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 2 

ABSTRACT 1 

As Light Detection and Range (LiDAR) technologies rapidly advance, it is becoming increasingly viable 2 
as a solution to collect vehicle classification data. The main challenge of LiDAR compared with traditional 3 
image-based sensors in vehicle classification lies in its resolution, which limits the ability of LiDAR-based 4 
models to classify vehicles in detail from a single captured frame. This paper proposes a novel vehicle point 5 
cloud reconstruction framework with the consideration of the ground plane constraint and develops a 6 
bootstrap aggregating deep neural network (bagging DNN) model to classify the reconstructed vehicle point 7 
clouds based on the FHWA classification scheme. First, the FilterReg registration algorithm is used to 8 
estimate the transformation matrix between consecutive frames of each vehicle point cloud. Then, a 9 
multiway registration is conducted to fine-tune the estimated transformation matrices to rebuild the 3D 10 
model of each moving vehicle. Second, the key features are extracted from the reconstructed vehicle models 11 
and fed into a bagging DNN model to classify them based on the FHWA classification scheme. The initial 12 
field test shows that this reconstruction framework can correctly reconstructing vehicle objects with a 13 
tolerance of 3-5 consecutive missing frames. The classification model with the reconstruction framework 14 
outperforms the state-of-the-art LiDAR-based FHWA classification model in terms of both accuracy and 15 
robustness. The model has a 79 percent average correct classification rate (CCR). Remarkably, the proposed 16 
model can accurately distinguishing Classes 5, and 8 trucks, which have overlapping axle configurations 17 
with a 97 percent and an 84 percent CCR, respectively.  18 

 19 

Keywords: LiDAR, Vehicle Point Cloud Reconstruction, Point Cloud Registration, FHWA Vehicle 20 
Classification, Bootstrap Aggregating Deep Neural Network. 21 

  22 
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1. Introduction 1 

Truck classification data is an essential data source that is commonly used in various transportation 2 
applications, such as pavement design (1), on-road emission estimation (2) and freight planning (3, 4). In 3 
order to serve the needs of different transportation data users, the Federal Highway Administration (FHWA) 4 
uses a standardized vehicle classification scheme that classifies vehicles according to their tire and axle 5 
combinations while considering the general body configurations of vehicles (5). The State of California 6 
used a slightly modified scheme (FHWA-CA) which splits Class 9 trucks – 5 axle single trailer trucks – 7 
into two distinct categories, as presented in Figure 1. 8 

  9 

Figure 1 FHWA-CA Classification Scheme Definitions (6) 10 

Axle classification data is generally collected at vehicle classification sites equipped with Weigh-In-Motion 11 
(WIM) systems (6) or piezoelectric sensors (7). In addition, researchers also investigated using sensors such 12 
as embedded strain gauges (8) and the in-pavement wireless sensor system including accelerometer sensors 13 
and magnetometer sensors (9, 10) to obtain FHWA classification data. However, the spatial coverage of 14 
these classification sites is typically limited because of their high installation and maintenance costs. On 15 
the other hand, inductive loop sensors are cheaper to install and maintain and are ubiquitous across the U.S 16 
highway network for traffic monitoring operations. As a consequence, researchers also explored the use of 17 
inductive vehicle signature data retrieved from the advanced loop detector to classify vehicles based on the 18 
FHWA classification scheme (11, 12). Unfortunately, the coverage of the inductive loop sensors remains 19 
limited along rural highway corridors that also contribute significantly to the economy. However, the 20 
installation of pavement intrusive sensors requires inevitable pavement cuttings and lane closures which 21 
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are cost-inefficient. Hence, it may be impractical to implement pavement intrusive sensors extensively 1 
along rural highway corridors. Therefore, researchers have been starting to investigate using non-intrusive 2 
solutions, such as video cameras (13) and the Light Detection and Ranging (LiDAR) sensor, to obtain 3 
FHWA vehicle classification data.   4 

LiDAR technology was initially researched for vehicle classification applications in the early 2000s when 5 
scanning laser sensors were available for roadside traffic surveillance. Such sensors scan the cross-section 6 
of the roadway by taking several range measurements for the vehicle passing through the scanning area 7 
(14–16). These studies adopted an overhead sensor mounting configuration to capture detailed information 8 
on each passing vehicle. However, the overhead mounting is subjected to the infrastructure constraint.  Lee 9 
and Coifman mounted two vertically oriented laser scanners on a probe vehicle parked at the roadside to 10 
capture vehicles traversing the LiDAR detection zone (LDZ) (17). This speed-trap-like configuration 11 
allowed them to capture vehicle length-related features and classify vehicles according to a length-based 12 
scheme (17). However, the vertically-oriented laser scanners provide a very narrow field of view, meaning 13 
that one occluded frame may result in a significant information loss and negatively affect the performance 14 
of their classification model. Asborno et al. explored using a cost-efficient and practical single-beam 15 
LiDAR with a roadside setup to get truck body type information (18). They grouped the raw distance 16 
measurements from the LiDAR sensor over time to build vehicle signatures and adopted a Bayesian 17 
combined predictor to classify trucks based on their aggregated body type classes. However,  the low-cost 18 
single-beam LiDAR sensor cannot provide detailed vehicle profiles, which reduces the classification 19 
accuracy and the diversity of vehicle types that can be classified. For instance, classes from the FHWA 20 
classification scheme are defined primarily on vehicle axle configurations which are not well-defined in the 21 
vehicle point cloud profiles extracted from the aforementioned sensors.   22 

