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ABSTRACT OF THE DISSERTATION

Estimation of Spatial-Temporal Hawkes Models

for Earthquake Occurrences

by

James Molyneux

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2018

Professor Frederic R. Paik Schoenberg, Chair

Point processes have long been used as an effective modeling technique in the forecasting

of earthquakes. In this dissertation, we evaluate the ability of earthquake focal mechanisms

to predict the locational direction of future events and the usefulness of more complicated

point process models including such covariates. We also introduce a new computational

method for estimating parameters of point processes models using the Stoyan-Grabarnik

estimator which avoids the need to numerically compute the intractable integral term needed

to compute estimates via maximum likelihood.
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CHAPTER 1

Introduction

Self-exciting point processes are a class of probability models for phenomenon whereby an

occurrence of an event, represented as a point in space-time, leads to a temporary elevation

of similar events occurring soon after. These models have been successfully applied to fields

such as epidemiology (Njabo et al. 2016), environmental studies (Balderama et al. 2012),

wildfires (Peng et al. 2005; Xu and Schoenberg 2011), criminal justice (Mohler et al. 2011;

Stomakhin et al. 2011), e-mail networks (E W Fox et al. 2016), and seismology (Ogata

and Zhuang 2006a; Ogata 2011; Wang et al. 2011; Console et al. 2009; Chu et al. 2011;

Tiampo and Shcherbakov 2012; Helmstetter and Werner 2012). In this dissertation we aim

to evaluate the potential benefits of extending a popular seismology model, the Epidemic

Type Aftershock Sequence (ETAS), to include earthquake faulting covariates. We also aim

to develop a new computational method for estimating parameter values of point process

models in general.

The first part of this dissertation aims to assess the predictive qualities of earthquake

focal mechanisms, which describe the orientation of the faulting that occurred. We also

evaluate the degree to which including earthquake focal mechanisms improve model perfor-

mance for non-parametric Hawkes processes. The latter part of this dissertation describes

a new computational technique to compute parameter estimates for point processes using

the Stoyan-Grabarnik statistic (Stoyan and Grabarnik 1991). We also describe difficulties

this new computational method brings to light and areas where future work is still needed.

Throughout, we use actual and simulated earthquake catalogs and so we describe the scien-

tific context of seismology below.
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1.1 Scientific context: Seismology

Earthquakes are potentially devastating events which occur when stresses, caused by the

movement of Earth’s tectonic plates, are relieved by fracturing within the Earth’s crust. The

need to accurately forecast when and where these events are most likely to occur represents

a fundamental issue for the field of seismology (Bolt 2003). Forecasts are needed, not just for

short-term allocation of emergency resources, but also for long term insurance rates, building

codes, and earthquake preparedness (Jordan and Jones 2010). To this end, seismologists have

developed earthquake forecasting models such as ETAS (Ogata 1998) and Uniform California

Earthquake Rupture Forecast (UCERF3) (Edward H Field et al. 2015) among others as well

as testing centers such as the Regional Earthquake Likelihood Models (RELM) (Edward H.

Field 2007) and the Collaboratory for the Study of Earthquake Predictability (CSEP) (J

Douglas Zechar et al. 2009) to measure and compare the effectiveness of different forecasting

models.
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CHAPTER 2

Background

In this chapter, we lay out the fundamental frameworks for point processes, the estimation

of point process models and describe the basic intuition for earthquake focal mechanisms.

2.1 Point processes

A point process (Daley and Vere-Jones 2007; Daley and Vere-Jones 2008) is a collection

of points {τ1, τ2, . . .} which occur in some metric space. A spatial-temporal point process

is a stochastic process which generates a countable set of points {(si, ti) : i = 1, 2, . . . , N}

in R2 × R. For spatial-temporal point processes, we often consider the counting process,

N(B) ∈ {0} ∪ N, where N(B) is a random measure on a complete metric space S which

describes the number of points falling within some Lebesgue measurable compact set B.

Spatial-temporal point processes are typically modeled via their conditional intensity

functions where, given the history of the process, H, up to time t,

λ(s, t|Ht) = lim
∆s,∆t↓0

E[N{(s, s+∆s)× (t, t+∆t)|Ht]

∆s∆t
.

The conditional intensity function thus describes the infinitesimal expected rate by which

points occur in space and time (s, t) given the history of the process. Additional covariates

for points, called marks, can also be incorporated into the conditional intensity function. In

seismological contexts, a mark could be the magnitude of an earthquake or its fault plane

geometry. For simple, i.e. (si, ti) ̸= (sj, tj) for all i ̸= j, finite-dimensional point processes,

the conditional intensity function uniquely identifies the point process (Daley and Vere-Jones

2007).
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2.2 Self-exciting point processes

Self-exciting point processes, or Hawkes processes (Hawkes 1971), are a class of branching

point processes in which there is a positive, or for self-correcting point processes a negative,

correlation between points. In the purely temporal context, the conditional intensity function

of a self-exciting point process is denoted

λ(t|Ht) = µ(t) +K
∑
i:ti<t

g(t− ti)

where µ(t) describes the background rate of the process as a function of time and g(t −

ti), called the triggering function, describes the temporary excitation of additional points

attributed to those which occurred previously. The productivity of the triggering function

is described by K. Figure 2.1 shows an example of a purely temporal Hawkes process. In

the figure, it is important to note the many discontinuities which, as we explain in Section

2.2.2 below, explains why computing integrals of a Hawkes process is so difficult.

