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ABSTRACT

A representation theorem for two dimensional homogeneous
random fields is established, and used to analyze the scope of the
Wiener-Hermite expansion method, the significance of Onsager's
conjecturé, and the assumption of universal equilibrium. Itis fur-
ther used to derive a numerical method for the stu.dy of random
flow. Generalizations to three dimensional flow are also presented,

but remain mostly conjectural.
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 INTRODUCTION

' A number of Zingenious statistical theories of turbulence have
become available in recent years (se‘e,_ e.g., Saffman (1968), Orszag
(»1970)); unfortunately, most of these theories rely on mathematical
assurnptions'wh;ase physical significance is unclear, their mutual
relationships are not evident, and they do not readily lead to algo-
rithms for use in practical applicat.ions. In thev-present paper, we
shall a'ttempt'to overcome thense difficulties. Most of the work will
| be a.b.plicabl_e only to the admittedly simplified problem of two-ciimen-
sional incompressibie flow. |

Tlﬁe mé.in tool in the analysis is a repre 'se'ntatiox;l of é. fwo a,i)-
mensional homogeneous isotropic vorticity field as a running average
- ofAcixl'cula‘r vortices. The 'validity_ o.f this representation is first es-
>tablished, and then used to analyze the scope of the Wiener-Hermite
expaﬁsion methdd (Meecham and Jeng (1'968)), the significance of
Onsager's conjecture (Onsager (1949)), and the rﬁeaning of universal
equilibriuin (Batchelor (1960)). It.is further used to obtain a numer-
ical nﬁ,ethod (Chorin (4973)) and to establish a theory of the inertial
rangé (Chorin (19.70)).‘ Generalizations to three dimensional flow are
pre sénted;, but remain mostly conjectural.
' We shall consider flow fields u = (u.i.,uz,_v_u3) satisfying the

Navier-Stokes equations for an incompreésible fluid,
‘(1a) v '>8t11_ +(E'-Z)E=‘gradp+%A3.

(1b) © divu =0,
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where t is the time,: V is the gradient operatoi‘, p is the pressure,
A= vz, and R is the Reynolds number which is assumed to be large.
The flow f1lls out the whole (x xz,x3) space ((x xz) space if there
are two dimensions); the initial data are rando‘m;_‘ the randomness pre-
sumabllyl hides our ignorance of 'tne precise nature of the data. The

vorticity vector, which we shall use extensively, is ,
£= curlu;

in the case of two dimensional flow £ has a single component denoted

by .

REPRESENTATION OF A TWO DIMENSIONAL HOMOGENEOUS
FIELD AS A RUNNING AVERAGE

let g(xi, 2) be a homogenous random f1e1d in the two dimen-
. sional _(xi.xz) space. (For defxmtlons and ana1y31s, see Gelfand and
Vilenkin (1964)_,v Doob (1953)). The field £ has a spectral representa-
tion | | ' ' |
to  te -
Ex) = J [ exp(@mik-x)Z(dk),

- 00 - 00
wh‘e‘ra x =.(x1,x2), k = (k1’kz” and Z(k) is a random measure. The
correlation function VB(L) of § is |
B(r) = E[&(x+r) E(x)],

'where E[- -] denotes an expected value and B(r) is independent of x

by def1n1t10n ‘We have

B(r) = [ [ explzm rk) dF() ,
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where.
dF(k) = E[lZ(d_lg)lZ] .

Assume that

(2) JI!B(x)ldr <.

. F(k) is then absolutely continuous and B(r) is an ordinary Fourier

transfqrm,
B(r) =[[ exp(2m kr) f(k) dk ,
where v
2
" F
f(-ls) Z ermme———
. 8k18k2

If (and only if) F is ébsolutely confinuous, the field £ is a field of

moving averages, i.e., it has a representation of the form
.
(3) , Ex) =[[ 1 (x-5)dn(s),

where s = (51’ sZ), f is an ordinary function of its argument, the
process T has orthogonal increments and satisfies

E[lan1%] = ds, ds, = ds;

furthermore,
(49 Bl = [[1£001% exp (2mi r-k) dk.

