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LIST OF SYMBOLS

Throughout this work an attempt will be made to use consistent notation for state

vectors, measurements, and other common vector and matrix quantities.

x(t;)

x(1)

€

- State vector at time ;.

- State vector at time step i. This is equivalent to above, but for
discrete time steps.

- i’th component of state vector x.

Time dependence is always assumed even if not explicitly stated.

- Vector of time independent model parameters.

- Dynamical equation for the state vector x. x = f(x, p)

- Descrete mapping of dynamics. F(x(t;),p) = =x(t;) +
JirrarE(x(t'), p)

- observable of the system.

- measurement vector of observable quantity.

Dimensions of y are typically much less than x.

- Path vector. X = {x(0),x(1),...,x(N),p}

Assumed to represent whole path all the time and all parameters
- Prior measurements. Y(7T') = {y(0),y(1),...,y(T)} where T'< N
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ABSTRACT OF THE DISSERTATION

Path Integral Techniques for Estimating Neural Network Connectivity

by

Christopher J. Knowlton

Doctor of Philosophy in Physics

University of California, San Diego, 2014

Professor Henry D.I. Abarbanel, Chair

Characterizing the behavior of networks of neurons requires accounting for
the differing levels of measurements at different scales. At the single neuron level,
intracellular recordings allow for highly accurate membrane potential measurements
in response to an designed applied current. Because the probes used for the single
neuron experiments are large compared to the cells themselves, these voltage mea-
surements cannot be assumed to be available for any more than a few cells at a
time. Instead of voltage measurements of the potential across the cell membrane,
extracellular voltage measurements combined with spike sorting algorithms allow for
measurements of spike times on orders of magnitude more neurons. This spike timing
information provides much less information per neuron, requiring the development of

new methods to estimate the states and connectivity of a network of neurons.
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Previous work [Toth, et al., 2011, Kostuk, et al., 2012, Meliza, et al., 2014]
has demonstrated the ability of a path integral formulation to characterize the be-
havior of individual neurons given time series voltage data. We expand on this to
potential future experiments to characterize the behavior of synaptic connections, and
other external currents acting on neurons and two possible means for determining the

connectivity of a network of neurons given spike timing information.
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Chapter 1
Introduction

Networks of neurons play a key role in the perception, interpretation, and
response to external stimulus in complex organisms. Characterizing the behavior of
a particular network of neurons requires identification of the number and type of the
neurons in the cell, identification of the stimulus that acts on the network, and a
determination of the synaptic connections between each cell. This is complicated by
the sparsity of measurements of the underlying dynamics of the system.

This thesis will present a novel method to use an estimation procedure moti-

vated by statistical physics to:
e Develop biophysically accurate models of individual neurons in isolation.

e Use isolated neuron models as a filter to develop models for the synaptic and

other external currents acting on neurons in a network.

e Use individual neuron models and synaptic models as building blocks to create
a framework that can be used to estimate network structure and behavior from

sparse activity measurements.

We start with a development of a path integral formulation for estimating
unmeasured states and parameters in non-linear dynamical system. We use a series
of simple equations used in oceanographic and atmospheric modeling to demonstrate a
relationship between dynamical control of a chaotic system and the ability to estimate

unmeasured model states and parameters.



We demonstrate the use of this path integral formalism to estimate properties
of isolated individual neurons through a multi step process that combines simulated
experiments with controlled measurements of real neurons in vitro. Simulated exper-
iments are used to determine the types of measurements and stimulus protocols that
allow for resolution into unmeasured states and parameters for a given model. The
effective stimulus protocols are then applied to a neuron in a slice from the high vocal
center (HVC) and the resulting voltage response is used to fit a model that can be
used to predict future behavior.

The neuron models developed through experiments on isolated neurons can be
used as a passive filter to allow for readily available time series voltage measurements
to be used to estimate the currents caused by the synaptic connections from nearby
neurons. The estimated currents in conjunction with stimulated activity in nearby
neurons is shown through simulated experiments to have the potential to allow for
the properties of the various types of synaptic connections present in networks to be
estimated.

Provided accurate models of individual neurons and synaptic activity the
sparse information provided by extracellular recordings can potentially be translated
into a series of stereotyped, disjointed, voltage and synaptic activity waveforms. We
demonstrate that because these waveforms correspond to the regions of instability
in the model, they are sufficient for estimating the full state of the neurons between
measured windows. We show that the sparse measurements are sufficient to estimate
the connectivity of small simulated networks of recurrently connected neurons.

If it can be demonstrated that network behavior and function is determined
primarily based on activity level (firing rate) we demonstrate that the methods de-
veloped for spiking neurons can equally applied to rate networks. We use a model
developed to describe olfaction to demonstrate that connectivity and applied stimulus

can be estimated for these types of models given activity measurements of each node.



Chapter 2

Data Assimilation in Dynamical

Systems

Before delving the behavior of neurons and networks we must first discuss the
mathematical framework with which we will approach the problem. To this end we

step back and look to what the general question we are trying to answer.

Given some time series of measurements of a system - what is the

future behavior of that system?

We approach this problem by assuming the system is dynamical - that the
system can be described by a rule that determines the change in the state as a

function of the current state of the system:
x = f(x(t)). (2.1)

The assumption that the problem can be dealt with as a dynamical system
changes the problem into two parts. First, given f and a set of measurements -
determine the unmeasured states and time independent parameters at the end of the
measured window. Then given that final state and estimated final state - integrate
the model forward to predict future behavior.

For now we assume that both the functional form and parameters of f are

known for each system of interest. Dealing with parameter estimation simultaneously



with state estimation is non-trivial, particularly when f(x) is non-linear. Estimating
parameter values requires the ability to determine what f(x) should be at each point -
which requires knowledge of the state at each point. We will therefore be postponing
a discussion of parameter estimation until after developing the path integral method
in the next chapter.

The measurements of the system - y(¢) are either a subset of the dynamical
variables -x(t) or functions of those variables - h(x(t)). Generally the number of
measurable states will be less than the number of states, requiring some method to
estimate the remaining states.

Implicit in this interpretation of the measurements is the assumption that the
dynamics of the physical system evolves according to the rules of our model. This
leads to a pair of dynamical systems evolving simultaneously - the physical system
and the model. To accurately predict future behavior, the state of the model system
at the end of the data set must be the same as the physical system. By the end of
the available data the two systems must be synchronized.

The synchronization of a pair of dynamical systems depends on the structure of
the model and the information provided by the measurements of the system. We first
examine how the structure of the dynamics and the potential for chaotic behavior
prevent estimation of unmeasured states. We then discuss how the use of regular
measurements of a subset of states can counteract the estimation errors caused this

behavior.

2.1 Chaos in Dynamical Systems

Depending on the dynamics of the system, perturbations in initial conditions
will grow or shrink in size according to the current state of the system. We will
treat the state and parameter estimations in a moment and first consider systems in
which both the form and parameters of a model describing some system of interest are
known. Absent measurements with fixed, known model parameters, a perturbation -

0x will be stretched and compressed based on the dynamics of the system.

ox = f(x+ ox,t) — f(x,1) (2.2)



oi; ~ ¥, U0, (2.3)
= Jij (X, t)éx]

Because these changes are time and state dependent, describing the long term
evolution of this perturbation is dependent on the ergodicity of the system. For a
ergodic continuous dynamical system this translates to orbits that are bounded and
dense. Over sufficiently long periods of time this ergodicity causes time averages to
become spatial averages weighted by an appropriate density function, allowing us
to drop the time dependence from both the perturbation and Jacobian. [Oseledets,
1968] This suggests that for sufficiently long periods of time, the scaling of any mi-
nuscule perturbation will be independent of the initial state of the system provided

the dynamics evolve to the correct basin of attraction.
T
/ dtJ(x,t) — / dxJ(x)p(x) (2.4)
t=0 e

where p(x) is the probability of being in state x at some arbitrary time. On average:

5k = [ /X de(X)p(x)] 5x, (2.5)

which is an exponential function in time dominated by the largest eigenvalue of the

average Jacobian.

|0%(T)|
|6%(0)]

In practical terms, this growth in a perturbation corresponds to the creation of

(2.6)

Amaz = lim lim In
T—00 6X(0)—0

information about the initial state of the system. As closely spaced initial conditions
diverge, comparing the evolution of two trajectories over time gives an increasing
amount of information about the initial state of the system. It is for this reason that
chaotic systems are said to ’create’ information, while 'regular’ (A, < 0) systems
"destroy’ information. For predicting future behavior, one would need measurements
of the system to discover the additional information created by chaos whereas in a
regular system no measurements are needed to find the current state of the system
because all of the information about the initial conditions has been lost. In practice
we are typically interested in using a model to predict future behavior and in such

cases insensitivity to initial conditions is generally a positive feature.



For a continuous dynamical system, if the perturbation is in the direction of
the evolution of the system (forwards or backwards) the perturbation amounts to time
delay in the dynamics of the system. Since this perturbed path must follow the same
trajectory (albeit passing the same points in state space at different times) the size of
the perturbation averaged over long periods of time must be constant. Therefore all
continuous dynamical system must have a null vector corresponding to motion along
the normal dynamics. When we refer to the largest global Lyapunov exponent, it is
always a reference to the largest non-zero exponent. The existence of a null vector
has obviously no bearing on any sort of synchronization or divergence argument -
but consequently there cannot be any continuous chaotic systems of dimension less
than 3.[Poincaré, 1892] A chaotic systems by definition approaches arbitrarily close to
every point in a region of state space in a finite time. This region forces the dynamics
to be bounded, and by extension globally dissipative. The trace of the Jacobian in
a dissipative system must be negative and the sum of eigenvalues is equal to the
trace. When combined with the presence of a null eigenvalue, for a system to have a
positive Lyapunov exponent it must also have a larger magnitude negative Lyapunov

exponent - hence a third state is needed.

2.2 Calculating Lyapunov Exponents

Recall that for ergodic systems, the local Lyapunov exponents relate to the
global exponents by way of a geometric average expressed through a mapping derived

from the dynamics.

x(t + dt) ~ x(t) + dtf(x(t)) (2.7)
O;(t + dt) Ox;(t) = 0y + dtJ;(x(t))

This allows the final perturbation to be expressed in terms of the initial perturbation:

0;(T) = 62;(0) [ [ 163 + dt.Jy;(x(kdt))] (2.8)

where T = N dt. For large dimensional systems this calculation is done through

directly perturbing the initial conditions for a range of perturbations to find the



largest value. However, for small’ dimensional systems we can calculate all of the the
Lyapunov exponents directly.
If we treat the mapping A, (k) to be the evolution of perturbation from one

step to the next:
5$a(tk+1> = Aab(tk)éxb(tk) (29)

Aab<k3) = 5ab + dtJab<X(tk)), (210)

we can decompose A through QR decomposition such that:
A(F)Q(k — 1) = Q(k)R(k). (2.11)

where Q(0) = I. Thus:
A(N)A(N = 1)...A(1) = Q(N)R(N)R(N — 1)...R(1). (2.12)

Since R(k) are all right triangular matricies the eigenvalues can be easily calculated

by finding the time average of the log of the diagonal elements of R: [Abarbanel, 1996]

T

Ao = lim —— "log[Ryq (k)] (2.13)

which yields reasonable approximations for finite values of T. As N goes to infinity,
Q[N] goes to 1 and thus will not contribute to the sum of logs in the limit. Note the
dt and T do not cancel as T goes to infinite time irrespective of the step size. The
step size changes the rate at which the matrix R changes such that the geometric
average of R in some interval remains constant. The factor of dt accounts for this

averaging.

2.3 Regular Attractors - FitzHugh-Nagumo

While we have demonstrated that small perturbations in certain systems will
either converge or diverge, generally our model will not start near the same point as
the physical system. Because the physical systems we are interested in tend to be

dissipative, we can expect that the orbits of the system over time to converge into

’Small and large’ are of course a function of computing power. Here small is taken to mean a
calculation that can be made on a desktop computer in order minutes.



some bounded region. The size and location of this bounded region - the attractor -
will provide us with the limits with which can predict future behavior of the system.

The most simplistic attractor is the fixed point. Many dynamical systems have
a state for which f= 0 and if this point occurs in a region where the dynamics are
regular, it will also be an attractor. The convergence of nearby trajectories - one of
which is at rest is equivalent to saying that the point is stable with respect to pertur-
bations. Note that not all fixed points are attractors - the inverted pendulum has a
fixed point when the pendulum is vertical, but is extremely sensitive to perturbations.

While all trajectories in the basin of attraction converge to a fixed point, there
is no reason that they will always converge to each other at all times. Since regularity
and chaos are global, not local, properties of an orbit, the system may make large
diversions and exhibit local unstable behavior even if both trajectories are in the same
basin of attraction. Figure 2.1 shows a plot of several trajectories of the FitzHugh-

Nagumo neuron model (FHN) [FitzHugh, 1955]:

.151 = 1 — g—? — T + Ie:vt (214)

TXy = 1 +a— bxy (2.15)

where a = 0.7, b = 0.8, 7 = 12.5, and [, is the driving stimulus - here chosen to
be constant in time. While all trajectories converge to the same resting state (fixed
point), some trajectories include large excursions.

The FHN model is a qualitative approximation of more complex, biologically
motivated models such as Hodgkin-Huxley type models that we will be using in this
thesis (see Chap. 4). Generally the state of z; is equivalent to the voltage across
the cell membrane and x5 to the excitability of that membrane, however the values
do not directly map to any physical quantity. The dynamics of the FHN model are
designed to capture the spiking behavior of neurons and other excitable systems by
producing characteristic excursions in state space in response to sufficiently strong
positive applied stimulus. For now we are interested more in its dynamical structure
than the system it describes

As the stimulus I.,; increases, the resting state approaches the threshold that
separates the two types of trajectories. (black and red vs green and blue in Figure 2.1)

At I.,; =7, the attractor morphs from a fixed point into a stable periodic orbit - called
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Figure 2.1: Plot of 21 vs time (left) and phase plot (z3 vs x1, right) for the FitzHugh
Nagumo model with constant (I.,; = 0.1) driving stimulus. While all trajectories
converge to the same fixed point at (-1.15, 0.55), local instabilities result in temporary
divergent behavior.

a limit cycle or relaxation oscillation. This transition, a Hopf bifurcation, will play in
an important part of our ability to estimate properties of this and other more complex
neuron models later in the thesis (see 6.1).

Figure 2.2 shows the same FHN model with a constant stimulus of 0.5. All
trajectories converge to the same limit cycle attractor but do not converge to the
same phase on that attractor. Additional information from measurements will be
needed to estimate that phase.

While evolution to a fixed point or limit cycle provides us with increasing
information about the state of the system, it appears it would be faster to simply
guess that the system is at the location of that fixed point or on its limit cycle. The
key of this convergence comes into play when the system is evolving between a series
of fixed points or limit cycles as the dynamics changes - such as when a time varying
forcing acts on the system.

As was demonstrated in Figs. 2.1 arbitrary initial conditions converge to the
same fixed point or limit cycle. Given that all trajectories are (eventually) converging
to this fixed point they must also (eventually) converge to each other. Even if the
location of the fixed point changes over time, the trajectories may still converge

towards each other even if the current fixed point is never reached. Fig. 2.3 shows the
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Figure 2.2: Plot of 21 vs time (left) and phase plot (z3 vs x1, right) for the FitzHugh
Nagumo model with constant (I.,; = 0.5) driving stimulus. All trajectories converge
to the same limit cycle, but are out of phase.

evolution of a driven FHN system with a known stimulus. Even though the system
passes between regions exhibit limit cycle behavior and fixed point behavior the orbits
will converge because the dynamics are always regular.

It is possible to contrive a stimuli that results in chaotic behavior in the FHN
system. Recall that chaos is ultimately the average effect over the local (in)stability
that the system encounters in its orbit. The FHN model has a region of instability
corresponding to the Hopf bifurcation point separating the limit cycle and fixed point
behavior. By providing periodic forcing at around the same frequency of that limit
cycle the system spends a larger fraction of its orbit in this unstable region [Chou,
1996]. Of course adding this periodic forcing (or other time varying forcing) is es-
sentially adding additional dynamical states to the system. Thus even thought the
system is nominally 2D and should not be chaotic per Poincare - adding explicit time
dependence can lead to chaotic orbits. The local instabilities caused by a Hopf bifur-
cation will be revisited when we discuss estimating properties of the Hodgkin-Huxley

neuron model.
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Figure 2.3: Plot of x; vs time (left) for several orbits on a FHN oscillator with
known forcing (right). Despite the location and type of the attractor changing over
time all trajectories converge.

2.4 Strange Attractors - Lorenz 63

For systems with chaotic behavior, closely spaced initial conditions will diverge
over time while the dynamics are overall dissipative. This results in orbits converging
to some region of state space with all orbits in that region (or any sub region) smearing
out over the full region over time. To examine the properties of this strange’ attractor

we turn to the Lorenz 63 oscillator [Lorenz, 1963].

.Z"l == 0($2 — .Tl) (216)
jfz = —29+TTx] — T1T3
Zifg = —bl’g + T2

where 0 = 16, r = 40, and b = 1.

As can be seen in Figure 2.4 (left) closely spaced initial conditions on the at-
tractor of the Lorenz 63 system diverge over time while simultaneously being confined
to a finite region of state space. Using the methods in Appendix 2.2, we find that the
Lyapunov spectrum for the Lorenz system are {0.52, 0, -18.6}. Note that as should
be expected for a dynamical system, the trace of the Jacobian is equal to the sum of

the Lyapunov exponents and there is a null value corresponding to perturbations in
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Convergence to attractor

Divergence in Lorenz 63 System

Figure 2.4: Left: plot of xy vs z; for three arbitrary initial states outside the
attractor. Right: plot of x3 vs z; for a pair of closely spaced initial conditions (grey
point - near center) on the attractor. The global dissipative properties of the dynamics
insure that orbits starting outside the attractor converge towards the attractor - but
the presence of a positive Lyapunov causes small regions on the attractor to diverge
to that same attractor.

the direction of motion.

Despite initial conditions diverging, this system still has an attractor due to
the dissipation of the system. Figure 2.4 (right) shows that orbits starting outside
the region in the left hand image will all converge into the same region state space.
However, unlike the fixed point and limit cycle where the dynamics are confined to a
0 or 1 dimensional surface, respectively, the orbit on the chaotic attractor is smeared
across a fractal surface in state space. Thus, even though the dynamics become
confined to some smaller dimensional surface, the divergence of closely spaced orbits
destroys any information about where we are on that surface over a time scale of
1/Amaz- To determine where the state of a chaotic system is, our model system must

be provided with additional information about its current location on that attractor.
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2.5 Coupled Systems - Data Assisted Synchroniza-
tion

Predicting future behavior of some physical system of interest requires the
knowledge of the full state of the system. This state can potentially be found by
evolving an identical, model system in parallel with the physical system until they
synchronize. For non-linear systems, chaotic behavior and forced switching between
different attractors create complicates our ability to synchronize. Given the possibility
to periodically measure components of the system, can we use this information to

assist in synchronizing our model with the physical system?

2.5.1 The Twin Experiment

Since we wish to the two trajectories to converge we can attempt to couple

the two systems together by introducing a forcing term to the model.

t; = fi(x,p) + Kij(y; — hj(x)). (2.17)
y;j = hi(x') +n;(x';t) (2.18)

Where the measurements - y, are a known function h(x) of the state of the physical
system x’ with additive (or possibly multiplicative) noise 1 due to technical charac-
teristics of the measurement tools. K;; will generally be proportional to 0h;(x)/0x;
as it maps the effect of a change in state j into the expected measurement i.