1

2

3

0.0 2.5 5.0 7.5 10.0
t

λ(
t|H

t)

Figure 2.1: An example of a temporal Hawkes model with parameterization

λ(t) = µ + K
∑

i:ti<t e
−α(t − ti) and parameter values (µ = 0.25, K = 1, α = 0.5). Red

tick marks along the x-axis indicate background events and blue tick marks indicate excited

events.
4



For marked self-exciting point processes, such as those used in seismology, the conditional

intensity function is written

λ(s, t|Ht) = µ(s, t) +K
∑
i:ti<t

g(s− si, t− ti;mi)

where µ(s, t) describes the background rate as a function of location and time and mi repre-

sents the mark of point i.

2.2.1 Epidemic type aftershock sequences

One of the most important models of earthquake occurrences in seismology is the ETAS

model. First proposed by Ogata (1988) as a means to explain the temporal occurrence of

earthquakes and their aftershocks, it was later expanded in Ogata (1998) to include both

temporal and spatial aspects of earthquakes. Many different parameterizations of the model

have been attempted, and indeed many variants of the model exist.

In general, these models can be expressed as

λ(t, x, y|Ht) = µ(t, x, y) +
∑
i:ti<t

g(t− ti, x− xi, y − yi;mi)

where x, y denote the spatial locations and m the magnitudes of the events within an earth-

quake catalog. For this dissertation, we use the common parameterization of the triggering

function

g(t− ti, x− xi, y − yi;mi) =
K

(t− ti + c)p
· eα(m−Mc)

((x− xi)2 + (y − yi)2 + d)q

where Mc denotes the fixed magnitude cut-off for the earthquake catalog, Keα(m−Mc) de-

scribes the magnitude distribution of events, (t− ti + c)−p describes the temporal distribu-

tion of events, and ((x− xi)
2 + (y − yi)

2 + d)−q describes the spatial distribution of events.

The parameterization for the magnitude and temporal distributions are based on the the

Gutenberg-Ricter law (Gutenberg and Richter 1944) and modified Omori formula (Utsu

1961), respectively. This triggering function can also be equivalently expressed as a density,

the benefits of doing so are addressed in Chapter 4,

g(t− ti, x− xi, y − yi;mi) =
K(p− 1)cp−1(q − 1)dq−1

π(t− ti + c)p
· eα(m−Mc)

((x− xi)2 + (y − yi)2 + d)q
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For both parameterizations, the parameters in which we are interested in estimating are

(µ,K, c, p, α, d, q).

2.2.2 Parameter estimation via maximum likelihood

For a given point process model, the method most often used to estimate the parameters of

such a model is by maximizing the log-likelihood

ℓ(θ) =
N∑
i=1

log(λ(si, ti|Ht))−
∫
S

∫ T

0

λ(s, t|Ht) dtds

where S denotes the spatial region of interest from time 0 to T . While the summation term

of the log-likelihood is easily computed, the integral term represents a significant challenge

as analytical solutions do not exist and thus must be computed numerically (Harte 2012).

The challenge of computing the intractable integral term represents a limiting feature in

applications requiring either small to moderately sized data sets or access to large compu-

tational servers. Though difficult to compute, under a set of general conditions, maximizing

the log-likelihood is consistent, unbiased, efficient, and asymptotically normal (Ogata 1978).

Furthermore, the maximum likelihood estimates (MLE) for point processes have known stan-

dard errors which can be computed from the negative of the diagonal elements of the Hessian

matrix (Rathbun and Cressie 2016).

2.3 Earthquake focal mechanisms

For earthquake that occur in an area with sufficient coverage of seismometers, the waveform

data produced can be used to estimate a focal mechanism which describes the deformation

that occurred at the earthquake source. By examining the direction of first-motions of

seismometers, seismologists estimate the double-couple of the earthquake which represents

the deformation as two nodal planes, one of which represents the fault along which the

rupture occurred while the other is known as the auxiliary plane and is orthogonal to the

fault plane (Aki and Richards 2002). Seismologists often represent focal mechanisms using

beach ball diagrams, which show the estimated nodal planes as well as the vectors of tension
6



and pressure as shaded and unshaded regions, respectively. The orientation of the planes

along with the tension and pressure vectors allow seismologists to infer the type of faulting

which occurred during an earthquake. Figure 2.2 shows an example of a beach ball diagram

for the Easter Sunday earthquake which occurred in Baja California, Mexico in 2010.

Figure 2.2: Beach ball diagram for the 7.2 magnitude Easter Sunday earthquake which

occurred on April 4th, 2010 in Baja California, Mexico. Shaded regions indicate areas of

tension and unshaded regions indicate areas of pressure. The intersecting planes represent

the estimated nodal planes. Text along the circle indicate the direction of the seismometers

used to estimate the focal mechanism. Image courtesy of the Southern California Earthquake

Center.

The hope among seismologists is that focal mechanism information will have high pre-

dictive value for earthquake forecasting, particularly with respect to information about the

orientation of the fault plane on which triggered events primarily occur (Kagan 2014). After-

shocks have indeed been observed to occur more densely at the ends and along fault ruptures

and less densely in areas orthogonal to the rupture, in agreement with theoretical studies

of Coulomb stress (Das and Henry 2003). Henry and Das (2001) report in particular a ten-

dency for aftershocks to occur along the estimated strike of strike-slip mainshocks, again in

7



agreement with geophysical theory of Coulomb stress. For example, Strader and Jackson

(2014) found that resolving Coulomb stress onto the more favorable nodal plane of a receiver

earthquake resulted in an increased number of earthquakes occurring in areas of high-stress.