In recent years, multi-array rotating LiDAR sensors have become popular due to the sensing needs of 23 
autonomous vehicles. This type of sensor was designed to install on the top of the vehicles to perceive the 24 
ambient environment. Nezafat et al. (19) made the first attempt to use such sensors to collect vehicle 25 
classification data. They mounted the LiDAR in a vertical orientation on a roadside pole. Figure 2 illustrates 26 
the LiDAR orientations that have been used throughout the literature. 27 

  28 

Figure 2 Illustration of LiDAR Orientation (20) 29 

When a truck enters the LiDAR Detection Zone (LDZ), each scan of the vertically orientated sensor 30 
captures a 3D profile of one slide of the truck body within the scanning area. The vertical orientation of the 31 
sensor limits the detection zone to a 40-degree horizontal view as shown in Figure 3. All point cloud frames 32 
associated with the target vehicle were subsequently stitched together to generate the full profile of the 33 
truck (19) (21) and subsequently classify them.  34 
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  1 

Figure 3 Truck point clouds collection from vertically oriented LiDAR 2 

The vertical orientation of the multi-array rotating 3D LiDAR is able to capture a dense representation of 3 
each vehicle but significantly compromise the robustness of the classification framework. Wu et al utilized 4 
a horizontally oriented LiDAR sensor, which provides a 360-degree field-of-view of roadways (22). When 5 
a vehicle fully enters the LDZ, a single scan can cover the entire profile of the vehicle. Essential features 6 
are extracted from the point cloud from a single scan of each vehicle and classified according to the FHWA 7 
scheme. Unfortunately, the sparse point cloud representation retrieved from the horizontally oriented 8 
LiDAR provides insufficient information for detailed truck classification, which likely limited the 9 
performance of their classification model. 10 

This study investigated the design of a novel vehicle point cloud reconstruction framework to match 11 
consecutive frames of each vehicle by leveraging existing registration algorithms (23, 24) and adding a 12 
ground plane constraint to accommodate transportation applications. The reconstructed vehicle point clouds 13 
provide a dense representation of each vehicle object and retain the critical features that can be used to 14 
accurately classify them according to the FHWA-CA scheme. 15 

The rest of the paper is organized as follows. Section two describes the technical aspects of the data 16 
collection setup and point cloud data preprocessing procedure: including background subtraction and data 17 
association. Section three reviews commonly used point cloud registration algorithms and illustrates the 18 
vehicle point cloud reconstruction framework adopted in this study. Section four describes the feature 19 
extraction steps and the development of the vehicle classification model using a deep ensembled neural 20 
network. Section five presents the results of the vehicle classification model and compares the proposed 21 
model with the state-of-art LiDAR-based FHWA classification model. This paper concludes with a 22 
discussion on the model results and potential future research pathways. 23 

 24 

 25 

 26 

2. Data Collection, Description, and Preprocessing  27 

This section contains two parts: an overview of the data collection setup followed by a description of the 28 
preprocessing of the LiDAR data from the raw point cloud to the attaining of each vehicle object group. 29 

2.1 Data Collection 30 

The data used in this study was collected from the entrance ramp into the San Onofre Truck Scale from the 31 
southbound of the I-5 freeway. This is a major truck corridor between Orange and San Diego Counties in 32 
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California, which is an ideal location for capturing a wide variety of truck types across the FHWA-CA 1 
scheme, except Classes 4 and 13 were not observed during the data collection period. The data was collected 2 
between July 18th and August 5th, 2019, including both free flow and congestion conditions with vehicle 3 
speeds ranging from 0 to 50 mph. 4 

The San Onofre truck detection site was equipped with a video camera to establish data groundtruth and a 5 
Velodyne VLP-32c LiDAR unit for data collection. Both the video camera and the LiDAR unit were 6 
synchronized and connected to a solid-state field processing unit. The data collection setup is shown in 7 
Figure 4. 8 

 9 

Figure 4 Data Collection Setup 10 

The LiDAR sensor was horizontally placed on a flat platform which was elevated approximately 2 meters 11 
above the ground. The optical center of the LiDAR sensor was parallel to the ground plane. The illustration 12 
of the LiDAR sensing unit is shown in Figure 5. 13 

 14 

Figure 5 The Illustration of the LiDAR Sensing Unit 15 

2.2 Data Description 16 

The system collected and processed data from 10,338 vehicles. All of them have been labeled through 17 
visual verification from the still images captured by the video camera. The labeled dataset was partitioned 18 
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into a 70-30 split for training and testing, respectively, using stratified sampling by FHWA classes. The 1 
labeled FHWA vehicle class distribution is presented in Figure 6. 2 

 3 

Figure 6 The FHWA-CA Class distribution of overall model development dataset 4 

As shown in Figure 6,  both Classes 4 and 13 vehicles were not observed in this dataset. Classes 2 and 3 5 
were combined in a single class since both represent passenger vehicles with a small sample size when they 6 
were used as standalone classes. The dataset will be further enriched in future work.  7 