In principle h(x) can be an arbitrary function of the dynamical variables.
However, for we will limit ourselves to systems whose observables are individual states
- hi(x) = z;. In this case Kj; is a positive diagonal matrix with L non-zero elements
where L is the number of measured states (L < D). For this reason we will now refer
to this coupling with a single index K; = K;; if 1 = j, 0 else.

We might naively think that given measurements of some subset of the dynam-
ical variables, we can simply replace the measurable variables with the measurements,
equivalent? to K; — oo. There are several reasons why this should not be done. First,

the dynamics of the system are continuous while the measurements are discrete in

2modulo an implicit time delay and a very stiff equation to integrate
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time. Unless the measurement frequency is similar to the integration step this leads
to a need to interpolate between measurements - essentially requiring the full state of
the system. Second, the measurements of the system will be wrong. Noise in the mea-
surement device will lead to us forcing the system to incorrect states. The maximum
size of the coupling is limited by the accuracy of the measurements. (See 3.2)

Third and most important, our model is wrong. While we have been assuming
a 'perfect’ model, the reality is that the small dimensional neuron models we are
interested in are approximations of the statistical properties of billions of individual
molecules in a heat bath - the fact that there exists some small dimensional model
that even roughly captures some component of the behavior of the system is a minor
miracle. Given that we are introducing a coupling to what is essentially a different
system, this coupling will be smoothing over the inaccuracies in the model. For this
reason we want the size of the coupling to measurements to be as large as needed to
synchronize the system but no larger.

To determine how large a coupling, and to what, is appropriate we use two
identical model systems. This eliminates the possibility the models are wrong and
allows us to determine appropriate measurement routines under ideal circumstances.
While this does not suggest that a particular protocol will work on a real system, if
coupling to certain states does not work under idealized conditions it will certainly

not work when there are uncertainties in the model.

2.5.2 Conditional Lyapunov Exponents

The introduction of a coupling term leads to a modification of the effective
Jacobian of the system:

where we are assume that h;(x) = z; for measured states. Note that in this case, cou-
pling will appear on the diagonal of the modified Jacobian. The Lyapunov spectrum
of this coupled spectrum will thus be more negative than before, but the addition of
an effectively time dependent stimulus will mean that there is no longer a null Lya-

punov exponent. Because the Lyapunov spectrum of the system is being modified by
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Figure 2.5: Plot of least negative conditional Lyapunov exponent (CLE) for Lorenz
63 system for coupling to each of the three variables. coupling to z; and x5 result in
synchronized dynamics for sufficiently strongly coupled systems, but coupling to x3
will usually not result in synchronization.

the presence of this coupling they are referred to as conditional Lyapunov exponents
(CLEs).

We use the procedure in 2.2 to calculate the CLE for the Lorenz 63 model
(Eq. 2.17) with various coupling strengths to each of the three state variables. Cou-
pling in measurements to either the z; or z, states will result in regular behavior
provided sufficiently large coupling strength. However, coupling to the z3 state will
not cause the two systems to synchronize except for couplings of ~ 5 — 15. The
existence of this region is potentially a numerical artifact - but it presses the point
that the choice of what to measure and how strongly to couple those measurements
is non-trivial.

For a small, three state system that one measured quantity is sufficient to
estimate the full state of the system. However as the size and complexity of the system
increases it is inevitable that a single measurement is insufficient to synchronize the

system. For this question we examine the Lorenz 96 system, an atmospheric model on
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cyclical set of states. This model is easily scalable in dimension with simple dynamics

for each variable.

.fi'i = (xiJrl — 1'1;2).1'1',1 —x; + F (220)

The index, i, ranges from 1 to N where N > 5, and is cyclical in N: N +
1 — 1,0 — N. F represents a constant forcing term with chaotic behavior when
F is greater than about 8 for all dimensions. We will work with an implementation
of this model with F = 8.17, is found to have Lyapunov spectrum of about \ =
{0.46,0,—0.37,—1.3, —=3.7}

Coupling to a measurement of just the x; variable is insufficient to lead to
synchronization in the overall system. Because the Lorenz 96 model is symmetrical
with respect to cycling indexes, any choice of measurement of a single variable is
equivalent to any other. That a single measurement does not result in synchronization
is a clear indication that additional information is needed from the measurements to
synchronize the system. Adding in a second coupling to a measurement of x4 provides
sufficient information to synchronize the systems for N = 5. The CLE as a function
of coupling strength are plotted in figure 2.6.

While coupling to certain states will result in synchronization over long pe-
riods of time, we are often interested in determining the states and parameters of a
system in some finite window. The next chapter will present a method for using the
information provided by this synchronization as a tool for determining the most likely

path through state space for a set of measurements.
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Figure 2.6: Least negative conditional Lyapunov exponent vs coupling strength in
log scale for the D=5 Lorenz 96 system. For coupling to a single variable, insuffi-
cient information is passed between the coupled systems to result in synchronization
regardless of the strength of the coupling. Coupling to two variables results in syn-
chronization for sufficiently strong levels of coupling. The apparent convergence to
A = 0 may be an artifact of the inherent stiffness of the calculation of the CLE.



Chapter 3

Path Integral Method

While estimates of the final state would allow for prediction of future states
in a known model, generally we will not start with an accurate model. This chapter
will summarize the development of a path integral method that leverages the syn-
chronization provided by appropriate regular measurements to estimate unmeasured

model states and parameters.

3.1 Formulation of an Action

In addressing the general problem of transferring information from measure-
ments we begin with L-dimensional observations y;(t,); [ = 1,2,...L; made at times
t, in an observation window [to, 1,12, ..., s, ...t,, = T]. We want to communicate
the information in these observations to a physical model in D-dimensional space
governed by x(t,11) = F(x(t,)). Usually D > L so we must estimate values of the
unobserved state variables as well as values for any fixed parameters in the model.
We have established [Abarbanel, 2013] an exact representation for the probability
distribution for the state of the model at time ¢, x(,,) = x(m) conditioned on mea-
surements up until ¢,,; Y(m) = {y(0),y(1),...,y(m)}. We denote this conditional
probability distribution as P(x(m)|Y (m)).

Using this distribution function to describe noisy measurements and models
with errors, we have given a precise formula for the expected value of any function

G(X) along the path through the observation window X = {x(0),x(1),...,x(m)} in

18
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model state space conditioned on the measurements Y (m):

J dX exp[—Ap(X,Y)] G(X)

ElGX)Y] = deeXp —Ao(X,Y)]

(3.1)

The action Ay(X,Y) is composed of terms involving the observations, terms asso-
ciated with the propagation of the model state from x(n) to x(n + 1) and a term

representing the initial distribution of the model state P(x(to)) = P(x(0)):
ZOMI (n)|Y(n—1))

— Zlog[ x(n +1)|z(n ))} — log[P(x(0)] (3.2)

The measurement term involves the conditional mutual information of the L-
dimensional measurement y(n) and the D-dimensional model state x(n) conditioned

on all earlier measurements Y (n — 1) [Fano, 1961]:

CMI(y(n),x(n)[Y(n—1)) =
Ply(n),x(n)[Y(n = 1))
P(y(m)[Y(n —1)) P(x(n)[Y(n — 1))

log (3.3)

The dynamics taking the model state at ¢,, x(n) into the model state at ¢, x(n+1)
is represented in the transition probability P(x(n + 1)|x(n)).

In the ratio defining the expected value of a function G(X) over the path,
X terms independent of X cancel. This leaves the action effective in estimating the

expected values of functions on the state space path as

- nﬁ:jolog{zﬂ(ymnx(n),wn -1

=) log{P(x(n+1)x(n))} —log P(x(0)) (3.4)

n=0
which is effective in evaluating any expected value along the path in state space.
A full derivation and discussion of this path integral can be found in [Abarbanel,
2013, Quinn & Abarbanel, 2010, Toth, et al., 2011].

Two general approaches to the evaluation of this integral have been explored.

The first, which we pursue here, seeks a stationary path estimation, expanding about
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minima of the action Ag(X) [Laplace, 1774] where:

0A0(X)
=0 (3.5)

and the second is to use a Monte Carlo method [Metropolis, et al., 1953, Hastings,
1970, Quinn & Abarbanel, 2010] to sample the probability distribution exp[—A(X)].
We do not write the argument Y from now on.

The stationary path approach is a numerical optimization problem. We use
publicly available software packages for this purpose, SNOPT [Gill, et al., 2005] and
IPOPT [Wéchter & Biegler, 2006]. The solution to the variational problem yields an
optimal path but does not give the fluctuations about that path. Those variations
can be evaluated through corrections to the stationary path or through the direct use
of a Monte Carlo evaluation of the integral, Eq. (1).

To use the variational principle, we must specify how the terms in the action
Ap(X) are to be approximated. This requires a choice about the errors in the mea-
surements, a selection of how one represents model errors, and a statement about
one’s knowledge of the state x(0) when measurements begin.

In the first element of Ay(X) we make the common assumption that the errors
in measurements at time ¢,, are independent of measurements at earlier times Y (n—1)
and are Gaussian. This is not a necessary assumption, but it suffices in the examples

we address. We then write:
tog{ Py()la(), Y~ 1)}

~ Z{M(Iz(n) - yz(n))z} (3.6)

=1
This also assumes the observation function hi(x(n)) = z;(n). The quantity R,,(l,n)
represents the RMS measurement error as \/R_;nl . The time dependence in R,,(l,n)
is introduced to allow us to turn this term on when observations are made and to
turn it off when observations are absent.

The second term comes from the assumption that the physical model of the
system is Markov [Abarbanel, 2013], meaning that the state x(t,4+1) = x(n + 1)

depends only on the state at the previous time. We express the dynamics in the
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deterministic, no model error, case as x(n + 1) = f(x(n),p). p is a set of fixed

parameters in the model. In this setting the transition probability density is
P(x(n+1)x(n)) = 6" (x(n + 1) - £(x(n), p)) (3.7)

When we have model errors, we must reduce the state space resolution by broadening
the delta function. There are many ways to do that, and here we replace the delta

function by a Gaussian of a width of order , /R;l, so up to constants, we write
—log[P(x(n + 1)|x(n))] =

Z{Rme)(xa(n +1) —x4(n) — Fu(x(n), p))Q} (3.8)

a=1
Formally, in the limit that Ry — oo, we recover the delta function of the deterministic
case which has no model errors.

Without any prior knowledge of the distribution of states of the system when
measurements commence, the probability distribution of initial conditions is assumed
to be uniform over the range of states, so — log[P(x(0))] is a constant that cancels in
all expected values. The approximate action for the path integral is now expressed

as:

A(X) =Y Z{ Bl o) - gu(m)) }
= )
2> z{RfT”Hn #1) = () = Eax(n). )

Once the action is given, distributions on states and parameters can be found using
Monte Carlo methods and the most probable distribution can be found using the
variational method. This paper will focus on using the variational method to find
minima of the action using the nonlinear optimization software IPOPT [Wachter &
Biegler, 2006, Toth, et al., 2011, Kostuk, et al., 2012]. See appendix A for technical

information on implementation of this method.
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3.2 The Variational Step and Synchronization

Even with our Gaussian approximation to the action, the integrals needed to
calculate expected values of states and parameters are intractable. Instead we rely on
computational tools such as the variational method and/or Monte Carlo to sample the
distribution in the regions where the path contributes non-negligibly to the integral.
Since these regions are where the action is smallest - finding the minima of Ay is
equivalent to finding states and parameters near the 'correct’ values.

Generally the action Eq. 3.9, can be minimized using a gradient descent, such

as through the Langevin equation [Langevin, 1908]:

% = —VOA(X) + V2(0,1) (3.10)

where s is a continuous perturbation variable and eta is a Gaussian process with
mean 0 and variance «. This corresponds to Fokker-Planck equation [Fokker, 1914,

Kolmogorov A., 1931] that describes the evolution of some distribution of initial paths.

%P(X, s) =-Vx (P(X,s)

—a‘g{X)) + V% P(X,s) (3.11)
This equation has a steady state solution as s — oo given by P(X) = exp(—Ay(X)).
Because of this property, evolving any initial guess of a path within the basin of
attraction of the corresponding Langevin equation leads to the distribution given by
expl—A4o(X)].

If we drop the stochastic component of the Langevin equation (Eq. 3.10) the
evolution of the path becomes a deterministic gradient descent. This gradient descent
is a set of ordinary differential equations. Because A, contains f(x), which is non-
linear, the gradient of Ay will also contain non-linear terms. This suggests that we
should be checking what the attractors of these dynamics look like. If the resulting
dynamics have a single fixed point over all initial conditions, this fixed point is the
global minimum of the action. If the gradient descent is chaotic over some region,
we can expect to find a fractal number of local minima - thus making the variational
method unable to estimate the true unmeasured states and parameters.

The actual dynamics of this gradient can be expanded out to first order in
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dynamical time, t (as opposed to variational 'time’ - s):

d:cZ

~ > [itdt i (x(8) ] Rf;(8) [ (tdt) —a; () —dt £;(x(2))] + Rma(yi (1) — (1)),
- (3.12)

We immediately note that down to scaling factor, this is similar to the growth in a

perturbation at each time step:
Ax;(t + 1) ZAQ;J [0 + dt.Ji;(x(1))] — dtK;Ay;(t) (3.13)

which is a combination of equations 2.8 and 2.19 where Ax is the current perturbation
in the state and Ay is the separation (including errors due to noise) between the
measurement and the measured state. Recall that we have dropped the matrix form
of K;; as we are assuming the observable quantities are a subset of the states and not
a function of several or all of them as would necessitate off diagonal elements. Given

the (coupled) evolution of the state over time:

we note setting K; = Rm;/dtRf; captures the accuracy of both measurements and
model for Gaussian noise in both model and measurements.

Obviously there is no requirement that these perturbations be the same - or
even in the same direction. Should the system reach a point where the path is within
the noise levels for both model and measurement, the evolution of dX/ds will be
highly chaotic. Given this occurs when the path is within the margin of error this
is a non-issue as the resulting attractor will likely be confined within those bounds.
Monte Carlo methods, such as in [Quinn & Abarbanel, 2010], can be used to fully
sample the distribution beyond this point.

The importance of this is not that we now have a meaning for the coupling
strength, but that this suggests something fundamental about our ability to estimate
states and parameters. The dynamics of dX/ds has unstable directions if the path
it is searching over contains any [local instabilities that are not smoothed over by
appropriate coupling. Because we are perturbing the entire path, we cannot resort to

the state being on average regular as we could with forward evolution of the states
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in time. Thus, even though the FHN model (Eq. 2.14) is globally regular, if the
path contains local instabilities caused by the bifurcation between fixed point and
limit cycle behavior, we will not be able to estimate the state of the system without
measurements that tell us where and when this threshold is passed. Note that this
is a qualitative argument, there doesn’t appear to be any direct relation between the
size of Rm/Rf and K and the ability to estimate states by finding extrema of the
action.

The other side of this when the dynamics are always regular and there are no
local instabilities - > [6:; + dtJi;(x(t))] < 1 for all x(t), dX/ds will evolve to the
global minimum fixed point without the need for measurements. For regular systems
with only occasional instabilities (such as spiking neurons) this suggests that the total
number of measurements (what times how often) needed to estimate the full state
of the system may be surprisingly low. The absence of measurements may prove
a hindrance if the model parameters are not known a priori, as there is no way to

estimate the state of a system over time if you do not know how it evolves

3.3 Parameter Estimation

The path integral method provides us with the means to estimate unmeasured
states and parameters conditioned on measurements of some subset of the variables.
While which states needs to be measured can be determined based on the synchro-
nization of coupled systems discussed previously, this discussion has until now ignores
that the model parameters are in general unknown.

Parameter estimation is a different problem from the synchronization in states.
State synchronization is determined by whether there is convergence in state space
towards a common trajectory over time. Synchronization in parameters requires
not only synchronization in states but sufficient information from measurements to
determine the set of parameters that would lead to the state being in a given region
at a given time. For the Langevin equation on our distribution, this corresponds to

a step of:
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The evolution of the parameters are sensitive to the errors in the model through
differences in the local dynamics and to the state dependent sensitivity of those dy-
namics to each parameter. This is non-trivial as the dynamics themselves (and thus
the errors in the dynamics) are a function of these parameters.

Naively we postulate that if our measurements are sufficient to synchronize
model and data, those measurements are also sufficient for estimating model param-

eters given sufficient time. For the Lorenz 63 system:

j]l = O'(ZL‘Q - ZEl) (316)
‘/1.1‘2 = —ZT9 +TT1 — T1T3
jfg = —bl'g + 1%

we previously demonstrated (see 2.5.2) the ability to synchronize two identical oscil-
lators with appropriate coupling to any one of the three dynamical variables - with
optimal synchronization (as defined by the most negative largest CLE) occurring at
around a coupling strength of K; = 10 (Fig. 2.5) for coupling to x5 and x3 and 1000
for coupling to z;. As was discussed earlier (see 3.2), K; is roughly equivalent to
Rm;/dtRf;. Without loss of generality, we can fix Rm at 1. For dt = 0.01, this
suggests an Rf of 10 for the dynamical variables.

To test whether synchronization in state space implies the ability to estimate
model parameters we use a variational method to minimize the action of the path inte-
gral formulation (Eq. 3.9). Estimates are made using the IPOPT optimization library
with a python front end (see Ap. A) to generate the cost function and constraints
from the equations of motion.!

For each of the three variables. we provide time series measurements of 10000
consecutive points at a 0.01 time step - corresponding to several dozen ’circuits’
around the attractor. For measurements of x; estimates of model parameters are

within a factor of 1le —4 of their true values. Measurements of x5 and z3 are unable to

Tt is important to note that IPOPT is not preforming a gradient descent on Ag, but rather a
Newton search for extrema of Ay. Thus there is no guarantee that the minima it finds is the same
minima as would be found using a gradient descent.
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Table 3.1: Parameter estimates using time series measurements of each of the three
state variables of the Lorenz 63 oscillator. Only measurements of z; yielded accurate
parameter estimates. There did not appear to be a direct correspondence to the
coupled synchronization - which would suggest estimates of parameters for coupling
to each state. * indicates the parameter is at one of the variable bounds.

Meas. | o P B
T 16.0 40.0 1.00
X9 100* 100*  10%*
x3 26.1 26.1 1.2¢-4

True 16 40 1

produce quality estimates of the parameter values. (Tab. 3.1) Surprisingly, parameter
estimates using data from z; are within %10 for as few as 10 data points and within
%1 with 100 - much less than one circuit around the attractor.

This indicates that the ability to synchronize states through coupling to a
particular measurement is not sufficient for parameter estimates. This is not particu-
larly surprising given the synchronization applies only to sufficiently similar models.
A possible alternative is to look at the leverage provided by a particular state vari-
able. x1 appears in all three components of the equations of motion, while x5 and x3
only appear in two components. Future exploration of this question is warranted, but
for now it is sufficient to say that our simulated experiment has demonstrated that
measurements of x; are required to estimate parameters in the Lorenz 63 system.

For driven systems, such as the neuron models we will consider later, the
measurements we can make of the system are a function of both how the model
is driven and of the intrinsic dynamics of the system. Because accurate parameter
estimates require a level of resolution in the underlying dynamics of the system and
how the sensitivity of those dynamics to that parameter, we must insure that the
stimulus provided to the system provides that resolution.

Given that the dynamics of the system is ultimately parameter dependent,
there cannot be an ideal stimulus waveform for estimating parameters of a given
model absent model constraints. While repeated experimentation on the real system
with iterative changes to the stimulus may eventually result in a correct stimulus
routine, in many cases these experiments are costly in terms of both materials and

time.
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Table 3.2: Estimated parameter values using the noisy measurements of z; in
Fig. 3.1. ‘Scale’ refers to the scaling applied on the stimulus in Fig. 3.1. Weaker
stimuli do not explore as much of the dynamical range as stronger stimuli. The
quality of estimation is improved as more of the dynamical features are explored.
Parameter bounds were chosen to be roughly an order of magnitude in each direction
from the true values. * lower bound for b

Scale: 0 0.2 0.8 | Act.