Thus, estimated focal mechanisms have been used to project the changes in stress in order

to highlight areas of increased anticipated aftershock activity following earthquakes. For

additional information about Coulomb stress, its derivation and its properties, see Scholz

(2002).

Unfortunately, focal mechanism estimates are known to suffer from large uncertainties

(Kagan 2003). In particular, large errors are associated with estimates of the orientation of

nodal planes which describe the deformation that occurs at an earthquake’s source (Kagan

2014). In addition, determining which nodal plane is the fault plane and which is the

auxiliary plane is not possible from the estimation procedure and relies on the use of other

geological data (Aki and Richards 2002).
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CHAPTER 3

Assessing the Accuracy of Focal Mechanism Estimates

for Non-Parametric Hawkes Processes

3.1 Introduction

As described in Chapter 2, when an earthquake occurs in an area with sufficient coverage

of seismometers, the waveform data produced are used to estimate a focal mechanism which

describes the deformation that occurred at the earthquake source. Such earthquake focal

mechanism estimates have become increasingly common recently with the deployment of

broadband seismometers and more powerful computers (Clinton et al. 2006). Also as de-

scribed in Chapter 2, focal mechanisms are known to contain considerable errors in their

estimation, potentially limiting their usefulness for earthquake forecasting.

Figure 3.1 illustrates how large the errors can be in the strike angle estimates obtained

from estimated nodal planes. As shown in Figure 3.1, there can be considerable discrepancy

between the two nodal plane estimates and the direction of subsequent seismicity. This

disagreement cannot reasonably be explained as resulting from location errors, since the

local seismicity itself is nearly linear in this example and in many others. Figure 3.1 also

highlights the ambiguity that can exist in determining which nodal plane is the fault plane

and which is auxiliary.
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Figure 3.1: Strike angle estimates (dashed lines) based on estimated nodal planes for a

5.12 Ml mainshock (red dot) in Southern California, with an estimated depth of 10.1 km,

occurring on May 5, 2010. Black points indicate earthquake with epicenters in the range

[−116.066,−115.627] in longitude, [32.481, 32.833] in latitude, with magnitude at least 2.8,

and occurring between 0.3 and 2137.7 days after the mainshock.

The objective of this chapter is to describe and quantify the degree to which such es-

timated strike angles increase our ability to forecast future seismicity, from a statistical

perspective. One way to assess the benefit of these measurements would be to compare the

performance of earthquake forecasts made with focal mechanism estimates to those made

without the use of focal mechanism estimates. Unfortunately, however, such estimates re-

main presently unused in almost all models for forecasting seismicity, such as ETAS and

other models used in forecasting studies such as the Regional Earthquake Likelihood Model

(RELM) working group and the Collaboratory for the Study of Earthquake Predictability

(CSEP) (Schorlemmer et al. 2010; J D Zechar et al. 2013). An exception is Kagan and
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Jackson (2014), which used previous focal mechanisms to forecast future focal mechanisms

as well as future seismicity, and Kagan et al. (2007) used focal mechanisms in their five

year forecast to orient anisotropic smoothing, though such inclusion resulted in negligible

improvement in forecasting (Wang et al. 2011). Ogata (1998) found that using anisotropic

smoothing, based on the general direction of faulting in Japan, led to improved forecasts for

Epidemic Type Aftershock Sequence (ETAS) models, and Ogata and Zhuang (2006b) and

Ogata (2011) report improved fit from ETAS models with spatially varying parameters, but

such parameters are typically not estimated presently using focal mechanism estimates. Be-

cause many competing models have been offered, with widely varying implications in terms

of seismic hazard (Schoenberg and Patel 2012) and there remains considerable disagreement

about which model is optimal, we instead examine the impact of estimated strike angles

non-parametrically, using data-driven methods and keeping modeling assumptions about

particular functional forms to a minimum.

Recent articles by Guo et al. (2015) and Guo et al. (2017) investigated how fault ge-

ometry estimated using previous seismicity for large (M ≥ 7.5) earthquakes in China and

Japan impacted parameter estimates of Epidemic Type Aftershock Sequence (ETAS) models

(Ogata 1998). However, these studies did not quantify the extent to which including fault

geometry in the models improved earthquake forecasts. In this chapter, we compare the

degree to which estimated strike angles forecast the direction of future seismicity around a

given earthquake to that of uniformly distributed angles or angles estimated based on seis-

micity occurring before the mainshock. Also, using the estimation method of Marsan and

Lengliné (2008b), we consider purely non-parametrically estimated Hawkes models using the

estimated strike angle that best fits the post-mainshock set of events for each mainshock and

compare their predictive performance to corresponding models that exclude these estimates.

3.2 Data

Data on estimated origin times, locations, and magnitudes of 17,734 shallow (depth ≤ 75 km)

earthquakes of magnitude M ≥ 2.8 in Southern California from 1980 to 2016 were recorded
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by the Southern California Seismic Network (SCSN) and obtained from the Southern Cali-

fornia Earthquake Data Center (SCEDC) (California Institute of Technology (Caltech) 1926;

SCEDC 2013). Most of these events contain no focal mechanism estimates. Each earthquake

in the catalog was assigned a location quality grade and we restrict our attention exclusively

to those earthquakes considered to have a location quality of C or better. SCEDC also

compiles the focal mechanism estimates for a subset of 899 of these events dating from 1999

to 2016, with variance reduction ≥ 40, variance reduction being a measurement of focal

mechanism estimation quality.

