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ABSTRACT
Objective  To identify the risk of acute respiratory distress 
syndrome (ARDS) and in-hospital mortality using long 
short-term memory (LSTM) framework in a mechanically 
ventilated (MV) non-COVID-19 cohort and a COVID-19 
cohort.
Methods  We included MV ICU patients between 2017 and 
2018 and reviewed patient records for ARDS and death. 
Using active learning, we enriched this cohort with MV 
patients from 2016 to 2019 (MV non-COVID-19, n=3905). 
We collected a second validation cohort of hospitalised 
patients with COVID-19 in 2020 (COVID+, n=5672). We 
trained an LSTM model using 132 structured features on 
the MV non-COVID-19 training cohort and validated on the 
MV non-COVID-19 validation and COVID-19 cohorts.
Results  Applying LSTM (model score 0.9) on the MV non-
COVID-19 validation cohort had a sensitivity of 86% and 
specificity of 57%. The model identified the risk of ARDS 
10 hours before ARDS and 9.4 days before death. The 
sensitivity (70%) and specificity (84%) of the model on the 
COVID-19 cohort are lower than MV non-COVID-19 cohort. 
For the COVID-19 + cohort and MV COVID-19 + patients, 
the model identified the risk of in-hospital mortality 
2.4 days and 1.54 days before death, respectively.
Discussion  Our LSTM algorithm accurately and timely 
identified the risk of ARDS or death in MV non-COVID-19 
and COVID+ patients. By alerting the risk of ARDS or 
death, we can improve the implementation of evidence-
based ARDS management and facilitate goals-of-care 
discussions in high-risk patients.
Conclusion  Using the LSTM algorithm in hospitalised 
patients identifies the risk of ARDS or death.

INTRODUCTION
Acute respiratory distress syndrome (ARDS) 
affects nearly a quarter of all acute respira-
tory failure patients requiring mechanical 
ventilation. It contributes to high morbidity 
and mortality of critically ill patients.1 ARDS 
is consistently under-recognised, leading to 
delays in implementing evidence-based best 
practices, such as the use of lung-protective 
ventilation strategies.2 3 The onset of the 
COVID-19 pandemic overwhelmed the 

healthcare system in the USA, and patients 
with severe to critical SARS-CoV-2 infections 
had a high incidence of ARDS and high 
mortality. This was especially true early in 
the pandemic, before the discovery of using 
early steroids and other immunosuppres-
sants for treatment.4 5 An electronic health 
record (EHR)-based decision support system 
that accurately identifies patients with ARDS 
can improve the management and escala-
tion of these critically ill patients.6 Different 
machine learning techniques, such as L2-l-
ogistic regression, artificial neural networks 
and XGBoost gradient boosted tree models, 
have leveraged EHR to identify or predict 
ARDS, yielding robust statistical discrimina-
tion as reported in studies.7–9 In a distinct 
study, Zeiberg et al applied L2-regularised 
logistic regression to structured EHR data 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Acute respiratory distress syndrome (ARDS) is com-
monly under-recognised in clinical settings, which 
can lead to delays in evidence-based management.

WHAT THIS STUDY ADDS
	⇒ A long short-term memory algorithm trained on me-
chanically ventilated patients can identify the risk 
of ARDS development or in-hospital mortality using 
structured electronic health record data without the 
use of chest X-ray analysis. SARS-CoV-2 infection 
has a noted high incidence of ARDS. The model, 
trained on mechanically ventilated non-COVID-19 
patients, performed well on COVID-19 patients, with 
an evaluation of 1.82 patients needed to identify 1 
patient at risk of ARDS or death in the hospital.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Being able to identify the risk of ARDS, regardless 
of COVID-19 status, early can improve compli-
ance with evidence-based management and allow 
prognostication.
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sourced from a single-centre population within the initial 
7 days of hospitalisation. A meticulous two-physician chart 
review established the gold standard diagnosis of ARDS. 
Despite the rarity of ARDS occurrences (2.5%) within the 
testing cohort of this investigation, the area under the 
receiver operating curve (AUROC) attained an impres-
sive value of 0.81.7 Other investigations centred on using 
the Medical Information Mart for the ICU databases.10 11 
These endeavours relied on diverse data sources such 
as free-text entries, diagnostic codes and radiographic 
reports for both the diagnosis and prediction of ARDS.10 11

We aimed to train a deep learning model using long 
short-term memory (LSTM) framework and active 
learning method using a historic dataset from a mechan-
ically ventilated (MV) non-COVID-19 cohort to identify 
patients with risk of ARDS or in-hospital mortality. We 
validated the model on an MV non-COVID-19 cohort, a 
COVID+ cohort and a subgroup of MV COVID+ cohort.