=1 1 0.140 0.085 0.080 | 0.08
a 1.1 080 0.70 | 0.7
b 0.1* 062 079 | 0.8

The FHN system (see - 2.3):

1:1 = 1 — z?)—? — Zo + Ie:vt (317)
TXy = 1+ a — bx; (3.18)

exhibits stimulus dependent bifurcations between Figure 3.1 (left) shows the simu-
lated measured traces of 3 driven FHN neurons with a variably scaled, yet otherwise
identical stimulus. ¢ = 0.1 Gaussian noise is added to measurements to simulate
noise in the system. The minAzero program is used to estimate parameter values, as
shown in Tab. 3.2, and all states at all times. The last state values and parameters
are used as initial conditions to predict the model forward. Using the same stimulus
after the estimation window, Figure 3.2 shows that a combination of different types
of currents (Figure 3.1 right, t = 200 to 400) reveals that only the stimulus that
fully explored the behavior of the system (the strong stimulus) was able to estimate
parameter sets that can be used to predict future behavior. This procedure will be

key for more complicated neuron models later in this thesis (see - 4.2).

3.4 Correspondence to the Extended Kalman Fil-

ter

A common method for estimating unmeasured states and parameters in non-
linear models is the use of what is called an Extended Kalman Filter.[Julier and

Uhmann, 1997] Kalman filters are used to update the state and distribution of a
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Figure 3.1: Plot of z; vs time for driven FHN neuron model with added ¢ = 0.1
Gaussian noise driven by a variably scaled stimuli. The driving stimulus during the
estimation period (right, black) is scaled by a factor of 0.8 for the strong stimulus,
and by 0.2 for the weak stimulus. These measurements are used to estimate the
unmeasured zo state and unmeasured model parameters.
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Figure 3.2: Plot of prediction of z; vs time for driven FHN neuron model. Initial
conditions are determined by the final state of the estimation and the estimated
parameters (Tab. 3.2) - though an initial period no stimulus eliminates any initial state
information. The scaling in the estimation window is not applied to the stimulus in
the prediction window (Fig. 3.1, right - red) to highlight the differences in behavior

between the parameter sets. Only the parameter set estimated using the strong
stimulus accurately tracks the true behavior.
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system in the presence of underlying stochasticity and periodic noisy measurements

of some function(s) of the dynamical variables:

x(t) = £(x(t)) + walt) (3.19)
y(t) = h(x(t)) + w(t) (3.20)

where w,(t) and w,,(t) are the Gaussian distributed noise in the dynamics and mea-
surements respectively. These noise terms are assumed to have respective matrix
variances of @);; and R;;. The expectation value (x) and the tensor variance about

that value (C(t)) evolve according to:

x(t) = f(x(t) +K() (y(t) - h(i(t))) (3.21)
C(t) = J(x()C(t) + CH)I (%) + Q(t) (3.22)

where J(X) is the Jacobian evaluated at the current expected value of x(t) and

K(t) =PH)HWH) R()™ (3.23)
and
H(t) = gz - (3.24)

The cost function as developed previously assumes a special case of this where
Q and R are diagonal. While this linearization is essential for the Kalman filter,
the path integral method could in principle use any twice differentiable distribution
- including state dependent noise. Absent foreknowledge of the noise in the mea-
surements or model, the choice of noise is fairly arbitrary. We choose uncorrelated
Gaussian noise for the simplicity. For directly measured states, h;(x(t)) = z;(t), the
matrix H will be diagonal. For Gaussian distributed measurements and model errors,
this turns K(t) into R,,/dtR;, as was noted earlier (3.2) functionally equivalent to
the effective coupling in the unconstrained path integral formulation.

The major difference between Kalman filter methods and the path integral

method is the actual problem they are solving. Kalman filters are set up such that
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a distribution of states is evolved over time according to the dynamics of the sys-
tem. The initial state distribution is 'stretched’ by noise (and chaotic behavior) then
‘squished” by measurements of the system. While this is excellent for predicting
future behavior it is not ideal for estimating model parameters as the effects of a
perturbation can only be treated with locally. [Carrassi and Vannitsem, 2011]

The path integral method has the advantage of combining the local uncertainty
in state to state transitions with the global trajectory of the system. Instead of trying
to solve (x(t+1), p|x(t),y(t+1)) we instead are solving for (X(T"), p|Y(T)). As time
independent parameters affect the dynamical evolution of all states at all times - the
value of that parameter will generally be better determined according to the entire

time series of measurements rather than through localized transitions.



Chapter 4
Individual Neurons

Neurons are the nodes of neural networks, functioning as dynamical logic gates
in the processing of information from stimuli into instructions for behavior. This sec-
tion will provide a brief overview of the biology of neurons and the formulation of
some common models describing their behavior. This will then be related to the
development of experimental procedures to estimate the various model parameters
conditioned on the types of measurements available from current experimental tech-
niques. The procedure is shown first using twin experiments (see section 2.5.1) using

simulated data and then extended to real experimental data from neurons in vitro.

4.1 Neuron Physiology

Neuron as a leaky cable

Control of complex organisms requires active measurements of the surrounding
environment and formulation of a response in motor control in a time scale comparable
to that of the environment. Absent some controlled forcing, instructions in the form
of molecules are transferred throughout the cell through random Brownian motion.

Assuming the molecules carrying the information are conserved we have Fick’s law:
Jaisg = —DV|[C]| (4.1)

where [C] is the local concentration and Jg; ¢y is the flux of ions due to diffusion. For

most molecules in water at room temperature (roughly the conditions inside a cell) D

32
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Figure 4.1: A qualitative diagram of a neuron showing the relative orientation of
the soma (cell body), dendrites, and axon. Reproduced under CC-BY-SA-3.0 from
wikipedia.org

is approximately le-5 cm?/s. For a neuron that typically has length 1 mm (or more)
this corresponds to a diffusive time scale of order tens of minutes.

Given the astronomical diffusion timescales at room temperature for objects
of size order meters or centimeters, a faster, more directed means of transmitting
information is needed. This speed is provided through the use of electrical signals
over chemical signals. This electrical signal is created and propagated by the time
varying concentrations of the various species of ions present in the body. Because
they are charged, the effects of the addition of additional ions immediately effects
all other charged ions through a change in the local electric potential. The rate at
which information is transmitted is thus limited not by the speed at which particles
move, but by the distance scale over which the field drops off and the time scale of
the response. Because the membrane of the cell is essentially a leaky waveguide, this
process is described by the cable equation:

2
%ZTZ = cm%—‘; + g V. (4.2)
The longitudinal resistance, r; is the resistance per unit length of signals propagating
through the intracellular medium (cytoplasm), ¢, and g, are the per unit length

capacitance and conductance of the cell membrane. V is the potential difference
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between a point inside the cell and the exterior 'ground’. These per unit length
values are a function of the physical properties of the cytoplasm and membrane along
with the geometry of the cell. For the roughly cylindrical geometry the longitudinal
resistance scales inversely with increases in cross sectional area and proportionally
with the length of the cylinder. The membrane resistance scales inversely with the
circumference and cylinder length. To keep the scaling consistent we switch to the
inverse value of conductance which scales proportionally with both circumference and

length.

r = % (43)
gn = 12 (4.4)

where a is the radius of the cylinder, d is the membrane thickness, and p,,, and pey
are the resistivity (£2em) of the membrane and cytoplasm respectively. The distance
over which these electrical effects act is described by the length constant of steady
state solutions to the wave equation - which equals the cylinder length at which the

membrane resistance is equal to the cytoplasm resistance:

A= 1/rigm (4.5)

noting that r; and g,, are both per unit length. The resistivity of cytoplasm is about
30 - 300 Qcm. For a compartment of radius le-4 cm (area ~ 3e-8 cm?), r; ranges
from 1e10 to lell ©/cm. The membrane conductance is of order le-2 to 1 mS/cm?,
which corresponds to a per unit length conductance of le-6 to 1le-8 S/cm. This gives
an order of magnitude for the length scale of about 1-100 p m.

The time scale of the response to this signal is given by RC time constant of

the membrane:
T = Cm/Gm (4.6)

Which when combined with the characteristic length scale provides a characteristic
velocity for the propagation of a signal down the neuron. For a typical neuron the
per unit area capacitance is 1 uF/cm? and the membrane conductance is of order

le-2 to 1 mS/cm?, yielding a time constant of order 1 - 100 pus.

"While we assume that the exterior of the cell is at a uniform potential, this is only approximately
true.
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v=A/T (4.7)

Together this gives signal velocities of order meters per second - allowing for

signals to be transmitted across large distances over short times.

Action potentials and the Hodgkin-Huxley Model

Electrical signals provide a fast way of transmitting information from one end
of the cell to the other. However there is a catch to this process. While a locally
applied stimulus will cause a signal to propagate down the cell, the signal will disperse
over order 10 g m due to the non-zero resistivity of the cytoplasm. Given that
neurons are of order 1 mm in length or longer, there must be a means to regularly
refresh the voltage signal over time.

The flow of each specie of ion across the cell membrane is equivalent to a
battery connected to a variable resistor. For each ion the ’battery’ is driven by
differing concentrations of a particular specie of ion inside and outside the cell, leading
to a bias in the diffusion. When combined with the ions carrying a charge, this
bias creates an electrical potential. This potential is given by the Nernst potential.?
[Johnston and Wu, 1995] and describes the state when the diffusive motion in one
direction from a concentration gradient) is canceled by the electrical drift in the
other from the potential caused by that concentration gradient. While diffusion may
be ineffective for large distances, for the short distance across a cell membrane, the
time scale of the motion of ions is of order 1 ns - effectively instant compared with

the yus - s time scales prevalent in neuron behavior.?

. Eln [kout]

Ey, (4.8)

where R is the molar gas constant, T is the temperature, q is the charge of the ion
(in units of the charge of the proton), F is the Faraday constant and [k,u¢in) are the

molar concentrations of the ion inside and outside the cell. This 'battery’ is attached

2Note that for many channels, multiple species of ions are exchanged simultaneously. In such
cases the Goldman-Hodgkin-Katz equation is used. This form derives from the Nernst equation.

3The diffusion constant for each ion are of order le-5 cm?/s and the membrane is about 1 nm
thick.
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to a 'resistor’ corresponding the time dependent permeability of the cell membrane
to a particular species of ion. This gives a formula for the current through the cell

membrane of a particular ion as a function of time:
Ja(t) = ge()(V(t) — E). (4.9)

This, along with the conductance and capacitance of the membrane itself provide an

RC circuit equation that yields the voltage response of the neuron:
dv
— =— t 4.1
¢ o %:Jk( ) (4.10)

where the sum on k is over the various types of ions that determine the membrane
potential. These ions typically includes sodium and potassium, with calcium and
chloride channels also common. This equation is typically expressed in terms of the
per area behavior - C has units of pF'//cm? and g(t) has units of mS/em?. While E, is
roughly constant for most ions (|[k]/[k]| << 1), in many neurons the interior calcium
concentration is low enough (and the exterior high enough) that the flow of ions into
and out of the cell drastically changes the interior concentration. In such cases, the
reversal potential is also time dependent. We do not consider such channels in this
work.

The time dependences in g(t) come from the presence of specialized membrane
proteins that stochastically undergo conformational changes that either open or close
a pore for a particular type of ion. This leads to a modification of the current for a
particular ion:

Jp = [g;ma(t) + gkp](V — Ek) (4.11)

where g, is the maximal conductance per unit area of the type of ion due to these
membrane proteins, a(t) is the fraction of these channels that are open at a given time.
Jrp is the passive conductance per unit area of the cell’s lipid bilayer membrane. For

simplicity all of these passive channels can be combined into a single ’leak’ current:
T = gV — E) = gr(V - Ep). (4.12)
k

Since the number of membrane proteins per unit area is fairly large (order

1e10/cm? for sodium and 1e9/cm? for potassium) [Hille, 2001], the stochastically
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changing conformational state of each protein can be treated statistically in aggregate.
Given the sodium and potassium membrane proteins contains each contain four gating
sites, the channel becomes open only when each of the four gating particles are in
the correct conformational state.® For the the potassium channel this means all 4
are open and the for the sodium channel, the 3 activating particles are open and
the deactivating particle is not closed. Assuming the state of each gating particle is
uncorrelated with the others, this means that the current for the active sodium and

potassium channels are given by:

Inat = Gna+m(t)2h(t)(V(t) — Ena+) (4.13)
Jre = gren(t)(V(t) — Ex+)

where m is the fraction of sodium activation particles in the open configuration, h
is the fraction of sodium deactivation particles in the open configuration, and n is
the fraction of potassium activation particles in the open configuration. In many
cases a particular ion will be moderated by several types of membrane proteins. In
these cases the time dependence will be a sum over different types of kinetics with
maximal conductance proportional to the concentration of the respective protein in
the membrane. The reversal potential is determined by the Nernst potential for that
ion, and remains the same across different types of proteins.

The fraction of states in the open configuration (m, h, and n above) at a
given time is given by Boltzmann statistics with the energy change between open
and closed states a function of the membrane potential. Since the transitions are not
instantaneous - and frequently slower than the changes in the voltage - these fractions

are dynamical equations in time.

a= aV)(1-a)—B(V)a (4.14)
a(V) = oo (V) / Topen (4.15)
B(V) = (1 - aOO(v))/Tclose (416)

4In the original work on the voltage behavior of neurons, the structure of the various gating
proteins were not known - the choices of exponents were qualitative fits. While current knowledge
of the structure of these proteins appears to a validate these choices - the lack of knowledge about
state correlation means the exponent is still somewhat of a qualitative property.
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with Topen, and 7eese the time constants for changing to the open and closed states

respectively. This is qualitatively equivalent to:

_ (V) —a

e (4.17)

where a € {m,h,n}. The exact energy function of voltage for each conformational
state cannot be found from first principles - but are instead known from qualitative
fits based on work started by Hodgkin and Huxley ([Hodgkin and Huxley, 1952]) on

the squid giant axon.® The behavior appears to obey a smooth sigmoid function - we

> (4.18)
) (4.19)

Where V% «r and dV,7 are frequently assumed to be equal to V% . and dV,, respectively

choose to use a tanh formulation.

V-V,

1
CLOO(V> = —- (1 + tanh T

2

The time constants are similarly qualitatively fit with:

V- Vlar
2

(V) = | — tanh? | —— 27
T.(V) 7'1—|—7'2< an v

based on qualitative observations about the sensitivity of the dynamics of the model

to relative differences in those values. [Toth, et al., 2011]

Equations 4.14, 4.12, and 4.17 together form what we will refer to as the
‘simple’” Hodgkin Huxley model:

CV = Gnam®h(Eng — V) + gxn*(Ex = V) + gr(Ep — V) + La(t) /A (4.20)

- aso(V) —a
a(V)

where a € {m, h,n} I.(t) is an external driving current applied through the patch

(4.21)

of cell. As this current is not applied uniformly it must be scaled by the surface area
of the local compartment.

The actual behavior of the Hodgkin Huxley model depends on the relative
values of the various time constants, maximal conductances, and activation levels.

While much has been written about the bifurcation structure of this simple version
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Table 4.1: Parameters in the NaKL HH Model: Na, K, Leak Currents. While the
underlying properties of the neuron may vary substantially the values here correspond
well to what has been observed in experiments on individual ion channels in isolation.

Name Value Name Value
Chm 1.0 pF/cm? Vh -60.0 mV
gna | 120.0 mS/em? | dVh -15.0 mV
Ena 50.0 mV tho 1.0 ms
JK 20.0 mS/em? th 7.0 ms
Ey -77.0 mV Vht -60.0 mV
gL 0.3 mS/cm? | dVht | -15.0 mV
£ -54.4 mV Vn -55.0 mV
Vm -40.0 mV dVn 30.0 mV
dVm 15.0 mV tno 1.0 ms
tmO 0.1 ms tnl 5.0 ms
tmi 0.4 ms Vnt -55.0 mV
Vmt -40.0 mV dVnt 30.0 mV

dVmt 15.0 mV Ipc | -8.0 pA/cm?

of the model [?] and the various types of behaviors allowed by this model, we choose
to use biophysically plausible values. (Table 4.1)

For this parameter set, the neuron will undergo what is referred to as a spike
under certain stimuli. A positive influx of current will depolarize the neuron from its
resting state near the leak reversal potential (E;). As the voltage rises the sodium
activation variable (m) increases and deactivation variable (h) decreases as the voltage
approaches and passes their respective midpoints (V,, and V},). Because of the relative
time scales, the activation variable will open the channel faster than the deactivation
variable can close it (0.1 ms vs 1 ms). This provides a window where m?3h is non zero
and given the very large maximal conductance for sodium drives the neuron very
quickly towards the sodium reversal potential at +50 mV.

While this is happening the potassium channel (n) has been activating. Be-
cause of its shallower voltage response, slow time constants, and 4th power scaling;
the potassium current only becomes active at an appreciable level after the neuron
is depolarized. Since the reversal potential of this channel is at -77 mV this current
repolarizes the neuron by driving the voltage back down below the level the sodium

current activates. The sodium channel does not reactivate during this reset - despite

®Not to be confused with axons of a giant squid.
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Figure 4.2: A voltage spike in response to a short pulse of positive current at t =
10 ms.

passing through the same activation region because the sodium deactivation particle
remains active. Because the voltage responds faster than the gating particles, the
recovery will overshoot the resting state of the neuron leading to below resting re-
fractory period. The voltage response to a short pulse of current is shown in figure

4.2 and gating particles and the resulting currents in figure 4.3.

4.2 Single Neuron Twin Experiments

Estimation of the unmeasured parts of any model requires properly leveraging
the data available from measurements. For individual neuron models the data avail-
able typically comes from patch clamp recordings [Hamill, et al., 1981] that are able
to measure voltage across a small patch of the cell membrane (typically in the soma)
while applying a known current waveform to stimulate activity. While experiments
have been done on the activity of individual membrane proteins (see examples in
[Hille, 2001]) there is no current tool that can measure the fraction of all local gating
particles that are in a given configuration. Likewise, while certain characteristics of

the neuron - represented through model parameters, can be known from other exper-
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Figure 4.3: Anatomy of a spike - sodium, potassium and leak currents as a function
of time during and an action potential (right) and m, h, and n gating variables
(left). Recall that the ionic currents scale with distance from their respective reversal
potential.
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iments (such as the area of the cell and the capacitance per unit area) most values
must be inferred through a combination of available measurements and assumptions
about the structure of the model.

Because of the difficulty and cost of preforming experiments on live neurons -
particularly for in-vitro recordings that require killing the animal, simulated experi-
ments are used to develop routines that can later be used to determine the properties
of real neurons.

The procedure for estimation is twofold - as described in the previous chapter.
Estimating the full state of the system for a given parameter set requires that there
be sufficient information from the measurements to synchronize the model with the
measured system. Estimating the parameters requires that the measured trajectory
be sufficiently sensitive to the parameter values - which is a function of the choice
of driving stimuli. Since in a twin experiment we have access to all states and pa-
rameters of a model in a simulated system it is feasible to check whether a given
set of measurements will result in both synchronization in state space and well fit
parameters. The twin experiment is thus a useful tool in determining the types of
measurement and stimuli routines that should be used to estimate the state of a real
system.