In what follows, to distinguish these 899 events with focal mechanism estimates we refer

to them as mainshocks, though the branching structure of the earthquakes is unknown, and

many of these 899 events may actually be aftershocks of other events. Each nodal plane

is described by a set of three angles. The azimuthal strike angle is the angle created by

intersecting the nodal plane with a horizontal surface, such as the surface of the Earth, and

are measured as counter-clockwise degrees from North. Dip angles describe the downward

angle of the plane from the horizontal surface of the Earth. A dip angle of 0◦ would lie

parallel to the surface of the Earth whereas a dip angle of 90◦ would be perpendicular

to the surface. The rake angle describes the direction of planar movement relative to the

horizontal surface, i.e. the movement of the fault in the direction of the strike angle. For each

mainshock, we examine the dip angle of the nodal plane whose strike angle best fits the post

mainshock set of events (using fitting criteria described in Section 3.1) and exclude events

with dip angles ≤ 75◦. This leaves us with nodal planes that are near-vertical as in the

case of strike-slip faulting. Additionally, we exclude mainshocks that had fewer than three

earthquakes occur prior to the mainshock and within a distance of 10−0.5(Mi−Mc), which is of

standard use in seismology as a maximum distance of aftershocks around small-to-medium

sized mainshocks for catalogs with magnitude cutoff Mc (Scholz 2002). For this subset of

333 strike-slip mainshocks, the strike angle of the best fitting nodal plane should closely

resemble the fault plane and have enough previous seismicity to estimate additional strike

angles statistically.

The catalog of 17,734 earthquakes without estimated focal mechanisms is used in our
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analysis for strike angle estimation and evaluation. That is, we compare the estimated strike

angles for the 333 strike-slip mainshocks to strike angle estimates obtained using the other

observed events that occurred before each mainshock, and evaluate the overall fit of our

different strike angle estimates on events that occurred after each mainshock. To ease the

computational burden of the estimation procedure for the non-parametric Hawkes model

described in Section 3.2, we raise the lower magnitude cutoff for both catalogs used in the

estimation to M > 3.25 leaving us with 5,649 earthquakes without focal mechanisms and

330 mainshocks.

3.3 Methods

3.3.1 Fault angle estimation and evaluation

To help assess how well the recorded strike angle estimates forecast the direction of future

seismicity, we consider three alternative estimates of strike angle, based on prior seismicity

rather than recorded double-couple estimates. First, let θ̂i, i = 1, ..., 330, denote the strike

angle estimates based on the estimated nodal planes obtained from SCEDC. Given mainshock

i at location (xi, yi) with magnitude Mi, consider the set Si of events that occurred prior to

the mainshock within the mainshock’s aftershock radius, which is taken as

d(Mi) = 10−0.5(Mi−Mc),

following Scholz (2002).

Consider an alternative strike angle estimate, θDi , computed using Deming regression

(Deming 1943), so that θDi is the slope of the line minimizing the sum of squared orthogonal

distances to the events in Si. That is, assuming an equal amount of error in the x and y

directions, we compute the slope of the line as

β̂∗
1 =

s2y − s2x +
√

(s2y − s2x)
2 + 4 · cov2(x, y)

2 · cov(x, y)

with intercept

β̂∗
0 = ȳ − β̂∗

1 x̄
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where x, y are sets of points in Si, x̄, ȳ are the mean values of x and y, and s2x, s2y are

the sample variances for x and y, respectively. Another possible strike angle estimate, θai ,

may be defined as the slope of the line through (xi, yi) minimizing the mean absolute error

(MAE) where errors are defined as the angles formed by the θai and the rays from (xi, yi) to

each preceding earthquake in Si. In what follows we also consider the estimate θui obtained

simply by choosing an angle between 0− 360◦ uniformly at random.

To evaluate the strike angle estimates θ̂i, θDi , θai , and θui , we consider two different fitting

criteria. One is the root mean squared error (RMSE), where errors are defined as the

orthogonal distance between the line whose slope is derived from the strike angle estimates

and the events occurring after mainshock i within a distance of d(Mi). That is, for points,

(xj, yj), j = 1, . . . , n, occurring after a mainshock and within the aftershock radius, let

(x∗
j , y

∗
j ) denote the points on the line which form orthogonal angles between the line and

points (xj, yj). Then

RMSE =
∑
j

√
(xj − x∗

j)
2 + (yj − y∗j )

2.

We also consider the mean absolute value of the angles formed by the line whose slope is

derived from the corresponding strike angle estimate and the same set of events occurring

after each mainshock. This allows us to compare how well each strike angle estimate forecast

the direction of seismicity that occurred after each mainshock. Estimates with smaller RMSE

or smaller angular MAE would have better forecast the direction of future seismicity.

Since the two estimated nodal planes of a double-couple are indistinguishable, we calcu-

late the RMSE and minimum angular MAE for each nodal plane strike angle, and for each

fitting criteria, let the best fitting nodal plane strike angle θ̃i denote the nodal plane strike

angle that minimizes the RMSE or angular MAE. Similarly, since the focal mechanisms are

essentially given two chances to fit a strike angle to the events occurring after a mainshock,

one may also consider a second, orthogonal angle for each of our strike angle estimates based

on previous seismicity, as well as the estimate chosen uniformly at random, and label the

better fitting of the two angles θ̃Di , θ̃ai , or θ̃ui , correspondingly. This allows us to measure how

the selection of the better fitting angle among a strike angle estimate and its complement
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affects the overall performance in forecasting the direction of future seismicity.

