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ABSTRACT OF THE THESIS 

Abstract of the Thesis 

 

Minimally Intrusive Gaze Detection in Clinical Environments 

 

by 

 

Yuchen Wang 

 

University of California, San Diego, 2015 

 

Professor Vikash Gilja, Chair 

 

        Motivated by the Electronic Health Record (HER) system’s demand of capturing 

patients’ multimodal activities and the wide application of gaze detection, we develop a 

minimally intrusive gaze detection system with Microsoft Kinect sensor and test its 

performance in a simulated clinical environment. Traditional methods require either a 

close distance between the camera and the user or a fixed head pose which may severely 

interrupt the clinical workflow and the interaction between the physician and the patient. 

Compared with the traditional methods, our system allows a wider range of detection, 

while achieving an accuracy around 70%.  
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INTRODUCTION 

Introduction 

1. Free behavior monitoring system 

In recent years, the Electronic Health Record (EHR) system have dramatically 

facilitated the monitoring of patient’s health and promoted preventive care. Compared 

with traditional paper-based records, electronic records highly reduces the medical errors 

and increases the efficiency of physician-patient interaction. The challenges for an 

accurate EHR system include the acquiring multimodal data such as medical history, 

behavioral record, etc. and the employing suitable algorithms to extract useful 

information for efficient treatment or disease-prediction. Our project focuses on the 

multimodal data capture, especially gaze information. As shown in [1], a majority of 

patients who suffer strokes from severe head injuries also end up suffering from arm 

impairment every year. By employing the automatic body movement capturing system, 

we can accurately evaluate the paretic arm mobility, which when compared with the 

traditional doctor experience-based method, yields essential information about activity 

limitations that patients experience during recovery [2]. The importance of multimodal 

data can be reflected not only in EHR system, but also in other fields like neuroscience. 

As human beings, we experience environmental stimulus, like images and sounds when 

the neuron in our nervous systems receive, transmit, and interpret signals. Our body will 

produce the corresponding responses through the communications between neurons by 

sending electrical signals. Modern neuroscientists have put many efforts into mapping 

function between stimuli and response. Most of the past work used controlled paradigms 

to reduce the number of stimulus and simplify the analysis, but no clear method to
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capture multimodal data in a free environment to better characterize the stimulus and 

increase the accuracy of the decoding has been proposed. To meet the requirements of a 

more accurate capturing of the multimodal data, we come up with this Free Behavior 

Monitoring (FBM) system to record patient’s speech, body movements, gaze information, 

etc. in the natural setting, the FBM system can render a deeper insight into both 

healthcare problems and scientific problems [1-2]. In my project, I will focus on the gaze 

detection of the system. The motivation and importance of the gaze detection will be 

discussed in the following the section 

2. Gaze detection 

2.1 Application 

A wide variety of fields including medical research [3-5], human-computer 

interaction [6-7], and neural science [8-11], use gaze detection techniques. In modern 

medicine, early identification of robust risk factors are essential for the early treatment of 

diseases like autism and Alzheimer disease. According to past research [4-6], patients 

with autism spectrum disorder (ASD) tends to fixate on the mouth region longer than the 

eyes during face viewing and prefer to focus on visual repetition, such as the spinning of 

a car wheel so gaze detection shows promise in characterizing the early features of ASD. 

by presenting toddlers with moving geometric patterns and tracking their eyes, Pierce and 

his collogues [4], find that if a toddler spent more than 69% of his or her time fixating on 

geometric patterns, the predictive accuracy of toddler having ASD can reach 100%. 

Alzheimer’s disease (AD), frontotemporal dementia (FTD) and sematic dementia (SD) 

are another group of neurodegenerative disease that can cause severe changes in personal 

or social behavior, language ability, short-term memory loss, etc. By using gaze tracking 
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technology to detect the mutual gaze between couples during a conversation during 

relationship conflicts, Sturm and his collogues [7] reveal that mutual gaze is preserved in 

AD couples, but diminished in FTD couples and enhanced in SD couple compared with 

the control group.  

The gaze detection can help us better understand the relationship between the 

stimulus and neural responses. Recently, the studies [8, 9] on rhesus monkeys and human 

beings demonstrate that different visual stimulus will enhance or suppress the auditory 

cortex’s responses to the same voice stimuli. Ghazanfar et at recorded local field potential 

(LFP) activity in both core and lateral belt regions of the auditory cortex in two rhesus 

monkeys [8].  When the monkeys are viewing vocalizing conspecifics with “incongruent” 

conditions, for example, a coo face is paired with a grunt voice, the monkey’s LFP is 

notably enhanced and vice versa, is suppressed under “congruent” conditions. Similar 

studies have also been done on human beings [9]. In Golumbic et al’s study, they adopt 

13 native English-speaking participants with normal hearing and record their 

magnetoencephalography (MEG) in an actively magnetically shielded room when they 

are exposed to eight kinds of stimulus (see Figure 1).  

 

Figure 1:  Experiment paradigm. Illustration of the four experimental conditions. 
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By analyzing the MEG data, they demonstrates that viewing a speaker’s face 

enhances the ability of auditory cortex to track that speaker’s speech. All of these studies 

show us that the visual input can modulate the neural output. In those studies, if the use 

of gaze detection techniques can help us find subject’s precise gaze position, then we can 

better understand which specific object is influencing the neural responses.  

Another application of gaze detection is in human-computer interface field, 

especially for the disabled [10-11]. Hutchinson and his collogues show that a non-

intrusive eye-tracking system paired with the user’s slight head movement allows the user 

to interact with the computer in running communication and manage other peripheral 

devices without physical contact [11]. The accurate gaze detection algorithm will benefit 

those people who cannot move their bodies due to accidents or diseases like amyotrophic 

lateral sclerosis (ALS). 