 8 

Figure 7 A Raw LiDAR Frame 9 

 10 

2.3 Data Preprocessing  11 
2.3.1 Background Substations and Object Detection 12 

As illustrated in Figure 7, each raw LiDAR scan contains both the static roadway environment as 13 

well as the vehicle objects of interest. Prior to the modeling process, points belonging to each 14 

vehicle point cloud need to be segmented from the background environment – which are irrelevant 15 
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to the task of vehicle classification – and grouped into vehicle objects. This research adopted the 1 

background subtraction and object detection method proposed in (25). The background subtraction 2 

method first divided the conical surface generated by the LiDAR sensor into annular sector-shaped 3 

cells. Then, the foreground vehicle point clouds and the background environment are split 4 

according to the spatial occupancy of each cell. Finally, the segmented vehicle point cloud was 5 

grouped and identified as a vehicle based on their points’ proximity using Density-based spatial 6 

clustering of applications with noise (DBSCAN) clustering algorithm (26).  7 

2.3.2 Data Association 8 

This research utilized the Simple Online and Realtime Tracking (SORT) algorithm to associate a vehicle 9 
point cloud from each LiDAR frame to its corresponding vehicle object efficiently (27). First, each vehicle 10 
point cloud was represented by the centroid of the minimum oriented 2D bounding box which was obtained 11 
from its ground projection. Next, the inter-frame displacements of each vehicle point cloud were estimated 12 
using a linear constant velocity model - Kalman Filter (28). Finally, the vehicle point clouds were optimally 13 
assigned to their corresponding vehicle object group using the Hungarian algorithm (29). An advantage of 14 
the SORT framework is its ability to handle short-term occlusion caused by passing objects, although this 15 
capability was not tested in our study (27). 16 

 17 

3. Truck Point Cloud Registration Framework 18 
3.1 Point Cloud Registration 19 

3.1.1 Introduction to Point-Set Registration 20 

Point-set registration is an essential process widely used in the field of robotics and computer vision domain 21 
to rebuild the model of a 3D object from the point cloud fragments obtained by moving robots equipped 22 
with LiDAR sensors. It involves the estimation of the spatial transformation (e.g. translation, rotation, and 23 
scaling) that aligns two sets of points associated with the same object from a sensor that captures them from 24 
different views. For two given corresponding point sets 𝑃 = {𝒑𝟏, 𝒑𝟐, 𝒑𝟑, … , 𝒑𝒎}  and 𝑄 =25 

{𝒒𝟏, 𝒒𝟐, 𝒒𝟑, … , 𝒒𝒏} in ℝ𝑑(𝑑 represents the dimensions of each point, where 𝑑 = 3 in this study), the goal of 26 

registration is to search for an optimal rigid transformation matrix 𝑻𝑃𝑄  composed of a rotation matrix 27 

𝑹(𝜃𝑥, 𝜃𝑦, 𝜃𝑧) and a translation vector 𝒕(𝑡𝑥 , 𝑡𝑦, 𝑡𝑧) to match point set 𝑃 with point set 𝑄. 𝜃𝑥 , 𝜃𝑦, 𝜃𝑧 represent 28 

the counter-clockwise rotation angle of the point set about the 𝑥, 𝑦, 𝑧 axis, respectively. 𝑡𝑥 , 𝑡𝑦, 𝑡𝑧 denote the 29 

translation of the point cloud along the corresponding axis. In a homogeneous coordinate, a transformation 30 
matrix 𝑻𝑃𝑄 that is used to align point set P and Q can be expressed as: 31 

𝑻𝑃𝑄 = 𝑻𝑃𝑄(𝜃𝑥, 𝜃𝑦, 𝜃𝑧, 𝑡𝑥 , 𝑡𝑦, 𝑡𝑧) = [
𝑹 𝒕
𝟎 1

] (1) 32 

The 3D rotation about 𝑥, 𝑦, 𝑧 axis (𝑹𝑥 , 𝑹𝑦, 𝑹𝑧) and translation matrix T is shown below: 33 

𝑹𝑥 = [

1 0 0 0
0 𝑐𝑜𝑠𝜃𝑥 −𝑠𝑖𝑛𝜃𝑥 0
0 𝑠𝑖𝑛𝜃𝑥 𝑐𝑜𝑠𝜃𝑥 0
0 0 0 1

] , 𝑹𝑦 = [

𝑐𝑜𝑠𝜃𝑦 0 𝑠𝑖𝑛𝜃𝑦 0

0 1 0 0
−𝑠𝑖𝑛𝜃𝑦 0 𝑐𝑜𝑠𝜃𝑦 0

0 0 0 1

] , 𝑹𝑧 = [

𝑐𝑜𝑠𝜃𝑧 −𝑠𝑖𝑛𝜃𝑧 0 0
𝑠𝑖𝑛𝜃𝑧 𝑐𝑜𝑠𝜃𝑧 0 0

0 0 1 0
0 0 0 1

] , 𝑻 = [

1 0 0
0 1 0
0 0 1

𝑡𝑥

𝑡𝑦

𝑡𝑧

0 0 0 1

] (2) 34 

The most classic method used for solving point set registration problems is called the iterative closest point 35 
(ICP) algorithm (30). The ICP algorithm starts with the initial transformation matrix 𝑻𝟎 = (𝑹𝟎, 𝒕𝟎) and 36 
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then selects a set of 𝑘 corresponding points pairs (𝒑𝒊, 𝒒𝒊) between point sets 𝑃 and 𝑄. The distance between 1 