For each of the n = 330 mainshocks and for each strike angle estimation method described

above, we compute the mean and standard error (SE) of the RMSE and angular MAE for

the post mainshock set of events, where the SE is calculated as the standard deviation of

the RMSEs divided by
√
n. In order to compare the estimates to the angle best fitting the

seismicity following each mainshock, we also compute retrospective or gold angle estimates,

θgi , defined for each mainshock and each fitting criterion as the angle with minimal RMSE

or minimal mean absolute angle from the post mainshock set of events.

3.3.2 Non-parametric Hawkes model

In order to compare the predictive performance of point process models with strike angle

estimates to those without strike angle estimates, we fit Hawkes point process models to

the data non-parametrically, using the method of Marsan and Lengliné (2008b). We briefly

review some details of this procedure and some point process preliminaries here.

A point process is a collection of points {τ1, τ2, ...} occurring in some metric space (Daley

and Vere-Jones 2007; Daley and Vere-Jones 2008). A point process in space-time is typically

modeled via its conditional intensity function, λ(s, t), which is a stochastic process repre-

senting the infinitesimal rate at which points are expected to accumulate around location s

and time t, given all points occurring prior to time t.

The Hawkes, or self-exciting, point process model (Hawkes 1971) is a type of branching

point process which models the conditional intensity of a process given its history, Ht, up to

time t as

λ(s, t|Ht) = µ(s, t) +
∑
i:ti<t

g(s− si, t− ti) (3.1)

where µ(s, t) is the background rate of events occurring and the triggering function g de-

scribes the spatial-temporal rate at which points induce subsequent points The model extends

easily to the marked case where the triggering function g depends on earthquake magnitude

as well, and such marked versions are commonly used in earthquake forecasting in both

parametric (Ogata 1988; Ogata 1998) and non-parametric (Marsan and Lengliné 2008b;

15



Eric Warren Fox et al. 2016) forms.

In order to adapt the model to account for earthquake strike angles, we follow Gordon

and Schoenberg (2017) and adopt the following product form for the conditional intensity

function:

λ(x, y, t|Ht) = µ(x, y) +
∑
i:ti<t

gt(t− ti)gxy(x− xi, y − yi;mi, θ̃i)gm(mi) (3.2)

where µ > 0 is the background rate, gt and gxy are densities governing the temporal and

spatial triggering, respectively, and gm dictates how the productivity of aftershocks depends

on the mainshock magnitude. The functions gt(t− ti), gxy(x− xi, y− yi;mi, θ̃i), and gm(mi)

are each computed using the method of Marsan and Lengliné (2008a) whereby the estimation

of a Hawkes model is computed by maximizing the expectation of the complete data log-

likelihood and assigning the probability of each earthquake being a background event or an

aftershock of a previous event. Space-time-magnitudes were shown by Zhang (2017) to be

approximately separable hence we assume separability in our model. Here ti is the time of

the ith event, (xi, yi) is the two-dimension epicentral location of the ith event, mi is the

magnitude of the ith event and θ̃i is the best fitting strike angle from the ith double-couple.

For the spatial triggering, we take

gxy(x− xi, y − yi;mi, θ̃i) = gr(r;mi)gϕ(ϕ; θ̃i) (3.3)

where gr accounts for triggering as a function of distance from earthquake i and gϕ accounts

for the angular locations of triggering relative to strike angle θ̃i. We then compare the fit of

(3.2) to the corresponding model without strike angle estimates, i.e.

λ(x, y, t|Ht) = µ(x, y) +
∑
i:ti<t

gt(t− ti)gxy(x− xi, y − yi;mi)gm(mi). (3.4)

For both model (3.2) and (3.4), the functions µ, gt, gxy, and gm are estimated entirely non-

parametrically using the E-M type method as described in Marsan and Lengliné (2008b).

3.3.3 Voronoi deviance residuals

To compare the fit of models (3.2) and (3.4), one may inspect a residual process aggregated

over a (typically rectangular) grid of pixels as in Baddeley et al. (2005). Specifically, we
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examine deviance residuals (Clements et al. 2011) over such a rectangular grid. We also

compute Voronoi deviance residuals as in Bray et al. (2014). Such residuals are helpful

in evaluating the goodness of fit of point process models with highly volatile conditional

intensities, and Voronoi residual deviances have the advantage of being less skewed in their

distribution when compared to grid based residuals (Bray et al. 2014).

To construct Voronoi residuals, we partition the space into Voronoi cells, where each cell

Bi is defined as the set of locations closer to the observed point τi than to any of the other

observed points. Each Voronoi cell, Bi, then contains only the single point τi by construction.

For each bin Bi in a rectangular grid, or for each cell Bi in the Voronoi tessellation of

the observed points, we compute the deviance, or ratio of two corresponding log-likelihoods,

to evaluate the relative fit of two models. For two different intensity estimates, λ̂1 and λ̂2,

the deviance residual computed over cell Bi is

R(Bi) =
∑

i:(ti,xi,yi)∈Bi

log
(
λ̂1(ti, xi, yi)

)
−
∫
Bi

λ̂1(t, x, y) dtdxdy

−

 ∑
i:(ti,xi,yi)∈Bi

log
(
λ̂2(ti, xi, yi)

)
−
∫
Bi

λ̂2(t, x, y) dtdxdy

 .

A positive deviance residual implies that model λ̂1 provides a better fit to the data in the

given region while negative deviance residuals imply the opposite. Voronoi deviance residuals

are sometimes scaled by the dividing the log-likelihood ratio for each Voronoi cell by its area.