2.2 Techniques 

Most of the recent widely used methods are video-based gaze detection where one 

or multiple cameras remain focusing on the users’ eyes and estimating the gaze vector 

based on acquired images.  The algorithm usually include two parts: eye localization and 

gaze estimation [12]. 

2.2.1 Eye localization algorithm 

For eye localization, we need firstly to detect the eyes’ positions and then localize 

the pupil centers within the eyes for each frame of image [12]. Humans’ open eyes have 

similar elliptical shapes, so the methods like elliptical shape fitting [13] and deformable 

eye model fitting [14] have been developed to interpret eye positions. One of the 
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weakness of shape fitting models is that they are usually computationally demanding and 

require very high contrast images. In order to overcome those obstacles, researchers have 

been trying to detect the eyes by using the distinct features around eyes, like eye edges 

[15] and filter responses [16]. Employing active IR illuminations [17-19] can also 

increase the accuracy of eye location. In our research, the Microsoft Kinect is able to 

offer the eyes’ spatial location in the camera space for each frame after mapping them 

into color space. 

2.2.2 Gaze Estimation Algorithm 

The approaches of gaze detection or estimation can be roughly categorized into 

geometrical method and machine learning method.  

2.2.2.1 Geometrical Model-based Gaze Estimation 

Figure 2 shows a typical simplified eye model commonly used in gaze detection 

research [20-22]. There are two main axes in this model: the first one is the optical axis 

which represents the geometric center line of the eye and the second one is visual axis 

which connects the fovea and the point of gaze [20].  The goal of this method is to 

estimate the direction of visual axis and integrate this vector with the three dimensional 

structure about the objects in the scene. By computing the intersection of the gaze vector 

with the nearest object in the scene, the point of regard (POG) is located. 

 

Figure 2: Eye model [20] 
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In order to estimate the direction of visual axis, several parameters need to be 

acquired such as the radius, center of eyeball (the rotation center in Figure2), direction of 

the optical axis, and the relative angle between optical and visual axis. Since the model is 

built in three dimensional world, one of the advantage of this method is that it takes the 

3d motion of the head or eyeball, like rotation, into consideration and allows the user to 

move the head freely as long as the cameras are still able to detect the eyes. However, the 

requirement of estimating 3D points also results in problems like synchronization, point 

matching, occlusion and more data from the utilization of stereo and active cameras 

require processing [21, 22]. 

2.2.2.2 Geometrical Model-based Gaze Estimation 

Machine learning - based methods usually includes a mapping from 2D eye image 

to the screen which the user is asked to gaze at (see Figure 3) [23].  

 

Figure 3: Flow of the machine learning-based method [23] 

As shown in Figure 3, by employing a single RGB or IR camera and using eye 

localization algorithms, we can generate an image of a single or both eyes. After post-

processing of these images such as extracting the features [23] and resampling, the 

images will be transformed into a multi-dimensional feature vector as shown in the light 

circle in the middle of Figure 3. Eventually, machine learning algorithms are performed 

to estimate gaze position on the screen by using the feature vector. During this process, 
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different learning algorithms have their own advantages. The most common used linear 

regression model [23] is easy to implement and computationally efficient, but polynomial 

regression [24] can compensate notice nonlinearities when the image is noisy. Artificial 

neural network (ANN) and their variants are also used, but some parameters in the model 

like hidden layer number are very difficult to optimized, where in order to increase the 

robustness and efficiency of the model, researchers need to find more efficient features in 

the model.   

The machine learning algorithm usually requires the fixed heads and the 

parameters in the model lack physical interpretations, but compared with geometrical 

model-based methods, they are  easier to implement and able to give good results with 

fixed head. 

2.2.3 Gaze Estimation Calibration  

All of these methods still need calibration sessions. For geometrical model, we 

need the calibration to estimate cornea curvature, iris’s size and other parameters decided 

by the specific assumption of eye structure. For machine-learning methods, we also need 

to determine the parameters of the mapping functions [12].  

According to the literature [12-24], users are always required to keep a fixed close 

distance to the camera and the head motion must be kept in a very limited range in order 

to acquire a clear picture of the eye, specifically the pupil. This limitation in motion is 

opposite to the goal of the free behavior capture system, so we introduce a new method 

that combines the geometrical and machine learning method to resolve this problem 

while keeping the accuracy within an acceptable level. The needs of both the 3D structure 
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and the RGB images of eyes led us to look for an accurate depth camera and a high 

resolution color camera such as the Microsoft Kinect Sensor. 

3. Microsoft Kinect sensor 

Kinect is categorized as a 3D depth camera containing a depth sensor, a RGB 

camera, and multi-array microphone (see Fgiure.4).  

 

Figure 4: Microsoft Kinect sensor. (a) First version (b) Second version 

Those sensing cameras provide the basis for full-body 3D motion capture, facial 

recognition and voice recognition capabilities [25]. 

3.1 Coordinate system 

Kinects can stream color and depth data in a 30Hz framerate. Each data type has 

its own coordinate space and Kinect offers the functions to map data between the spaces. 

