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REPRESENTATIONS OF RANDOM FLow* 

Alexandre Joel Chorin t 

Department of Mathematics and Lawrence Berkeley Laboratory 
University of California, Berkeley, California 94720 

January 1973 

ABSTRACT 

A representation theorem for two dimensional homogeneous 

random fields is established, and used to analyze the scope of the 

Wiener-Hermite expansion method, the significance of Onsager's 

conjecture, and the assumption of universal equilibrium. It is fur-

ther used to derive a numerical method for the study of random 

flow. Generalizations to three dimensional flow are also presented, 

but remain mostly conjectural. 

*. . t Work done under the auspices of the U. S. Atomic Energy Commission. 
Alfred P. Sloan Research Fellow. 
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INTRODUCTION 

A number of ingenious statistical theories of turbulence have 

become available in recent years (see, e. g., Saffman (1968}, Orszag 

(1970)}; unfortunately, most of these theories rely on mathematical 

assumptions whose physical significance is unclear, their mutual 

relationships are not evident, and they do not readily lead to algo­

ritluns for use in practical applications. In the pre sent paper, we 

shall attempt to overcome these difficulties. Most of the work will 

be applicable only to the admittedly simplified problem of two-dimen-

sional incompressible flow. 

The main tool in the analysis is a representation of a two d.i-

mensional homogeneous isotropic vorticity field as a runnin~ average 

of circular vortices. The validity of this representation is first es-

tablished, and then used to analyze the scope of the Wiener-Hermite 

expansion method (Meecham and Jeng ( 1968}), the significance of 

Onsager's conjecture (Onsager (1949)), and the meaning of universal 

equilibrium (Batchelor (1960)). It is further used to obtain a numer­

ical m,ethod (Chorin (1973)) and to establish a theory of the inertial 

range (Chorin (1970)). Generalizations to three dimensional flow are 

presented, but remain mostly conjectural. 

We shall consider flow fields !! = (u
1

, u
2 
,u3) satisfying the 

Navier-Stokes equations for an incompressible fluid, 

(1a) 

(1b) 

i 
at!! + (_!!·~).!.! = grad p + R 6._!!, 

div u = 0, 
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where t is the time, _y is the gradient operator, p is the pressure, 

A= v2 , and R is the Reynolds number, which is assumed to be l~rge. 

The flow fills out the whole (xi, x2 , x 3) space ( (x
1

, Xz) ·space if there 

are two dimensions); the initial data are random;' the randomness pre-

sumably hides our ignorance of the preCise nature of the data. The 

vorticity vector, which we shall use extensively, is 

1 = curl~; 

in the case of two dimensional flow i has a single component denoted 

by~-

REPRESENTATION OF A TWO DIMENSIONAL HOMOGENEOUS 
FIELD AS A RUNNING AVERAGE 

Let ~(xi, x 2 ) be a: homogenous random field in the two dimen­

sional (x1 , x 2 ) space. (For definitions and analysis, see Gelfand and 

Vilenkin (i964), Doob (1953)). The field ~ has a spectral representa-

tion 

iao iao 
~~) = I I exp (Z1ri k·~) Z(dk) , 

-ao -ao 

where ~ = (x1 ,x2), k = (k
1
,k

2
), and Z(k) is a random measure. The 

correlation function B(!,) of ~ is 

·where E( ·] denotes an expected value and B(t) is independent of ~ 

by definition. We have 

B(!_) = J I exp(Zm !." k) dF(k) , 

i 

'! 
i 
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where 

Assume that 

(2) I I I B(£.) I dE_ <co • 

F(k) is then absolutely continuous and B(£.) is an ordinary Fourier 

transform, 

B(£.) =II exp(2'1Ti k·E_) f(k) dk, 

where 

f(k) = 

If (and only if) F is absolutely continuous, the field ~ is a field of 

moving averages, i.e., it has a representation of the form 

{3) 

* . 
where .!! = (s 

1
, s 2 ), f is an ordinary function of its argument, the 

process TJ has orthogonal increments and satisfies 

furthe~more, 

(4) B(£.) = Ill f(k) 1
2 

exp (21Ti E_·k) dk. 

In intuitive terms, if~ is a homogeneous field satisfying the condition 

(2), it is a superposition, with random coefficients, of translates of a 

* * single function f; f determines the spectrum of the field. The proof 

is a simple generalization to two dimensions of the argument given in 

Doob (1953), page 532. Formally, 

* = II exp (21Ti x· k) f(k) dTJ (k) , -- - -
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where d11*(k) is a field with orthogonal increments and 

Symbolically, 

(4) *' ~(x, y) = II exp (Zni .af•k) f(k) 11 (k) dk , 

*' * where 11 is the (generalized) derivative of Tj with respect to kf and 

* k 2 • Let11(k) be the Fourier transform of 11 (k), i.e., symbolically 

+eo +eo . 