MATERIALS AND METHODS
The study was conducted at Montefiore Medical Center, 
encompassing three hospital sites.

COHORT ASSEMBLY
MV non-COVID-19 cohorts
Non-COVID-19 cohort 1 was constructed between 1 
January 2017 and 31 August 2018 (figure 1). We included 
MV adults in the ICU with ages greater than 18. Each 
patient’s chart was reviewed for ARDS.

Ground truth labelling: ARDS gold-standard identification
We defined ARDS using the Berlin criteria: hypoxaemia 
(arterial oxygen tension (PaO2) to fractional inspired 
oxygen (FiO2) ratio (PFR)≤300 with positive pressure 
ventilation ≥5cmH20), bilateral infiltrates on chest radio-
graphs by independent review and a presence of ARDS 
risk factors (sepsis, shock, pancreatitis, aspiration, pneu-
monia, drug overdose and trauma/burn) not solely due 
to heart failure.12 We used the first date and time of 
PFR≤300 with confirmed bilateral infiltrates within 24 
hours as the time of ARDS presentation (ToP of ARDS).

Active learning
We used the ‘active learning’ technique to provide addi-
tional adult MV patients from July 2016 to December 
2016 and September 2018 to December 2019 (AL-co-
hort).13 A preliminary recurrent neural network was 
developed using the LSTM model and trained with the 
original non-COVID-19 cohort 1. Next, we applied the 
preliminary model to the AL-cohort. We used pool-
based sampling and uncertainty techniques to identify 
records from AL-cohort to be reviewed and labelled 
by clinicians.13 The uncertainty technique includes 
patients whose scores are very close to the cut-off, 
which means the model is least confident about them. 
We chose a cut-off of 0.80 and selected all records with 

a score between 0.75 and 0.85. We created the MV non-
COVID-19 cohort 2 using the top 1% of the highest, 
lowest 1% and medium scores of the AL cohort. This 
allowed us to enrich MV non-COVID-19 cohort 2 with 
patients with ARDS or those who died in the hospital.

COVID-19 validation cohort
We included all hospitalised adult patients with and 
without mechanical ventilation with a positive SARS-Cov-2 
transcription-mediated amplification assay from 1 March 
2020 to 17 April 2020 in the COVID-19 cohort.

Training and validation cohort splitting
MV non-COVID-19 cohorts 1 and 2 were combined as the 
MV non-COVID-19 cohort. We randomly selected 80% of 
patients for training (MV non-COVID training cohort) 
and validation to learn model parameters and find optimal 
hyperparameters. The trained model was validated on the 
remaining 20% of the non-COVID-19 cohort (MV non-
COVID-19 validation cohort), the COVID-19 cohort and 
the MV COVID-19 cohort separately (figure 1).

EHR DATA COLLECTION AND PROCESSING
Clinical data were collected through automated abstrac-
tion of EHR data. Raw EHR data for each admission were 
abstracted, sampled and validated (online supplemental 
table 2).

Sampling
Raw longitudinal EHR data were sampled every hour. 
Sampling was necessary since the different variables 
were recorded at different timestamps with different 
frequencies to aggregate the longitudinal data into 
hourly snapshots. If the data were recorded multiple 
times within 1 hour, we computed the minimum and 
maximum based on all recorded measurements. If it 
was not recorded at all within the 1-hour time frame, 
we considered it as ‘missing’. For data that were 
recorded exactly once during an hour, the minimum 
and maximum would be the same.

Data validation
Data validation was performed by range checking (online 
supplemental table 2). If the recorded measure was 
outside the valid range, we discarded it and treated it as 
a missing value.

Missing data
The missing data were handled by ‘forward imputing’, 
where the most recent value fills the missing value. If 
there were no data available for imputation, we used 
normal values. We used the lower bound of the normal 
range as the minimum and the upper bound as the 
maximum value for those timestamps. A feature vector 
of size 132 represents each timestamp.

