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DETERMINATION OF THE EXCITED STATE DENSITY FOR 

AN OPTIC ALL Y THICK RESONANCE LINE 

R.W. Richardson* and S.M. Berman 

Lighting Systems Research Group 
Applied Science Division 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 USA 

Abstract 

The transverse profIle of the monochromatic radiance of an optically thick resonance line 

from a cylindrical discharge is inverted exactly to give the radial distribution of radiating 

atoms. In contrast to the Abel transform, this result is valid for all optical depths . 

*Permanent address: Physics Department, New York University, New York, NY 10003, 
USA. 
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1 Analysis 

Determination of the source function for a radiating cylindrical 

plasma from the transverse profile of the monochromatic radiance of the 

discharge is a diagnostic technique with a long history.l,2 If the 

discharge is optically thin, then the Abel transform3 applied to the 

profile of the radiance yields the radial dependence of the source func-

tion. For the 4 5 optically thick case, various approximation schemes' 

have been proposed to invert the profile of the radiance. We present a 

solution to this problem for a resonance line in a weakly ionized plasma 

that is exact for arbitrary optical depth. A typical application of 

this result is an explicit expression for the radial dependence of the 

3 
density of Hg atoms in the P

l 
excited state in a Hg-Ar discharge from 

the transverse profile of the radiance of the 253.7 nm line. 

For a resonance line in the weakly ionized plasma of a discharge, 

we can assume that the density of atoms in the ground state is constant 

throughout the cross section of the discharge. Therefore, the absorp-

tion coefficient A at a fixed wave length in the line is also a con-

stant. Under these conditions, the monochromatic radiance from a small 

area of the cylinder which is offset from the axis by a distance pR, 

where R is the radius of the cylinder (see Fig. 1) and is given by 

2 2 
f(p + e ) , (1) 

with e - (1 - p2)1/2 and A is equal to the dimensionless optical depth. 
o 

While A is normally taken to be real, our solution given below applies 
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equally well to situations with a complex A. In terms of the angle 0 

between the direction of the radiation and the normal to the surface of 

the cylinder, we have p = sinO and e = cosO. In Eq. (1), f is the 
o 

radial distribution of excited atoms radiating at the observed wave 

length. Equation (1) is a useful diagnostic if it can be inverted to 

yield f for an experimentally given I. 

Equation (1) can be cast in a more convenient form by defining 

222 A e 
q - p ,x - p + e ,F(A, q) - e 0 I/A (2) 

We then have 

I1 -1/2 1/2 
F(A , q) - dx (x - q) cosh[A(x - q) ] f(x) . (3) 

q 

For an optically thin line, A ~ 0, the hyperbolic cosine in Eq. (3) is 

3 approximated by one and the equation becomes a special case of the Abel 

equation the solution of which is given by 

f(x) = _ ! II dq (q _ )-1/2 8F(0,q) 
1f X 8q 

x 
(4) 

This result has been widely used to obtain the radial distribution of 

excited states that give rise to optically thin lines. The distribution 

of atoms giving rise to thick lines can be inferred from a distribution 

producing a thin line by making the assumption of local thermodynamic 

equilibrium (LTE) in which the radial dependence of each distribution is 

through a Soltzman factor containing a common radially varying tempera-
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ture. However, the assumption of LTE is not valid for typical discharge 

conditions in which the atoms are radiating energy received from elec-

trons whose temperature is about 12,000 K to an environment at room tem-

perature. Alternatively, various approximation schemes have been 

developed for inverting Eq. (3) for non-zero A (see Refs. 4 and 5 for 

examples) . We have inverted Eq. (3) for arbitrary values of A with the 

result 

f(x) _ - ! } dq (q _ x)-1/2 cos[A (q _ x)1~2] 8F(A,q) 
~ 8q 

x 
(5) 

This solution includes the Abel solution (4) as a special case for A ~ 

O. The details for this solution are presented below 

The derivation of Eq. (5) proceeds in three steps. We first 

develop another integral equation for f from Eq. (3). We then solve 

2 this integral equation as a power series in powers of A . 

sum the series to obtain Eq. (5). 

Finally, we 

In order to obtain an integral equation for f, we first expand F in 

2 powers of A 

co 

F(A , q) - I 
n-O 

2n [A /(2n)!] F (q) , 
n 

where 

1 
F (q) - I dx (x - q)n-l/2 f(x) 

n 
q 

4 

(6) 

(7) 



Following a generalization of the steps3 leading to Eq. (4) we consider 

1 
~ (z) - I dx (x - z)n f(x) 

n 
(8) 

z 

n . 1 x 1/2 1/2 
- [2 n!/~(2n - l)!!]I dx I dy (y - z)- (x - y)n- f(x) 

z z 

(9) 

where we have usedt 

x 
I dy (y - z)-1/2 (x - y)n-l/2 _ [~(2n - 1)!!/2nn!] (x - z)n. (10) 
z 

Using Dirichlet's formu1a3 to reverse the order of integration in Eq. 

(8) and the definition of F (7), we have 
n . 