11 ~> = I I e xp < z m 1$.!> 11 * <.!> d.! • 
-oo -oo 

then Parseval's identity applied to (4) yields 

* * ~(x,y) = J J f (.!) 11' (~ + .!) d,! = J J f (.!- ~) d~(.!)· 

The formal operations can be justified by proper definition of the 

Fourier transform (see Doo b ( f 9 53)). Furthermore , 

* -;r-E[~(x+r) ~(,!)] =If f {.!- r) f (s) d.! , 

= I I If(.!) 12 
exp (211'i !.".!) ds , 

thus establishing equation (3). Finally, if~ is isotropic as well as 

homogeneous, B(r) = B(r), r = I r I, and thus f(s) = f(s), s = Is I. - - - -
Our purpose is to identify the field t With the vorticity field of a 

two dimensional incompressible flow. The preceding argument shows 

that if t is a homogeneous isotropic field, it is in fact a superposition of 

circular vortices. The task at band is to find out from the equations of 

motion whether such vortices do in fact arise and thus whether vorticity 

can in fact be regarded as a homogeneous isotropic field. This task will 

be undertaken in the next section. It is worthwhile to note that formula 

~ I .. i 
I 

- I 
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(2) provides the means for constructing a Gaussian homogeneous and 

isotropic field admitting a spectrum with an inertial range; this possi­

bility is in itself of some significance (see the discussion at end of 

Hopf(1952)). 

THE ONSAGER CONJECTURE 

Onsager (1949) studied the behavior of a system of point vortices 

in the plane, and, on the basis of an argument drawn from statistical 

mechanics, conjectured that vortices of the same sign will tend to 

cluster around the strong ones, and furthermore, that the larger corn­

pound vortices formed will be the only conspicuous features of the mo­

tion. An argument based on the behavior of a system of point vortices 

fails to take into account the conservation of vorticity per unit area in 

incompressible hydrodynamics (Batchelor (1967)); if this conservation 

property is taken into account, one can conjecture that in a system of 

vortices of finite area, vortices of the same sign will order them­

selves around the strongest ones to produce vortices of ever increas­

ing total strength and total area. The resulting vortices would be such 

that the vorticity per unit area would be highest in absolute value at 

their center . 

. Substantial numerical evidence in support of this conjecture is 

available. In particular, a number of problems in plasma physics are 

formally identical to problems in two dimensional vortex motion, and 

their solutions exhibit the process of vortex ccmsolidation (see Hockney 

(1970)). A number of calculations with the Navier-Stokes equations 

alSo display the process of vortex formation and growth, and attendant 
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energy transfer from small to large "eddies" (see Lilly (1969)). 

A further argument in favor of this conjecture is the following: 

consider a vorticity patch in which the vorticity per unit are·a increases 

as one approaches a center. If a subpatch is introduced, whose vortic­

ity density is larger than the ambient density, it will migrate outward. 

The reasons for this behavior are obvious (see fig. 1). ·If the subpatch 

P has a vorticity higher than the ambient positive vorticity, it will 

move the strong vorticity in A outward, and the weak vorticity B in­

ward, as shown on .the figure. The displaced vorticity will induce a 

motion of P towards the center. A similar argument explains the out­

ward migration of weak vorticity; the occurrence of these phenomena 

is readily verified numerically. Circularly stratified patches of vor­

ticity are thus stable, and it is reasonable to believe that they will be 

formed whatever the initial vorticity distribution may be. This argu­

ment is unaffected by the presence of a small viscosity (large Reynolds 

number R), since in the absence of boundaries the effect of a small 

viscosity is small (Ebin and Marsden ( 1970)). 

The Onsager conjecture relates the properties of homogeneous 

isotropic random fields to properties of the Navier-Stokes equation. 

One can visualize the flows as follows: given arbitrary initial data, 

vortices will form in them; these vortices will get organized into 

larger vortices,etc. One can identify these vortices with the vortices 

occurring in formula (2). Clearly the vortices cannot be individually 

though of as circular, in particular since neighboring vortices will de­

form each other; but if one is interested in phenomena of a scale large 

compared to the scale of the vortices, this may not matter, just like 



\ 
L~ i;) ,() L .. ' ~ ~ ,l •.J ..; d :4,) . ' ..• 

-7-

Wiener paths idealize brownian motion on time scales large compared 

to the time intervals between collisions independently of exact collision 

times.· Only inasmuch as this idealization is valid can a random solu-

tion of the Navier-Stokes equations be thought of as being homogeneous 

and isotropic. 