We use unscaled residuals so the total deviance for the competing models is simply the sum

of the binned deviances,
∑

iR(Bi). Total deviance values close to zero indicate minimal

difference in fit between the two competing models.

3.3.4 Stoyan-Grabarnik diagnostic

The temporal fit of (3.2) is evaluated using the Stoyan-Grabarnik diagnostic (Stoyan and

Grabarnik 1991)

E
( ∑

xi∈N∩B

1

λ(xi)

)
= |B|
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where N is the point process, B is a spatio-temporal window and λ(xi) is the conditional

intensity of point xi. Dividing the entire temporal window into n temporal bins, Bj with

j = 1, . . . , n, if the estimated intensity λ̂ is accurate then sum of the estimated inverse

intensities for points in bin Bi should approximate the volume of Bj with variance

Var

 ∑
xi∈N∩Bj

1

λ̂(xi)

 =

∫
S

∫
T

1

λ̂(t, x, y)
dtdxdy +

∑
xi∈N∩Bj

1

λ̂(xi)
− |Bj|2,

where S and T are the spatial and temporal windows, respectively. Baddeley et al. (2008)

notes that it is possible for λ̂(xi) to be zero and for the diagnostic to have a large variance.

Following their suggestions, we set 1/λ̂(xi) = 0 for values of λ̂(xi) that are zero or close to

zero.

3.4 Results

3.4.1 RMSE of orthogonal distances

The RMSEs for each of the strike angle estimates described in Section 3.1 are summarized

in Figure 3.2 panel (a). The average RMSE for the estimate θD obtained using Deming

regression on prior seismicity was 2.84 km, just slightly above the mean RMSE of 2.81 km

corresponding to θ̃, the best fitting of the two possible strike angles obtained using the

estimated nodal plane. Both θD and θ̃ fit subsequent seismicity significantly better than the

random uniformly distributed angle θu, which had a mean RMSE of 3.74 km, and both also

fit better than the angle θa minimizing the mean absolute angle to previous seismicity, which

had a mean RMSE of 3.16 km. Each estimate fit the aftershock seismicity significantly worse

than the retrospective best fitting angle θg, as the mean RMSE for θg was just 1.72 km.

Much of the apparent success of the estimated strike angle θ̃ in forecasting future seis-

micity is attributable to the fact that θ̃ is defined as the better fitting of the estimated

strike angle and its complement. Indeed, when each alternative estimator of the strike angle

is replaced with the better fitting of the estimate and its complement, the resulting RM-

SEs decrease markedly, as shown in Figure 3.2 panel (b). The estimates θ̃D and θ̃a have
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mean RMSEs of 2.60 km and 2.64 km, respectively, from subsequent seismicity. Both of

these strike angle estimates, which are obtained using only prior seismicity and not using

focal mechanism estimates, fit subsequent seismicity better than the nodal plane estimate

θ̃, which had a mean RMSE of 2.81 km. The RMSEs for θ̃ are not significantly lower than

those of the uniformly distributed angles θ̃u. Even after accounting for the the orthogonal

complements, each strike angle estimate in Figure 3.2 panel (b) had a significantly larger

RMSE than the retrospective best-fitting angle θg.

3.4.2 Mean absolute angles

The results are similar when considering angular MAE as the fitting criterion. Figure 3.2

panel (c) summarizes the angular MAE for each strike angle estimate, with an error defined

as the angular distance between an aftershock and the estimated strike angle. The average

angular MAE for the best fitting nodal plane estimate θ̃ (35.55◦) is significantly lower than

the average MAEs of θD (39.24◦), θa (39.60◦), and θu (46.15◦). However, the advantage of the

nodal plane estimate appears to be entirely due to the selection between the two orthogonal

nodal plane estimates, as shown in Figure 3.2 panel (d). Comparing the average MAEs of

the best fitting strike angles for each method, the estimates based on prior seismicity (34.56◦

for θ̃D and 34.37◦ for θ̃a) fit aftershock activity slightly better than θ̃ (35.55◦). In fact, using

MAE as a metric, the fit of the nodal plane estimate θ̃ was indistinguishable from that of the

uniformly distributed angle θ̃u (35.43◦). All four of the prospective strike angle estimates fit

significantly worse than the retrospective optimum θg (29.49◦).

3.4.3 Non-parametric Hawkes Process

Figure 3.3 shows the estimated contribution of the strike angles to the triggering function

of a non-parametric Hawkes model. The y axis shows the estimated triggering density, ĝϕ,

as a function of the angle the location in question makes with a mainshock, relative to the

estimated nodal plane strike angle θ̃ of that mainshock. The LOESS smoothing of the non-

parametric triggering density estimates in Figure 3.3 shows a downward trend indicating
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Figure 3.2: Mean ± 1.96 standard errors of the RMSEs, panels (a) and (b), and the mean

absolute angle of aftershocks relative to the mainshock strike angle estimate, panels (c) and

(d), of aftershocks for the n = 330 mainshocks. Here θ̃ is the best fitting strike angle estimate

θ̃, θu, θD, and θa denote the raw estimates, and θg represents the angle of minimal RMSE

to the subsequent seismicity. For panels, (b) and (d), each strike angle estimate θ̃· is the

best-fitting of θ· and its orthogonal complement, and the selection is performed for each

mainshock by minimizing the RMSE or the angular MAE of its aftershocks.
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Figure 3.3: Non-parametrically estimated triggering density ĝϕ for model (3.2), estimated

using the algorithm of Marsan and Lengliné (2008b). Horizontal line segments indicate, for

each subset of angles, the estimated triggering intensity of aftershocks occurring within this

subset of angular distances relative to the estimated strike angle derived from the estimated

nodal plane. The segments are smoothed by LOESS (blue curve).

fewer events were generally triggered at larger angles relative to the mainshock strike angle.