In intuitive terms, if £ is a homogeneous fieid satisfying the ‘conditioxi
(2), it is a superposition, with random coefficients,‘ of traﬁslates of a
single function f;’i= f’g< determines the spectrum of the field. The proof
is a simple generalization to two dimensions of the argument given in
Doob (1953), page 532. Formally,

E(x) = [[ exp (2mi xk) f(k) dn (k) ,
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: R ‘ iy
where dn (k) is a field with orthogonal increments and

CE[lan ®1%] = dk, dk, sdk .

symbolicaliy.'
9 ey = [ expamixl) €0 0T ak .

*1 , *
where M is the (generalized) derivative of N with respect to k1 and

_ _ *
kz. Let n(k) be the Fourier transform of n (k), i.e., symbolically

. 40 Hoo ) '*' )
n(k =[ [ exp(2mks)n (s)ds,
then Par seva_l'é idéntity applied to (4) yields |
Ex,y) = 11 £58) 0" (x+8) ds = [ [ £ (2 - x) d&(s).

The formal operations can be justified by proper definition of the

. Fourier transform (see Doob (1953)). Furthermore, -

Elgxtr) )] =/ (-0 f(s) ds,
= I] 14(s) lz.exp (2mi 55) ds,

thus establishing equation (3). Finally, if £ is isotropic as well as
homogeneous, B(r) =B(r), r =lrl, and thus £(s) = £(s), s = Isl.

Our purpose isto identify the field § with thé vorticity field of a
'fi:wo dirﬁensional incompressible ﬁo&. Thé pre ce_:.ding argument sh;)ws_
thatif £ is a homogeneous iéotrOpic field, it isin fact a superposition of
circular ._vor.tice s. Thetask at_hand isto find oﬁt from th'e.equations of
motion whéther suchvortices doin factarise and fhus whether vorficity
" can infacf be regarded as a homogeneous isotropic field. This task will

be undertakenin the next section. It is worthwhile to note that formula
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(2) ’prvovides the means for constructing a Gaussian homogeneous and
isotropic field admitting a spectrum with an inertial range; this possi-
bility is in itself of some significance (see the discussion at end of

Hopf (1952)).

THE ONSAGER CONJECTURE

Onsager (1949) studied the behavior of a system of point vértices
in the plane, and, on the basis of an argument drawn from statistical
me c_:ha'nics, conjectured that vortices of the same sign will tend to
cluster ;round the strong ones, and’ furthermore, that the larger com-
pound vortices formed will be the only conspicuous features of the mo-
tion. An argument based on the behavior of a system of point vortices
fails to take into account the conservation of vorticity per unit area in
incombres‘sible hydrddynamics (Batchelor (1967)); if this conservation
property is taken into account, one can conjecture that in a system of
\(Qrtices"of finite area, vortices of the same sign will order them-
selves around the strongest ones to produce vortices of ever incfe as-
ing tétal stre ngtli and total area. v The resulting vortices wo;Jld be such
that the vorticity per unit area would be highe st in absolute value at
their ceﬁter.

- Substantial numerical evidence in support of this conjecture is
available. In particular, a number of problems in plasma physics are
formally identical to .problems in two dimensional vortex motion, and
their solutions exhibit the process of vortex consolidation (see‘ Hockney
( 1970)'). ' A number of calculations with the Navier-Stokes equations

also display the process of vortex formation and growth, and attendant
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energy transfer from small to large ''eddies" (s"ee'k Lilly (1969)).