𝑃 and 𝑄 can be written as: 2 

𝑑𝑖𝑠𝑡(𝑻𝑃𝑄(𝑃), 𝑄) (3) 3 

𝑻𝑃𝑄(𝑃) represents rotating and translating 𝑃 with a transformation matrix 𝑻𝑃𝑄. 𝑑𝑖𝑠𝑡() denotes the distance 4 

between point sets. There are two common ways found in the literature to define the distance between point 5 
sets: Point-to-Point (30) and Point-to-Plane distance (31).  6 

1. Point-to-Point Distance Evaluation (30) 7 

Assuming N corresponding point pairs (𝒑𝒊, 𝒒𝒊), 𝑖 = 1 … 𝑁, the registration problem using point-to-point 8 
distance measurement can be formulated as: 9 

  𝑎𝑟𝑔𝑚𝑖𝑛𝑻𝑃𝑄
 
1

𝑁
∑‖𝑻𝑃𝑄𝒑𝒊 − 𝒒𝒊‖

2
𝑁

𝑖=1

, 𝑠. 𝑡   𝑅𝑇𝑅 = 𝐼 (4) 10 

 11 

2. Point-to-Plane Distance Evaluation (31) 12 

When Point-to-Plane distances are used as the error metric, the objective function can be formulated as the 13 
sum of the square error between 𝒑𝒊 and the tangent plane at 𝒒𝒊. The norm of the tangent plane at 𝒒𝒊 is 14 

denoted as 𝒏𝒐𝒓𝒊. The objective function is shown below: 15 

  𝑎𝑟𝑔𝑚𝑖𝑛𝑻𝑃𝑄
 
1

𝑁
∑‖(𝑻𝑃𝑄𝒑𝒊 − 𝒒𝒊) · 𝒏𝒐𝒓𝒊‖

2
𝑁

𝑖=1

, 𝑠. 𝑡   𝑅𝑇𝑅 = 𝐼 (5) 16 

The next step of the ICP algorithm is to iteratively find the optimal 𝑻𝑃𝑄  which minimize the distance 17 

between 𝑃 and 𝑄. Due to the simplicity of the original algorithm, hundreds of ICP-based variants have been 18 
proposed over the past two decades where a comprehensive review of ICP-based methods has been 19 
documented in (32).   20 

3.1.2 Probabilistic Point-set Registration  21 

However, the performance of ICP-based approaches suffers from the nosiness, outliers, and occlusions of 22 
point sets which commonly occur in a real-world dataset from an outdoor environment (33)(34). Many 23 
researchers have investigated probabilistic approaches in an attempt to improve the robustness of point-set 24 
registration. The most popular probabilistic-based registration algorithm is called Coherent Point Drift 25 
(CPD) proposed by Myronenko and Song (34), which treated registration as a probability density estimation 26 
problem. Instead of using the closest distance to define the corresponding point pairs, CPD assigns a 27 
probability value to the correspondence according to the proximity between points from two point sets. 28 
Several studies have investigated new probabilistic approaches to further enhance the robustness of the 29 
registration algorithms (35–37).  Unfortunately, such approaches typically gain robustness at the expense 30 
of computation efficiency. Gao and Tedrake (23) developed a computationally efficient probabilistic-based 31 
registration model - FilterReg - which adopted the Gaussian filtering methods to enhance the model 32 
efficiency as well as preserve the robustness and accuracy of the registration process. FilterReg has been 33 
proven to be computationally faster than the modern ICP variants (23). Therefore, this research adopted the 34 
FilterReg algorithm to estimate transformation matrices between consecutive frames.  35 
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3.2 Vehicle Point Cloud Registration Framework 1 

Previous research on point-set registration has mainly focused on aligning point-sets obtained from mobile 2 
sensors, where the LiDAR unit is equipped on the top of a moving robot (32) which allows the sensor to 3 
actively capture the object point clouds. As a consequence, point cloud density associated with the same 4 
object is relatively uniform across LiDAR frames. However, LiDAR sensors are generally mounted in side-5 
fire orientation by the roadside for traffic surveillance research applications (17–19, 21). As a vehicle 6 
traverses the LDZ, the density of its point cloud will gradually increase and then decrease along with its 7 
proximity to the sensor. Therefore, this study modified the existing point-set registration framework to 8 
better adapt the data characteristics of vehicle point clouds collected from roadside LiDAR sensors and 9 
then to provide promising vehicle point cloud registration results to support the needs of FHWA axle-based 10 
vehicle classification. 11 

 12 

3.2.1 Eliminate Redundant Frames 13 

When a truck is entering or leaving the LDZ (Figure 8), its distance from the LiDAR sensing unit results in 14 
a sparse point cloud (Figure 9).  15 