Figure 3.4 compares the conditional intensity over 0.05◦ × 0.05◦ grid cells across the

southern California region for the null model (3.4) assuming isotropic triggering to that of

model (3.2) incorporating the strike angle estimate θ̃. Both fitted models agree closely with

one another, though model (3.2) tends to be slightly more diffuse in low seismicity regions.

To compare the areas where model (3.2) improves the fit of the data over the null model

(3.4), the deviance residuals are shown in Figure 3.5 and the unscaled Voronoi deviance

residuals, where each Voronoi cell encloses each of the 330 mainshocks, in Figure 3.6. Red

areas indicate cells where the inclusion of θ̃ in model (3.2) led to an improvement in model

fit when compared to the null model (3.4), with the total deviance of Figure 3.5 being 615.86

in favor of model (3.2). This corresponds to an overall information gain (Daley and Vere-

Jones (2007) and Daley and Vere-Jones (2008)) of 0.103 per earthquake. Figures 3.5 and 3.6
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Figure 3.4: Estimated intensity of fitted non-parametric Hawkes models. (a) the estimated

intensity of null model (3.2) assuming isotropic triggering. (b) the estimated intensity for

model (3.4) which includes θ̃ in the triggering function estimate.
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Figure 3.5: Deviances comparing models (3.2) and (3.4) over 0.05◦ × 0.05 cells. Red tinted

cells indicate areas where the model (3.2), including strike angles, fit better than the null

model (3.4). Blue tinted cells indicate areas where model (3.2) fit worse than the null model

(3.4).

indicate that including θ̃ in the triggering function tends to improve the model’s fit especially

in the Northwest and Southeast portions of the San Andreas Fault, with only a few small

isolated areas where model (3.4) happened to outperform model (3.2).

The temporal fit of model (3.2) is shown in Figure 3.7. The model appears to fit ade-

quately, given the close agreement of the Stoyan-Grabarnik statistic to its expected value

under the assumption that the fitted model is correct.
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Figure 3.6: Voronoi deviance residuals, over a Voronoi tessellation of mainshocks with esti-

mated focal mechanisms. Red tinted cells indicate areas where the model (3.2), including

strike angles, fit better than the null model (3.4). Blue tinted cells indicate areas where

model (3.2) fit worse than the null model (3.4).
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Figure 3.7: Stoyan-Grabarnik diagnostic for model (3.2) using 100 temporal bins, with each

bin corresponding to 130 days. The black step function shows the observed sums of 1/λ̂ for

all points in bin Bj, j = 1, . . . , 100, solid red line indicates the expected value (|Bj|) and

dashed red lines indicate plus or minus two times the standard errors. The median number

of points per bin was 35 and the number of points per bin ranged from 15 to 675.
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3.5 Discussion

Nodal plane strike angles, θ̃, fit post-mainshock events slightly better in terms of RMSE and

substantially better in terms of mean absolute angle compared to strike angles estimated

based on previous seismicity, θD and θa. However, including a second, orthogonal estimate

for θD and θa and using the angle that fit the data best for each mainshock, as was done

for θ̃, led to such a substantial improvement in both θ̃D and θ̃a, in terms of RMSE and

mean absolute angle, that both θ̃D and θ̃a actually fit better than θ̃. In fact, θ̃ fit aftershock

seismicity no better than θ̃u, the latter of which was simply the better-fitting of a random,

uniformly distributed angle and its complement. The forecasting ability of θ̃ thus seems to be

entirely explained by the fact that the better-fitting of the nodal plane and its complement

is chosen as the estimated nodal plane.

Comparing the results of each evaluation method to θg provides a sense of the amount

of error inherent in the strike angle estimates. For instance, comparing θ̃ to θg using the

average mean absolute angle, the mean absolute angle to aftershocks for θg was 29.49◦ and

that of θ̃ was 35.55◦, corresponding to an increase of 6.06◦. Thus, the nodal plane estimate

includes about 6.06◦ more uncertainty, on average, beyond what can be explained by the

variability in the aftershock events alone.

Figure 3.3 shows the additional triggering of seismicity relative to θ̃ for the non-parametric

Hawkes model which includes θ̃ in the conditional intensity function. While there is a large

amount of variation in the additional triggering estimates, we do note that the LOESS curve

has a general downward trend as the angle bins become more orthogonal in agreement with

previous results indicating preferential occurrence of aftershocks along the strike angle. The

large amount of variation corresponding to each angle bin may be due to errors in the strike

angle estimates. Whether the improvement in model fit seem in the deviance and Voronoi

deviance residuals comes from the accuracy of the estimated nodal planes or from choosing

the better fitting strike angle of the two nodal planes is unclear and demonstrates some of

the challenges of incorporating fault geometry to forecast future events.

The analysis here used only strike-slip mainshocks so that benefits of using nodal plane
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strike angles would be most easily discerned. Given that each focal mechanism includes two

potential estimates for the true strike angle and each estimate contains a considerable degree

of error, we attempt to determine, statistically, which strike angle estimate is most plausibly

estimating the true strike angle and include this estimate in the model. Even for such strike-

slip events and choosing the most plausible strike angle estimate from the focal mechanisms,

we find no significant increase in accuracy of the nodal plane strike angles compared to strike

angles based on previous seismicity or those chosen uniformly at random.