MODEL TRAINING
LSTM network is a paradigm of recurrent neural 
networks that can capture the temporal information 

https://dx.doi.org/10.1136/bmjhci-2023-100782
https://dx.doi.org/10.1136/bmjhci-2023-100782
https://dx.doi.org/10.1136/bmjhci-2023-100782
https://dx.doi.org/10.1136/bmjhci-2023-100782
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of sequential data.14 We used the EHR data, including 
the previous 12 hours, as the network inputs to train 
a model that can generate a predictive score for every 

patient at every hour. The network consisted of an 
LSTM unit with 10 filters, followed by a drop-out layer 
with 50% probability of keeping.15 The network ended 

Figure 1  Cohort assembly and model training. ARDS, acute respiratory distress syndrome; LSTM, long short-term memory; 
MV, mechanically ventilated.
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with a linear layer and a Sigmoid activation function to 
output a score from 0 to 1, which is interpreted as the 
probability of developing ARDS or in-hospital mortality.

MODEL EVALUATION
We applied the model on the MV non-COVID-19 vali-
dation cohort and COVID-19 cohort hourly to produce 

the score for that timestamp which is an indication of 
the probability of ARDS development or death. For 
each cohort, we calculated the AUROC. We also calcu-
lated the sensitivity, specificity, positive predictive value 
(PPV), negative predictive value, and F1 score at different 
risk thresholds (cutoffs). We use the highest F1 score to 
generate a confusion matrix for selecting a score cut-off. 

Table 1  Cohorts characteristics

Training Validation

Variables
MV non-
COVID-19 cohort

MV non-COVID-19 
(training) cohort

Non-COVID-19 
(validation) cohort

COVID-19 
cohort

MV 
COVID-19 
subcohort

n 3905 3124 781 5672 803

Age, year, mean±SD 65.0±14.7 65.0±14.8 65.3±14.4 60.80±17.2 62.1±13.9

Gender

 � Male, n (%) 1741 (44.6) 1437 (46) 328 (42) 2665 (47) 319 (40)

 � Female, n (%) 2164 (55.4) 1686 (54) 452 (58) 3006 (53) 484 (60)

Race or ethnicity

 � White, n (%) 1015 (26) 749 (24) 249 (32) 623 (11) 177 (22)

 � Black, n (%) 1718 (44) 1405 (45) 320 (41) 2495 (44) 345 (43)

 � Other, n (%) 1171 (30) 968 (31) 210 (27) 2552 (45) 281 (35)

ARDS determination

 � PaO2/FiO2 ratio ≤300, n (%) 3211 (82.2) 2579 (82.6) 632 (80.9) 617 (10.9) 617 (77)

 � CXR interpretation

 � Yes (consistent with ARDS), n (%) 1333 (34.1) 35.4 (35.4) 260 (33.3) 565 (10) 565 (82)

 � Indeterminant, n (%) 313 (8.0) 7.1 (7.1) 60 (7.7) 18 (.3) 18 (2.2)

 � No (not consistent with ARDS), 
n (%)

2259 (57.8) 57.6 (57.6) 461 (59) 34 (.6) 34 (4.2)

 � Risk factors

 � Aspiration, n (%) 407 (10.4) 10.3 (10.3) 86 (11)

 � Shock, n (%) 1520 (38.9) 39.2 (39.2) 299 (38.3)

 � Pneumonia, n (%) 1530 (39.2) 39.8 (39.8) 288 (36.9) 5672 (100) 803 (100)

 � Sepsis, n (%) 1885 (48.3) 48.8 (48.8) 362 (46.4)

 � Pancreatitis, n (%) 42 (1.1) 1.1 (1.1) 9 (1.2)

 � Burn, n (%) 3 (0.1) 3 (0.1) 0 (0)

 � Overdose, n (%) 98 (2.5) 2.5 (2.5) 21 (2.7)

 � Transfusion, n (%) 1191 (30.5) 30.7 (30.7) 232 (29.7)

 � Congestive heart failure, n (%) 914 (23.4) 23.6 (23.6) 178 (22.8)

 � Presence of at least one risk 
factor, n (%)

2739 (70.1) 70.6 (70.6) 362 (46.4) 5672 (100) 803 (100)