 16 

Figure 8 Samples of Truck Frames 17 

Those frames generally depict the driving unit and the rear edge of the truck as shown in Figure 9. 18 

 19 

Figure 9 Samples of Redundant Frames 20 

The sparse point cloud which is captured from these leading and trailing frames has a limited contribution 21 
to the registration process as the limited information details embedded in them are also captured in frames 22 
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captured when the truck is closer to the sensor (Figure 10). Hence, they can be eliminated to improve 1 
computational efficiency. 2 

 3 

Figure 10 Samples of Frames used for Registration 4 

Figure 11a presents the point counts profile for a truck, which represents the total number of points captured 5 
by the LiDAR in each frame while the truck traversed the LDZ. Frame 22,138 and Frame 22,139 contains 6 
the highest number of points across all frames during its travel in the LDZ where the highest point count is 7 

denoted as 𝑝𝑛𝑚𝑎𝑥  (Figure 11a). The point count profile is subsequently normalized based on 𝑝𝑛𝑚𝑎𝑥 8 

(Figure 11b). Finally, the truck point cloud which contains point counts less than 20 percent of 𝑝𝑛𝑚𝑎𝑥 were 9 
treated as redundant frames and eliminated (Figure 11c). 10 

 11 

Figure 11 Elimination of Redundant Frames 12 

 13 

3.2.2 Statistical Outlier Removal and Voxel Down Sampling 14 

After the background subtraction step, there still existed noises and outliers which were statistically 15 
detectable. Therefore, an outlier removal process is needed prior to the vehicle point cloud registration. 16 
This step involves two procedures: statistical outlier removal and voxel downsampling, which are suggested 17 
by a popular 3D data processing library – Open3D (38). The statistical outlier removal method takes the 50 18 
nearest neighbors of a given point in the point cloud and considers the points which are 2 standard deviations 19 
in proximity from the given point as statistical outliers. Next, point clouds are further uniformly 20 
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downsampled in order to increase the computational efficiency as well as preserve the structure of point 1 
clouds, using a voxel downsampling approach where points are bucketed into voxel with the size of vs_pre 2 
= 0.01 meter and represented by a single point which calculated through averaging all points within the 3 
voxel.  4 

3.2.3 Vehicle Point-Sets Registration 5 

After the redundant frames and statistical outliers were removed, a pairwise registration with a coarse-to-6 
fine strategy was applied on each pair of adjacent frames. The pairwise alignment was accomplished 7 
through the use of the FilterReg method (23). First, a coarse registration was conducted, where all point 8 
clouds were coarsely downsampled with relatively larger voxel size vs_coarse = 1.5 meters, and each pair 9 
of point clouds was subsequently aligned based on the point-to-point distances metric. Transformation 10 
matrices were saved and denoted as 𝑻𝑗−1,𝑗

𝑐𝑜𝑎𝑟𝑠𝑒 =  [𝑇12
𝑐𝑜𝑎𝑟𝑠𝑒, 𝑇23

𝑐𝑜𝑎𝑟𝑠𝑒, 𝑇34
𝑐𝑜𝑎𝑟𝑠𝑒 , … , 𝑇𝑛−1,𝑛

𝑐𝑜𝑎𝑟𝑠𝑒], where j is the frame 11 

index. Second, the 𝑻𝑗−1,𝑗
𝑐𝑜𝑎𝑟𝑠𝑒 was fine-tuned using point-to-plane distances with voxel size vs_fine = 0.015 12 

meter. The transformation matrices obtained from fine registration was written as 𝑻𝑗−1,𝑗
𝑓𝑖𝑛𝑒

= 13 

[𝑇12
𝑓𝑖𝑛𝑒

, 𝑇23
𝑓𝑖𝑛𝑒

, 𝑇34
𝑓𝑖𝑛𝑒

, … , 𝑇𝑛−1,𝑛
𝑓𝑖𝑛𝑒

].  Since the basic assumption about vehicle point clouds was that all the 14 

point clouds associated with the same vehicle should land on the ground plane, the vehicles will not rotate 15 
along the x and y-axis. Hence, the transformation matrices were constrained on x- and y-axis rotation, where 16 
the corresponding elements in the matrices were set to zero, as shown in Equation 6:  17 

𝑇𝑗−1,𝑗
𝑔𝑟𝑜𝑢𝑛𝑑

= [

𝑐𝑜𝑠𝜃𝑧 −𝑠𝑖𝑛𝜃𝑧 0 𝑡𝑥

𝑠𝑖𝑛𝜃𝑧 𝑐𝑜𝑠𝜃𝑧 0 𝑡𝑦

0 0 1 𝑡𝑧

0 0 0 1

] (6) 18 

Third, in order to reduce the cumulative errors which could be potentially caused by sequential pairwise 19 
registration, the transformation matrices were further optimized using the multiway registration which 20 
described a process of merging multiple frames of an object in a global space. In this study, multiway 21 
registration was implemented through the use of a pose graph optimization technique proposed in (24). The 22 
multiway registration process is illustrated as follows. First, the information matrices which represent the 23 
inversed correlation matrix between two consecutive transformation matrices were estimated. Second, a 24 

pose graph is defined with the transformation matrices ( 𝑻𝑗−1,𝑗
𝑔𝑟𝑜𝑢𝑛𝑑

) as the node and information matrices 25 

(𝐴𝑛−1)  as the edges in the graph, where each edge of the pose graph connects two nodes. The middle frame 26 

of the vehicle object was set to be the reference frame with index 𝑗 = 𝑚𝑖𝑑 = 𝑐𝑒𝑖𝑙(
𝑛