Each frame from the color sensor is made up of pixels, each of which contains red, green, 

blue components and is specified by(𝑥𝑐, 𝑦𝑐) in a color image [26]. The IR light source 

and CMOS IR sensor work together to give a depth image of everything visible in the 

field of view of the CMOS IR sensor. The value of each pixel, at a particular(𝑥𝑑, 𝑦𝑑) 

coordinate represents the Cartesian distance, in millimeters, from the camera center to the 

objects in that pixel [27].  The depth coordinate(𝑥𝑑, 𝑦𝑑) represents a pixel in the depth 
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image, but can be transformed into the camera coordinate (𝑥, 𝑦, 𝑧) to represent a physical 

unit in 3D space.  The original point (0, 0, 0) of the camera space coordinate is located at 

the center of the IR sensor, the x, y axes go to the left , up of the sensor respectively and 

the z axis extend in the direction that the Kinect is facing (see Figure 5)[27]. 

 

Figure 5: Coordinate system 

3.2 Body tracking and facial recognition 

In addition to streaming different kinds of images, Microsoft Kinect (abbreviated 

as Kinect) is also able to track up to six people’s body motions and faces at high fidelity 

by utilizing depth images. In order to track the skeleton, the human body is segmented 

into different parts and represented by several joints, such as head, neck, and 

shoulders[25] (see Figure 6). By this intermediate representation, combing with machine 

learning algorithm and a large amount of training dataset[27], Kinect can provide the 

spatial location(x, y, z) of those joints in camera coordinate, accompanying each depth 

frame. By tracking the motion of those joints, we can estimate the motion of the human 

body. Since the Microsoft Kinect is designed for XBox 360, the underlying tracking 
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algorithm and the training dataset assume the user are in the standing, not touching any 

objects state, which may cause some inaccuracies if the user is sitting on a bed or in a 

wheelchair [28]. 

 

Figure 6: Body tracking (a) skeleton representation of human body (b) color map of body 

part 

 

Face tracking engine is another Software Development Kit (SDK) offered by 

Microsoft which enables us to track human faces in real time. The facial information 

from Kinect can be divided into two groups: basic and High-definition facial information. 

The former one offer the abstract information of humans head like the orientation, head 

center position and the parameters called Animation Units (AU). Each of Animation 

Units (AU) represents the degree of the contraction or relaxation of a single or a group of 

muscles on the faces; for instance, AU1 shows the motion of frontalis ranging from zero 

to one. By following the rules of Emotional Facial Action Coding System (EFACS) [30], 

we can use these values to estimation the emotion of the user. For example, the 

summation of values of AU6 and 12 can be used to detect the degree of the happiness of 

users (See Figure 7). 
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Figure 7:  EFACS’s representation of happiness. 

As can been seen from Figure 4, with the user’s face changes from neutral face to 

smiling, the sum of AU6 and AU12 increases from 0 to 1.4. And when the user returned 

back to the neutral face, the value also went back to 0. It illustrates that the Kinect has the 

potential to benefit further psychological and behavioral research.  

The other group of facial data we can get from Kinect is called high-definition 

(HD) facial mask which consists pf 1347 points in camera space (see Figure 8). Each 

facial point has a clear physical meaning where the 19th point tracks the motion of user’s 

nose tip [28]. The HD face tracking does not only detect the face from depth images, but 

also renders a face in 3D space.  
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Figure 8: High definition Face Mask 

By analyzing the temporal changing of these points in camera space, we can 

estimate the motion, like rotation or translation, of users’ heads and by transforming these 

data from the camera space to depth space, eyes’ detection become a lot easier which will 

benefit gaze detection.   

The 3D depth accuracy of the Kinect camera has been evaluated quite extensively 

[29-32]. In [29], by quantitatively comparing the Kinect with a stereo-cameras and a 3D-

Time-of-Flight (3D-TOF) camera, the author shows that Kinect’s performance is better 

than TOF camera and close to that of the stereo-camera. Similar results has been 

documented in[30] whose result also reveals that Kinect’s accuracy is very close to laser 

sensor when the distance is less than 3.5 meters. But when the distance between the 

object and Kinect increases, [31] shows that the random error in depth measurement 

ranges from several millimeters to 4 cm.  

Performance of body tracking has also been investigated under different 

conditions [33], [34]. In [33], authors notice that the accuracy of the body tracking 
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depends heavily on the type of poses. So they compare the performance of Kinect’s body 

tracking algorithm with another more established maker-based motion capture system by 

adopting six exercises (see Figure 9) that are challenging for pose estimation algorithms.  

 

Figure 9: Six exercises [33] 

The results show that, in a more controlled posture, like standing, the accuracy of 

Kinect’s joint estimation is comparable to the other system, but, for other postures, the 

variability of the Kinect’s pose estimation is about 10cm. Brook et al. [34] study the 

accuracy of Kinect’s measuring movement of people with Parkinson’s disease (PD). The 

movement includes quiet standing, multidirectional reaching, etc. in nine people with PD 

and 10 controls. By comparing with a Vicon 3D motion analysis system, Kinect is very 

accurate in measuring the timing of movement repetition, but varies a lot when measuring 

spatial characteristics: excellent for gross movement, but poor for fine movement like 

hand clasping.  Unfortunately, not many similar studies on face tracking are documented. 
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METHOD 

The diagram of our gaze detection algorithm is shown in Figure 10. In our study, 

every single Kinect deployed in our project is calibrated firstly, including the intrinsic 

calibration for depth, color cameras and the extrinsic calibration between the depth 

camera and the color camera. Another extrinsic calibration is executed so that we can 

unify all Kinects’ depth cameras’ coordinate systems in our study. All of the parameters 

from the calibration session will be stored for further use, like transforming data between 

different spaces. After that one Kinect will be deployed to stream out patient’s high-

definition face points which are used to localize eye positions in the color picture and 

estimate the geometrical structure of eyeballs. Eventually, the gaze vector will be 

estimated by the linear regression model with the above information. The details of each 

step will be described in the following sections.   