Clinical outcomes

 � Mechanically ventilated, n (%) 3905 3124 781 803 (14.2) 803

 � ARDS, n (%) 1646 (42.2) 1326 (42.4) 320 (41.0) 583 (10.3) 583 (72.6)

 � In-hospital mortality, n (%) 1033 (26.5) 848 (27.1) 185 (23.7) 907 (16.0) 418 (52.1)

 � ARDS or in-hospital mortality, n 
(%)

2044 (52.3) 1655 (53.0) 389 (49.8) 1235 (21.9) 746 (92.9)

ARDS, acute respiratory distress syndrome; CXR, chest X-ray; FiO2, fractional inspired oxygen; MV, mechanically ventilated; PaO2, arterial 
oxygen tension.
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The warning time is the first time the score exceeds the 
predefined cut-off. We continued running the test until 
the score exceeded the cut-off or discharge time. We eval-
uated model timeliness based on ARDS and death, ARDS 
and not death, no ARDS and death, no ARDS and not 
death and compared the actual ToP ARDS time/death 
time with the warning time.

FEATURE IMPORTANCE
Feature importance identifies a subset of features that 
are the most relevant for the accuracy of the model. We 
used local interpretable model-agnostic explanations 
(LIME),16 to determine the importance of each variable 
to the accuracy of the model. The feature importance 
value was determined for 200 randomly sampled patients 
in each cohort using LIME, then calculated the average 
across all samples.

RESULTS
Cohort description
MV non-COVID-19 cohort 1 included 3278 patients 
(online supplemental table 1 and figure  1). MV Non-
COVID-19 cohort 2 was derived from the active learning, 
consisting of 627 patients (online supplemental table 
1). We combined MV Non-COVID-19 cohorts 1 and 2 to 
create the MV non-COVID-19 Cohort (n=3905, table 1). 
COVID-19 cohort included 5672 patients (table  1). 
Online supplemental table 3 shows the descriptive statis-
tics of all variable fields in the MV non-COVID and 
COVID-19 cohorts.

MODEL DIAGNOSTICS
MV non-COVID-19 validation cohort
Based on the highest F1 score, we chose a model score 
cut-off at 0.90. The model diagnostics are presented in 
table 2, figure 2. The model warned of patient risk at a 
median of 10 hours (IQR −75 to 4) before ARDS and 
−225 hours or 9 days (IQR −461 to 101 hours) before 
death in the hospital (table  3). In ARDS survivors, the 
majority of the patients had ARDS risk identified before 
intubation and before ARDS diagnosis (table  3). For 

ARDS non-survivors, the model warned at 1 hour (IQR 
−38 to 9) before intubation, −20 hours (IQR −115 to 0.3) 
before ARDS and at −314 hours (IQR −589 to –128 hours) 
before death (table 3).

COVID-19 cohort and MV COVID-19 subcohort
Using the same cut-off of 0.9, we applied the model to 
COVID-19 and MV COVID-19 subcohorts. The model 
diagnostics are presented in table 2 and figure 2. When 
the model was applied to the COVID-19 cohort, the PPV 
was lower and more patients needed to be screened 
compared with the MV non-COVID-19 validation cohort. 
Whereas in the MV COVID -19 subcohort patients had a 
high prevalence of ARDS and in-hospital mortality, the 
PPV and number needed to evaluate were much lower 
than in the MV non-COVID-19 Validation Cohort.

In the COVID-19 cohort, the model warned the patient 
was likely to have ARDS or in-hospital mortality 3 hours 
after intubation and at ToP ARDS (table 3). Among the 
non-survivors, the model warned 2.4 days before in-hos-
pital mortality (IQR 4.7–0.83) in COVID-19 patients, and 
1.54 days before in-hospital mortality (IQR 3.6–0.46) in 
MV COVID-19 patients (table 3).

FEATURE IMPORTANCE
For both the MV non-COVID-19 and COVID-19 cohorts, 
we randomly selected 200 encounters from each cohort 
and performed LIME (online supplemental figure 1). 
The top contributors are similar in the MV non-COVID-19 
and COVID-19 cohorts. The most important variable to 
the model was lactate level in discriminating the clinical 
outcome. The model consistently used lactate, age, cryo-
precipitate transfusion, dopamine, bicarbonate level and 
epinephrine as important input variables (online supple-
mental figure 1).