In the most idealized case where there is full knowledge of both the form of the
model and its parameter values it must be checked whether the voltage measurements
alone are sufficient to estimate the full state of the system. Since the Hodgkin Huxley
model with only sodium and potassium channels is regular for biologically realistic
currents, all possible trajectories will converge® given the same driving current. (see
Fig. 4.4) This suggests that no measurements are needed to determine the state of the
system at some later time - the model neuron undergoes generalized synchronization
with the current waveform. We will return to this apparent property later when I
turn our focus to characterizing the behavior of synapses and networks of neurons, for
now it is sufficient to note that because the behavior of the Hodgkin Huxley model

with the parameters chosen is globally regular, it passes the necessary condition” that

SFor tonicly spiking neurons, the trajectories will differ by a phase shift.
I have not come across a system where the former is not a necessary condition for the latter.
There is no mathematical proof, to my knowledge that this is the case.
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Figure 4.4: Voltage trajectory of two identical Hodgkin Huxley models given iden-
tical stimulus. The convergence in trajectories is a good indicator that the system
is regular - no positive conditional Lyapunov exponents. Note that the synchroniza-
tion is not local. During spikes, the trajectories are not converging, indicating that
while on average (globally) the system is regular, this does not guarantee that the
the system is locally regular.

voltage can potentially be used to estimate the full state of the system.

With only limited knowledge of the parameters - such as order of magnitude
and whether it is positive or negative, we must devise a stimulus routine that has
sufficient leverage over each parameter to simultaneously determine all of them. At
the general, qualitative level, this means that estimating parameters requires ex-
ploring the areas of state space where those parameters are used. For a Hodgkin
Huxley model this means exploring both the linear RC sub-threshold behavior and
the active spiking behavior. Achieving this will thus require the application of both
hyper-polarizing (negative) and depolarizing (positive) waveforms.

A common stimulating procedure in the literature is to use a series of step
currents, both positive and negative, to stimulate the required hyper-polarizing and
depolarizing currents.[Daou, et al, 2013] While useful for finding static properties of
neurons (such as the passive RC time constant) these types of currents do not have
sufficient complexity to estimate kinetic properties consistently. We can demonstrate
this failure by comparing the estimates of the simple Hodgkin-Huxley model (Eq. 4.20)

driven by a series of steps with a the results from the same neuron driven by a more
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Figure 4.5: Plots of current vs time and voltage vs time for a simulated Hodgkin-
Huxley neuron stimulated with step currents (Right) and a waveform from the Lorenz
63 model (Left). The steps were created by averaging over the Lorenz current between
inflection points to create qualitatively similar activity patterns.

complex, smooth waveform.

To demonstrate this we consider a the response to a waveform from the Lorenz
63 system (see chapter 2.1) and the response to a series of steps that is roughly a
histogram of that same current (Fig. 4.5). The two current produce qualitatively
the same features at the same time so in principle should produce similar estimates.
However when we run the estimation procedure using otherwise identical conditions
- no model or measurements noise, Rm = 1 Rf = {10,1e5,1e5,1e5}, we find that only
the smooth current produces good parameter fits (Tab. 4.2) in fact the estimation
procedure consistently fails to converge to a answer, suggesting an unstable search.

This does not conclude that step currents are incapable of estimating the full
properties of a neuron. It does suggest that complex smooth waveforms may be better
at estimating many of the parameter values. More work is needed to develop a picture
of the cost function landscape for various stimulus protocols. Given the number of
possible stimuli are basically infinite, this is no easy task.

Unlike this ideal case the model will generally have inherent stochasticity to
it and the measurements will generally be noisy. To simulate these errors we add a
stochastic forcing in the form of an added o = 5 pA Gaussian current to simulate noise
in the system and a ¢ = 1 mV added Gaussian noise to measured state to simulate

noise in the voltage probe. The stimulus current (absent noise) and the simulated
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Table 4.2: Parameter estimates for a simulated experiment on a Hodgkin Huxley
neuron stimulated with a series of step currents or a current generated from the Lorenz
63 model. For the same time window, the Lorenz current provides substantially better
resolution of parameter values despite having the same number of spikes and same
general shape. *Because of a multiplicative degeneracy between the capacitance,
maximal conductances and surface area, we fix the capacitance at 1 pF/em?. * at
upper bound, ' at lower bound

Name (Units) Actual Steps Lorenz Name (Units) Actual Steps Lorenz
C (uF/cm?) 1 1* 1* Area (cm?) 0.8 1.45 0.80
gne (mS/em?) 120 200*  119.9 Eng (mV) 50 60" 50.0
gx (mS/cm?) 20 40" 19.9 Ex (mV) -7 -79.1 -77.0
gr (mS/em?®) 0.3 0’ 0.30 Er, (mV) -54 -55.3 b4l
Vin (mV) -40 314 -40.0  dV,)' (mVTh)  0.0667  0.025  0.0667
Tt (MS) 0.1 0.05)  0.10 Tz (MS) 0.4 0.1 0.40
Vi, (mV) -60 40 -60.0 dV, ' (mV~1) -0.0667 -0.0353 -0.0666
Th1 (ms) 1 0.64 1.0 Tho (ms) 7 1.17 7.0
V, (mV) -55 70! -55.0  dV.7' (mV™h)  0.0333  0.011  0.0334
Tp1 (ms) 1 5" 1.0 Tpo (mS) 5 12¢ 5.0

measurements are shown in Fig. 4.6 (Black). Using the same procedure as before, we
estimate the unmeasured states and parameters (Red). Despite the added noise, the
parameters are estimated to within a reasonable margin of the true values as shown
in Tab. 4.3. Since in a real experiment we can’t simply compare the parameters
to the true values, we also take the estimated final state and parameters as initial
conditions for the model and integrate it forward to predict future behavior (Blue).
This predicted voltage behavior is in good agreement with the observed behavior -
a good indication of a quality fit using only the information available under a real

experiment.

4.3 Model Estimates on Data from Real Neurons

The procedure used to estimate unmeasured states and parameters is ulti-
mately intended for use on data measured obtained from real neurons. The results
of these experiments will then be used to estimate properties of larger more complex

structures in the brain of interest. More specifically:

e Characterize the types and respective dynamics of the neurons in the network
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Figure 4.6: Plots of current vs time (left) and measured voltage vs time (right) for
a simulated Hodgkin-Huxley neuron stimulated with a complex waveform from the
Lorenz 63 system. The system has model errors simulated through the addition of
a 1 mV/ms RMS Gaussian noise term in the dynamics. Errors in the measurement
system are represented by a 1 mV RMS Gaussian noise added to the voltage state.
The extra variability in both sub threshold and spiking regions provides sufficient
resolution to estimate model parameters.



47

Table 4.3: Parameter estimates for a simulated experiment on a noisy Hodgkin
Huxley neuron stimulated with a Lorenz current with added steps. The model was
forced by an additional, unmeasured 5 pA Gaussian current to simulate noise in the
system. An additive 1 mV Gaussian noise was added to the measured state to simulate
noise the voltage probe. Despite the substantial noise, Because of a multiplicative
degeneracy between the capacitance, maximal conductances and surface area, we fix

the capacitance at 1 pF'/cm?.

Name (Units) Actual Estimate Name (Units) Actual Estimate
C (uF/cm?) 1 1* Area (cm?) 0.8 0.794
gna (MmS/em?) 120 140.7 Eng (mV) 50 49.7
gk (mS/cm?) 20 16.9 Ex (mV) -7 -77.2
gr, (mS/em?) 0.3 0.293 Er (mV) -54 -53.4
V, (V) 40 396 Qv ' (mV'') 0.0667  0.0667
T (ms) 0.1  0.103 Tma (1) 04 0.389
¥, (mV) 60 615 dv. ' (mV ) -0.0667 -0.0615
Th1 (ms) 1 0.934 Tho (ms) 7 6.28
v, (mV) 55 558 Qv ' (mvV')) 0.0333 0.0344
Tp1 (ms) 1 0.889 Tp2 (ms) 5 5.36

Figure 4.7: Plot of the unmeasured sodium inactivation gating particle - h(t) for a
simulated experiment on an isolated neuron driven by a complex stimulating wave-
form. (Fig. 4.6) Estimates are made conditioned on regular (50 khz) noisy voltage

measurements.
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in isolation as described in this chapter.

e Use developed neuron models as a filter to characterize intranetwork and exter-

nal currents present in the network such as synapses. (See Chap. 5)

e Use neuron and synaptic models to build a model of network behavior. (See
Chap. 6)

The brain of interest for our group has recently been that of song birds, pri-
marily the zebra finch. In particular we are interested in the behavior of a particular
region of that brain: the HVCS. The HVC is a region of the avian brain involved with
the learning and production of song. It projects (has neurons with axons that go
to another region) to the anterior forebrain pathway - believed to be responsible for
learning, and the posterior descending pathway which ultimately projects to muscle
control in the syrinx.? [Nottenbohm, 2005] However, for now we are not interested
in the full song production network as we need to first characterize the neurons and
synapses in the HVC subnetwork.

To create accurate models of the behavior of individual neurons, those neurons
should ideally be isolated from the rest of the network - ensuring that only the currents
we provide are stimulating the observed responses. This isolation is achieved through
the use of in vitro recordings in slice. Without going into the gory details'® a slice
from the network of interest is taken from the bird and the cells present are kept alive
through a nutrient bath. Much like a sub-critical mass of plutonium, the reduced
number of cells in the resulting slice cannot sustain continuous bursts of activity -
resulting in all cells generally staying at their resting states. While some synaptic
connections are still physically present, they are not activated. The physical removal
of the subnetwork from the rest of the brain further prevents any out of network
stimulus. Note that in some networks specialized pacemaker neurons will exhibit
continuous activity in the absence of stimuli. [Ramirez, 2004] In such cases drugs

may be needed to suppress the synaptic connections between cells. While these drugs

8originally hyperstriatum ventrale, pars caudalis, then high vocal center, now just HVC

9A vocal cord equivalent

10The bird is killed, drained of blood then decapitated. The skull is then cut open and the brain
removed. The section of the brain of interest is then cut into thin slices and placed in a cooled,
nutrient filled, oxygenated bath to keep the individual cells alive as long as possible.



49

Figure 4.8: Rough network structure of the song related pathways in songbirds.
HVC projects to the song production pathway via RA and to the song learning
pathway via Area X. HVC receives recurrent input from the thalamic nucleus (motor
function, not shown) and the auditory system (not shown). Original graphic from
[Nottenbohm, 2005]. Reproduced under creative commons 2.5 license.
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can be applied to be certain the remaining neurons receive no input we believe such
methods should be avoided when possible due to possible unintended side effects on
neuron behavior. However, HVC does not have these types of cells.

Once the network of interest has been separated, a neuron is identified for

The incentive for the slice preparation is not simply to isolate the network; in
addition to isolating the neuron from rest of the network the thin slice allows for the
visual identification of the neurons we are probing. The visual identification make
application of the electrode easier and allows for the differing types of morphology
to be identified prior to recording. Fig. 4.9 shows a typical single cell patch on an
interneuron in a slice from the HVC of a zebra finch. [Daou, et al, 2013]

The electrode itself is a needle that uses suction to ’patch’ into the surface
of the membrane - effectively becoming part of the neuron membrane [Hamill, et
al., 1981]. The electrode alternates between injecting a designer current through a
saline solution and recording the voltage across the membrane at 20-50 kHz - much
faster than any component of neural behavior. The 0.02 ms time step of our twin
experiments corresponds to this sampling rate.

The procedure for estimating model parameters is then the same as for the sim-
ulated neurons, with the caveat that the simple Hodgkin-Huxley model with sodium,
potassium and leak currents will be insufficient to describe the behavior of a neuron
that is known to have types of channels beyond the minimalist spiking neuron model
we have been working with. To that end, the model is expanded to include a few

more channels:

dV
_C% = JIna + Inap + Ix1 + Ik2 + T2 + Joam + Joar + Jo + Jreak (4.22)

INa, Ja1, and Jpeqr are the familiar sodium, potassium and leak currents, respectively,
from the simple Hodgkin Huxley. Jy.p is a persistent sodium channel. J4o and Jgo
are other potassium channels. Jo,pg and Je,r are high and low threshold activated
calcium channels, respectively. Jo is a calcium activated potassium channel and Jj

is a hyperpolarization activated cation current.
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Figure 4.9: Image of patch clamp on interneuron in HVC. The probe is the dark
lines at center. The light patches are the soma of neurons that have been illuminated
using a florescent dye. Reproduced by permission of author from [Daou, et al, 2013]
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Excepting the two calcium channels, the form of each of these channels is the
familiar:

Jp = g0 (E, — V) (4.23)

where a is the activating variable (like m or n) and b is the inactivation variable (like

h). The kinetics of a and b are of the form:
a=a,(V)[1—a]l—p(V)a (4.24)
with tanh formulations for the sigmoidal functions « and f.
Because the calcium concentration inside the cell is many orders of magnitude

lower than outside the cell the linearized Nernst potential we used for the other

channels no longer applies.

(4.25)

JCaw = aibj (gOUt — in eXP(V/VT)) |4

exp(V/Vp) — 1
where Vr is the thermal voltage for Ca*" (kgT/(2¢) ~ 13 mV) g, and g;, are pro-
portional to the interior and exterior concentrations - the difference in concentration
results separates the flow inward with the flow outward. Note that this equation has
a removable singularity at V = 0. When this equation or its derivatives are dealt
with numerically a Taylor expansion should be used to prevent potential issues.

Of course not all of these currents are certain to be present in the cell - nor
is there a guarantee that there are additional currents that are present that are not
included. Ideally a current that is not present will be estimated to have a maximal
conductance (g, ) of 0. Generally we want to make the model as expansive as possible
without being so expansive that the model becomes over fit.

However there is no easy way to determine what this point is. For twin exper-
iments (see 7?7 we have full knowledge of the unmeasured states and parameters to
compare with - even if we are not explicitly presenting that information to the estima-
tion procedure. For experiments on real neurons the ability to determine the quality
of the resulting model are more limited. Qualitatively, we can examine the estimated
values of various parameters to check that they make physical sense. Quantitatively,
we can use the estimated final state and parameters to estimate future behavior of

the neuron then compare that with the observed future behavior.
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Figure 4.10: Plot of voltage vs time and stimulating current vs time for model
estimation on an HVC interneuron recorded in vitro. The model is fit using the
blue region in A, then used to predict future behavior from both the same data
window (left) and from a unconnected data window (right). Some variation between
time epochs is expected due to the changing conditions of the cell. Reproduced by
permission from [Meliza, et al., 2014].

This predictability has been our primary metric to this point. Fig. 4.10 shows a
period of x ms (y data points) used to estimate states and parameters of the expanded
Hodgkin Huxley model. The final states and parameters of that model are then used
to predict future behavior (pink). The model can also be used to predict the behavior
of a novel stimulus without knowledge of initial conditions when provided a short ( 100
ms) window of to assimilate initial conditions'!. The model does an excellent job at
predicting the sub-threshold behavior, but there are some discrepancies between the

spike shape, timing, and number in bursting periods.[Meliza, et al., 2014]

Acknowledgement

Figure 4.10 was reproduced by permission of authors from Meliza, C. D., M.
Kostuk, H. Huang, A. Nogaret, D. Margoliash,and H. D. I. Abarbanel, “Estimat-
ing parameters and predicting membrane voltages with conductance-based neuron

models” Biol. Cybernetics, 108 495-516 (2014)

1 Because some of the channels are slow or activated in the sub-threshold region, we cannot assume
the system is at the resting state fixed point - or even that it has one.



Chapter 5
Characterizing Stimuli

Neurons are designed to receive stimulus from other neurons, integrate that
stimulus according to rules defined by the types and distributions of active ionic
currents then fire a spike that propagates down the cells axon to communicate its
response with other neurons. The propagating voltage signal triggers the activation
of specialized junctions between neighboring cells called synapses that can either
depolarize (excite) or hyperpolarize (inhibit) the adjoining neuron.

Since the stimulus acting on neurons in a network are generally caused by
these connections and not the experimentalist’s needle, we must develop means for
characterizing these connections. Unfortunately, the synapses themselves are tiny um
preventing direct experiments to determine their behavior. This chapter will describe
the use of previously characterized neurons for which we have accurate models - as a

filter to determine properties about the active synaptic connections.

5.1 Currents from Voltage - Using the Neuron as

a Filter

Probing the behavior of synapses is difficult due to the size and diffuse scope
of synaptic connections. Individual synapses are of order 1 um in size - putting them
below the ability to be resolved short of electron microscopy.[Gray, 1959] Further
the connection between one neuron and another typically consists of many synapses

at the many points at which the axon terminal of the pre-synaptic neuron and the

o4
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dendrites of the post-synaptic neuron come into contact.[Cowan, Stidhof, & Stevens,
2001] Lastly even noting the presence of connections between the two cells is not
sufficient information to determine the strength of the connection between the cells -
which is determined by the density of receptor proteins in the synaptic cleft. These
features make directly characterizing the behavior of synaptic connections difficult.

Since direct measurements of individual synaptic activity are unavailable - we
must instead rely on the effects these connections cause in the measurable regions!
through the currents that originate in the synapses - dynamically propagate through
the synapse then cause a depolarization or hyper-polarization depending on whether
the synapse was excitatory (AMPAergic) or inhibitory (GABAergic) respectively.

Probing synaptic activity can be accomplished using the measurements avail-
able from voltage recordings in the more accessible soma. Typically this procedure is
done under voltage clamp [Zhang & Trussell, 1994, Destexhe, Mainen, & Sejnowski,
1994] - yielding excellent results about both the kinetics and maximal conductance
of individual synapses. For networks of neurons, voltage clamping a single neuron
effectively removes that neuron from the network as holding it at or near a specific
voltage will prevent spiking activity - destroying its ability to respond by firing spikes.

Ideally, synaptic currents should be able to be inferred based on the response to
recordings under a passive current clamp - as in the single neuron experiments except
with I,,,(t) = 0. In principle, the stimulating current - absent some model that
couples it to the activity elsewhere in the system - is simply an additional dynamical
state for which little is known about its evolution.

The little that is known is that in part because of filtering in the dendrites
and the time scales of individual synaptic currents, the waveform of total synaptic
activity is unlikely to include any high frequency components. Because of this we
can use a trick in the path integral formalism to create a continuity and smoothness
constraint by adding a cost to concavity.

d? Lot (1)

o ~ 0 (5.1)

lit would be interesting to look at the activity in the dendritic compartment in response to
synaptic activity. I was under the impression that such recordings were not possible - but apparently
Michael Long is able to make them. I feel I am throwing a lot of potentially important biology under
the rug by neglecting activity in the dendritic compartments.
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with coupled first order ODE’s for the current and its time derivative. The Rf /dt?
term for these dynamics are chosen somewhat arbitrarily - but values around the value
of Rm for the second derivative equation and several orders of magnitude larger for
the (defined) dynamics of the first derivative equation have been found to work well
at properly smoothing the current estimation. This smoothing will not greatly effect
the estimation of real currents acting on the neuron as these tend to be relatively low
in frequency compared with the sampling rate and the natural low pass filtering of

the neuron membrane.

5.1.1 Twin Experiments

As a demonstration we consider the twin experiment used for the single com-
partment Hodgkin Huxley model considered previously. We use the fitting that was
previously preformed as in Fig. 4.6 and fix the parameter values to the estimated
values in Tab. 4.3. The actual values, that are used to generate the data, remain
the same as before so the model will be as accurate as we could determine but not
identical to the true system. Since state values are dependent on the unknown prior
activity and unknown stimulus the unmeasured state values are also unknown.

Using simulated noisy measurements of the voltage (o = 1 mV) we attempt
to estimate the unknown stimulus and all unmeasured states using the variational
method. The results of this, including the previously described continuity constraint
are shown in figure 5.1. This demonstrates that the neuron stimulus can be recovered
despite the presence of spiking behavior.