 

Figure 10: Method Diagram 
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1. Setup 

The final goal of our project is to make the Free Behavioral Monitoring system 

feasible in clinical environment, so we try to simulate the clinical scenario in our project. 

The whole system and the test environment are shown in Figure 11. 

 

Figure 11:  Free Behavioral Monitoring system and Test Environment 

In our project two Kinects will be employed. One of them is mounted on the 

footboard of the patient’s bed and facing the patient which can record the user’s facial 

and body information. The other one is clamped around the headboard to capture the 

environmental information like the worldview of the patient, as shown in Figure 12. The 

data from these two Kinects will be sent to the recording PC and stored for further 

analysis. 
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Figure 12: Views of Kinects. 

(Top: from the Kinect on the headboard, Bottom: from headboard mounted Kinect) 

 

2. Calibration 

As discussed in the introduction section, Kinect has two cameras: color camera 

and IR camera. According to the manuscripts, all of the cameras have been calibrated 

after being fabricated to get the parameters like focal length, lens distortion coefficients, 

etc. which are  unique for each Kinect and stored to nonvolatile memory on the sensor. 

Those parameters are extremely important for mapping the data between different spaces, 

but we find that sometimes the accuracy of those parameters could slip over time which 
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could be due to physical collision, etc. In order to compensate for it, we will do our own 

calibration instead of simply trusting in built-in calibration results. The calibration can be 

categorized into two parts: intrinsic calibration and extrinsic calibration.  

2.1 Intrinsic calibration  

Intrinsic calibration is a process of estimating the parameters which characterizes 

the geometrical relationship between the scene and the camera. These parameters 

determined which pixel the three dimensional position (camera space coordinate for 

Kinect) of a point is projected to on the images. Intrinsic calibration has been studied 

extensively [36, 37] and the pinhole camera model is widely used to approximate this 

mapping from a 3D scene to a 2D image. 

Pinhole camera model is a first order approximation of the real camera which 

does not take nonlinear phenomenon like geometric distortion into account and is based 

on the assumption that the camera aperture is a point. The principle of a pinhole camera 

has been shown in Figure 13. As shown in a), a 3D object is projected to the image plan 

through the camera aperture (pinhole) and the distance between the image plan and 

pinhole is defined as the focal length. After defining the axis for the image plane and the 

image center, defined as the intersection of the optical axis and the image plane, the 

equivalent mathematical representation is shown in b).  
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Figure 13: The Principle of Pinhole Camera. a) Physical model b) mathematical 

representation [36] 

 

In b), it can be seen that a point in camera space (X, Y, Z) will be projected to a 

point on the image frame (x, y) based on following equations: 

                               {   

𝑥

𝑋
= 

𝑓

𝑍
𝑦

𝑌
= 

𝑓

𝑍

                                                             (1) 

,where we notice that for negative X, the x will be negative which is obey to our common 

sense that the coordinates of a pixel is represented by a pair of positive integers in the 

computer. In order to make it positive, we usually move the center of the image 

coordinates to the left bottom corner of the image. Under this new coordinate system, if 

we define the coordinate of image center is (𝑥0, 𝑦0), each pixel (𝑥𝑛, 𝑦𝑛) can be related to 

three dimension point (𝑋, 𝑌, 𝑍) by: 
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   {   
𝑥𝑛 = 

𝑓

𝑍
𝑋 + 𝑥0

𝑦𝑛 = 
𝑧

𝑍
𝑌 + 𝑦0

                                                      (2) 

As we discussed before, the pinhole model doesn’t take the distortion into account, 

but for Kinect’s cameras, especially depth camera, it has been shown that the radial 

distortion is very severe near the image edges because of the way IR cameras work. As 

documented in [37], imaging a three dimension point (𝑋, 𝑌, 𝑍) , the projected pixel 

coordinate from the pinhole model, will be expressed as: 

{
𝑥𝑝 = 

𝑋

𝑍

𝑦𝑝 = 
𝑌

𝑍

                                                                         (3) 

After considering the lens distortion and distortion coefficients𝑎𝑖(𝑖 = 1…5), the 

new pixel coordinate is defined as follows: 

  {
𝑥′ = (1 + 𝑎1𝑟

2 + 𝑎2𝑟
4 + 𝑎5𝑟

6)𝑥𝑝 + 𝑑𝑥

   𝑦′ = (1 + 𝑎1𝑟
2 + 𝑎2𝑟

4 + 𝑎5𝑟
6)𝑦𝑝 + 𝑑𝑦

                               (4) 

, where 𝑟2 = 𝑥𝑝
2 + 𝑦𝑝

2 and  𝑑𝑥, 𝑑𝑦 are defined as follows: 

{
𝑑𝑥 = 2𝑎3𝑥𝑝𝑦𝑝 + 𝑎4(𝑟

2 + 2𝑥2)

𝑑𝑦 = 2𝑎4𝑥𝑝𝑦𝑝 + 𝑎3(𝑟
2 + 2𝑦2)

                                             (5)   

After moving the coordinate origin to the left bottom corner of the image, the 

pixel’s coordinate stored in computer will be expressed as follows: 

                             {   
𝑥𝑛 = 𝑓𝑥′ + 𝑥0

𝑦𝑛 = 𝑓𝑦′ + 𝑦0
                                                      (6)                                  

By using this model, according to documents [37], the nonlinear distortion 

problem can be solved. However, it also brings us more parameters to estimate (distortion 

coefficients). In our project, we use camera calibration toolbox [37] and a chessboard to 

finish the intrinsic calibration for each depth camera and color camera in two Kinects. 
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During the calibration period, we will place the chessboard in nine different positions 

relative to the camera (See Figure 14). By analyzing the images of chessboard captured 

by the camera, we can get the intrinsic coefficients for each camera. The calibration 

results of all of cameras will be shown in results section. 