A further argument in favor of this conjecture is the follOWin'g-:‘

consider a vorticity patch in which the vorticity per unit area increases

as one 'apprioaches‘a center. If a subpatch is iﬁtfgdu(:ed, whose_vorfic-
ity density is larger than the ambient density, it wi;ll migrate outward.
The reasons for this behaviér are obﬁous (see fig.i .1). "If the subpai:;':h-
P has a vorticity higher than the ambient posifivé ;rorticity, it will
move the strong vorticity in A outward, and fhé we ak vorticity B in-
ward, as shown on the figure. The displaced-\:ro.rti'.city will induce a
motion of P towards the center. A similar argument explains the out-
ward rnigra.tion of weak vorticity; the occurrence of these phenomena
is readily verified numerically. Cir cularly stratified patches of vor-
ticity are thus stable, and it is reasonable to beﬁeve that they will be_
formed whatever the initial vorficity dvistribut_ionlx_'nay be. This argu-
ment is unaffected by fhe presence of a small yis(:osity .(l‘arge Reynolds
number R), since in the absence 6'fvboundaries‘the effect of a small |
viséosity is small (Ebin and Marsden (4970)). ..
The Onsager conjecture relates the pfOperties of homogeneous
isotropic random fields to properties of the Navier-Stokes equation.
One can visﬁalize the flows as follows: given afbif:rary initial data,
vortices will form in them; these vortices will getIOrganized iﬁto
larger vortices,etc. One can identify thesé vorﬁces with the vortices
occurring in formula (2). Clearly the voftices cannot be individually
though of as circular, in particular since neighboring vortices will de-
form each other; but if one is interested in phéné’mena of a scale large

compared to the scale of the vortices, this may not matter, just like




Wiener paths idealize brownian mbtion on time scales large compared
to the tifne intervals between collisions independently of exé.ct collision
times. Only inasmuch as thisv idealization 1s valid can a random solu-
tion of the Navier-Stokes equations be thbught of as being homogeneous
_and isotropic. |

One can use the preceding argument to determine the form of the
energy spectrum of two dimensional random flow in the limit as the
viscosity tends to zero and the wave number tends to infinity (in this
order). As the viscdsity tends to zéro,-the solutions of the Navier-
Stokes equations tends to solutien of the corresponding inviscid equa-
tions. The inviscid (Euler) e.quations conserve the integral of gz
(Batchélor (1967)); this means in parficular that szE(k) dk is bounded,
where k = |kl, and E(k) = |f(k)|2 is the energy séectruxn, (Batchelor
1960)). The distribution of values of £ depends on the initial data
(since § per unit area is conserved), but if a broad range of values of
£ is introduced initially, each individual vortex will have a vorticity
distribution encompassing a wide range of values of £; £ must increase
towards the center slowe‘r than 1/r, where r is the distance from the
center of the vortex. It is, however, reasonable to assume that one
comes arbitrarily closely to this distribﬁtion in each individual vortex,

and thus E(k) ~ k™ >*€

. g ~r-1+€'

spectrum derived by Leith (1968) by a different argument. (See also

» € small and positive; in each individual vortex,

/

» €' >0. Such a spectrum is indistinguishable from the k-3

Chorin (1969, 1970)).
In sutmary, a random homogeneous isotropic vorticity field

must be a superposition of circular vortices; and there is every reason
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to think that an arbitrary solution of the Navier-Stokes equations at

large R is in fact such a superposition.

UNIVERSAL EQUILIBRIUM THEORY

Before making use of the argument of the pr'eceding sections we
would like to derive the representation of the Qoi‘ticity field by a more
heuristic argument, which will shed some additio.r.xal light on its signif-
icance. This argument was previously presented in Chorin (1969,
1970).

a The occurrence, in turbulent flow, of an energy spectrum ZIE(k).
which has for large k a universal form, is often explained by the uni-
versal equilibrium theory, well summarized in Batchelor (1960): The
range of wave numbers k which contain most of the energy (''the en-
ergy containing eddies'') can be regarded as a definite group, with
characteristic velocity u = N E[f u2 dx] and characteristic length
L= kén-i, ‘where' k., is artypic‘al wave number in the group. The
characteristic time of these eddies is £/u, and the time scale of their
decay is u/ldu/dt!; these times are experimentally found to be com-
parable, aﬁd thus this range of k's has no feature re sembliﬁg an equi-
-Hbriﬁm. It is, however, assumed that for large k the eddies have a
characteristic titne small in comparison with thé scale of the over-all
decay, and thus may be associated with degrees of freedom in approx-
‘imate statistical equilibrium. Let ii(k) be the (fofmal) Fourier trans-

form of u(x), let _l_<e be a wave number typical of the equilibrium

q

range, with magnitude ke = Igeql , and let uéq be a typical ampli-

q
tude of #(k), k = |kl on the equilibrium range, for example,

. ]



4 = Kk ). Write
. ~eq

eq -

(5) . K = keq/ken, U= ueq/u...