Implicitly, this procedure is a search for the low frequency components of
the remainder of dV/dt — fy, any errors in model will express themselves in this
inverse problem. In this case, we had excellent prediction of the model parameters
governing subthreshold behavior (g, Fr, Area) but incorrect (yet sufficiently accurate
for prediction) values for some of the parameters that define the spiking behavior,
notably gy, and gx. This suggests that this procedure could be used as a tool to
quantify model errors beyond relying solely on the model’s ability to predict future

behavior as was developed and used in prior work. [Toth, et al., 2011, Meliza, et al.,
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Current Estimate for NaKL Hodgkin-Huxley Twin Experiment
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Figure 5.1: Estimates of current vs time based on noisy time series voltage mea-
surements of a simulated identified neuron. Neuron parameter values are set ac-
cording to the optimization procedure done with known stimulus in 4.2. A conti-
nuity /smoothness constraint is added by the inclusion of an additional cost term to
the curvature of the current. This term is essential to keep the otherwise unknown
dynamics of the current from attempting to track the measurement noise. Rm = 1,
Rf = 10 for V and 1eb for m,h,n. The smoothing Rf were chosen to be 100 and 10
for the first and second derivatives of the stimulating current term.
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5.1.2 Current Estimation in Real Neurons

The twin experiments on simple Hodgkin Huxley suggest that replacing the
current term with an arbitrarily yet smoothly varying time dependent parameter
allows for an inverse problem to estimate the current acting on a neuron based on
time series voltage measurements. This procedure has the potential to allow for a
passive probe into the natural currents acting on these neurons - such as from synaptic
connections without the use of activity destroying voltage clamp techniques.

In order to demonstrate the validity of this method to characterizing the cur-
rents in real neurons we attempt to perform the inverse problem on the HVC in-
terneuron data from full cell current clamp experiments in slice. [Meliza, et al., 2014]
Initially a period of 1500 ms of 50 khz voltage response to a known applied current
is used to estimate model parameters. These model parameters are then fixed and
information about the state of the stimulating current is removed by replacing the
driving current with a smoothly varying time dependent parameter. Using a window

2 we estimate the stimulating current as

of voltage information from the same neuron
a function of time using the modeled behavior as a filter. Estimates for the current
in the same neuron data used to fit the data are shown in figure 5.2, for another time
period in the same neuron in figure 5.3.

The quality of the fits to an otherwise known stimulus provides us with a
good consistency check to the model. The places where the model cannot be used
to predict the stimulating current, such as at around 400 ms in Fig. 5.3, may help
in determining the types of features missing from the model. Despite errors in some

regions, the accuracy of this fit suggests we may be able to use this method as a tool

to probe unknown currents in the network in future experiments.

2This is the same epoch at the moment
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Current vs Time for Estimates of Applied Current in Real Neuron
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Figure 5.2: Estimates of stimulating current vs time for an identified neuron based on
time series voltage measurements. The model of the neuron is fit using the measured
voltage response to a known current using the variational method on the path integral.
The model parameters are then fixed at the estimated values and the model is used
as a filter to estimate the stimulating current used to generate the measured voltage
trace. The estimated current is subjected to a continuity and smoothness constraint
through a cost term to its local concavity. The voltage data epoch is the same as was
used to estimate model parameters.
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Figure 5.3: Estimates of stimulating current vs time for an identified neuron based on
time series voltage measurements. The model of the neuron is fit using the measured
voltage response to a known current using the variational method on the path integral.
The model parameters are then fixed at the estimated values and the model is used
as a filter to estimate the stimulating current used to generate the measured voltage
trace. The estimated current is subjected to a continuity and smoothness constraint
through a cost term to its local concavity. The neuron is the same one used to fit the
model, but the data window and stimulating waveform are different.
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5.2 Synapses

5.2.1 Biological Review

We have demonstrated the ability to determine the stimulus arriving in the
soma of an identified neuron and now turn our attention to the sources of those
currents. Neurons in a natural biological setting tend to receive stimuli from the other
neurons in the network. These currents occur due to specialized linkages between pairs
of cells called synapses. These connections come in two general forms: ligand gated
(chemical) and electrical (gap junction). This section will provide a brief review of
the general structure and function of each types of synaptic connection.

The gap junction is essentially just a pore between two cells that acts to drive
both cells to a shared potential. Mathematically, these connections are simply a
resistor between different regions of the cell. Despite this apparent simplicity, the
twin experiments on these types of channels are non-trivial (See 5.3).

Ligand gated synapses use a small molecule as a mediator. The first neuron
will release a molecule that binds to a specific type of membrane protein on the second
neuron, typically from the axon terminal of one cell and the dendrites of another.?
The binding of this molecule will open the channel to particular type of ion, inducing
a current in the second cell independent of that neuron’s state. This connection is
unidirectional* as there are no ligand gated proteins on the first neuron or the release
of neurotransmitters from the second. For this reason we will refer to the neuron that
releases neurotransmitters as the 'pre-synaptic’ neuron and the neuron that receives
them as the 'post-synaptic’ neuron. [Cowan, Siidhof, & Stevens, 2001]

While the above is generally what happens, modeling the behavior of these
connections will require more depth. A spike arriving at the axon terminal will cause
an influx of Ca?* ions. This increase in calcium concentration triggers the release of
packets of neurotransmitters in bubbles (vesicles) contained inside the pre-synaptic
neuron. These neurotransmitters then take 1 ns to diffuse across the nm sized

synaptic cleft (Fig. 5.4) and bind to the corresponding membrane protein on the post-

3See Fig. 4.1 for where those parts are relative to the soma.

4There is some information that goes backwards that is related to synaptic plasticity - but the
time scales over which these changes occur are long enough that we can ignore this effect at this
time.
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synaptic neuron. The membrane protein will then undergo a conformational change
into a semi-stable open configuration allowing the flow of a particular combination of
ions into or out of the cell. The ligands will stochastically fall off over time, closing
the channels after which they can either bind to another cell or be reuptaken by the
presyanptic neuron for later release.

There are two types of ligand gated synapses that will be considered here the
AMPAergic and GABAergic synapses, each named of their respective neurotransmit-
ter. The AMPA channel is non-selective to the types of ions it allows through and
thus acts as a temporary hole between the intracellular and extracellular medium and
thus E4npa = 0 mV. Because the resting state of the neuron is polarized with respect
to the extracellular medium, these holes serve to depolarize the cell and are commonly
referred to as excitatory synapses. The channels activated by the GABA neurotrans-
mitter allows the flow of chloride ions into the cell and potassium out of the cell
yielding a typically hyper-polarizing current - Fgap4 &~ —80 mV. Because of this de-
polarization the synapse is typically referred to as inhibitory as the hyper-polarization
suppresses firing in the post synaptic neuron. While these types of synapses are both
common in a network, the synapses projecting from a given neuron (the synapses
for which the neuron is the presynaptic neuron) will be either be all excitatory or
inhibitory but not both. [Johnston and Wu, 1995] For this reason we will refer to cells

with inhibitory/excitatory synapses as inhibitory/excitatory neurons.

5.2.2 A Model for Synaptic Currents

Similar to our work with individual neurons we develop initial stimulus and
measurement routines with a simple model. We modify the Hodgkin Huxley model
in equation 4.20 by adding an additional current to the post-synaptic neuron for the

flow of ions governed by the synaptic activity.

L = Z gEisi(t)(V — Eanpa) + Z 91isi(t)(V = Egapa) (5.2)

J
gFE; is the maximal conductance of the excitatory connection from the i'th excitatory
(AMPAergic) cell, s;(t) is fractional activity of that synapses corresponding physically

to the fraction of neurotransmitter gated ion channels in the synapse that are both
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Figure 5.4: Infographic of a typical ligand gated synapse. Reproduced under GNU
free documentation license.

bound with a neurotransmitter and open, and E4y/p4 is the reversal potential for
that channel - typically around 0 mV. Similarly the inhibitory synapses (GABAergic)
are represented equivalently with the dynamics of s(t) having the same form and
Eqapa = —80 mV. Since our neurons are assumed to be in isolation to other parts
of the network - there will only be a single synaptic connection of type determined
by the type of the pre-synaptic neuron. The dynamics of the gating particle, s(t) are
assumed to behave similar in form to those of the sodium and potassium ions except
that instead of being determined by the voltage of the cell they act on, the release of
neurotransmitters (and thus the activation of the ligand gated channels on the post
synaptic cell) are governed by the voltage of the axon terminal.

In principle we should expect a two state model with the voltage in the pre-
synaptic terminal and reuptake processes governing changes in the concentration of
neurotransmitter in the synaptic cleft. This concentration would then determine the
expected steady state fraction of ligand gated membrane proteins on the post synaptic
neuron that would be bound to a neurotransmitter and in an open configuration. This
can be refined further by noting that the release of neurotransmitters is not voltage

dependent, but are a function of the calcium concentration in the axon terminal -
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Table 5.1: Qualitatively chosen values for the parameters for excitatory (AMPA) and
inhibitory (GABA) synapses for twin experiments to develop methods for determining
synaptic properties. The maximal conductance of the synapse will vary substantially
between synapses. The values are chosen to qualitatively match the current responses
described in the literature. [Destexhe, Mainen, & Sejnowski, 1994]

Param.  Excite. Inhib.
Es (mV) 0 -80
Vs (mV) -20 -20
dVy (mV) 5 5)
Cl (ms) 1 1
02 (ms) 1 3

which is a function of the local voltage gated calcium channels. While two or more
state models for this behavior are more physical we have found we can qualitatively
reproduce this behavior with a single variable model. This model is easier to fit - and
since we are throwing away the behavior of the axon and dendrites in this model we
have already shown that we are more interested in a qualitative fit than a physical

one.

oy Soo(Vre(t — 7) — si(t)
SO = T =)

Sea(V) = % {1 + tanh (Vd;s‘/;)] (5.4)

T(V) = Cl — CQSOO(V) w. 01 > CQ (55)

5.2.3 Twin Experiments on Ligand Gated Synaptic Currents

While neurons comprise the nodes of networks of neurons - and an understand-
ing of their dynamics is essential to characterize the behavior of a network we must
also develop a similar understanding of the synaptic connections linking the nodes
together. Because of their size - probing the synapses themselves is an extremely
difficult proposition. In order to probe their behavior we need to develop data anal-
ysis tools to infer their properties based on their effects on the readily measurable
properties of neuron behavior, namely the voltage response of the soma of a single
neuron and the firing times in the soma’s of the other cells in the network. This data

analysis tools comes in the form of the previously demonstrated ability to estimate
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the stimulating current acting on an identified neuron given a sufficiently accurate
model describing its behavior and time series measurements of the voltage behavior.
It is important to note that the estimations of stimulating current are based
on the currents acting on compartment the cell is being recorded from - typically the
much larger soma. This is not the compartment that typically receives the actual
synaptic currents - which tend to act on the dendritic compartments. The currents
received by these compartments is filtered - potentially actively [Hausser et al, 2000]
due to the leaky nature of the compartment and active ionic channels. Further, since
the propagation of this current through the dendrite takes time, the current in the
soma will be delayed relative to the initiation of the synaptic current in addition to
any filtering preformed by the dendritic compartment due to diffusion time. While
these features are certainly important [Golding et al. 2002] we instead ask a much
simpler question, assuming we know the spike times of a neuron that projects onto
our post synaptic cell, what is the typical current received by the soma? This is
a relevant question because the activity in the soma determines whether an action
potential will propagate into the axon compartments and stimulate other cells. °
The method for estimating synaptic properties relies on the use of paired
recordings - simultaneous patch clamp recordings [Neher, et al., 1981] from a pair
of proximally located cells. By having the ability to stimulate and record from both

post and pre-synaptic neurons®

we are able to selectively stimulate the activity of the
synapse through the generation of frequently spiking waveforms in the pre-synaptic
cell and magnify the effects of the stimulus on the post synaptic cell by driving the
cell away from the reversal potential of the synapse. This allows for larger levels of
activity in short time windows relative to the time scale of the evolution of these
synaptic connections in response to our hammering due to plasticity effects. Since
these experiments can potentially be preformed in slice preparations, the natural
isolation will limit signals from other neurons provided the population size in the

slice is below a level to allow for sustained activity. This minimizes the chance the

current waveforms we record are the result of correlated activity - but limits us to

50f course if it turns out that the contribution of multiple synaptic activation do not add linearly
to the current acting on the measured axon, we may need to reevaluate these implicit assumptions
Swith the possibility that they can be recurrently connected
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assuming that the signals that are important for neuron response are uncorrelated at
the point of the synapse, which as was noted earlier - may not be the case.

The voltage in the axon terminal is assumed to be a delayed copy of the voltage
in the soma. Similarly the current arriving in the dendrites is assumed to propagate
without loss to the soma of the post synaptic neuron. Without loss of generality, the
time delay between dendrite and are combined into a single time delay (7) which is
typically around 5-6 ms in HVC. Obviously this is not going to be accurate given the
filtering in both axon and dendrites. As we are interested in creating a predictive
model for the synaptic connections based on activity in the soma, we must accept
that the estimated parameter values for the kinetics of the synapse will be accounting
for this filtering and may not be truly representative of the underlying physics such
as the docking or undocking times of the neurotransmitters or voltage sensitivity of
neurotransmitter release.

We create a twin experiment with two single compartment neurons connected
by a synapse of known type. A stimulating is applied to the pre-synaptic neuron
to promote frequent yet not tonic spiking behavior. This insures that any synaptic
activity is varied over the data sets and allows for differentiating possible responses to
different numbers of successive spikes and resting periods between bursts of activity.
The post synaptic neuron is stimulated with small DC or slowly varying current to
drive the neuron away from the approximate reversal potential of the synaptic current.
Since the magnitude of the synaptic current scales with (£ — V') this will increase the
magnitude of the signal. We generate data using a Runge-Kutta method for delay
differential equations and take the voltage states for each neuron with added 0.2 mV
sigma Gaussian noise additive noise taken as measurements.

While in principle connections can be bidirectional, the stimulus routine pre-
sented to the defined pre-synaptic neuron is such that it causes frequent spiking
behavior. This spiking behavior limits the resolution of the driving stimulus from
voltage measurements. More importantly, the stimulus in the defined post-synaptic
neuron is chosen to prevent spiking activity in order to maximize our resolution of the
current waveforms created by the synaptic activity. Since the activation of the soma
- and by extension the axon terminal are suppressed there is little, if any recurrent

activity. Even if there are recurrent activity of some form, the synaptic activity is
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Figure 5.5: Plot of synaptic activity vs time (s(t)) for excitatory synapse (left) and
inhibitory synapse (right) in response to the action potentials of the model neuron of
the previous section. The green line indicates the time the peak of the pre-synaptic
spike arrives at the axon terminal. Because of the physical distance between the axon

terminal and soma, there is an implied time delay if the somatic voltage waveform is
used as a proxy.
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assumed to be a function of the pre-synaptic voltage - albeit indirectly. The actual
source of the spiking behavior of in the pre-synaptic neuron is unimportant, only that
we have full knowledge of the voltage response of that stimulus.

For the estimation procedure, the individual neuron parameters are set to the
values determined using the single isolated neuron twin experiment in the presence
of noise. Since these parameter values are functional, yet incorrect, we simulate the
presence of an incorrect model and some level of dynamical noise. The two waveforms
are first compared to find the time delay implicit in the model based on the firing
time in the pre-synaptic neuron vs the start of voltage deviations in the post synaptic
neuron. Since we are assuming that the potential for recurrent behavior is negligible
or irrelevant for this experiment, by knowing the time delay in the data, we are able
to shift the voltage and driving stimulus data sets to eliminate the time delay from
the dynamics of the system - allowing for the model term in the cost function to
remain a sum on nearest neighbor pairs of time points. Rm for each neuron is set
at 1 and Rf for the regular ionic and synaptic currents are chosen to be 1le5 and 1e6
respectively. Because the actual source of the voltage behavior in the presynaptic cell
is unimportant, we can represent it in the model as a stimulus driving the synaptic
activity as opposed to a full many state neuron. While this is not necessary for the
problem, based on the formulation of our model and on the previously demonstrated
ability to determine stimulus from voltage in an identified neuron we are confident that
dropping the dynamics of the presynaptic neuron does not detract from the results in
any way while providing a large numerical boost. The estimates of parameter values
for twin experiments on AMPA and GABA synaptic connections are shown in table
5.2. Plots of the estimates unmeasured synaptic gating variables, measured voltages
and predicted behavior are shown in figures 5.6 and 5.7.

The simulated experiments for a controlled paired recording demonstrate that
we can achieve accurate estimates for the behavior of both excitatory and inhibitory
connections. We have also demonstrated that we can determine parameter sets that
accurately represent that behavior. In some cases, such as the maximal conductance
of the synapse (gs), these parameters accurately describe the true values used to
generate the data. In other cases, such as the slope of the sigmoid function (dV5), the

estimated value of the parameter is wildly different then the true value. This error
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Table 5.2: Estimates of excitatory synaptic parameters in the paired recording twin
experiment. Reversal potential is fixed at the true value. The inverse of dV is used
without loss of generality.

AMPA GABA

Param Act Est Act Est

gs (mS) 0.08 0.085 | 0.45 0.47
E; (mV) 0 0* -80 -80*
V, (mV) 20 -231| -20 -19.7
dV;t (mV1) 0.2 0.08 0.2 0.138
Csl (ms) 1.0 1.10 1.0 1.04
Cs2 (ms) 1.0 091 | 20 182
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Figure 5.6: Left: Pre-synaptic voltage for both paired recordings. Right: Post-
synaptic voltage for the the excitatory (red) and inhibitory (green) paired recording
twin experiment. The post-synaptic voltage is modulated by an additional low fre-
quency noise stimulus ( 1 nA). The pre-synaptic voltage is assumed to be the same at
the axon terminal as the measured soma. The inherent delay has been temporarily
eliminated due to the lack of recurrent connections. Single neuron parameters are
fixed at the values estimated with noise in the previous chapter. (Tab. 4.2) A known
DC current is applied to the post-synaptic neuron to drive the resting state away
from the reversal potential of the respective synapse.
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Figure 5.7: Actual (black) and estimated (red) values for the unmeasured synaptic
gating variable s(t) for an excitatory synapse (left) and inhibitory synapse (right).
Estimates are made based on measurements of the voltages (Fig. 5.6) of both pre and
post synaptic neurons.

does not effect the trajectory of the unmeasured synaptic gating variable (Fig. 5.7)
this indicates that either the model is insensitive to that parameter or the stimulus
does not provide sufficient resolution in the measurements.

For the isolated single neuron twin experiment this apparent degeneracy can
often be lifted by a change in the stimulus protocol to create a range of behaviors in
the region of state space primarily influenced by the incorrect parameter(s). For the
synaptic twin experiment, the stimuli that determine the behavior of the synapse are a
direct current stimulus to the post-synaptic neuron modulating the synaptic current
and an indirect stimulus through the voltage behavior of the pre-synaptic neuron
modulating the synaptic activity. Unfortunately the voltage behavior at the axon
terminal is difficult to control directly. The spike waveform that activates the synapse
is generally independent of the stimulating current due to the orders of magnitude
difference between the active sodium and potassium currents ( 1 pA) and applied
currents ( 10 nA) this greatly limits the . The filtering by the axon may also smooth
over any differences in spike shape - preventing even limited variation in the voltage
activity at the axon terminal from the readily accessible somatic compartment.

In a real experiment we would not know in which direction(s) or type the
synaptic connections would be before sticking the probes in. A work-around would

be to use the stimulus routines for all possible configurations in sequence then pick
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out the epoch containing the appropriate stimulus routine to preform our estimation
on. This assumes that the correct synapse type(s) and direction(s) can be visually
determined from the resulting voltage traces.