2
, 0.5). All frames were 27 

aligned to the reference frame during the optimization process. The pose graph is optimized using the G2O 28 
graph optimization framework (24). The final transformation matrices that were used to reconstruct the 29 

vehicle point cloud were 𝑻𝑗−1,𝑗
𝑓𝑖𝑛𝑎𝑙

=  [𝑇12
𝑓𝑖𝑛𝑎𝑙

, 𝑇23
𝑓𝑖𝑛𝑎𝑙

, 𝑇34
𝑓𝑖𝑛𝑎𝑙

, … , 𝑇𝑛−1,𝑛
𝑓𝑖𝑛𝑎𝑙

]. The overall vehicle point cloud 30 

registration framework is shown in Figure 12. 31 
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 1 

Figure 12 Vehicle Point Cloud Registration Framework 2 

As a vehicle is approaching the LiDAR sensor, most of the information is captured from the very front of 3 
the vehicle. The distinctive details as well as the level of the sparseness of the point cloud on the vehicle 4 
make the process of finding corresponding points between two point clouds easier. Hence, minimizing the 5 
point-to-point distance is capable of aligning the source (Yellow in Figure 13) to the target point cloud 6 
(Blue in Figure 13)  firmly. Figure 13a presents the point clouds of an individual vehicle traversing the LDZ 7 
captured from two consecutive frames. Figure 13b shows the result of coarse registration with point-to-8 
point distance. 9 

 10 

Figure 13 Examples of Pairwise Registration (Blue: target point cloud, Yellow: Source point cloud) 11 

When the truck just passes the LiDAR sensor, captured points are densely distributed on the side of the 12 
truck. However, the dimensional uniformity of some trailers such as enclosed vans and intermodal 13 
containers results in only a limited number of prominent features captured even amongst the dense points.  14 
This presents a challenge in achieving accurate alignments by solely minimizing the point-to-point distance. 15 
Figure 13c shows a case in point where adjacent point cloud frames remain misaligned after coarse 16 



 14 

registration using the point-to-point distance. However, the dense point distribution on the surface of the 1 
truck’s side profile creates well-defined planes which allow the fine registration with the point-to-plane 2 
strategy to successfully better align the two point clouds (Figure 13d). 3 

 4 

3.2.4 Registration Performance with Missing Frames 5 

The data used in this study was collected from a single-lane off-ramp section. Therefore, instances of 6 
occluded vehicle point clouds were rarely observed in this data collection site. In order to test the robustness 7 
of the new registration framework, random frames for a truck object were dropped to simulate missing 8 
frames that may be caused by vehicle occlusions. Figure 14 demonstrates the experiment of the missing 9 
frame test.  10 

 11 

 12 

Figure 14 Illustration of Experiment Design 13 

The duration of each vehicle traversing the LDZ was divided into three equal temporal segments denoted 14 
by Segments 1 thru 3. Since vehicle occlusions typically occur across consecutive frames. 𝑚 random 15 
consecutive frames were dropped from each section at each time. 16 

Figure 15 presents the results of the experiment. When 5 consecutive frames were dropped – equivalent to 17 
0.5 seconds of missing data – from either Section 1 or Section 2, the reconstructed point cloud was still able 18 
to preserve the essential information that could be used to identify their FHWA classes. For Section 3, the 19 
reconstruction framework failed when the consecutive frame number equals 4. The random 5 consecutive 20 
frames dropped from Segment 3 were the last 5 frames that are used for the vehicle reconstruction. 21 
Therefore, nearly a quarter of the points on the rear truck wheel were missing. 22 

This experiment demonstrated that the proposed framework is capable of reconstructing vehicle objects 23 
with 3-5 consecutive missing frames. A comprehensive vehicle occlusion analysis will be further explored 24 
after more real-world occlusion data are collected.25 
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Figure 15 Experiment Results 



 16 

4. Ensemble Deep Neural Network for Axle-based Classification 1 

The lower profile of a truck contains information related to its axle and general body configuration which 2 
defines their FHWA-CA classes. Compared to a single frame of a truck object, the lower profile of the 3 
reconstructed truck point cloud is well-defined (Figure 16).  4 

 5 

Figure 16 Truck Object from a Single Frame (Left) vs. A Reconstructed Truck Point Cloud (Right) 6 

Therefore, in this section, essential features from the lower profile of the reconstructed truck point cloud 7 
were extracted and used as inputs for the vehicle classification model. Next, a deep ensembled neural 8 
network model was developed to assign vehicle point clouds to their corresponding FHWA-CA classes. 9 

