1.22 5.46 12.54 42.1 321.4 1.00 .93
1959-61 -.69 1.42 4.06 12.71 35.0 339.3 1.00 .96
1962-64 -1.03 1.22 5.66 10.69 43.6 263.6 1.01 .98
1965-67 -.47 1.80 8.80 11.86 385.6 348.1 1.05 .98
1968-70 -1.62 .94 6.34 14,26 81.7 473.8 1.00 .99
1971-73 -1.75 1.13 3.97 16.37 29.8 1231.9 1.00 .98
1974-76 -1.96 1.47 2.17 10.69 24.1 215.8 .98 .99
1977-79 -.69 1.74 7.77 9.46 392.8 218.0 1.01 1.00
1980-82 -1.03 1.79 3.91 10.94 69.7 621.0 1.00 1.00
Average -1.11 1.34 5.25 11.77 65.5 256.8 1.01 1.01

Note: 3-year return is the total continuously compounded return on the portfolio
for the 3-year portfolio formation period. Vitiles are decile size groups, split
in half, and numbered from 1 (smallest firms) to 20 (largest firms). Average
vitile is the average of the vitiles for stocks in a portfolio at the end of the
portfolio formation period. Equity value is the average of the market values
(millions of dollars) of the stocks in a portfolio. The matching portfolio equity
ratios in the last two columns of the table are equity values of loser or winner
portfolios relative to the equity values of their size-matched portfolios. The
matching winner-portfolio equity ratio is 1.32 for 1929-31 because the largest
stock (AT&T) on the NYSE is in the winner portfolio. The equity value for AT&T is
2.2 times the value of its matching firm (General Motors) and more than seven times
the value of any other firm in the winner or matching portfolio. This is the only
period when the largest stock is in the winner portfolio. In contrast, the
smallest stock is in the loser portfolio six times.
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Table 10 - Average and Cumulative Average Post-Formation Returns
(Size-Adjusted, Market-Adjusted, and Unadjusted)
for Portfolios of 35 Stocks with
Highest (Winner) or Lowest (Loser) Formation Period Returns

Size-Adjusted Returns Market-Adjusted Returns Unadjusted Returns
Month
Loser Winner Difference Loser Winner Difference Loser Winner
Part A: Average January Returns

1 Jan 4.65 -1.96 6.61 7.58 -3.03 10.60 10.91 .30
(2.44) (2.30) (2.75) (3.44) (2.95) (3.46) (4.14) (.25)

13 Jan 4,00 -3.50 7.50 7.14 -3.77 10.91 11.56 .65
(1.68) (3.03) (2.43) (2.62) (2.85) (3.02) (3.06) (.47)

25 Jan 3.17 -1.19 4.36 6.01 -1.79 7.80 12.94 5.14
(1.90) (1.14) (2.39) (3.04) (1.37) (3.06) (3.75) (2.67)

Part B: Cumulative Returns

1 Jan 4,65 -1.96 6.61 7.58 -3.03 10.60 10.91 .30
(2.44) (2.30) (2.75) (3.44) (2.95) (3.46) (4.14) (.25)

12 Dec 2.71 -.50 3.21 3.73 -1.97 5.69 15.12 9.42
(1.08) - (.14) (.89) (1.06) (.66) (1.31) (1.99) (1.37)

13 Jan 6.72 -4.00 10.72 10.87 -5.73 16.60 26.68 10.08
(1.71) (-1.11) (2.24) (2.29) (-1.75) (2.79) (3.34) (1.58)

24 Dec 4,81 -8.11 12.91 9.76 -9.40 19.16 35.29 16.13
(.89) (-1.53) (1.7D) (1.40) (-1.80) (2.01) (2.47) (1.46)

25 Jan 7.98 -9.30 17.28 15.77 -11.19 26.96 48.23 21.27
(1.21) (-1.65) (1.96) (1.87) (-1.84) (2.29) (3.05) (1.93)

36 Dec 5.18 -14.81 19.99 14.08 -16.75 30.83 49 .45 18.62
(.64) (-2.42) (1.70) (1.33) (-2.85) (2.20) (2.56) (1.33)

Note: Month is the number of the month in the 3-year period following portfolio
formation. A size-adjusted return is the difference between the continuously compounded
return on a winner or loser portfolio and the continuously compounded return on its size-
matched control portfolio. A market-adjusted return is the difference between the
continuously compounded return on a winner or loser portfolio and the continuously
compounded return on the NYSE equal-weighted market portfolio. The average and
cumulative average returns, and the standard deviations used to calculate their t's, are
for the 19 3-year post-formation periods, 1929-31,..,1983-85. The tdifference” columns
of the table for size-adjusted returns are based on the differences between size-adjusted
loser and winner continuously compounded portfolio returns.
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Table 11 - Average Size-Adjusted and Unadjusted January Returns