We have assumed throughout this that the voltage response at the axon ter-
minal is represented by the voltage activity in the soma and that the current created
by the synapse acts directly as a current on the soma. If the soma and dendrites are
only preforming essentially linear filtering on these signals, the effects of this filtering
may only alter some of the parameter values in the model such that while the model
accurately predicts the behavior of the synapse and neurons, the model parameters do
not correspond to real physical quantities. If instead the axon and dendrites provide
more active, non-linear filtering, we may need to consider using multi compartment

models to describe the behavior of neurons in networks.

5.3 Gap Junctions

The previous experiments dealt with the voltage activated, ligand gated synap-
tic connections that are common in networks. A second class of synapses, the gap
junction, occurs primarily where speed is paramount, such as visual systems and re-
flexive escape mechanisms (cite), but appears whenever cells are in close proximity.
Rather than relying on the release of ligand gated proteins to activate or deactivate
the adjacent cells, gap junctions are simply pores that directly link the intracellular
medium of one cell to the other allowing all small molecules (like ions) to flow freely.

The pore is essentially a tube linking the two membranes together so the
intracellular medium is essentially continuous between the two cells. The continuity
in intracellular medium means that propagating voltage signals will travel directly
through the cell membrane into the adjacent cell. Because the connection is through
a smaller surface area than the average cross sectional area of the cell (Eq. 4.2) this

connection is equivalent to a large resistor connecting the two ’circuits’.

I = -2 (Vi = V}) (5.6)

Area;

The conductance of the synapse (g;;) is symmetric due to conservation of charge.

Since the connection is localized, the total conductance must be scaled by the sur-
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face area of the cell before being applied like the per unit area conductances of the
Hodgkin-Huxley model. As the compartments are linked, the reversal potential of

the channel is simply the current voltage of the linked compartment.

For the ligand gated synapses, the activity of the synapse was driven by the
voltage state of the pre-synaptic axon terminal. If there are recurrent connections
they could potentially alter the pre-synaptic voltage waveform altering the activity.
We ignored this possibility in the earlier twin experiments because in all cases the
time scale of the communication ( 5 ms in each direction of simple travel time in the
axon) is much longer than the voltage response of the synapses. More importantly, by
measuring the pre-synaptic voltage we learn the effects of the stimulus driving that
neuron even if we do not know the full source of the currents driving it. For the gap
junction the connection speed is generally” not mediated by any intermediate gating
particle. This leads to very fast, bidirectional coupling between both compartments
that negate our ability to ignore the full dynamics of one of the neurons.

The astute reader will have noticed we have used the words neuron and com-
partment interchangeably in this section. This is not in error. While gap junctions
do connect pairs of neurons, the mathematical structure can be used to link different
components of neuron together to expand on the single compartment model with the
coupling now representing the resistance of a length of intracellular medium. The
single neuron models used in the past assume that the soma of the neuron is repre-
sentative of the full state of the neuron modulo possible time delays due to the finite
propagation speed of signals throughout the cell.

Obviously this can’t be completely correct - as the neuron contains dendrites
and an axon that project onto and from the soma respectively. While signals gen-
erally go from end of the neuron to the other, these additional ’compartments’ can
and do have different types of channels and channel densities than present in the
soma. Since these compartments are directly coupled - the feedback between the
compartments may need to be considered to determine the full behavior of a real

neuron. For the single neuron twin experiments and experiments on real neurons, the

“In some cases the channel can be closed in response to certain activity patterns - such as the
death of one cell.
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current is applied directly to the measured component. For networked neurons, the
connections - and thus applied currents, are applied via an axon compartment in the
pre-synaptic neuron to a dendritic compartment of the post synaptic neuron. Given
that these compartments are not the measured somatic compartment, understand-
ing how these compartments interact is going to be essential for characterizing the
behavior of networked neurons.

We approach the twin experiment similar to the ligand gated synapses we
assume that the two neurons have known properties which is represented by setting
the Hodgkin-Huxley parameters to those estimated in the noisy isolated neuron twin
experiment. Since the connection is fast and bidirectional, we use the full Hodgkin
Huxley model for both compartments. While the types of currents can be in principle
be different, for example, between dendritic and somatic compartments we choose to
assume that the types and densities of channels in both compartments to be the
same. While the channels may be the same, we do not assume that the area of
the two cells are the same. The surface area of different compartments may be
vastly different - so we leave that parameter free for both neurons. To stimulate
activity, we apply the same stimulus used for the isolated single neuron (Fig. 4.5)
to one of the compartments. Data was generated using stochastic RK with added
low frequency noise to simulate background noise in the system. Additional 0.5 mV
variance guassian noise was added to the extracted voltage states to simulate noise
in measurement apparatus.

With measurements of the voltage in both compartment we can estimate the
connectivity of the resistive synapse or length of intracellular medium along with all
unmeasured states. While there are errors in the estimated values of the area and
connectivity parameters (Tab. 5.3), the values are sufficiently accurate to allow for
predictions of future states (Fig. 5.8)

While the additional resolution may be possible for paired recordings of two
neurons, there are several technical issues that may make even this procedure as ap-
plied to multiple compartments of a single neuron. Currently, patch clamp recordings
on dendritic compartments are possible [Davie, et. al. 2001]. Additional difficulty
is provided by the requirement that a second recording be made from the soma of

the same cell. This recordings have been done in large Purkinje cells [Roth, 2001],
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Table 5.3: Parameter estimates for the gap junction or two compartment neuron
twin experiment. The other Hodgkin Huxley neuron parameters are fixed at the
estimated values of the noisy single neuron twin experiment for both cells. Estimates
are conditioned first on voltage measurements of both compartments then on only
one compartment.

Param. Actual Both Meas. One Meas.
Area;’ (em™2) 0.8 0.81 0.864
Areay’ (em™2) 2.0 1.96 0.667

GGap (MS) 5e-2 5.1e-2 0.114
Compartment One Compartment Two
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Figure 5.8: Plot of voltage vs time for gap junction and two compartment twin
experiment with both compartments measured. The Hodgkin Huxley neuron param-
eters are fixed at the estimated values of the noisy single neuron twin experiment
for both cells. Predictions are generated by integrating the model forward using
the estimated parameters and final state of the system as initial conditions. Note
that while all spikes induced in the excited compartment lead to spikes in the other
compartment, the sub-threshold behavior is filtered out.
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but have not been preformed in the smaller neurons of the HVC system. Given these
types of recordings are both difficult and invasive there is no guarantee that multiple
measurements of each neuron will be possible for a given system let alone one. The
resistively coupled system transmits information from the stimulated to the coupled
neuron in the form of current proportional to the voltage difference. The coupled
neuron than returns a current in response that is again proportional to the voltage
difference between the two compartments. Since we have demonstrated earlier (Sec.
5.1) the ability to estimate the external currents acting on an identified single com-
partment neuron from voltage measurements, those measurements should provide
voltage information about the unmeasured compartment, which will turn provide
information about the unmeasured gating variables and possibly a few parameters.
As a test of this ability to predict unmeasured states we consider the same sys-
tem except we only use measurements of the stimulated compartment (compartment
one) to estimate states and area and connectivity parameters. The data sets are iden-
tical to the paired recording simulation. The estimates of the parameters (Tab. 5.3)
show that the area of the of the measured compartment can be estimated accurately
but not the area of the unmeasured compartment and resistive conductance. The
values of the resistive conductance and area are such that while the voltage in the
other compartment is poorly estimated (Fig. 5.9) the current acting on the measured
compartment from the unmeasured compartment is very similar. This is potentially
reflected in the accuracy of the predictions of the measured component. Alternatively,
the effects of the feedback may be such that this return effect is insignificant when
compared with other currents in the cell. A different set of compartment sizes and
coupling strength may have a larger feedback - resulting in more accurate estimates,
however we cannot rely on the parameters being in useful regions for our estimation

procedure to work.
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Figure 5.9: Plot of voltage vs time for gap junction and two compartment twin
experiment with one compartment measured. The Hodgkin Huxley neuron param-
eters are fixed at the estimated values of the noisy single neuron twin experiment
for both cells. Predictions are generated by integrating the model forward using the
estimated parameters and final state of the system as initial conditions. While the
measured compartment’s future behavior is well predicted, no spikes are estimated in
the second compartment, even though the prediction indicates it should be spiking.



Chapter 6
Neural Networks

Cognitive function in both humans and animals are a complex dance amongst
many interconnected subnetworks, each preforming some function then passing on
the output - in the form of a series of spikes, to other subnetworks of the brain.
Understanding how these subnetworks interact requires an understanding of how each
particular subnetwork functions. The function of each subnetwork is determined by
the types of cells present in the network and the connections between them. We
have demonstrated in previous sections the ability to characterize the behavior of
individual cells and the kinetics of individual synapses using voltage recordings from
single or pairs of cells. These estimates allow us to constrain our estimation of network
behavior by fixing the behavior of the network nodes and connections kinetics to
known values, leaving the only the architecture of the connections unknown. This
chapter will discuss the use of the path integral method as a means to determine the
connectivity of a small network of neurons in a twin experiment conditioned on the

types of data that would be available using current experimental techniques.

6.1 State estimation through spike timing

The simulations preformed in the two previous chapters were made using time
series recordings of the membrane potential of either one or two cells. While there
are several means for obtaining these values such as sharp electrode or patch clamp

techniques, these methods tend to use probes that are large compared to the size of

7
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the measured neuron. For determining the behavior of individual or pair of cells, the
size of the probes and how they fit into the network tissue can generally be ignored.
As the number of measured components in system increases, there is decreasing space
for additional probes. For networks of neurons we need to consider alternative mea-
surements to determine the state of the neurons that are less intrusive to provide
greater breadth at the expense of depth.

The ability to use a potential reduced measure of the state of the system de-
pends on the synchronization properties of the measured system. We have previously
determined that the voltage information is sufficient to estimate the full state and
parameters of an isolated neuron. Given that a large component of the information
in the measurements is used to estimate the parameters fixing the parameter values
near their true values may reduce the frequency at which measurements are required
to estimate the state of the system.

To determine how frequent we must make measurements, we return to the
structure of the Hodgkin Huxley model. For hyper-polarizing and weakly polarizing
stimulus, the Hodgkin Huxley model evolves to a stable fixed point at the resting state
of the neuron. For larger static depolarizing currents, the neuron will fire tonicly,
(limit cycle) - with frequency increasing with stronger stimuli. At very large stimuli,
the sigmoid functions saturate at their high voltage state (open for m, n, closed for
h) and system returns to a stable fixed point. Since this requires the stimulus to
overwhelm the potassium current this particular transition can be ignored as that
strong a stimuli will kill the cell.

Given that the state of the system is always going to be on some trajectory with
a stable fixed point or limit cycle, one might naively assume that this means the full
state of the system can be estimated at all time points without measuring any states
of the system. Using the parameter values estimated from the noisy single neuron
twin experiment we estimate the unmeasured (all) states of the system using the
variational method on the path integral, the results of which are shown in figure 6.1.
While the fixed point transitions in the subthreshold region are accurately predicted,
the variational method fails estimating transitions from fixed point to limit cycle.

The failure to estimate the now unmeasured voltage during these transitions

can be attributed to landscape of the cost function. As was derived earlier (Eq. 3.12)
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Figure 6.1: Estimates of voltage vs time for a simulated isolated neuron with known
stimulus but no measurements. The instabilities at the spiking threshold create a
local minimum that prevents the path from evolving from subthreshold to spiking
behavior. Despite the lack of measurements the subthreshold behavior is predicted
extremely accurately, indicating that measurements are not needed in these regions.

the variational step:

da:l

Z 0ij + dtJy; (x(4) | Rf;(t) (6.1)

is stable with respect to perturbations only in regions where the system is not locally
chaotic. As can be seen in a colored coded phase plot of the m and h gating variables
for a series of pulses of current with steadily increasing magnitude (Fig. 6.2) the
transition from subthreshold to spiking behavior and back is locally unstable - which
as per Eq. 6.1 corresponds to unstable regions of the cost function landscape.

The instabilities, as defined by areas with a local positive Lyapunov exponent,
occur only at the Hopf bifurcation at the spiking threshold. This indicates that in
order to estimate the full state of a neuron at all times using the path integral method,
we will need some measurements around the spikes to drive the state of the system
away from the local minima created by that bifurcation.

When a neuron fires, the action potential creates sufficient activity in the ex-
tracellular medium to be detected by probes adjacent to the neuron. Because they do
not need to apply stimulus nor maintain a seal to the cell membrane, these extracel-

lular probes can be much smaller than the probes used for full cell recordings. Rather
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Figure 6.2: Phase plot of the sodium inactivation vs activation variable colored
according to the local Lyapunov exponent. The system is stimulated by a series of
pulses of increasing strength until a spike is caused. Between spikes the system sits at
the fixed point in the upper left corner. The system diverges when sufficient current
is applied due to a Hopf bifurcation. Note that the repolarization phase also passes
through an unstable region.

than recording from one or two cells, as is the case for the full cell recording tech-
niques, these extracellular measurements can be made simultaneously for hundreds of
cells. [Buzsaki, 2004] See appendix B for an in depth treatment of the physics behind
these types of measurements.

Extracellular recording techniques provide us with the ability to determine the
firing times of a large number of neurons in small network. Since the spike timing
information is not (directly) about the membrane potential we must modify the firing
times into a time series voltage waveform that correspond to that spike. The stimulus
currents are of order magnitude 1-10 nA while the sodium and potassium currents
are of order 1 pA. This means the general shape of a spike once the sodium channel
opens is generally independent of the underlying stimulus. This allows us to create a
stereotype spike waveform by average multitude of spikes generated by the neuron -
as shown in Fig. 6.3.

Note that in real neurons there is some variation in spike shape due in part to
the statistical nature of the finite number of gating proteins [Anderson et al, 2014] and

variations in slower driving currents that are not present in the simple model. This
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Figure 6.3: Left: The voltage activity in a neuron follows a stereotyped waveform
that is generally independent in shape to the stimulus. The voltage trajectory of many
spikes is averaged together to create this stereotyped spike. The measured spike time
is roughly at the vertical line. Right: Spike waveforms from HVC interneuron. There
is substantial variation in spike shape in real neurons, this variation can potentially
be represented by a relatively weaker coupling to the average waveform shape. (Re-
produced by permission from [Meliza, et al., 2014])

may necessitate relatively weaker coupling to the resulting spike waveforms (smaller
Rm) and/or context dependent spike shapes. This is an area for potential future
work.

The stereotyped spikes can be combined together to create a discontinuous
voltage waveform that provides reasonably accurate voltage information during the
action potentials. This waveform is implemented by making R,, a function of time,
with R,, = 0 outside the stereotyped spiking waveforms. We repeat the previous
twin experiment with the addition of the measured spike times. The estimates of
the voltage behavior with the addition of this information is shown in Fig. 6.4. The
true behavior is in black, the estimated behavior is in red, and the stereotyped spike
waveforms are in green. There are no measurements outside the green region.

Note that as defined, this twin experiment does not correspond to a real ex-
periment. The ability to apply a known stimulus waveform comes from the full cell
patch clamp. This exercise simply demonstrated that the addition of spike timing

information to a neuron in which model parameters and stimuli are known is sufficient
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Figure 6.4: Plot of voltage vs time for an isolated neuron with known stimulus
with measured spike times. Spike times are used to position a series of stereotyped
voltage waveforms (green). These simulated measurements are close enough to the
real activity to overcome the instability around the spiking threshold, allowing the
path integral method to track the system at all times.

to estimate the full state of the system.

Given known stimulus and known model there is generally no reason to es-
timate the unmeasured state of the system. The global regularity of the Hodgkin
Huxley model (and by implication, the neurons described by that model) means that
for any physically realistic initial condition, the true system and the model system
will synchronize absent any measurements coupling them together. However, if we do
not have information about some parameters in the system, the feed forward estima-
tion is less effective. As was discussed previously (see 3.4) feed forward methods like
Kalman filters have difficulties with parameter estimation because they can only use
local information. The path integral method allows us to leverage the entire data set
for parameter estimation, but this requires an initial demonstration that the states

can be estimated with fixed parameters.
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Figure 6.5: Estimates of voltage vs time (left) and current vs time (right) for an
identified neuron with unknown stimulus conditioned on stereotyped voltage wave-
forms positioned at the spike times. Absent any voltage or current information, the
voltage and current will bias towards a resting steady state. The presence of spikes
in the data is a good indication of depolarizing stimuli to the neuron just prior to the
spike, which is reflected by positive estimated currents in these regions. The wavy
nature of the stimulus estimate - while appearing to match some general shape to the
sub-threshold currents, is more a function of the smoothing algorithm that puts a cost
on the second time derivative of the current than an ability to track hyper-polarizing
currents. Note that the pattern is non-trivial in that the closely spaced pair of spikes
is correctly estimated by a single depolarizing current waveform.

6.2 Standardized Currents

While spike timing information provides us with sufficient information to es-
timate the full voltage behavior of an identified neuron with full knowledge of the
stimulus, it does not provide sufficient information to simultaneously estimate the
neuron state and stimulus. The estimates of voltage and current for a neuron with
known spike times and unknown driving stimulus are shown in figure 6.5. The stim-
ulus to these neurons comes from the synaptic connections between the many cells.
As we have little or no prior information about if or how strongly particular neurons
are connected we have little information about the stimulus into each neuron. This
means we lack the full voltage information needed to estimate the stimulus and lack
the stimulus information to estimate the full behavior from the spike times. Pro-
vided that spike times alone are insufficient information, additional information or
constraints are needed to allow for a measure of spike times must be used to estimate

the connection architecture of a network of neurons.
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The constraint we make is that we will assume that the stimulus each neuron
receives consists of the weighted sum of all the synaptic currents caused by spikes
in all the other neurons in the network. If we can make the assumption that the
shape (but not strength) of the synaptic current is determined solely based on the
type of synapse and the pattern of spiking in the pre-synaptic neuron that created
it, the current acting on each neuron is now a linear combination of synaptic activity

waveforms in the synapses:
L(t) =) gisi()(V — E) (6.2)

While the strength of the synapse from neuron i (g;) is unknown, the activity of the
synapse is a function of the (measured) spiking activity in the pre-synaptic neuron -
see figure 6.6. As was demonstrated in our twin experiments with paired recordings
(see 5.2.3), the activity waveform in response to a spike (or pattern of spikes) in
the pre-synaptic neuron - s(t — tgpike) would be known. This allows for the activity
waveforms s(t) to be constructed in pieces from the combination of the spike times
and the approximate time delay implicit in modeling physically extensive objects with
point models. This simplifies the search from a N*T dimensional search - where N is
the number of synapses and T the number of times, into an N dimensional search over
the linear combination of weights. We examine a pair of simple networks consisting

of a handful of neurons to test whether this assumption provides sufficient constraint.

6.3 Two Neuron Examples

We begin with a network of two neurons with mutual excitatory connections
(Fig. 6.7). We stimulate Neuron 1 with a known current and observe the timing
of spikes in each neuron over a 600 ms window. The simulated data sets for the
neuron voltage and synaptic activity based on these spike times and the generalized
waveforms for each are used to estimate the maximal conductances of the synaptic
connections in the network along with all dynamical variables of the network at all
time points. The estimates and predictions of voltage versus time for each of the two
neurons are shown in Figure 6.8 and parameter estimates are shown in Table 3. The

accuracy of these estimates is about 10% or better.
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Figure 6.6: Standardized gating-variable waveforms for excitatory Top Panel and
inhibitory Bottom Panel synapses. For each observed spike time the appropriate
waveform is added as a measurement of the associated synaptic gating variable Sy(t),
with the time of the spike aligned to the vertical green line. each observed spike time
a standard waveform for the synaptic gating variable S;(t) just before and just after

the spike time is used as part of our data set.

Table 6.1: Estimates of the maximal conductances of the two excitatory synapses

in the two neuron network; Fig. 6.7

Parameter Estimated Value | Actual Value
JE1—2 (mS/CmQ) 0.280 0.23
gp21 (mS/cm?) 0.197 0.18
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L (?)