We now form the function 

co 

I [A2n/(2n)!] [(2n - 1)! !/2nn!] 
n-O 

~ (z) 
n 

(11) 

tThis integral can be evaluated by changing the integration variable to 
y' (y - z)/(x - z) and noting that the resultant integral is a beta 
function which can be evaluated in terms of gamma functions (see Ref.6). 
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1 
= 1/~ f dq (q - z)-1/2 F(A , q) 

z 

1 [A2 ] = £ dx G Lr (x - z) f(x) , 

where 

<XI 

G(y) = L [yn/(n!)2] - 10 (2y1/2) 
n=O 

(12) 

(13) 

(14) 

is a Bessel function. We have used Eqs. (6) and (11) to first obtain 

Eq. (12) and then Eq. (8) to obtain Eq. (13). We now integrate the rhs 

of Eq. (12) by parts, using F(A, 1) - 0 to drop the surface terms, and 

equate the result with Eq. (13). This equation is then differentiated 

with respect to z, using G(O) - 1, to obtain the integral equation for f 

f(z) + A: ! dx G' [~ (x - Z)] f(x) _ - (l/w) ! dq (q _ z)-1/2 aF(~~ q) 

where 

G' (y) _ dG (y) 
dy 

<XI 

n-o 

is proportional to another Bessel function. 

(15) 

(16) 

Equation (15) is the 

desired integral equation which is to be solved for f. It clearly 

yields the Abel solution (4) in the limit A ~ o. 

6 
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In practice F and hence the rhs of Eq. (15) are a functions given 

by experimental observation, while f is. determined by inverting Eq. 

(15). We do this by making a formal expansion of f in powers of A2/4 

which appears on the Ihs of Eq. (15) for a fixed and given function on 

the rhs, i. e. , 

co 

f(z) = I 
n=o 

(A/2)2n f (z) , 
n 

(17) 

where, from Eqs. (15) and (16), the f satisfy the recursion relations 
n 

n - 1 In-m-l 
~ f (x - z) 

fn(z) =- - m~O z dx (n-m-l)! (n-m)! fm(x) , n> 0 , (18) 

and 

1 
fo(z) - - (l/~) f dq (q 

-1/2 z) aF(A , q)/aq . (19) 
z 

Equations (18) and (19) have the solution 

1 
f (z) - - [(-4)n/~(2n)!l f dq (q - z)n-l/2 aF(A , q)/aq . (20) 

n z 

The details of this solution are given in the Appendix. Substitution of 

this result into Eq. (17) and summing the series yields our principal 

result given by Eq. (5). 

7 



Equation (5) has the unusual property that f on the lhs is indepen-

dent of A and yet there seems to be an explicit A-dependence on the rhs. 

That there is no true A-dependence can be shown by substituting Eq. (3) 

2 into Eq. (5), expanding in powers of A , showing that only the term pro-

portional to AO is different from zero and that this term is the Abel 

solution Eq. (4). Thus, the higher order terms in the expansion in Eq. 

(17) compensate for the A-dependence in the lowest order term Eq. (19). 

The meaning of our result may be clarified by a simple example. We 

assume that the radial distribution of excited states is parabolic, pro-

2 portional to 1 - (r/R) . Then f(x) - 1 - x up to an overall factor. 

Substitution into Eq. (1) yields 

and, from the definition of F Eq. (2), 

8F(A , q)/8q - - (2 sinhAe )/A o 

Substituting into Eq. (5) yields 

1 
f(x) - (1 - x) (2/~A) I dy y-l/2 cOSAyl/2 sinhA (1 _ y)1/2, 

o 

(21) 

(22) 

(23) 

1/2 . 
where A - A(l - x) and we have changed integration variables from q 

to y - (q - x)/(l - x). The integral in Eq. (23) can be done by expand-

ing in powers of A and integrating term by term. Only the lowest order 

term is different from zero with all higher order terms vanishing due to 
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destructive interference from terms coming from the cosine and those 

from the hyperbolic sine.· The lowest order term is proportional to a 

beta function which can be evaluated in terms of gamma functions and 

cancels the factor 2/~A. Thus, the output function (23) equals the 

input function 1 - x. 

The evaluation of fusing Eq. (5) from an empirically given F may 

pose some problems. If we change variables as in the example, we have 

1/2 Il -1/2 - 1/2 
f(x) = -(l/~) (1 - x) dy Y cosAy aF(A, q)/aql q = x + (1 _ x)y . 

o 

(24) 

We have first the errors incurred by evaluating aF/aq from an empiri-

cally given F. This problem is common to all applications of the Abel 

transform. The additional problem is due to the cosine in Eq. (24) 

whose argument will be large for large A and therefore it will oscillate 

rapidly as a function of y. On the other hand, - aF/aq will be a 

smooth decreasing function of q as in Eq. (22). These features may pro-

vide a basis for the development of efficient numerical methods for 

evaluating Eq. (24) 

An interesting alternative solution to Eq. (3) which does not seem 

to have a practical application follows from the relation 

v 
A [A,2 1 A2 [A2

> 1 £ A'dA' G ~ (x - z) -:r G' Lr (x - z) . (25) 