for 25% Loser and 25% Winner Portfolios from Each Declle

Decile
Month 1l 2 3 4 5 6 7 8 9 10 Mean
Part A: Size-Adjusted Average January Returns
Losers
1 5.05 1.60 2.71 1.23 1.69 2.50 1.27 1.60 1.04 1.22 1.99
13 4.42 3.45 2.63 1.89 2.07 2.56 3.46 .86 1.51 1.78 2.46
25 2.76 3.26 2.75 1.67 2.11 2.29 2.40 1.69 1.39 1.36 2.17
Winners
1 -2.66 -3.55 -1.60 -.74 -1.98 -.40 -1.74 -1.34 -1.59 -1.15 -1.67
13 -1.91 -1.21 -.20 -.77 -1.33 -.85 -1.69 -1.70 -2.56 -1.04 -1.33
25 -1.90 -1.22 -.27 .06 .21 -.38 -.58 .07 -.96 -.12 -.51
t’'s for Losers
1 1.88 1.59 3.32 1.42 2.07 3.66 1.68 1.76 1.58 1.68 2.82
13 1.70 2.79 1.33 4.27 3.74 3.29 3.66 1.71 2.02 2.53 3.47
25 1.47 2.61 2.49 1.85 3.16 2.41 2.85 2.59 2.97 3.10 3.70
t’s for Winners
1 -2.70 -2.87 -2.40 -1.45 -2.78 -.77 -2.47 -1.60 -2.90 -1.50 -3.58
13 -2.18 -.81 -.21 -1.21 -1.52 -1.74 -1.89 -2.15 -3.12 -1.64 -2.49
25 -1.89 -1.77 -.45 .06 .46 -.28 -.86 11 -1.44 -.25 -1.04
Part B: Unadjusted Average January Returns
Losers
1 13.12 8.38 7.36 5.08 5.10 4.15 2.90 2.65 1.96 1.28 5.20
13 13.82 10.11 8.02 6.30 5.79 5.82 5.89 3.34 3.45 1.98 - 6.45
25 14.52 12.64 11.09 9.22 8.33 8.11 7.34 5.71 5.38 4,52 8.69
Winners
1 5.40 3.23 3.05 3.11 1.44 1.25 1.25 -.30 -.66 -1.09 1.53
13 7.49 5.46 5.19 3.63 2.39 2.41 2.41 .77 -.62 -.84 2.66
25 9.87 8.16 8.07 7.60 6.43 5.44 5.44 4,10 3.03 3.04 6.01
t’'s for Losers
1 4.07 4,86 4.74 3.67 3.60 3.84 2.40 2.36 2.31 1.57 4.29
13 2.98 3.36 2.67 3.46 2.92 3.03 2.88 2.20 2.31 1.51 3.10
25 4.09 3.92 3.63 3.54 3.68 3.23 3.36 3.18 3.94 3.72 3.84
t’'s for Winners
1 4.14 2.96 3.03 3.13 1.28 1.15 -.11 -.26 -.67 -.83 1.62
13 3.04 2.44 2.56 1.96 1.36 1.41 42 .54 -.49 -.70 1.64
25 4.36 3.91 3.38 3.51 3.17 3.21 2.82 2.57 2.12 2.11 3.43
Note: Month is the number of the month in the 3-year period following portfolio
formation. A size-adjusted return is the difference between the continuously

compounded return on a winner or loser portfolio and the continuously compounded
return on its size-matched control portfolio.
standard deviations used to calculate their t’s, are for the 19 3-year post-

formation periods, 1929-31,..,1983-85.

The average returns, and the
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Table 12 - Average Size-Adjusted and Unadjusted Cumulative Returns
for 25% Loser and 25% Winner Portfolios for Each Decile
for 3-Year Post-Formation Period

: Decile
1 2 3 4 5 6 7 8 9 10 Mean

Part A: Average Size-Adjusted Cumulative Returns

Losers
-.07 -3.72 -.75 -7.02 1.32 5.29 2.38 -.85 2.91 1.85 14
(.01) (.68) (.14) (1.66) (.29) (1.12) (.51) (.19) (.57) (.67) (.04)
Winners

.9.62 -8.84 -1.39 -5.86 -1.03 -3.20 -2.32 -7.86 -2.27 -8.99 -5.14 -
(1.82) (2.66) (.46) (1.45) (.23) (.62) (.50) (1.34) (.64) (2.17) (1.80)

Losers-Winners
9.56 5.12 .64 -1.16 2.35 8.50 4.70 7.01 5.18 10.84 5.27
(.93) .66) (.12) (.21) (.36) (1.1?) (.83) (1.15) (.76) (2.10) (1.08)

”~~

Part B: Average Cumulative Unadjusted Returns

Losers
51.88 42.37 37.64 32.52 34.40 37.37 31.38 - 31.45 31.13 25.12 35.53
(2.38) (2.42) (2.61) (2.13) (3.14) (3.21) (2.77) (2.70) (2.65) (3.17) (2.74)

Winners
42.32 37.25 37.00 33.68 32.05 28.87 26.68 24 .44 25.95 14.28 30.25
(2.61) (3.01) (2.54) (2.30) (2.51) (2.02) (2.29) (1.97) (3.34) (1.37) (2.48)

Note: A size-adjusted return is the difference between the continuously compounded
return on a winner or loser portfolio and the continuously compounded return on its
size-matched control portfolio. The average and cumulative average returns, and the
standard deviations used to calculate their t's, are for the 19 3-year post-formation
periods, 1929-31,..,1983-85. The "]osers-winners" estimates for size-adjusted returns
are based on the differences between size-adjusted loser and winner continuously
compounded portfolio returns. t-statistics are in parentheses. The means and their
t-statistics are estimated by first averaging across deciles for each 3-year post-
formation period.