Figure 6.7: Two HH NaKL neurons mutually connected by excitatory synapses.
A current 1,,,(t) is injected into Neuron 1 and the spike times of both neurons are
recorded. Inhibitory connections are denoted by open circles, excitatory connections
by closed circles.
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Figure 6.8: Voltage estimates and predictions for a two-neuron network with mutual
excitation between the neurons. Current is injected into Neuron 1 and the spike times
of each neuron are recorded. In data assimilation, for each spike time a standardized
spike waveform (Fig. ?7) is assigned to the presynaptic cell, and a standardized
synaptic gating-variable waveform (Fig. 6.6) is assigned to the postsynaptic cell. All
parameters are fixed in the model except the maximal conductances of the excitatory
connections from neuron 1 — 2 (ggi1.2) and from neuron 2 — 1 (gg2-1). The
known simulated voltages are shown as black lines, the estimated voltages by red up
triangles, and the predicted voltages as blue down triangles. Neuron 1 is shown in
the Top Panel and Neuron 2 in the Bottom Panel.
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Table 6.2: Estimates of the maximal conductances of the excitatory synapse and
the inhibitory synapse in a two neuron network (Fig 6.9).

Parameter Estimated Value | Actual Value
JE 12 (mS/CmQ) 0.156 0.15
gra—i1 (mS/cmZ) 0.766 0.5

While the ability to estimate excitatory currents is essential, much of the
behavior of networks of neurons is regulated by inhibitory connections. While excita-
tory connections lead to activity that can be measured, inhibitory connections express
themselves through the absence or reduction in activity. While we do not have the
ability to probe sub-threshold behavior with spike timing measurements, we do know
from the lack of spiking activity quite a bit about the approximate state of the system
- that it is below the spiking threshold. As the neuron is not spiking, the sodium
activation particle - m(t) will tend to be small until sufficient external current drives
the neuron into a sufficiently depolarized state to activate it. By adding a constraint
to the m gating particle outside of spikes, we create an effective upper bound on the
voltage behavior. Given the close relationship the voltage has to the current, this
constraint allows us to essentially say the stimulating current must be less than some
value at this time for their to be a non-spike. Given that the locations of spikes will
provide some information about the minimum strength of the excitatory currents -
this in turn gives some information about stimulus outside regions of spiking. The
lack of activity in these regions provide some information about the needed inhibitory
strength.

Again, we start with the most simple case: a two-neuron network with one
inhibitory synapse and one excitatory synapse (Fig. 6.9). We stimulate Neuron 1 with
a known current, observe the timing of spikes in each neuron over a 600 ms window,
and estimate the maximal conductances and dynamical variables as before (Fig. 6.10).
Note that the firing rate in both neurons is lower than in Figure 6.8 due to inhibition
by Neuron 2. The estimates of synaptic conductances are shown in Table 4. The
estimate for the inhibitory synapse is less accurate than for the excitatory synapse,
perhaps because the inhibition does not affect spike rate or timing when Neuron 1 is

inactive.
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L (1)

Figure 6.9: Two HH NaKL neurons mutually connected by ligand-gated synapses.
The connection from Neuron 1 to Neuron 2 is excitatory (lines with full circles); the
connection between Neuron 2 and Neuron 1 is inhibitory (lines with open circles).
A current I,,,(t) is injected into Neuron 1 and the spike times of both neurons are
recorded.
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Figure 6.10: Voltage estimates and predictions for a two-neuron network with exci-
tatory and inhibitory synapses. Current is injected into Neuron 1 and the spike times
of both neurons are used to estimate synaptic conductances and dynamical variables.
The known simulated voltages are shown as black lines, the estimated voltages by red
triangles, and the predicted voltages as blue triangles. Neuron 1 is shown in the Top
Panel and Neuron 2 in the Bottom Panel.
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Excitation

Figure 6.11: Network diagram for the six-neuron network used for estimating net-
work connectivity. Neurons 1-2 and 3-4 form two oscillators that each activate one
of the inhibitory cells (5 and 6) to suppress the activity of the other oscillator.

6.4 Estimating Connection Strengths in a Known

Network

In general, neural networks of interest contain many neurons connected by
many synapses, typically of order thousands or more. Networks of this size are too
large to be considered using our current computing resources so we start with a
smaller network consisting of six neurons connected by 10 synapses to demonstrate
the methods. The model network consists of four excitatory neurons arranged in two
pairs of mutually exciting cells. These cells in turn activate one of the inhibitory cells,
which suppresses the other pair of cells. This configuration yields a pair of mutually
inhibiting oscillators (Fig. 6.11). Known currents with low-frequency polarizing and
depolarizing content are injected into neurons 1 and 4 (Fig. 9) to ensure that both
states are explored. While this would not be possible with standard extracellular
recording techniques we are limited to systems that have activity to measure, and
that requires stimulation.

As with the simpler networks, data are generated by integrating the neuron
model forward with known driving currents waveforms to stimulate activity. The

spike times are extracted from the simulated voltage data to generate datasets for
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Figure 6.12: Driving currents for six neuron network. The current in neuron one is
in blue and the current applied to neuron 4 is in red.

assimilation with standardized spike voltage and synaptic gating-variable waveforms.
States and parameters are estimated from 1.6 seconds of data (about 50 spikes per
neuron), setting R,, = 10 for the windows around each simulated action potential
and 0 elsewhere, and R; = 10 for V and R; =10° for all gating variables. At the end
of the assimilation window, the estimated states and parameters are used to predict
the response of the network to further stimulation. Figure 6.13 shows the estimated
and predicted voltages for two of the neurons in the network. The estimated voltages
closely match the simulated values, as do the predictions, although the predictions
diverge from the data around 2100 ms. This divergence reflects the bistable nature of
the network, but eventually the driving currents cause the models to re-synchronize.

Estimates for the synaptic conductances (Table 5) are within 10% of the correct
values for excitatory synapses and within 25% of the values for the inhibitory synapses.
The difference in relative error between synapse types suggest that spike time data
constrain the excitatory coupling strengths more than the inhibitory strengths, at

least with the injected current forcing we have selected.
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Table 6.3: Synaptic maximal-conductance estimates for six-neuron twin experiment
with fixed architecture. Only the maximal conductances among the neurons are
estimated. All conductances have units m.S/cm?.

Parameter Estimated Value | Actual Value
gr1so (mS/cm?) 0.163 0.15
gras1 (mS/cm?) 0.152 0.15
ge2—s (mS/cm?) 0.168 0.15
gE3—4 (mS/cm?) 0.167 0.15
gr3-6 (MS/cm?) 0.168 0.15
gpas3 (mS/cm?) 0.164 0.15
grs5-3 (mS/cm?) 0.786 0.7
9154 (mS/cm?) 1.11 0.8
gr6-1 (mS/cm?) 0.968 0.7
gre—2 (mS/cm?) 1.04 0.8

Table 6.4: Synaptic maximal-conductance estimates for six-neuron twin experiment
with unknown architecture. The maximal conductances for all possible synapses are
estimated, and connectivity is pruned by assuming maximal conductances less than

0.001 mS/ecm? indicate no direct connection is present. All conductances have units
mS/em?.

Param. | Est. | Act. || Param. | Est. | Act.
ge1-o | 0.164 | 0.15 || ggo1 | 0.154 | 0.15
JE1-3 0 0 JE2-3 0 0
ge1-4 | 0.015 ] 0 JE2-4 0 0
ge1-s | 0.022 0 geoss | 0.175 ] 0.15
JE1-6 0 0 JE2-56 0 0
JE3-51 0 0 9B 41 0 0
JE3—2 0 0 ge4—2 | 0.002 0
JE 34 0.166 | 0.15 JE 43 0.164 | 0.15
JE3-5 0 0 gea—s | 0.006 | O
JE 36 0.175 | 0.15 JE 46 0.036 0
grs—i1 0.030 0 gre—1 1.058 0.7
9152 0 0 gre—2 | 1.215] 0.8
grsss | 0754 | 0.7 || grens | O | 0
grsoa | 1288 | 0.8 || grema | 0.175 | 0.15
91556 0 0 gre—s | 0.275| 0O
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Figure 6.13: Voltage estimates and predictions for Neuron 2 Top Panel and Neuron
3 Bottom Panel in the six-neuron network twin experiment with known network
architecture. In both plots, the simulated voltage is shown in black, the estimated
voltage based on spike times is in red, and the predictions based on the final states
and parameters of the estimates are in blue.
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Figure 6.14: Voltage estimates and predictions for Neuron 1 Top Panel and Neuron
4 Bottom Panel in the six-neuron network twin experiment with unknown network
architecture. The all-to-all initial network is pruned by the estimation procedure. The
simulated voltage is shown in black, the estimated voltage during the assimilation is
in red, and the predicted voltage based on the final states and parameters is shown
in blue.
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6.5 Pruning an All-to-All Network

In most cases the connections between neurons in a biological network are not
all known when we begin our analysis. Here we ask whether it is possible to de-
termine a network’s functional architecture by measuring the spike times of neurons
in a network stimulated with a known current. This means that any estimations of
network connectivity would need to take into account all possible synaptic connec-
tions. In principle, this should not present any additional problems as a non-existent
connection is equivalent to a connection with a zero maximal conductance.

Using the same six-neuron network as in the previous section, the estimation
procedure is modified to allow all-to-all synaptic connections as an initial guess. It is
assumed that we have some knowledge of cell type, namely whether a neuron exhibits
inhibitory or excitatory behavior, but no information about the physical connections
that are present. Figure 6.14 shows estimated and predicted voltage for one of the
neurons in the network, demonstrating that the spike times are sufficient to constrain
the estimated model so that it produces nearly identical patterns of activity as the
simulated data.

We have seen in Figure 6.13, there is a brief period around 2.1 s when the
predictions diverge from the data, but the driving currents eventually synchronize
the two models. Table 6.4 shows the estimated and actual conductances in this
experiment. For the 11 synapses actually present in the network, the estimated
conductances are all nonzero and within 10-50% of the true values. Out of the 19
synapses not present in the network, 18 (94%) were estimated to have a maximal
conductance less than 0.04 m.S/cm?. Most of the synapses erroneously identified to
be present had small estimated conductances, with the exception of the inhibitory
connection between Neurons 6 and 5. The activity of these neurons is negatively
correlated, and thus, perhaps, it is unsurprising that a solution exists with a nonzero

connection between them.
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6.6 Comparison to GLM methods

Generalized linear models (GLMs) are a common tool for analyzing data that
tends not to be Gaussian distributed. [Hardin and Hilbe, 2012] The most common
version of this method for describing neural activity is the use of linear-nonlinear
Poisson (LNP) cascade models [Gerwinn et. al. 2010, Stevenson et.al. 2008, Paninski,
2004] that treat neural activity as the sampling of an inhomogeneous Poisson process.
Unlike the dynamical models described in this thesis, the LNP models generally do
not contain any memory of prior states below the recorded event level - while spikes
may alter the firing rates of other cells, the prior expected firing rate does not modify

the future firing rate if it has not produced a spike)

A(#) = lim dip(N(t,H at) = 1) (6.3)

dt—0
where P (N (t1,t2) = n) is the probability of n spikes between times ¢; and t,. The
number of spikes in a given interval is a Poisson process on the firing rate A(t) [Synder
and Miller, 1991]:
1 t n t
P(N(to,t1) =n) = — MO dt%(t’)} exp [— /to dt’A(t’)} (6.4)

n.

We are interested in finding the probability of some sequence of n spikes {¢;}. We
know that for every interval (¢;_1,¢;] there is going to be one spike. This leads to a

product of smaller intervals:

n

P({t;}) = C}tlinm P(N(tj_1 +dt, t;) = 0)P(N(tj, t; + dt) = 1) (6.5)

The product over the exponential component leads to an integral over the full range.
The product over the first term works becomes a product of integrals over delta func-

tions. Combining these leads to:

P({t,}) = [HA ]exp {— /t:ndt’)\(t/)]. (6.6)

For neural networks, the firing probability of any individual neuron will be

some function of the external (to the organism) stimulus. Given some vector of
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stimuli s(¢) and the receptive field of the neuron wy, the activity of the neuron can

be represented as:
M) = F(s(t)7w.) (6.7

where f is some monotonically increasing positive function that grows at least linearly
and at most exponentially [Paninski, 2004]. Note that wy is not necessarily positive
- a negative value indicates inhibition. This leads to a log likelihood for the spike

times conditioned on the receptive field of:
N T
log p<{tj}|ws, ) 3 [log At / A A(t') (6.8)
j=1 0

= S tog [£(s(t)"w.)] = [ atp(s(e)"w.),

This formulation assumes that the firing rate is only a function of the stimulus
to the system and is completely independent of both the current state of the neuron
and the activity in the rest of the network. Obviously this is not true in a real
network as the firing times will be correlated with the previous firing time of the
current neuron due to the refractory period, bursting behavior, and other dynamical
effects. The firing time will also be correlated (or anti correlated) with the firing
times of other neurons due to the synaptic connections between them. This leads to

a more complex activity vector:

At) = f (s(t)Tws + \I/h(t)Twh> (6.9)

where W, (%) is a time dependent linear filter that encodes the prior activity of the neu-
rons in the network and wy, is analogous to the type and strength of the connections

between them. This modifies the conditional probabilities:
tog ({15} 1w!. w3, ) = Zlog X (t) / 4N (1) (6.10)

T
= 3 tow (st w! + ) ) - | dtsistmi s vie)w)
=0
where the superscrlpt, i’ is the index of the current neuron. Maximizing the first term

is equivalent to maximizing the firing probability at the times of the actual spikes.
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Minimizing the second term minimizes the chance of spike outside the measured times.
For appropriate choices of f, maximizing this log likelihood allows for the estimation
of receptive field and local connectivity parameters conditioned on a time series of
spike times. [Paninski, 2004]

The dynamics of the neuron itself are encoded in the diagonal terms of the
matrix W. The choice of ¥(¢) in LNP is essentially a linear combination of the
local and current neuron activity. Just as we constructed stylized spikes to drive the
neurons through action potentials and refractory periods to correspond to spike times,
U will contain a component that makes a spike extremely unlikely within 1-2 ms of
the last spike, but more likely during the subsequent recovery. Thus in this region,
U will roughly track the state of the system in some similarly formulaic manner.
The choice of stereotyped synaptic activity in response to measured somatic spikes
creates a similar effect to the off diagonal terms in W. Because of the post synaptic
voltage dependence of the resulting current and potential filtering in the dendrites,
the scalable activity pattern encoded in the off diagonal elements may need to be
neuron state dependent - which may be better suited to the path integral method.

Physically the 'receptive field’ of a neuron is a combination of the activity in
projection neurons from prior subnetworks in the functional path and the connectivity
of those projection neurons with neurons in the local network and is thus not directly
analogous to the connectivity of the projection neurons. As of writing, we have
not demonstrated the ability to determine the receptive field of neurons given some
external stimulus simultaneous with unknown network architecture. In the limit
where recurrent behavior is negligible we have demonstrated that we can estimate
the physical currents acting on an identified cell through recordings of its voltage
behavior (see Chap. 5).

At the beginning of this section, it was noted that the LNP methods are
generally memoryless below the event level in the sense that the firing probabilities
are only updated according to changes in stimuli - some of which are a function of prior
spikes in neurons in the network. The methods used in this section for small networks
of neurons could be argued to have the same issues. Given that measurements of spikes
are required for the path integral method to create an estimate of a spike the path

integral method does not appear to be an improvement in this regard. It is possible
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that the stimulus dependent bifurcations in neuron behavior (and the subsequent

effects on other neurons) cannot be estimated absent some measurements.
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Chapter 7

Firing Rate Models

7.1 Lotka-Volterra

Spiking models - like the Hodgkin Huxley type models we have worked with
until now, attempt to encode the full state of each neuron in attempt to accurately
represent the underlying biology of the various voltage dependent ionic currents,
changes in ionic concentrations, and other microscopic and fast properties. These
models, while realistic, have the problem of complexity. The model describing the
behavior of a real neuron from HVC has 12 dynamical variables and 69 parameters
for a one compartment model of a single cell with no consideration of the various
connections acting on the cell. Even discounting synapses, which scale in number
roughly like the number of neurons squared, going up into any network of substantial
size is going create computational stresses if we are limited to these precise models.

In order to reduce the models to a more simple form we must determine what
features of the model are actually important to the function of the network - then
create a reduced model that accurately encodes that information. In the case of some
systems the exact temporal order of spikes provides little additional information over
a time averaged firing rate of each neuron - or even group of neurons.

One such example system is the olfactory system in insects. Generally a set
of odors will activate a set of sensory neurons - which in turn will stimulate a set
of excitatory projection neurons and laterally inhibiting interneurons (mitral and

granule cells). [Laurent, et al., 2001, Laurent, 2002] This lateral inhibition serves

98
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to translate the noisy input into the sensory neurons into a spike sequence in the
projection neurons that identifies the odor(s) present.

The insect olfactory system is of particular interest because the spike sequence
identifying the odor is encoded in a stable temporal pattern. Rather than there being
a ‘mint’ projection neuron or a ’strawberry’ projection neuron, there appears to be a
small number of projection neurons that exhibit a sequential series of activity switches
that are unique to a particular odor. [Rabinovich et al, 2000]

This periodic switching is an indication of winnerless competition, essentially
A inhibits B which inhibits C which inhibits A. provided A, B, and C are all stimulated
to fire regularly this result means whenever A is active, B becomes less active, which
in turn stops the inhibition on C, which activates and inhibits A, activating B. The
temporal pattern of this cycling encodes the underlying sensory information using a
only a few neurons in a way that is robust against noise. [Rabinovich et al, 2001]

Rather than use a spiking network, the firing rate of each projection neuron can
be approximated [Fukai and Tanaka, 1997] by a Lotka-Volterra formulation [Lotka,
1910]:

a;(t) = ai(?t) [0 (a(t), 57 (1) —ai(t) = Y pjia;(t) + 57 (t) + n_(t)] (7.1)

J#
where a;(t) is the firing rate at time t of the i’th projection neuron.! o is a smooth,
sigmoidal function that qualitatively represents the non-linear threshold behavior of

neurons in response to excitatory stimulus.

0:(Si(t),a(t)) = tanh [5 <Sj(t) —04+n*(t)+ g5 Z aj(t)>] (7.2)

J#
S(t) is the external stimulus to the system, broken up into an excitatory component
in the sigmoidal function and inhibitory component outside. Because this stimulus is
provided by the activity of the excitatory sensory neurons, this stimulus will generally
be positive.
The nodes are coupled by way of a constant excitatory coupling to each other -

gr? in the sigmoidal function and through inhibitory connections defined according to

'because the neurons’ in this model are assumed to project with both excitation and inhibition
onto each other, each 'neuron’ must contain mutually exclusive excitatory and inhibitory cells.
20r equivalently - the excitation is proportional to the average activity in the system
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the matrix p;;. Because the inhibition is actually from the activity of other neurons,
this inhibition matrix should in principle be stimulus dependent. However, if we
assume that the activity of these inhibitory cells are correlated with their respective
projection neuron, we can drop this distinction. Thus the parameter values for the
‘conductances’ gg and p;; will not necessarily correspond exactly to the conductivity
of the excitatory and inhibitory connections - but rather a combined effect of the
excitatory and inhibitory components of the network.