Th:e characteristic time of @ is (k N -1 (KU)-1 (k u)-1 and
eq eq eq . en ’

the assumption of universal equilibrium reads

2

-1ldu|<<k wl.

(6) - (KU)
The quantity u in (6) is the result of an averaging operation; it is rea-
sonable, and consistent with experience in classical statistical mechan-
ics, to assume that if (6) holds on the average on an ensemble it holds
for most systems in that ensemble, i.e., for most flows there exists

a range of k's satisfied by keq such that
- (k)™ |9‘—‘ <<k ul=NTuldx
_ dt | en’ ‘ ’

If this stronger condition is satisfied, condition (6) will be satisfigd
i.-t"értiori.

| Consider a solution of the Navier-Stokes equations (1).; take its
(formal) Fourier transform (k) (there is a sﬁbstantial difficulty in
finding a proper definition here; we shall overlook this difficulty in the
pfesent heuristic argument). ﬁ(k)=(ﬁ1, ﬁ.z) saﬁsfies the following

equation:

- . 1
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where

Qpy = 8 -k & ()

: k k .
Pa'y = GQ’Y - _:73. . o (60\1 the..Kronecker delta)

and the summation convention is in use. (k) is the complex conjugate
of {i(-k), and the pressure has been eliminat_éd through the use of the

equation of continuity

giving rise, in the well known manner, to the projection Pay' We now

s:l:udy th_e' behavior of the solutions in the inertial range, i.e., in the
limit as R—+» and k =+ o (in that'order). As R +=x, the solutions of .
the Naﬁer-Stokes equationé which vanish outs}lid.e a compact domaixiv
tend to the solutions of the Euler equations strongly, as well as on L1
'(Ebin. and Marsden (1970)); the respective Fourier transforms then
tend to each other uniformly on every bounded region in k space and
the limit R—+» may be studied by setting 1/R = 0».' We assume that
this is still the case here, when the region in which u # 0 is not spec-

ified. Under these conditions, the last term in équation (8) can be

dropped. To study the second limit, k = =, we perform the scaling
K
u = w/U
\ : k* = l(/K ,

with U, K defined above. S ubstitution into (8) leads to

, : 1 B * '
X X ’ . ‘1 A* s ¥ a ! y *
. (a) A (KU) atua - lkﬁ (acxy - k*Z ) pr ?
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If k is in the inertial range, the right hand side.of (a') is of order

k, uz, the left hand side of order (KU)-i.ldu/dtl; by (6), we have

* %

B ‘ k 'k
i . . o __a_ Y v,*=
(10) kerxzo 1kp( 60‘1 k*z )QﬁY 0.
Consider first the limiting equation
S S
(G = —5250 B =0

k

This is merely the Fourier transform of the steady (time independent)
" !
Euler equations; it is satisfied by the Fourier transform of any cir-

cular vortex, in particular by any vortex of the form

} * * |
(11) a, =- ikz/k‘3 , 4, = iki/k‘3 , B constant.

1 2

It is readily seen, e.g., by application of Dirichlet's lemma (see, e.g.,
Carslaw (1950)), that an arbitrary superposition of translates of vor-

tices of the form (11),
, % 12, (t)-X
' z Cj(t) u e 3 '
BN

wheré C., a. = (a.
i = (Ji

| cond.ition (10). We have thus rederived the fact that the large fre-

, aJ.Z)' are functions of t, will satisfy the weaker

quency spectrum of the flow is a superposition of the contributions due
to a colle ction of circular vortices, each one of which is in fact a solu-
tion of the time-independent equations. The conservation of vorticity

can then be used to show that
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E(k) - k-3+€, €0, '

in a manner similar to the one émployed at the end of the preceding
section'.'_- We have thus both used and juvstifiéd the universal equilibrium

| hypothes‘is.'