 

Figure 14: Intrinsic calibration paradigm (Top: IR Camera, Bottom: Color Camera) 

2.2 Extrinsic calibration 

Comparing with intrinsic calibration, extrinsic calibration focuses more on 

estimating the geometrical relationship between different cameras’ coordinates, since 

each camera has its own coordinate. It is important, especially when we want to 

reconstruct the 3D structure of the scene by fusing different streams of data to get a better 

understanding of the environment. The extrinsic calibration consists of two parts. The 

first one is to unify the two sensors’ coordinate systems in one Kinect. Another one will 

be unifying two Kinects’ coordinates. Since each Kinect’s coordinate system is just its 
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depth camera’s coordinate system, so the extrinsic calibration between two Kinects is 

equal to calibrate two IR cameras extrinsically.  

 

Figure 15: The principle of extrinsic calibration 

The principle of extrinsic calibration is shown in Figure 15. It shows a typical 

stereo camera system and two cameras’ coordinate systems are represented by (𝑥1, 𝑦1, 𝑧1) 

and (𝑥2, 𝑦2, 𝑧2) respectively. For these two coordinate systems, a point in 3D space will 

have two coordinates expressed as (𝑥𝑜1, 𝑦𝑜1, 𝑧𝑜1) and(𝑥𝑜2, 𝑦𝑜2, 𝑧𝑜2). Based on the basic 

algebra knowledge, we know that this two coordinate can be related as follows:   

(
𝑥𝑜2
𝑦𝑜2
𝑧𝑜2

) = 𝑅 (
𝑥𝑜1
𝑦𝑜1
𝑧𝑜1

) + 𝑇                                                  (7) 

,where R is a 3 × 3  rotation matrix, describing the relative orientation between two 

cameras’ coordinate systems, and T is a 3 ×1 translation matrix, describing the relative 

displacement between two systems. R has to satisfy the condition that det(𝑅) = 1. The 

final goal of extrinsic calibration is to estimate these matrixes through the calibration 

session. In our study, the calibration between the color camera and the IR camera in one 
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single Kinect is performed by introducing a calibration chessboard at various poses. By 

aligning the chessboard patterns in two images from two cameras, we can solve for the 

parameters in the rotation and translation matrix. The analysis is also finished by camera 

calibration toolbox [37].  

The use of chessboard to calibrate the color camera and the depth camera in one 

Kinect works because of the little relative orientation between the two cameras, so the 

same side of chessboard can be captured by both cameras easily and clearly. But for the 

two depth cameras in our two Kinects system, they are almost facing each other. The 

requirement that seeing the same side is very hard to achieve. In order to finish the 

calibration, the spherical target is being adopted. Because even though two Kinects can 

only see two opposite sides of the same target, they can estimate the target centers’ 

position using the points they see. By matching the centers, the extrinsic calibration can 

be finished.  The first step of the method is to detect and segment the sphere from the raw 

point cloud in 3 dimensional space. Then the radius and the center of the sphere is 

estimated by fitting sphere’s points to the following equation:    

(𝑥𝑐, 𝑦𝑐, 𝑧𝑐, 𝑟) = 𝐴𝑟𝑔𝑥𝑐,𝑦𝑐,𝑧𝑐,𝑟 min∑(𝑥 − 𝑥𝑐)
2 +(𝑦 − 𝑦𝑐)

2 + (𝑧 − 𝑧𝑐)
2 − 𝑟2         (8) 

Prior knowledge of the sphere’s radius will increase the accuracy of estimation. 

During the calibration session, the sphere will be placed at least four different places. 

Once the 3D coordinate of the sphere center in jth position is extracted for both Kinects, 

notated as (𝑥𝑐1
𝑗
, 𝑦𝑐1

𝑗
, 𝑧𝑐1

𝑗
) and (𝑥𝑐2

𝑗
, 𝑦𝑐2

𝑗
, 𝑧𝑐2

𝑗
), the relative geometrical relationship between 

those two Kinects can be computed by using the following equation: 
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(𝑅, 𝑇) = 𝐴𝑟𝑔𝑅,𝑇 min∑ ||(
𝑥𝑐2

𝑗

𝑦𝑐2
𝑗

𝑧𝑐2
𝑗

) − 𝑅 (
𝑥𝑐1

𝑗

𝑦𝑐1
𝑗

𝑧𝑐1
𝑗

) − 𝑇 ||2𝑗                                    (8) 

The results of both extrinsic calibrations will be shown in the result section and 

the accuracy will be discussed. 

3. Head orientation 

After finishing the calibration session, we can put different sources of data under 

same coordinate system and start the gaze detection. If we think about how we gaze at 

things for most of times, we can find that we will turn our head to the direction we want 

to see. In another words, the head orientation can be used to represent the gaze direction 

in some cases. Especially when we know nothing of the users’ eye information, but still 

need to have a guess of the gaze direction. So the head orientation can be a substitute for 

the gaze direction when the user is detected to be blinking or when the tracking of eyes 

are lost.  