DISCUSSION
From a cohort of pre-COVID-19 pandemic patients on 
mechanical ventilation, we developed and validated an 
LSTM model to identify patients at risk for ARDS or 
in-hospital mortality. This model was successfully inte-
grated into EHR and identified patients at risk for ARDS 

Table 2  Model diagnostics

TREAT-ECARDS model diagnostics MV non-COVID-19 cohort COVID-19 cohort MV COVID-19 subcohort

Sensitivity 0.86 0.7 0.92

Specificity 0.57 0.84 0.23

Positive predictive value 0.66 0.55 0.94

Negative predictive value 0.8 0.91 0.17

Receiver operating curve 0.78 0.83 0.7

F1 score 0.75 0.61 0.93

No needed to evaluate 1.52 1.82 1.06

MV, mechanically ventilated.

https://dx.doi.org/10.1136/bmjhci-2023-100782
https://dx.doi.org/10.1136/bmjhci-2023-100782
https://dx.doi.org/10.1136/bmjhci-2023-100782
https://dx.doi.org/10.1136/bmjhci-2023-100782
https://dx.doi.org/10.1136/bmjhci-2023-100782
https://dx.doi.org/10.1136/bmjhci-2023-100782
https://dx.doi.org/10.1136/bmjhci-2023-100782
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or in-hospital mortality in all adults hospitalised with 
and without COVID-19 infection, regardless of mechan-
ical ventilation status. The model was also able to warn 
well before the events of ARDS or death in both the MV 
non-COVID-19 and COVID-19 cohorts. The timeliness of 
the model allows clinicians to modify management and 
implement evidence-based practices promptly.

This is the first utilisation of an LSTM network for iden-
tifying the risk of ARDS and in-hospital mortality. The 
LSTM is a recurrent neural network that uses feedback 
layers to capture temporal aspects such as sequences and 
trends. This approach is well suited for this study because 
past events and the progression of patient status are often 
valuable to determine the probability of ARDS or death. 
As in the reality of managing critically ill patients, phys-
iological observations at each time point are taken into 
account. Their change and progression or regression 
inform the decisions at the subsequent processing of this 
information. This is well suited for dynamically changing 
situations to monitor and identify patients progressing to 
ARDS or in-hospital mortality. LSTM models have been 
used to predict heart failure, transfusion needs in the 
ICU, and mortality in the neonatal ICU, all with better 
predictive utility than traditional logistic regression 
models.17–19 We chose to include ARDS diagnosis and 
in-hospital mortality as our patient-centred outcomes of 
interest instead of ARDS or in-hospital mortality alone, 
as in previous ARDS prediction studies.6 7 20 Identifying 
the risk of ARDS or in-hospital mortality has shown real 
clinical implications when managing patients, mitigating 
the ambiguity that sometimes can exist in ARDS clinical 
diagnosis based on shifting diagnostic criteria.7 8 20–22

This cohort is one of the largest validated ARDS gold 
standards developed by manual chart review and active 
learning from a single centre. We did not rely on ICD-10 
diagnosis codes or radiology reports to identify ARDS. 
Instead, we followed the Berlin criteria using PFR, inde-
pendent review of chest X-ray for the presence of bilateral 
infiltrates and risk factors of ARDS in the patients’ chart. 
Our model performed similarly to previously reported 
models using other machine learning methods, ranging 
from 0.71 to 0.90.7 9–11 21 We forgo chest X-ray interpreta-
tion as input variables, as in Zeiberg et al.7 Other large-
scale ARDS identification studies which used natural 
language processing of radiology reports and diagnostic 
codes in clinical settings would delay ARDS recognition 
and rely heavily on clinician decisions.9 11 Using chest 
radiographs for the diagnosis of ARDS has its limitations, 
as studies show high interobserver variabilities despite 
training.12 23 In addition, radiology report turn-around 
times can range from 15 min to 26 hours, depending 
on the study location, availability of staff and hospital 
resources.24 25 This reliance on chest radiograph interpre-
tations may delay ARDS diagnosis.