One can use the preceding argument to determine the form of the 

energy spectrum of two dimensional random flow in the limit as the 

viscosity tends to zero and the wave number tends to infinity (in this 

order). As the viscosity tends to zero, the solutions of the Navier-

Stokes equations tends to solution of the corresponding inviscid equa­

tions. The inviscid (Euler) e.quations conserve the integral of ~2 

(Batchelor (1967)); this means in particular that /k2 E(k) dk is bounded, 

where k = lkl, and E(k) = lf(k)l 2 is the.energy spectrum, (Batchelor 

1960)). The distribution of values of~ depends on the initial data 

(since ~ per unit area is conserved). but if a broad range of values of 

~ is introduced initially, each individual vortex will have a vorticity 

distribution encompassing a wide range of values of ~; ~ must increase 

towards the center slower than 1/r, where r is the distance from the 

center of the vortex. It is, however, reasonable to assume that one 

comes arbitrarily closely to this distribution in each individual vortex, 

and thus E (k) .... k- 3+ €, € small and positive; in each individual vortex, 
I 

~ .... r - 1 
+€ 

1

, € 1 > 0. Such a spectrum is indistinguishable from the k - 3 

spectrum derived by Leith (1968) by a different argument. (See also 

Chorin (1969, 1970)). 

In summary, a random homogeneous isotropic vorticity field 

must be a superposition of circular vortices; and there is every reason 
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to think that an arbitrary solution of the Navier-Stokes equations at 

large R is in fact such a superposition. 

UNIVERSAL EQUILIBRIUM THEORY 

Before making use of the argument of the preceding sections we 

would like to derive the representation of the vorticity field by a more 

heuristic argument, which will shed some additional light on its signif­

icance. This argument was previously presented in Chorin (f969, 

f970). 

The occurrence, in turbulent 'flow, of an energy spectrum E(k) 

which has for large k a universal form, is often explained by the uni-

ver sal equilibrium theory, well summarized in Batchelor ( 1960): The 

range of wave numbers k which contain most of the energy ("the en-

ergy containing eddies") can be regarded as a definite group, with 

.characteristic velocity u = J E(/ u 2 dx] and characteristic length 

l = k - f, where k is a typical wave number in the group. The 
en en 

characteristic time of these eddies is .1/u, and the time scale of their 

decay is u/1 du/dt I; these times are experimentally found to be com-

parable, and thus this range of k 1 s has no feature resembling an equi-

librium. It is, however, assumed that for large k the eddies have a 

characteristic time small in comparison with the scale of the over-all 

decay, and thus may be associated with degrees of freedom in approx-

imate statistical equilibrium. Let u(k) be the (formal) Fourier trans­

form of u(x), let k be a wave number typical .of the equilibrium - -eq 

range, with magnitude k = I k I, and let u be a typical ampli-. eq -eq eq 

tude of u(hl, k = I k I on the equilibrium range, for example, 
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u = lu (k ) I . Write 
eq - -eq 

(5) K = k /k eq en' 

The characteristic time of ueq is (keq ueq)-f- (KU)-f (ken ufi, and 

the assum.ption of universal equilibrium. reads 

f6) 

The quantity u in (6) is the res~t of an averaging operation; it is rea-

sonable, and consistent with experience in classical statistical mechan-

ics, to assum.e that if (6) holds on the average on an ensemble it holds 

for most systems in that ensemble, i.e., for most flows there exists 

a range of k' s satisfied by k such that eq 

(7) 

If this stronger condition is sati.sfied, condition (6) will be satisfied 

a fortiori. 

Consider a solution of the Navier-Stoke s equations ( 1); take its 

(formal) Fourier transform u(k) (there is a substantial difficulty in 

finding a proper definition here; we shall overlook this difficulty in the 

pre sent heuristic argum.ent ). u(k) =(u1, liz> satisfies the following 

equation: 

(8) k = 1~1, 
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~" = II u~ (k- k'> a"·<k') elk' 
k k 