As we discussed in the introduction, the basic face tracking API can stream out 

the face orientation data in terms of the quaternion (x, y, z, w). By using the equations as 

follows: 

{
 
 

 
 𝑃𝑖𝑡𝑐ℎ = arctan (

2(𝑦𝑧+𝑤𝑥)

𝑤2−𝑥2−𝑦2+𝑧2
)

𝑌𝑎𝑤 = arcsin (2(𝑤𝑦 − 𝑥𝑧))

𝑅𝑜𝑙𝑙 =  rctan (
2(𝑤𝑦−𝑥𝑧)

𝑤2−𝑥2−𝑦2+𝑧2)

                                             (9) 

, the quaternion can be used to calculate the yaw, pitch, roll of the heads (see Figure 16).  
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Figure 16: Head Pose Angles 

The yaw, pitch, roll are given in radian. Yaw, pitch, roll are one kind of 

representation for head orientation. But by using the equation (10), we can also calculate 

the head orientation vector. But when test its accuracy, it is found that these values are 

accurate only when the rotation angles are within 20 degrees. 

𝑛⃑ = (−2(𝑥𝑧 + 𝑦𝑤), 2(𝑦𝑧 − 𝑥𝑤), 2(𝑥2 + 𝑦2) − 1)                     (10) 

In order to improve the accuracy and the detectable range, we directly use high-

definitional face points to estimate the head orientation vector. The way we do it is to use 

a portion of HD face points to construct a plane which is perpendicular to the direction of 

the head. The points are manually chosen and have been tested on different users to prove 

its stability. The final plane’s direction will be regarded as the head orientation vector and 

used to approximate the gaze vector (see Figure 17).  
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Figure 17: Head Orientation Estimation by constructing the plane (yellow plane). The 

red arrow is the normal vector of the plane vector. 

4. Gaze vector estimation 

Head Orientation can be regarded as the first approximation for the gaze detection. 

The more accurate algorithm will be performed by combing the geometrical and color 

information of the eyes.  

            Firstly, the 3D position of the points around the visible eye are used to estimate 

both eyes’ geometrical structures, especially the eye’s inner corner’s and outer corner’s 

positions. In the estimation, we assumes both eyes to be spheres and, according to the 

literatures, the distance between inner corner and outer corner can be regarded as the 

diameter of the eyeballs.  After locating the eyeball centers’ positions, we define the gaze 

vector as the vector goes from eyeball centers to the target as the gaze vector and another 

vector called reference vector which is a unit vector from the center of the eyeball to the 

center of the visible eye. The next step is to compute the relative angles between these 

two vectors. Based on the basic physical knowledge, the relative orientation between two 

arbitrary vectors can be described by three angles in 3D coordinate system. Assuming the 
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gaze vector(𝑥𝑔, 𝑦𝑔, 𝑧𝑔) and the reference vector(𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟), the mathematical expression 

of the rotation matrix is shown as follows 

(

𝑥𝑔

𝑦
𝑔

𝑧𝑔

) = [

1 0 0

0 cos (𝛼) −sin (𝛼)

0 sin (𝛼) cos (𝛼)

] [

cos (𝛽) 0 −sin (𝛽)

0 1 0

sin(𝛽) 0 cos (𝛽)

] [
cos (𝛾) −sin (𝛾) 0

sin(𝛾) cos (𝛾) 0

0 0 1

] (

𝑥𝑟

𝑦
𝑟

𝑧𝑟

)     (11) 

, where α, β, γ represent the rotation angles around x, y, z axis respectively. After having 

these three angles, we will start to look at their relationships with the image of the eyes. 

(See Figure 18). As can be seen from the figure, the relative position between the gaze 

vector and the reference vector should be consistent with the relative position between 

the iris and the visible eye center in the eyes images. Our ultimate goal is to use machine 

learning algorithm to learn this relationship and use it to estimate the gaze with the 

known reference vector and the eye image. But before that, we need to filter the images 

and extract some features to make the algorithms more robust.  

 

Figure 18: Relationship between geometrical structure and eye images.  

(Red arrow: gaze vector, blue arrow: reference vector) 
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When the resolution of the eye images is very high, it will be very easy to detect 

the center of the pupil and its relative position to the center of the visible eye. In such 

cases, we can directly find the gaze vector by using the pure geometrical model. But 

limited by our Kinect’s camera’s resolution, the compression ratio of the images when 

they are stored in computer and the distance between the Kinect and the patient, it’s very 

infeasible (see Figure 19). As can be seen from the picture. it’s very hard to localize the 

pupil in our eye images So we try to extract some more general features from the eye 

images. 

 

Figure 19: Eye images from our Kinects.  

In our model, the 3D eye points will be projected to color image to localize the 

eyes. A rectangular box will be used to extract the eye images. By filtering and 

normalizing them, we can resample the images to construct a feature vectors (see Figure 

20). The filter we use is the linear regression smoothing filter which smooth data by 

locally weights. After extracting the feature vectors. We will use the linear regression 

model to find the relationship between the relative angles and those feature vectors. 
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Figure 20: Construction of feature vector from eye images. 

The eye images are extracted from the color images and transformed into gray 

scale. After being normalized and smoothed by linear regression filter, the square eye 

image will be resampled which is shown by orange grids: the value of each crossing point 

will be taken out to form a feature vector. 