4.1 Feature Extraction 10 

Prior to the feature extraction, statistical outliers on the reconstructed vehicle point cloud were further 11 
removed (38). Subsequently, the pose of the vehicle point cloud was adjusted to align with the 𝑧𝑦 plane 12 

using transformation matrix 𝑇𝑚𝑖𝑑−1,𝑚𝑖𝑑 since the middle frame was used as the reference frame in the pose 13 

graph optimization. Then, the 3D point cloud was projected to 𝑧𝑦 plane to obtain its 2D. The feature 14 

extraction process is shown Figure 17.  15 



 17 

 1 

Figure 17 Feature Extraction 2 

First, a rolling window with a size of 0.1 was created, where the minimum 𝑧 value within the window was 3 
calculated. The size of the rolling window should be less than the radius of a regular wheel of a truck. The 4 

minimum 𝑧 value rolling window captures the raw lower profile of each vehicle point cloud. Second, in 5 
order to obtain a better representation of the lower profile, the raw profile was smoothed using Hann 6 
window (39) which is formulated as:  7 

𝑤(𝑖) = 0.5 − 0.5 cos (
2𝜋𝑖

𝑀 − 1
)    0 ≤ 𝑖 ≤ 𝑀 − 1, (7) 8 

 where 𝑖 represents the index of each point in the profile. M is the window size of the filter. 9 

The smoothed lower profile of the truck point cloud presents both the axle and general body configuration 10 
of the truck. Third, the smoothed lower profiles were interpolated using cubic spline interpolation, and then 11 
200 equally spaced z values were extracted from the interpolated profile to align with the dimension of the 12 
training instances. Finally, the interpolated profile was normalized along the z-axis to the scale of -1 to 1. 13 
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 1 

Figure 18 Illustration of Features 2 

As Figure 18 shows, the valley in box 1 indicates the steering axle of the drive unit. Valleys in box 2 3 
represent the drive axles of the drive unit and the valleys in box 3 capture the split axles on the trailer unit.  4 

 5 

4.2 Bootstrap Aggregating (Bagging) Ensemble Deep Neural Network for Vehicle Classification 6 

Neural Network models have been proved to be able to approximate any complex non-linear mapping 7 
functions (40). Compare to the shallow neural network, a multi-layer structure of a deep neural network 8 
model allows it to accomplish the same task with exponentially lower computation complexity (41). 9 
Therefore, this study developed a deep neural network (DNN) with dropout regularization (42) to assign 10 
each vehicle point cloud to its corresponding FHWA-CA classes. The DNN model comprised 5 hidden 11 
layers with 512 neurons on each layer. Thirty percent of neurons were randomly dropped out on the last 12 
two hidden layers to remedy the overfitting issue. The Rectified Linear Unit (ReLU) (43) with He 13 
initialization method (44) was applied to each hidden layer and the Softmax activation function with Xavier 14 
initialization (45) was used on the output layer. The learning curve shown in Figure 19 traces the model 15 
performance histories during the training and testing process. After 100 epochs, the overall accuracy on the 16 
training set keeps gradually increasing while the testing accuracy converge to 0.95. Hence the model 17 
training converged after 100 epochs. 18 
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 1 

Figure 19 Learning Curve 2 

In order to reduce the variability of the DNN prediction results, a bootstrap aggregating (bagging) (46) 3 
ensemble approach was applied. Using stratified bootstrap resampling strategy (47), the bagging ensemble 4 
method resampled the training set to ten sets of bootstrapped training samples which were used to build ten 5 
different DNN models with the same model structure. The final prediction results are determined by the 6 
highest averaged prediction score of the ten DNN models. 7 

 8 

5. Model Results 9 

This section presents the testing results of the model developed in this study using a normalized confusion 10 
matrix and then provides the error analysis on the misclassified vehicles. In addition, the developed model 11 
was compared with the state-of-the-art FHWA axle-based classification model using a LiDAR sensor. 12 

5.1 Classification Results and Analysis 13 

The normalized confusion matrix of the classification model is presented in Figure 20.  14 
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 1 

Figure 20 Normalized Confusion Matrix for the Test Set 2 

Each row of the red-colored confusion matrix is normalized by the total number of groundtruth vehicle 3 
counts in their corresponding classes. Therefore, the diagonal elements represent the recall values of each 4 
class, which was also referred to as “Correct Classification Rate” (CCR) in some literature (21, 48). The 5 
recall value is calculated as follow: 6 

 7 

where TP denotes true positives and FN is the true negatives. 8 

Each column of the green-colored confusion matrix is normalized according to the total number of predicted 9 
values for each class. Hence, the diagonal elements are the precision values of each class. 10 

 11 

where FP represents the false positives. 12 

Based on the normalized confusion matrices, the proposed model was able to correctly classify Classes 5, 13 
6, 8, 11, and 14 with over 80 percent CCR. However, the model did not perform as well in predicting 14 
Classes 10 and 12. Notwithstanding, in terms of Class 10, the precision value is higher than the recall value 15 
which means when this model is implemented, very few predictions on Class 10 will be received within 16 
which most of them will be correctly classified. Conversely, Class 12 has a higher recall than its precision 17 
value which would cause that the model to return higher than actual counts of Class 12 predictions, with 18 
most of them being misclassifications from other classes. 19 

The boxplot in Figure 21 shows the model recall distribution of the DNN models which are built with 10 20 
sets of bootstrapped training instances. The bar plot represents the training sample size for each class. 21 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (9) 