To understand how this type of model can encode sensory information we
must look to the structure of the attractors for different types of connections (p;;)
and stimuli. Regardless of stimuli, the Lotka Volterra model has fixed point at a = 0.
This fixed point is only stable as long as the sigmoidal function is negative; which
is sensible as in the absence of stimuli can easily be translated into the absence of
activity in the projection neurons. As the stimulus increases, there are additional
fixed points at a; = d;;0; corresponding to states without inhibition, the stability of
which are dependent on the connectivity. Provided the inhibition is small enough,

there will be an additional, stable fixed point when:

o (a(t), S5 (1) - ailt) = 3 pras(t)| = 0 (7.3)
J#

Generally, this will only occur when all p;; < 1. This case corresponds to a 'winner-
shares’ network where the output is simply a direct function of the input, independent
of initial state. At p;; > 1 Eq. 7.3 is only true when a;, < 0 for some or all i. Since
the factor of a; in front of this equation prevents a non-physical sign change in the
activity, the dynamics never enters the basin of attraction of that fixed point. For
this connection type, the fixed points at a; = ¢;;0; become stable and the network is
an example of 'winner takes all’ as the first state to activate will suppress all other
states. This leaves the cases where p;; # pj; with one greater than 1 and the other
less. In these cases there is the possibility of no stable fixed points and the dynamics

will follow a complex limit cycle.
We turn to a three node case as a demonstration of this winnerless competition.
Assume that the three nodes are identical (p12 = pa3 = p31 = p.) but non-symmetrical
(p12 # pa1 = pp). For this exercise, we will set p, = 0.2 and p, = 5.0. As can be

seen in Fig. 7.1, a series of constant stimuli results in heteroclinic switches between
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Figure 7.1: Phase plot of three state Lotka Volterra model with non-symmetric
coupling (left) driven by a series of three constant stimuli (right). Differences in the
shape of the resulting limit cycle (such as period doubling) allow for a large number
of states to be conveyed in a temporal on a relatively small number of projection
neurons. These patterns are robuts against noise as evidenced by the stability of
these orbits despite an added 0.1 RMS Gaussian noise current.

fixed points. The order of the series of switches and the strength of the active state
are robust against the noise 0.1 RMS Gaussian noise added to the system (20-30% of
signal). The information about the stimulus is encoded in the strength and ordering
of the switches between the different attractors. Changes in the stimulus, in addition
to altering the strength of each switch will result in regions of period doubling due
to orbits around the unstable fixed point at the winner share all fixed point. These
stark changes in the structure of activity allow for a clear identification in a change

in stimulus. [Rabinovich et al, 2001]

7.2 Twin Experiments on Lotka Volterra Networks

For our small spiking network in the previous chapter we demonstrated the
ability to estimate the connectivity given full knowledge of the spiking times of every
neuron and external stimulus to every neuron. This level of knowledge may not
be realistic. While spike timing information allows for information about a larger
fraction of the population, there is no guarantee that the source of a given spike can
be attributed to a given neuron. Further, the stimulus to the network will often be

some unknown and noisy translation to an external process. Given these limitations in
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our measurements, can we extract model and stimulus information about a network of
neurons in a similar fashion as we used to identify properties of an individual neuron.

When modeling individual neuron behavior we could treat the neurons in iso-
lation from the network first then use the models developed to probe properties of
the network. This worked in large part because in a single neuron in isolation we had
both full control over the stimulus and an understanding of exactly how that stimulus
appears in the model - as a current in a RC circuit. For the olfactory system the
stimulus is presented to the measured projection neurons through excitatory signals
from the sensory neurons. The activity of those sensory neurons are then a function
of the their own internal dynamics and the local concentration of the chemicals the
receptors on those sensory neurons are designed to detect. While that concentration
can be controlled [Rabinovich et al, 2001], the stimulus that actually appears in the
activity model of the projection neurons is an as yet unknown function of that concen-
tration. The lack of knowledge about the actual stimulus along with a simultaneous
lack of knowledge of the underlying connectivity of the network forces us to attempt
to estimate the connectivity of the network simultaneously with the stimulus to the
system.

To test if this is possible, we create a twin experiment of a three state Lotka
Volterra model with winnerless competition. Activity data will be generated using
a set of slowly varying stimuli with varying levels of added Guassian noise. The
noise in the stimulus simulates the somewhat random timing of synaptic signals from
the sensory neurons and random fluctuations in the concentration of odors at the
receptors of the sensory neurons. Using measurements of each activity state, we use
minAzero (See App. A) with Rm = 1 and Rf/dt* = 1e3 for each state. Similar to
the stimulus estimates in neurons, we assume the stimulus acting on each projection
neuron does not vary quickly in time. This is implemented by treating each stimulus
as a state variable. By declaring that the time derivative of the stimulus is zero with
a weak constraint (Rf/dt* = 1), we can allow the stimulus variable to vary freely but
some regions are more free than others.

Fig. 7.2 shows the measured activity in each of the of the three nodes in the
absence of noise (left) and the estimated currents for a variety of noise levels (right).

Tab. 7.1 shows that estimates of the inhibition matrix p;; and recurrant excitation
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Figure 7.2: Plot of each of the three measured activity patterns (left) in the absence
of noise in the stimulus. As the noise in the stimulus is increased, the quality of
estimates of that stimulus decrease until it fails to track the general shape at a stimulus
to noise ratio of about 1. The stepping behavior of the stimulus can be attributed in
part to the periodic switching of states such that each current is only sampled during
that state’s turn in the sequence. Current estimations are made concurrently with
estimates of the inhibitory connectivity matrix and mean excitatory conductance in
Tab. 7.1

strength gp. For little or no noise, we are able to simultaneously estimate the model
parameters and stimulus driving the network. Of course little is somewhat relative
- the noise levels at which this estimation gets acceptable results goes up to around
o = 0.1. When one notes that the maximum stimulus is around 0.7, the signal to

noise ratios at which we can make good estimates are remarkable.
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Table 7.1: Parameter estimates for the excitatory and inhibitory couplings in a
three state Lotka Volterra with varying levels of Gaussian noise in the driving stim-
ulus. Estimates are made simultaneously with estimates of the current based on
measurements of the activity in each of the three nodes in Fig. 7.2.

o | Act. 0 0.06 0.1 0.5

ge | 40 396 374 344 1.23

po1 | 0.2 0.200 0.257 0.306 0.662

p31 | 5.0 5.00 5.087 5.17 5.624

p32 | 0.2 0.199 0.260 0.323 0.652

pi2 | 5.0 500 509 517 5.58

p13 | 0.2 0.199 0.261 0.329 0.611

pe3 | 5.0 5.00 508 516  5.57
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Figure 7.3: Plot of each of the measured activity patterns in a five state Lotka
Volterra model (left) in the absence of noise in the stimulus. As the noise in the
stimulus is increased, the quality of estimates of that stimulus (right - only stimulus
to node 1 shown) decrease until it fails to track the general shape at a stimulus to
noise ratio of about 1. The slow arc in the around the step occurs when a= 0. The
degeneracy at that fixed point prohibits us from making estimates of the stimulus
in that region. Current estimations are made concurrently with estimates of the
inhibitory connectivity matrix and mean excitatory conductance then again with the
excitatory conductance fixed.
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Table 7.2: Parameter estimates for five state Lotka Volterra network with unknown
stimulus, inhibition (p;;) and excitation (gg). Parameter estimates are good until the
noise in the current gets too large

o | Act. 0 0.05 0.1 Act 0 0.0 0.1
ge | 1.5 1.37 1.117 0.017

po1 | 4.0 397 395 272 || psy3| 40 399 4.07 3.92
ps1 | 1.6 159 1.62 051 | ps3s| 1.5 1.50 1.52 0.96
psr | 0.7  0.69 0.73 0 pa | 1.5 1.50 1.53 1.07
ps1 | 0.4 039 044 0 poy | 0.8 0.79 0877 0
p12 | 0.1 0.075 0.09 0 p3s | 0.2 0.19 217 0.03
pz2 | 4.0 399 401 343 | pss | 40 399 4.06 3.50
pi | 15 150 152 1 || 50 499 508 4.44
ps2| 05 050 052 0 |l pys| 15 150 154 1.00
piz| 0.6 060 0.64 0 p3s | 0.9 0.89 094 0.04
pe3 | 0.4 039 042 0 pss | 0.3 0.29 0.33 0

Table 7.3: In comparison with Tab. 7.2, fixing the excitation at the correct value
provides sufficient additional information to estimate the inhibition parameters at

larger levels of noise in the stimulus.

o | Act. 0.1 02 05 Act 01 02 05
par | 40 4.06 4.16 4.27 || py3 | 4.0 415 427 4.22
ps1 | 1.6 1.66 1.71 1.51| ps3 | 1.5 1.55 1.60 0
pu | 0.7 074 0.78 0.95 | pyu | 1.5 158 0.66 0
psi | 0.4 046 053 0.71 | p | 0.8 093 049 0
pr2 | 01 014 019 034 ps | 02 035 0 0
ps2 | 4.0 4.05 413 4.2 | ps | 40 416 243 3.65
pie | 15 154 1.60 1.79 || pi5 | 5.0 4.90 4.98 3.88
ps2 | 0.5 055 0.60 085 | pgs | 1.5 1.65 1.7 1.75
pi3 | 0.6 068 0.78 1.09| ps5| 09 0 031 0
paz | 0.4 044 049 0.65| pss | 0.3 040 040 0.52




Appendix A
minAzero

minAzero is a python script used to write C++ code and compiler instructions
using the IPOPT (Interior Point OPTimization) [Wéchter & Biegler, 2006] libraries
to estimate unmeasured states and parameters in dynamical systems with limited
measurements. The scripts take a set of differential equations and state and param-
eter names provided by a text file "equations.txt” and returns a set of C++ files
consisting of a set of constraints based on a discretized version of those differential
equations. A second text file 'specs.txt’ allows for changes in run specific quantities

state and parameter bounds, as well as input files without the need to recompile.
These scripts and a few simple examples can be found at:
git@github.com:countfizix /minAzero

Installing Required Programs and Packages

Installing and running these codes currently requires a Linux distribution and
sudo access. While it may be possible to install this setup on another Unix system

(such as Mac) I have never attempted to do so.

Installing minAzero.py

Files:
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e minAzero.py

-Writes problem specific c++ file using strings from discAzero.py (xminAzero_nlp.cpp)

e discAzero.py

-Discretizes equations and creates strings for Jacobian and Hessian Elements.

e makecppAzero.py
-Writes master c++ file linking to IPOPT libraries (xminAzero_main.cpp)

e makehppAzero.py
-Writes header file for x_nlp.cpp (xminAzero_nlp.hpp)

e makemakeAzero.py
-Writes makefile for problem. Will need to be changed based on install location
of IPOPT

e makeoptAzero.py
-Writes settings file for IPOPT (x.opt)

where x is the problem name defined in equations.txt.

These python scripts require the sympy library. To install use sudo apt-get
install sympy or download directly from sympy.org.

In order to link to your IPOPT libraries correctly, one line in makemakeAzero.py
need to be modified. change line 59:
prefix = /home/mcserver/Desktop/Ipopt-3.11.7/build\n\

to the build directory for your IPOPT installation.

These files can be put in /usr/local/sbin for ease of use.

Installing IPOPT

Download

Get it here: https://projects.coin-or.org/Ipopt
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e Download and unzip latest version of IPOPT

e As of right now this is 3.11.7 - Efficacy of installation instructions may degrade

over time as packages are updated.

e Go into ThirdParty folder in the IPOPT directory then do the following com-
mands.

$ cd Blas

$ ./get.Blas

$ cd ../Lapack
$ ./get.Lapack
$ cd ../ASL
$ ./get.ASL
$
$

cd ../Metis
./get .Metis

e Get the HSL subroutines from http://hsl.rl.ac.uk/ipopt

e Note that there are two releases for HSL - you will want the more complete one

that contains ma57, ma77, and ma97.

e While the freely available ma27 will work for many problems, the newer packages

are faster, work on larger problems, and can use multi-core architecture.

e This will require filling out a form stating essentially that you are in academia

and waiting a couple hours for a link to download.

e Unpack the resulting library into the ThirdParty folder such that the path is
(IPOPT Path)/ThirdParty /HSL/coinhsl

Install

e Go to the IPOPT directory

$ mkdir build
$ cd build
$ ../configure

e Note that if you have lapack or blas installed previously you can use —with-

lapack and —with-blas to link to those packages
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e If something goes wrong refer here

http://www.coin-or.org/Ipopt/documentation /nodel9.html#ExpertInstall

e Assuming everything worked:

$ make
$ make test
$ make install



110

Running the Code

minAzero uses two text documents (along with any needed data files) as input,

equations.txt and specs.txt. Once these are filled

equations.txt contains information on the model and is used once for generating the
needed cpp and hpp files for the run. The file should be written as described below

in this order.

e The first line is the problem name, this name will be used to name the resulting

executable.

e The second line tells minAzero how many dynamical variables, parameters,
coupling terms, stimuli, functions, and measurements there are, in that order
as a comma delimited list. It is essential that these numbers are accurate as
minAzero uses this to know how many lines to read for each component of the

code.
e A list of every differential equation.

e The measurement term of the cost function. A penalty term for coupling terms

is suggested as any coupling to measurements is not present in physical systems.

e The names of all the variables. These must be the same as used in the differential
equations and should be multiple letters/and or numbers such that variable

name is contained in any other name or common function.

e The names of parameters, names of couplings, names of data, and names of

stimuli, in that order. Again use fully unique names.

e Function names and number of arguments of that function separated by a
comma. Use a function if there is some component of the dynamics with a
removable singularity or other difficult numerical object that requires an alter-

native local definition.
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e Functions will require an additional file 'myfunctions.cpp’ containing the func-
tion definition along with its jacobian and hessian (an example of this is in-
cluded)
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specs.txt contains run specific information such as file names, variable bounds, and

problem length. This file can be edited without recompiling the code.

e First line is the number of full steps the code will use. Because the code is
compiled using a midpoint method, the actual problem length will double this

plus one.

e Second line is the number of lines in each input file to skip. This allows for the

code to start at any point in a long data set.

e Third line is double the time step of the data. Again since a midpoint method

is used, the time step is for a whole step - which includes two points.

e If you wish to start at a non constant guess, you can put a 1 followed by a line
with an initial condition file. This file should have one column for each state.

If you do not want to include an initial condition file, use 0

e One line for each of the measured data file names. Each file should be a single

column.

e One line for each of the stimulus data file names. Each file should be a single

column.

e For each variable, the lower bound, upper bound, initial guess, and RF value
separated by commas. The initial value is ignored if the initial conditions file is

used, but a value must be included regardless.

e For each coupling term, a line with lower bound, upper bound, and initial value
separated by commas followed by another line for lower bound, upper bound,

and initial value for the derivative of the coupling term.

e For each parameter a lower bound, upper bound, and initial guess separated by

commas

Once everything is filled out and all data files are present, you can run the python

scripts:
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$ minAzero.py
$ make
$ ./(problem_name)_cpp

If data files are missing or too short, the code will segfault. The outputs are data.dat

containing all state variables at all times, and param.dat with parameter values.
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Example equations.txt

# lines starting with # are ignored

# Problem Name

Colpitts

# nY,nP,nU,nI,nF,nM

3,3,1,0,0,1

# equations

yy+u00* (Data-xx)

—gam* (xx+2z) ~qq*yy

etax(yy+1l-exp(-xx))

# measurement portion of Objective/Cost function

# the model portion is generated automatically
(Data-xx)* (Data-xx)+u00*u00

# variable names (nY)

XX

yy

zz

# parameter names (nP)

gam

Q9

eta

# coupling names (nU)

# most minAzero formulated problems will not need a coupling term
# this term is essential for equality constrained dynamics
u00

# data names (nM)

Data

# stimuli names (nI)

# no stimuli in this problem

# functions (nF)

# list of functions and number of arguments - will require myfunctions.cpp
# with definitions of f(x) and its jacobian and hessian.
# alpha,4
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Example specs.txt

# lines starting with # are ignored

# The problem length - actual length will be 4001 due to midpoint method
2000

# How much data to skip.

# In case you do not want to start at the beginning of the data file

10

# Time step - this is twice the time step of the data,

# since the data includes time and midpoints.

0.2

# Data File names - measurements

# each measurement needs its own file in its own row

testx.dat

#colscalelx.dat

# Data File names - stimuli

# each stimuli needs its own file in its own row

# No stimuli for this problem

# Boundary & initial conditions

# 0 for no initial data file, 1 for data file

# A data file must include values for all state variables at each time point.
0
#

If above is 1, list name of data file next. If O, no entry needed.
#start.dat
# State Variable bounds:
# These are in the formats: lower bound, upper bound, initial guess, RF
# Boundary & initial conditions

# x
-100, 100, 20,1
#y
-100, 100, 10,1
# z

-100, 100, 1,1

# each coupling needs two entries, for u and du as there is no equation for u
# u00

# couplings are typically not needed in unconstrained problems
# but are essential in equality constraint problems

0,1,0

-10,10,0

# each parameter needs upper bound, lower bound, initial guess
# pl

0, 100, 0.016

# p2

0, 100, 0.14



116

# p3
0, 100, 1.26



Appendix B
Spike Timing

In describing the form of the action potential we only considered the role
the extracellular medium plays in determining the reversal potential of the various
ionic species. For point models this is appropriate provided the flux of ions is small
compared to the size of the reservoir and thus a constant reversal potential. For
real neurons with physical extent the behavior of the neuron leads to effects in the
extracellular medium that can be measured.

The propagation of action potential acts as a front of depolarizing current
followed by front of repolarizing current. The propagation of this wave creates a
series of internal, effectively static! electric fields in the cell as shown in Fig B.1.
Because charge is locally conserved, this internal field must correspond to an equal
and opposite external field.

To calculate the magnitude of this effect we first assume that the neuron is an
infinitely long cylinder of radius a and that the voltage satisfies Laplace’s equation.
The resulting symmetry gives a differential voltage per unit length of:

4V, = )T (B.1)

4T T

where i,,(x) is the membrane current per unit length as a function of x and
Oezt 18 the conductance of the extracellular medium. Recalling from the discussion
on the cable equation that because of current conservation the membrane current is

proportional to the internal divergence of the voltage (Eq. 4.2).

no magnetism

117



118

Rext
+[” VWV 1
+

‘ Folarized ‘ ‘ Depolarized ‘

‘ Folarized ‘

Royt

> Fropagation >

Figure B.1: Rough circuit diagram for the instantaneous currents during the propa-
gation of an action potential. A front of depolarizing current followed by a repolarizing
front creates an internal potential in the cytoplasm. Conservation of charge requires
that the sum of all currents in the loop be zero - indicating the presence of an exter-
nal current opposite the propagation of the spike. This circuit creates a time varying
dipole field in the extracellular medium that can be detected with an extracellular
probe.

. Vi
Im = 7TCL2O'Cth (B2)
giving
a*op: [ 10%V
Vewt(r,t) = | ——=—d B.3
t(r,) 40 ort /r o2 * (B-3)
where 0., conductance of the cytoplasm.? Integrating by parts x gives:
a*0eyt [ OVin(x,t) _1
Vet(r,t) = Y T IV - - xd B.4
R e e (B.4)

Without knowing V,,,(x, t) precisely we note that this integral is largest when
the gradient of the voltage is large. Since the spatial gradients come from the prop-
agation of a fixed waveform down the cell, these spatial gradients are equivalent to
temporal ones at a fixed point as in our point model. Because of their shape, action
potentials well present a large extracellular signal due to the closely spaced regions of
rapid voltage changes - orders of magnitude greater than the subthreshold behavior.
Note that the dot product of the gradient with X causes a rise in voltage followed by
a fall in voltage to be additive, the means the peak value for the voltage signal in the

extracellular medium corresponds directly to the peak of the action potential.

2Note that in the previous discussion on the cable equation we assumed the extracellular potential
was constant. Replacing V;,, with V,,, + Vepe(7) in equation B.2 allows for the potential to be solved
iteratively should additional precision be needed.
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