The linear regression model is approach for modeling the relationship between a 

scalar dependent variable y and one or more explanatory variables, denoted as 𝑋 . The 

model assumes that y can be decided or explained by 𝑋  linearly which means y can be 

written as a linear function of 𝑋 . If we assume 𝑋  is a 𝑅𝑛 vector, whose 𝑖𝑡ℎ component are 

represented by𝑥𝑖 . The mathematical equation can be shown as follows: 

y =  ∑ 𝑎𝑖
𝑛
𝑖=0 𝑥𝑖 + 𝜀                                                          (12) 

, where 𝜀 usually represents the Gaussian noise. In machine learning filed, a training set 

(known the values of 𝑋  and y) is used to estimate the coefficients 𝑎𝑖 in the model and a 

test set which is independent of training set is employed to validate the model. In our 

study, the explanatory variables will be the feature vectors and the dependent variables 

will be three relative angles between gaze vector and reference vector.  
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In our project, the training dataset and test dataset are captured from five 

recording sessions. In each session, a ping-pong ball is placed in a different position and 

the user is asked to keep gazing at the ping-pang ball, but moving his head freely (See 

Figure 21). At the same time, we will record the color images and HD face points from 

the Kinect mounted on the footboard. The frame rate for color images is about 30fps and 

15fps for the face tracking. By using the training data for which we have known the 

inputs’ and the corresponding outputs’ value, we can compute the parameters in the 

model. Eventually the test data will be used to show the accuracy and robustness of our 

method.  

 

Figure 21: Target positions in different recording sessions. 
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RESULTS 

Results 

1. Intrinsic parameters  

The intrinsic calibration results for each cameras are shown in table 1. 

Table 1: Intrinsic calibration results for each camera 

 Focal length 

(mm) 

Image center 

(mm) 

Distortion coefficients 

Kinect 1’s IR 

camera 

367.5 [263,209] [0.056, -0.17, 0.0005,0.001, 0] 

Kinect 2’s IR 

camera 

359.7 [260,202] [0.06, -0.18, 0.0009,0.002, 0] 

Kinect 1’s 

RGB camera 

1059.5 [948,537]  [0.016, -0.011, -0.0004,-0.0006,0] 

Kinect 2’s 

RGB camera 

1055.7 [957,535] [0.022, -0.016, -0.0006,-0.0008,0] 

 

As shown in the table, the focal lengths and center coordinates are quite different 

from each other for different Kinect’s depth cameras which shows the necessity of doing 

the intrinsic calibration for each camera. By using the above parameters and the pinhole 

model, we can project the points in the 3D camera space to the pixels on 2D color or 

depth images.  

2. Extrinsic parameters 

Table 2: Relative geometrical relationship between cameras in one Kinect 

 Rotation Matrix Translation vector (mm) 

Kinect 1 
(

0.9999 0.0047 0.0008
−0.0047 0.9999 0.0018
−0.0008 −0.0018 0.9999

) [
52.8

0.0019
−0.0023

] 

Kinect 2 
(

0.9999 0.0006 0.0005
−0.0006 0.9999 0.0035
0.0005 −0.0035 0.9999

) [
52.8

0.0039
−0.024

] 
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The extrinsic calibration results for the cameras in one Kinect are shown in table 2. 

The parameters give us relative geometrical relationship between the color camera and IR 

camera in one Kinect. 

The above rotation matrix and translation vector allow us to finish the mapping 

between the 2D color space and 2D depth space for each Kinect separately. One more 

thing we need to notice is that, according to the translation vector, the distance between 

the color camera and IR camera in the same Kinect is about 52.8mm and it is consistent 

with the measured physical distance (51mm). This gives us more confidence in trusting 

the extrinsic calibration results. 

Table 3 shows the results of the extrinsic calibration between two Kinects. By 

using rotation matrix and translation vector, we can transform the spherical targets’ 

points from one Kinect’s coordinate to the points in the other Kinect’s coordinates. The 

3D reconstruction of the spherical targets from both Kinects are shown in Figure 22. 

Table 3: Relative geometrical relationship between Kinects. 

Rotation Matrix Translation vector (mm) 

(
−0.7739 0.1174 −0.6742
−0.1630 0.9852 0.0036
−0.6436 −0.1529 −0.7367

) [
1061.3
338.1
1623.5

] 

 

  As shown in the figure, especially the area within the orange circle, the points 

from the Kinect mounted on the headboard (red) and that from the Kinect mounted on the 

footboard clearly show the two sides of the same spherical target. The distance between 

the target’s centers estimated from two Kinects have also been calculated and are shown 

in Table 4. For different places, the misalignment ranges from 2.8mm to 13mm. 
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Compared with the geometrical size of the objects in the environment, the error is relative 

smaller.   

 

Figure 22: 3D reconstruction of spherical targets from both Kinects 

Table 4: Relative distances between ball centers 

Position 1 2 3 4 5 6 7 8 

Distance 

(mm)  

10.2334 12.9735 11.7640 9.9914 6.4880 9.6813 14.1591 2.8277 

 

3. Head orientation vectors 

The top and left side view of the 3D face with estimated head orientation vectors 

attached have been shown in Figure 23 and 24. In the figures, the green line indicates the 

vector estimated by our method and the red line is computed from quaternion given by 

Kinect. Since the head orientation vector is just a rough approximation for gaze vector 

and used only when the eyes are hard to detect, there is no qualitative methods applied to 

test its accuracy. But from the figures, especially Figure 24, it does show that the vector 

estimated by our method is more accurate than that from Kinect. 
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Figure 23: Comparison between the estimated head orientation vectors from two 

methods 

(Top View) 

 

 
Figure 24: Comparison between the estimated head orientation vectors from two 

methods 

(Left Side View) 
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4. Stability of eyeball center and visible eye center 

The estimation of eyeball centers and visible eye centers play a very important 

role in our project, since it directly decides the accuracy of the reference vector and gaze 

vector. So it’s necessary to detect its stability. Both centers’ 3D position can change with 

head motion, but their relative points to the other points on the face should be a constant 

across the time. So in Figure 25, we will test how the relative distances between eyeball 

centers, visible eye centers and nose tip change with time.    