P IV'\J = o - _f!....:J.. (6 the Kronecker delta) 
- 1 ay k2 ay 

and the summation convention is in use. u(k) is the complex conjugate 

of u(-k), and the pressure has 'been eliminated through the use of the 

equation of continuity 

k u = 0, a a 

giving rise, in the well known manner, to the projection P . We now ay 

study the behavior of the solutions in the inertial range, i.e., in the 

limit as R-oo and k- oo (in that order). As R -oo, the solutions of 

the Navier-Stokes equations which vanish outside a compact domain 

tend to the solutions of the Euler equations strongly, as well as on L
1 

(Ebin and Marsden (1970)); the respective Fourier transforms then 

tend to each other uniformly on every bounded region in k space and 

the limit R-oo may be studied by setting 1/R = 0. We assume that 

this is still the case here, when the region in which .!! ::1 0 is not spec-

ified. Under these conditions, the last term in equation (8) can be 

dropped. To study the second limit, k- oo, we perform the scaling 

"* u = Efu 
k * = lYK , 

with U,K defined above. Substitution into (8) leads to 

(a) * = ik~ (oay 

' . ~"' : 
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If k is in the inertial range, the right hand side of (a) is of order 

k u 2 , the left hand side of order (KUff ldu/dtl; by (6), we have 
en 

(10) 
k *k * 

ikA.( 6 · - a* J ) Qf.l * = 0. ,.., ay k ,..,y 

Consider first the limiting equation 

ikA-(6 -,.., ay 

This is merely the Fourier transform of the steady (time independent) , 
Euler equations; it is satisfied by the Fourier transform of any cir-

cular vortex, in particular by any vortex of the form 

( f f) ~ constant • 

.It is readily seen, e.g., by application of Dirichlet's lemma (see, e.g., 

Carslaw (1950)), that an arbitrary superposition of translates of vor-

tice s of the form ( 11), 

* ia. (t)· k 
C.(t) u e -.J 

J -

where C j' !!:_ j ::± (aj 1 , ajZ) are functions of t, will satisfy the weaker 

condition (10). We have thus rederived the fact that the large fre-

quency spectrum of the flow is a superposition of the contributions due 

to a collection of circular vortices, each one of which is in fact a solu-

tion of the time-independent equations. The conservation of vorticity 

can then be used to show that 
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-3+E: E(k) ... k , E:>O, 

in a manner similar to the one employed at the end of the preceding 

section. We have thus both used and justified the universal equilibrium 

hypothesis. 

EVOLUTION OF THE FLOW 

So far we have established a representation of a random vortic-

ity field for a fixed time t. We now turn to the crucial problem of 

determining the evolution of the field when each of its sample flows 

evolves according to the Navier-Stokes equations (1). We first present 

a plausible but incorrect argument which dutifully leads to disaster. 

The reasons for this procedure are, first, that analysis of the wrong 

argument will point the way to the right one, and secondly, that some 

of the negative conclusions will also apply to the Wiener-Hermite ex-

pansion method, which has recently been the object of lively contro-

versy. 

The incorrect argument runs as follows: First. derive equations 

describing the motion of vorticity. This is (Batchelor (1967)) 

(12) 

a tg + (u · ~) ~ = ~ 6. ~ 

6.lJI = - g , 

where (jJ is a stream function. Substitute the representation (3) into 

this set of equations, multiply by dTt (s), and examine the expected 

values of the result. Since the increments d,(s) are orthogonal. we 
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'I 
l; 

I
;, 
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.J 

-13-

* obtain an equation for a single circular vortex with ~~) = f (x- .!,)· 

The term ( u · v) ~ vanishes (since a circular vortex is a solution of 

the stationary Euler equation), and we obtain the following result: 

i.e., 

a r* - .! l!ll t - R 

* . since f def1ne s the spectrum E(k), there is no change in E 

except that due to viscous decay - surely a fallacious conclusion. The 

error lies, of course, in the fact that the representation (3) is valid 

only to a fixed time t. The homogeneous field TJ is not time invariant, 

and differentiation of (3) with respect to t must take this fact into ac-

count. This is best understood in conjunction with Onsager 1s conjec-

ture. The energy transfer between "eddies" and the evolution of the 

correlation function occur because vortices group themselves into 

larger vortices; thus, the effect of the nonlinear terms is to induce 

new correlations between the flow at different points and to destroy 

the orthogonal character of the increments dTJ. On a s·cale large with 

respect to the vo~tex size, the evolving flow can be described at each 

time t as a running average with respect to a field with orthogonal 

increments, but each time t with a new f and a new 11· 

This difficulty also arises the Wiener-Hermite expansion method 

(see, e.g., Meecham and Jeng (1968)), where it was substantially 

analyzed by Crow and Canavan (1970). In the Wiener-Hermite ex-

pansion method, the fields are expanded in an infinite series of run-

ning averages with respect to Hermite functionals of white noise, where 

white noise is defined as the generalized derivative of a field with in-

dependent Gaussian increments. The occurrence of an infinite series 
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is the price one pays for expressing the fields in terms of Gaussian 