Despite the different clinical characteristics of the study 
cohorts, being MV patients non-COVID-19 versus non-MV 
COVID-19 patients, important features in risk identifica-
tion were broadly consistent between the cohorts using 

Figure 2  Model diagnostics, AUROC, PPV with sensitivity 
and NNE with sensitivity. AUROC, area under the receiver 
operating curve; MV, mechanically ventilated; NNE, number 
needed to evaluate; PPV, positive predictive value.
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lactate, age, cryoprecipitate transfusion, dopamine, 
bicarbonate level and epinephrine as important input 
variables. LIME can directly associate model features 
to increased or decreased risk of ARDS or death in an 
individual, on a patient-by-patient-level.26 27 We randomly 
sampled 200 patients in each cohort and obtained an 
average of the absolute LIME values to understand what 
features were generally used. This does not provide a 
clinical explanation and rationale for why features may 
relate to higher or lower scores. Instead, it sheds light on 
important features that the model needs as its input data 
to predict a score accurately, whether additive or subtrac-
tive, to the risk. Norepinephrine was the most commonly 
used vasopressor for both cohorts; intriguingly, it did not 
contribute to the model consideration. The model rarely 
used vasopressors such as dopamine and epinephrine to 
discriminate the outcome of ARDS and/or in-hospital 
mortality. Oxygen support devices were also not deemed 
important on average; we postulate that our gold standard 
labelling required mechanical ventilation for ARDS iden-
tification, making oxygen support devices less important 
in the discrimination.

In clinical practice, ARDS is underdiagnosed, which 
leads to increased exposures in management that are 
detrimental to patients, such as high tidal volume venti-
lation and delayed implementation of evidence-based 
practices that are helpful.2 3 28–31 We used continuous data 
at 1-hour intervals starting at hospital admission to iden-
tify the early risk of an adverse outcome. Indeed, in the 
non-COVID-19 cohort, we identified ARDS hours before 
intubation and at the time of ToP ARDS. The majority of 
patients (56.5%) had been identified before ARDS diag-
nosis in the MV non-COVID-19 cohort, and this remained 
the case in the COVID+ cohort (43%). Implemented and 
delivered as a clinical decision support system, the early 
recognition would allow clinicians to initiate treatment 
such as LTVV as early as possible, when it may more posi-
tively impact outcomes.3

Furthermore, the model identified the risk of in-hos-
pital mortality 9 days in advance in the non-COVID-19 
cohort and 2 days in advance in the COVID-19 cohort. 
This has significant implications for triaging patients 
during surge capacity. In the MV non-COVID-19 cohort, 
there was no concern for ventilator or ICU resource 
allocation. Early identification of risk for death would 
alert the clinician to implement aggressive management 
and allow the treating physician to consider early pallia-
tion intervention/conversation. In the setting of a high 
volume surge of respiratory illness, such as the onset of 
the COVID-19 pandemic, where the incidences of ARDS 
and death are high, identifying adverse outcomes days 
in advance could help the clinician in making necessary 
triage decisions for resource allocation.32–34

Our study has some limitations. First, our cohorts were 
constructed from a single centre in the Bronx, and the 
patients’ characteristics may not be generalisable to other 
centres and populations. However, our medical centre 
consists of three hospitals ranging from community and 

academic to tertiary transplant centres, thus spanning 
a wide spectrum of disease severity. In addition, we vali-
dated the algorithm in the COVID-19 cohort regardless 
of the respiratory support type, demonstrating consistent 
model performance across different cohorts. Second, 
although we were able to determine feature importance 
using LIME on 200 samples from each cohort, we were 
unable to discern the actual direction of association with 
the risk of ARDS or death. We cannot discern if the indi-
vidual variables increase or decrease the risk of ARDS 
or death, despite their importance to the overall model. 
However, the consistency in features used to determine 
risk between the validation cohorts is reassuring. Ulti-
mately, the variables that we included in models are 
variables known to be clinically associated with ARDS or 
death; therefore, the direction of influence on risk assess-
ment is less germane. The strength of our study lies in the 
predictive nature of this algorithm and the timeliness of 
its predictions. Using longitudinal data from admission 
allowed the LSTM model to learn from the progression 
of the patient’s clinical status over time. This model also 
was flexible to have similar diagnostic performance in 
patients with different clinical characteristics.

In conclusion, our LSTM model identified risk for 
ARDS and in-hospital mortality on patients with or 
without COVID-19 regardless of mechanical ventilator 
support. The model identified patients early, which 
implies management changes can be implemented early.
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