 21 

 1 

Figure 21 CCR and Train Counts Distribution across classes 2 

As Figure 21 shows, the model performance on the classes with lower training samples tends to have higher 3 
variability in the prediction results, especially for Classes 2&3, and 12. Insufficient training samples were 4 
used to learn the key features from Classes 10 and 12 trucks which resulted in high variances in their 5 
prediction outcomes. In addition, Classes 2 and 3, passenger vehicles, were rarely observed at the entrance 6 
of the truck scale and those vehicles have larger diversity in terms of their body shape. Therefore, the model 7 
prediction variance is also high for Classes 2 and 3. Even though there is a limited number of training 8 
samples for Class 14, its prediction results are still promising since Class 14 represents a small 9 
homogeneous subpopulation of trucks. 10 

With sufficient training samples, the proposed classification model is capable of accurately distinguishing 11 
Classes 8 and 9 with overlapping body configuration (Figure 22a and b). However, Classes which have 12 
minor differences in their axle configuration but with the same body type are hard to distinguish when the 13 
sample size is small (Figure 22c, d, e, and f). Consequently, the training dataset needs to be enriched in 14 
future studies to further enhance the model performance on Classes 10 and 12. 15 

 16 

Figure 22 Overlapping Body Configurations 17 
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5.2 Model Comparison  1 

The proposed model has been compared with the state-of-the-art LiDAR-based classification model which 2 
used the single frame of an object to classify vehicles on the basis of the FHWA scheme (22). The model 3 
comparison is shown in Table 1. 4 

Table 1 Model Comparison 5 

FHWA-CA 
CCR  

(Bagging DNN) 
Testing 
Samples 

Classes defined in (22) 
CCR (Random  
Forest) (22) 

Testing 
Samples (22) 

Class 2 
0.75 20 

Passenger Vehicle 0.84 150 

Class 3 Four-tire Single Unit 0.70 69 

Class 4 None None Bus 1.00 20 

Class 51 0.97 934 Two-axle, six-tire, single-unit truck 0.44 17 

Class 6 0.95 208 Three-axle, single-unit truck 0.00 4 

Class 7 0.76 17 Four or fewer axle, single-trailer truck None None 

Class 8 0.84 117 None None None 

Class 92 0.99 1,746 Five-axle, single-trailer truck 1.00 17 

Class 10 0.33 12 None None None 

Class 11 0.85 13 None None None 

Class 12 0.50 2 None None None 

Class 13 None None None None None 

Class 14 1.00 31 None None None 

Average CCR 0.79 - - 0.76 - 

Note: 1Class 5 used in this study contained the two-axle truck pulling a small trailer which was not included in (22). 2 In the FHWA-CA scheme, 6 
Class 9 type 32 was separated from the rest of Class 9 truck and labeled as Class 14. In (22), Class 14 trucks are merged into Class 9 trucks. 7 

Compared to the previous model (22), the new classification framework proposed in this study is able to 8 
classify the vehicle in much more detail with significantly higher accuracy, especially for heavy-duty truck 9 
categories from Class 8 to Class 14, where they have disproportionally adverse impacts on the pavement 10 
(1) and the environment (2). 11 

 12 

6. Conclusions and Future Work 13 

This research designed a novel vehicle point cloud reconstruction framework with the ground plane 14 
constraint that registers consecutive frames associated with the same vehicle to enrich the sparse point cloud 15 
from each scan of the LiDAR sensor. This vehicle point cloud reconstruction framework adopts a horizontal 16 
orientation of the LiDAR sensor which provides a panoramic view of the roadway environment without 17 
compromising the robustness of the classification framework. Furthermore, an ad-hoc testing was applied 18 
to the vehicle reconstruction framework to examine its robustness under the simulation of dropped frames 19 
caused by occlusion. The reconstruction framework was capable of handling 3-5 consecutive missing 20 
frames and demonstrating the significant potential for multi-lane applications. The axle, as well as body 21 
configuration of the reconstructed vehicle point clouds, are well-defined. Critical features which are used 22 
to describe FHWA-CA classes were extracted from the lower profile of the reconstructed point clouds. A 23 
bagging DNN model was developed to classify the lower profile of the reconstructed vehicle point cloud 24 
based on the FHWA-CA scheme. The proposed classification framework yields accurate prediction results, 25 
especially on heavy-duty trucks such as Classes 8, 9, 11, and 14 with CCR of 0.84, 0.99, 0.85, 1.00, 26 
respectively. According to the result analysis, the proposed model is also capable of distinguishing Classes 27 
3, 5, and 8 which have overlapping axle configurations and are often misclassified by WIM systems (7). 28 
The proposed model also performed very well in distinguishing Classes 8 and 9 which have overlapping 29 



 23 

body configurations, with limited success obtained by inductive signature models (12). In addition, the 1 
proposed classification framework was able to obtain an average CCR of 79 percent on the test dataset and 2 
outperforms the state-of-the-art LiDAR-based FHWA vehicle classification model in terms of both 3 
accuracy and robustness.  4 

In the future, this framework will be tested on other spatially independent sites. Its ability for multi-lane 5 
applications will also be examined with real-world data. 6 
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