EVOLUTION OF THE FLOW

So far we have established a representation of a random vortic-
ity field for a fixed time t. We now turn to the crucial problem of

determining the evolution of the field when each of its sample flows

evolves according to the Navier-Stokes equatioxis (1). We first present )

a plausibie‘ but incorrect argument which dutifull} leads to disaster.
The reasons for this procedure are, first, that analysisv of the wrong
argﬁme"nt will point the way to the right one, and sécondly, that some
of the negative conclusmns will also apply to the Wiener-Hermite ex-
pan51on method wh1ch has recently been the obJect of lively contro-
versy. _ |

The uﬁcorrect arguxnent runs aé followsr Fir.st derive equatiovn's

descr1b1ng the motion of vort1c1ty This is (Batchelor (1967))

RERNCEIES FY 3

2 Ay o= -t

uyg = - 3%. uy =04
wheré 'y is a stream function. Substitute the representation (3) into

this set of equations, multiply by dn(s), and examine the expected

- values 6f the result. Since the increments dn(s) are orthogonal, we
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. - S *
obtain an equation for a single circular vortex with £(x) = f (x- s).
The ter_rri (ﬁ- §)§ vanishes (since a circular vortex is a solution of

the stationary Euler equation), and we obtain the following result:

S
8tf = g 8f

i.e., since fﬂ= defines the spectrum E(k), there is no ché.nge in E
except that due to viscous decay - surely a fallacious conclusion. The
err'or lies, of course, in the fact f.hat the representation (3) is valid
only to a fi#ed time t. The hom.ogeneous field m is not time invariant,
and differentiation of (3) with “fespect to t must take.this fact into ac-
count, This is i?est understood in conj'unction with Onsager's conjec-
ture. The energy transfer between "eddies' and the evolution of the
_correié.tion function occur because vortices group themselves into
la.rge.r vortices; thus, the effect of the nonlinear terms is to induce
new correlations between the flow at different points and to destroy
the orthogonal charaqter of the increments dn.,  On a scale large with
fespect to the vortex size, the evolving flow can be de scribed at each
time t asa running average with respect to a field with orthogonal
" increments, but each time t with a new f and a new 7.

This difficulty also arises the Wiener-Herﬁite expénsion method
(see, .e.g.,' Meecham and Jéng (1968)), where it was substantially
anaiyzed by Crow and Canavan (1970). In the Wiener-Herrhite ex-
pansion method, .thé fields are expanded in an infinite series of run-
ning averages with respect to Hermite functionals of white noise, where
white noise is defined as the generalized derivative of a‘field with in-

dependent Gaussian increments. The occurrence of an infinite series
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is the price one pays for expreesihé‘the fi_elds.in v't‘errms of Gaussian
fields only. If the field is exactly Gaussian, the Wiener-Hermite ex- -
. pansionrh'a‘s .a.single term, W_hich is_'identica'l to (3). (In two dimen-
sional i,neerhpre s.sible" t'lovtr, | a vertieity field which is initially Gaussian
will remain Gaus sian for all time. ) In practical epplications, the
Wievne'r'-'HeArmite‘. exp’ansion is truncated after a feW' terms, on the-' plau-
51b1e ground that the observed turbulence is nearly Gaussian. Rela- |
v- t1ons between the coefficients in the expansion are obtained by substl- |
tut1on 1nto the Nav1er Stokes equations and use of the statlstmal ortho-
_gonahty of the various terms, but no provision is made for change in
- the _wh1te noise fields. The resulting equatmns are thus 1ncqrrect, and
in particular do not provide a description of ene;gy transfer between'
scales. illu-étrative ;s:a.mple. ca.lculatiox.'xé were ‘given by Crow end |
.Canavan;.' | | |
One >wavy to solve the problem is to construct' a few sample

flows by approximating the 1ntegral (3) In. part1cular, 1f

one assumes that the flow has had some time to evolve, one can set _

. _ " ‘ . ) . * ’ .
. N i

R -1 . A "
where f ~ I_Ji-ggil for small llc_.-_xil » X; is a center of a vortex,
‘and the n; are random numbers. Then allow the flows to evolve ac-