This expression follows from the power series expansions given in 

Eqs. (14) and (16). Thus, the second term on the lhs of Eq. (15) can be 
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written as 

A2 1 [A2 1 1 A [A,2 1 Lr £ dx G' Lr (x - z) f(x) ~ 1/2 £ dx £ A'dA' G ~ (x - z) f(x) 

:-: 

". 1/2 J A'dA' ! } dq (q _z)-1/2 F(A' ,q) , 
o 11' Z 

J 

where we have interchanged the order of intergration and used Eqs. (12) 

an (13) to perform the x-integration. This result leads to the solution 

f(x) -
1 1/2 A 

- (1/11') f dq (q - x)- [aF(A,q)/aq + 1/2 f A'dA' F(A' ,q)] . 
x o 

(26) 

The first term in the square brackets reproduces the Abel. solution, for 

A ~ 0, and the second term compensates for the A-dependence of the first 

for A > O. This cancelation can be readily verified in the example 

given above. This solution is not practical because one must know F for 

A ~ 0 in order to evaluate the A' integral in Eq. (26). One therefore 

has the information needed to use the Abel solution. 

The use of Eq. (5) enables the experimenter to choose a point on a 

resonance line on the basis of intensity rather than optical depth. 

This advantage should greatly facilitate the use of transverse profiles 
..... 

of such lines as discharge tube diagnostics. 
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APPENDIX 

In this appendix, we verify that Eq. (20) is the solution of the 

coupled system of integral equations given by Eqs. (18) and (19). 

We first note that, for n-O, fO given by Eq. (20) satisfies Eq. 

(19). For n > 0, we substitute f given by Eq. (20) into the rhs of Eq. m . 

(18) and obtain 

(A.l) 

where we have defined F'(q) - 8F(A,q)/8q. The integral in the mth term 

of this sum can be manipulated as follows: 

I 1 
I dx I dq (x - z)n-m-l (q - x)m-l/2 F'(q) 
z x 

I
I Iq n-m-l m-l/2 

- dq dx (x - z) (q -'x) F'(q) (A.2) 
z z 

_} dq (q - z)n-1/2 [} dy (1 - y)n-m-1 ym-l/2] F'(q) . 
z . 0 

(A.3) 

Equation (A.2) follows from Dirichlet's formulae 3 and Eq. (A.3) from a 

change of integration variables from x to y - (q - x)/(q - z). The y­

integral in Eq. (A.3) is a beta function
6 

given by 

B(m + 1/2,n - m) - (n - m - I)! r(m + 1/2)/rCn + 1/2). 

12 
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Thus, Eq. (A.l) can be written as 

~ n-l (_ 4)m r(m + 1/2) Il n-l/2 
fn(z) =; m~o (n - m)!(2m)!r(n + 1/2) z dq (q - z) F'(q). 

(A.4) 

The sum over m in Eq. (A.4) can be evaluated as follows: 

n-l (_4)m r(m + 1/2) 
m~o (n - m)!(2m)! r(n + 1/2) 

4n n-l ()m L - n! 
(2n)! m=O m!(n - m)! 

(A.5) 

n 
- -(-4) /(2n)! . (A.6) 

Equation (A.5) follows from the substitution of the expression 

r(m + 1/2) - (2m)! r(1/2)/4mm! 

and a similar one for r(n + 1/2). Equation (A.6) follows from the 

recognition that the sum on m on the rhs of Eq. (A.5) is the binomial 

expansion of 

n n (1 - s) - (-s) ,with s ~ 1 , 

and n > O. 

Substitution of Eq. (A.6) into Eq. (A.4) yields Eq. (20) and the 

solution is verified for all n. 
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Fig. 1. Cross section of a cylindrical discharge of radius R. The 

radiance I at a radial offset pR comes from radiating atoms located on 

the chord extending from The 

angle between the normal to the surface and the direction of I is 0 with 

p = sinO and E = cosO; 
o 
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Table 1. Transverse profile of the 253.7 nm resonance line of a Hg-Ar 

discharge compared with that given by three choices for the radial dis-

3 tribution of PI mercury atoms. The distribution are given by Eq. (23). 

The experimental data was taken at 45° from an 1 1/2 inch diameter tube 

filled with 3 torr Ar. The theoretical fits used an optical depth of I. 

100 at line center. 

Experiment Fit 

P Fl F2 F3 

0.000 1.00 1.00 1.00 1.00 
0.105 0.98 0.99 0.98 0.98 
0.211 0.94 0.96 0.94 0.91 
0.316 0.86 0.91 0.86 0.81 
0.421 0.76 0.83 0.76 0.68 
0.526 0.64 0.74 0.64 0.53 
0.632 0.50 0.62 0.50 0.37 
0.737 0.36 0.48 0.36 0.22 
0.842 0.22 0.32 0.21 0.09 
0.947 0.08 

I 
0.12 0.07 0.01 

1.000 0.00 0.00 0.00 0.00 
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