fields only. If the field is exactly Gaussian, the Wiener-Hermite ex-

pansion has a single term, which is identical to (3). (In two dimen­

sional incompressible flow, a vorticity field which is initially Gaussian 

will remain Gaussian for all time.) In practical applications, the 

Wiener-Hermite expansion is truncated after a few' terms, on the plau­

sible ground that the observed turbulence is nearly Gaussian. Rela-

tions between the coefficients in the expansion are obtained by substi­

tution into the Navier-Stokes equations and use ofthe statistical ortho-

gonality of the various terms, but no provision is made for change in 

the white rioise fields. The resulting equations are thus incorrect, and 

in particular d,o not provide a description of energy transfer between 

scales. Illustrative .sample calculations were given by Crow and 

Canavan. 

One way to solve the problem is to construct a few sample 

flows by approximating the integral {3). In particular, if 

one assumes that the flow has had some time to evolve, one can set 

( 13) 

* 1 where f - I x- x. 1- for small I x- x.l, x. is a center of a vortex, 
- -]. - -1 1 

and the 11. are random numbers. Then allow the flows to evolve ac-
1 

cording to equations ( i2). * If the f have small support, one can as-

swne that the induced velocity field varies little over that support and 

thus the motion of each one of the vortices in (13) is described by the 

motion of its center x.. This leads to a system of ordinary differential 
..,.1 

.. 
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equations for the x.. Such a method was in fact derived in Chorin 
-1 

(1973) and shown to be applicable to problems in which the flow is not 

homogeneous and where boundaries are present . 

. THREE DIMENSIONAL FLOW 

It would be of great interest to generalize the preceding results 

to the case of three dimensional flow. There are, however, major 

differences between the two and three dimensional cases. In particular, 

in three dimensions the vorticity is a three dimensional solenoidal vee-

tor, and the argument which leads to the representation (3) fails. 

There appears to be no possibi~ity of existence for a three dimensional 

homogeneous isotropic random solenoidal vector field. I conjecture 

that one has only intermittent homogeneity and isotropy, i.e., if 

.S. = (;
1

, ; 2 , ; 3 ), and if we define the correlation tensor by 

B .. tx+r) = E(;.(x) ;.(x+r)], lJ ~ - 1- J- - .· 

then if 1.!,
1

1 = 1.!, 2 1 = r~ for every € and~ there would exist an X 

such that 

IB .. (x+r
1
)- B .. (x+X+r 2 )1 ~ €. 

lJ- - lJ- - -

It is furthermore reasonable to assume by analogy that the vorticity 

field is a sum of vortex tubes. Such tubes can be stretched, and it is 

therefore no longer true that if the flow is initially Gaussian it will 

remain Gaussian for all time. The velocity field is subject to two 

constraints: it is incompressible, and its energy is non-increasing. 

I conjecture that these constraints result in the following Holder 

inequality 
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(f4) 

independently of the amount of stretching. As already noted by Onsager 

(1949), such an inequality, which essentially restricts the possible 

structures of the vo~tex cores, leads to a Kolrn.ogoroff spectrum 

E(k) ... k- S/3 • An interesting counterexample was given by Marsden 

et al. (to appear), but it is presumably unstable and thus cannot occur 

except for special initial data. The arguments in favor of the conjec-

ture above are the following: 

( i) Not only does (1.4) lead to a Kolrn.ogoroff law, but it also 

-provides a clear physical picture in which the large ''eddies" 

(which cause the stretching) are independent statistically 

from the small eddies (which make up the cores); this is as­

sumed in Kolrn.ogoroff's derivation. 

(ii) As explained in Marsden, Ebin and Fischer (to appear), the 

exponent in Kolrn.ogoroff1 s laws is intimately tied to the pos-

sibility of proof of existence of solution for the Navier-

Stokes equations. One can thus conjecture that all existing 

flows must satisfy ( 1.4). 

(iii) Crow ( 1.970) made the remarkable discovery that there. ap-

parently exists a universal cut-off coefficient for the nu-

merical evaluation of the self induction of vortex lines, 

suggesting the existence of a universal vortex structure. 
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. (iv) Finally, the assumption of universal equilibrium l~aqs to 

an equation similar to ( iO), which can be satisfied only by 

vortex tubes whose radius of curvature is outside the ini­

tial range, with the whole contribution to the energy spec­

trum in the inertial range coming from the core. 

An effort to confirm this conjecture by numerical means is 

presently in progress. 
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FIGURE CAPTION 

Fig. 1.. Stability of a Circularly Stratified Vorticity Field. 
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DIRECTION OF 

INCREASING VORTICITY 

Fig. 1 
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r-----------------LEGALNOTICE------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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