' X
cording to equations (412). If the f have small support, one can as-
sume that the induced velocity field varies little over that support and
thus the moti'onvof each one of the vortices in (.13) is described by the

motion of its center Ei' This leads to a system' of ordinary differential
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equations for the X Such a method was in fact derived in Chorin
(1973) and_.shown to be applicable to problems in which the flow is not

homogeneous and where boundaries are present.

. THREE DIMENSIONAL FLOW

It would be of great interest to generalize the. preceding results
to the case of three dimensional flow. There are, however, major
differences between the two and three dimensional cases. I;'x particular,
in three dimensions the vorticity is a three dimensional solenoidal vec-
tor, and the é.rgmnent which leads to the representation (3) fails.

There :appears to be no ‘possibi],ity of existence for a three dimensional
‘ homogeneous isottopic féndom solenoidal vector field. I conjecture

that one has only intermittent homogeneity and isotropy, i.e., if

£ = (§1, ,’52: §3), and if we define the correlation tensor by

Bij(i.“"i) = E[gi(ﬁ) gj(£+£)],’.

then if _|_1;1| = |£2| =r, for every € and x there would exist an X
such that .

'Bij(z +_1;1-) - Bij(§+}_§.+_rz)| < e» .

It is furthermore reasonable to assume by analogy that the vorticity
field is a sum of vortex tubes. Such tubes éan be stretched, and it is
therefore no longer true that if the flow is initially Gaussian it will
remain Gaussian for all time. The velocity field is subject to two
constraints: it is incompressible, and its energy is non-increasing.
I conjecture that tlhe se constraints result in the following Holder

inequality
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(14) o lu(x+r) - u(x)l < !con'stvant |£|B::_ g> 1/3,

independently of the amount of sf,re_tching. As élready noted by Cnsager
(1949), such an inequality, which e.ss'entially restricts the possible
structures of the vortex cores, leads to a Kolmogoroff spectrum

E(k) ~k /3

. An interesting céunterexaznple waé given by Marsden
et al. (to appe ar), but it is pfe sumably unstable and thus cannot occur

except for special initial data. The argﬁxnénts in favor of the conjec-

ture abdve ai_‘e the following:

' (i) . Not only does (14) lead to a Kolmogoroff law, but it also
- provides a clear physical picture in which the l#rge "eddies"
(which cause the stretching) are. in'depe'ndent statistically '
from the small eddies (which make up'fhe cores); this is as-
’ sumed in K;)lmégbroff's de riv:afion. )
(ii)' As explained in Marsden, Ebin and Fischer (to appear), the
) exponent in Kolmogoroff's laws is intimately tied to the pos-
sibility of proof of existence of solution for the Navier-
Stokes equations. One can thus conjecture that all existing A
flows must satisfy (14). |
:(iii) ' Crow (1970) Vmade the remarkable discdvéry that there ap-
o “parently exists a universal cut-off coefficient for the nu-
merical evaluation of the self induction of vortéx line.s,

- suggesting the existence of a universal vortex structure.
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(iv) Finally, the assumption of universal equilibrium 41¢ad.s. to
| an equation similar to (10), which can be saﬁéfied only by
~vortex tubes whoSe r'adius of curvature is outside the ini-
tial range, with the wholle contribution fo the energy spec-

trum in the inertial range coming from the core.

An effort to confirm this conjecture by numerical means is

pre éently in progress.
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FIGURE CAPTION

Fig. 4. Stability of a Circularly Stratified Vorticity Field.
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