 

Figure 25: Stability analysis 

As shown in the pictures on the top left, the mean distance between right eyeball 

center and nose tip is around 0.0665m in the first session and the standard deviation is 

less than 5mm.  

By comparing the top two subplots, it also shows that the relative distance in 

different experiments are pretty consistent (around 0.066 m). Both results indicate that 

the estimation of eyeball centers are very stable and the same conclusion can be drawn 
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for the relative distance between visible eye centers and the nose tip according to the 

bottom plots in Figure 25. 

5. Angle distribution 

 

Figure 26: Angle distribution 

The gaze vectors and corresponding reference vectors are extracted from each 

frame in this dataset and the relative angles are computed. The angle distribution are 

shown in Figure 26 and different colors indicates the data from different recording 

sessions. As can been seen from the picture, all of the relative angles cluster together and 

the reason is that, during each recording session, the user can gaze at the target in 
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different ways by moving the head and pupils. So each recording session have almost 

covered all of the possible relative angles.    

6. Predicted gaze vectors:  

After decomposing the rotation matrix and acquiring the three relative angles 

between reference vectors and gaze vectors. We can start the gaze vector estimation and 

test its accuracy. 

Table 5: Confusion matrix for the type 1 Gaze Prediction   

 TARGET 1 TARGET 2 TARGET 3 TARGET 4 TARGET 5 

SESSION 1 0.7574 0.0163 0.0860 0.1241 0.0163 

SESSION 2 0.2136 0.5502 0.0712 0.1438 0.0213 

SESSION 3 0.1810 0.0497 0.6572 0.0746 0.0375 

SESSION 4 0.3343 0.0698 0.2193 0.1490 0.2276 

SESSION 5 0.1714 0.2220 0.1412 0.0081 0.4573 

 

The prediction is divided into two categories. Firstly, we will use the data from 

the four sessions as training dataset to calculate the parameters in the linear regression 

model and test the model by the data from the remaining session. For each frame in the 

remaining session, the feature vector from the eye image will be put into model to 

estimate the relative angles and the angles will be used to rotate the reference vector to 

get the gaze vector. Estimated gaze vectors (from eyeball center to five targets) will be 

used to find the closet target. The accuracy is shown in table 4, the ith row indicates the 

results for the prediction that using ith session as testing dataset. For example, for the first 

row, the training datasets are from session 2-5 and the 1st dataset is used to test the 
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performance, the results that, for around 75% of the whole time, the model can succeed 

predicting that the patient is looking at the first target. The goal of this prediction is to test 

the algorithm’s performance in the condition that is not included in the training session.    

The second prediction process uses 20% of the dataset from fives experiments to 

train the model and test the accuracy by using the remaining 80% dataset. The way of 

estimating the target of gaze is the same as the one used in the above. The confusion 

matrix are shown in Table 5. As we can see from the table, for target 1, 2, 3, the accuracy 

of detection can achieve above 75%. For the fourth and fifth targets (see Figure 21), the 

low accuracy is caused the poor eye images captured. When the patient is looking up or 

down, it’s much harder to see the complete eyes. But comparing table 5 and 6, it shows 

that, if we try to cover as much possible targets as possible in our training session, the 

prediction accuracy can be increased by around 10%.  

Table 6: Confusion matrix for the type 2 Gaze Prediction 

 TARGET 1 TARGET 2 TARGET 3 TARGET 4 TARGET 5 

SESSION 1 0.8632 0.0198 0.0615 0.0361 0.0193 

SESSION 2 0.1012 0.8202 0.0532 0.0097 0.0157 

SESSION 3 0.1981 0.0045 0.7571 0.0085 0.0318 

SESSION 4 0.1313 0.0413 0.1504 0.6691 0.0079 

SESSION 5 0.1435 0.1772 0.1168 0.0012 0.5613 
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DISCUSSION 

Discussion 

Recently, some intrusive commercial hardware have been used to track gaze 

points, like Pupil, Tobii, but, in the clinical environment, mounting an eye- tracking 

system on patients’ heads or mounting a camera close to patients may influence the clinic 

flow, thus making them infeasible. Our work is trying to develop a system which 

minimizes the intrusiveness and can be employed in clinical environment, even though 

our system may not be as accurate as the current commercial system. Compared with the 

traditional methods of gaze detecting, our method allows a wider detection range and 

loose the limitation on users’ movements. Traditional methods usually requires a distance 

around 0.5m between the user and the camera to acquire a high resolution eye images, 

but the distance can be around 2m in our project, while achieving a accuracy around 70%.   

In the clinic environment, one of the tradeoff we need to consider is the memory 

used to store the data and the compression ratio of the images. Currently, we store the 

data as JPEG format, in order to save more spaces, we compress the picture by a ratio 

around 15%. When the ratio goes higher, the images can become less and less blurred. By 

employing the images with higher compression ratio and finding more robust features, 

we believe it can further improve the accuracy of our method.   

One more way to improve the performance is to filter out the ‘bad’ training data. 

Now the raw data is been used to training the linear regression model, but, if we can filter 

out the frames in which the patient is blinking or closing his eyes, we believe it will also 

help improve current method’s performance. 
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Now all the results we get are all from the offline analysis which means we 

collect the data firstly and then use Matlab to process it. But, for the purpose of the 

clinical use, we will need to test the algorithm on real-time system to compute its latency 

and flexibility in the future. 
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