Although we find that strike-angle estimates from focal mechanisms tend not to outper-

form strike-angle estimates based on prior seismicity, we do find that including the most

plausible strike-angle in model (3.2) was better than nothing in the sense of improving the

fit of a non-parametric Hawkes model compared to model (3.4), as shown in Figures 3.5 and

3.6. The models are largely in agreement in most areas, but there are more places where

including strike-angle estimates improved the model fit. Those pixels where model (3.2)

underperformed tended to do so more drastically than areas where model (3.2) tended to

perform better.

Similarly, Figure 3.6 shows that for the areas surrounding a mainshock with a strike angle

estimate, including said strike angle estimate overwhelmingly tended to improve the fit of

the model in all but a few Voronoi cells. That is, even though focal mechanism based strike

angle estimates tended to under-perform other strike angle estimates, including them in the

non-parametric Hawkes model tended to improve the overall spatial fit of the model.

The values of the Stoyan-Grabarnik diagnostic for model (3.2) are shown in Figure 3.7

and tend to lie inside the error bounds, despite considerable variation. In few instances did

the fitted model forecast significantly too many events, corresponding to Stoyan-Grabarnik

values below the lower error bound, or significantly too few events, corresponding to Stoyan-

Grabarnik values above the upper error bound. The large variability is not unexpected as

the variance of the Stoyan-Grabarnik diagnostic tends to rise in the presence of very small

conditional intensities.

For this chapter, we chose to use a non-parametric form for the conditional intensity to
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keep the number of modeling assumptions to a minimum. This allows us to examine the

effect of including fault plane geometry in the model in the absence of additional modeling

assumptions. Investigating how the inclusion of fault geometry in other parametric model

forms and how the effect of this inclusion compares to our work performed with the non-

parametric model are important areas for future research. It is also important to note that

this work was focused solely on earthquakes occurring in Southern California and further

research should be undertaken to determine the generalizability of our results to seismicity

in other areas of the world.

3.6 Conclusion

In this chapter, we examine different methods of forecasting the direction of aftershock

seismicity using strike angles from nodal plane estimates, strike angle estimates based on

previous seismicity, or random uniformly distributed angles. We evaluate the ability of

these estimates to forecast the direction of future seismicity based on minimizing orthogonal

distances and the mean absolute angle between the estimated strike angle and the locations

of future events. We also include the estimated strike angles for each mainshock in a non-

parametric Hawkes model and compare the deviance to a null Hawkes model that does not

include the strike angle.

The best fitting nodal plane strike angle estimates are shown to be marginally better

at forecasting the direction of future seismicity compared to estimates based on previous

seismicity and angles chosen uniformly at random. These best fitting angles also seem to

improve the estimates of the conditional intensity function in our non-parametric Hawkes

model. However, by including orthogonal complements to the estimates based on previous

seismicity and estimates chosen uniformly at random and then choosing the better fitting

angle estimate for each method (as the better fitting nodal plane strike angle estimates were

selected), the small advantage in forecasting future events shown by using the better fitting

nodal plane strike angle estimates completely disappears. This indicates that the errors

in nodal plane estimates are so large that their improvement in the conditional intensity
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estimate is entirely attributable to the fact that the better fitting of the two orthogonal nodal

planes is selected. Our results thus confirm previous findings that the errors in estimated

strike angles remain very large (Kagan 2003).

Important subjects for future work are to determine whether using strike angle estimates

based solely on previous seismicity in conjunction with estimates based on nodal planes

would lead to better fitting models, whether incorporating the dip and rake angles of the

estimated nodal planes might prove beneficial in forecasting future seismicity, and how in-

creased accuracy in future estimates of nodal planes would translate into increased accuracy

in projections of seismicity.
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CHAPTER 4

Parameter Estimation using the Stoyan-Grabarnik

Statistic

4.1 Introduction

The most commonly used method to estimate parameters of point processes has been to

maximize the log-likelihood (MLE). Parameter estimates using the MLE have been shown

to benefit from several desirable properties, such as consistency of the estimates (Ogata

1978), but are also known to be computationally taxing as each iteration of the optimization

routine requires the numerical integration of an intractable integral term (Harte 2012). This

difficulty in computation serves as a barrier to the use of point processes as the estimation

procedure for even moderately sized data sets can take a non-trivial amount of time to

converge.

Several alternative approaches have been proposed to estimate parameters for ETAS

models, or at least increase convergence times of parameter estimates. One such approach is

to use an EM algorithms (Veen and Schoenberg 2008) which views the estimation procedure

as a branching process with an incomplete data log-likelihood. While results using an EM

algorithm seem promising, implementing the procedure is non-trivial. A second approach

to speed time to convergence was proposed by Schoenberg (2013) and involves writing the

triggering function as a density and approximating the integral term as a much simpler

summation. Similar to the use of EM algorithms, this approach does not hold for point

processes in general and, as an approximation of the integral is involved, may very well lead

to inaccurate estimates of parameter values.
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In this chapter, we propose a new parameter estimation technique using the Stoyan-

Grabarnik statistic (Stoyan and Grabarnik 1991) which bypasses the need to compute the

integral of the conditional intensity function. In section 4.3, we give an overview of the

Stoyan-Grabarnik statistic, the use of this statistic for parameter estimation, and methods

of evaluating the fit of parameter estimates. 4.4 compares parameter estimates using the

new process with traditional MLE estimates and also compares the two methods in terms of

computation time. We then discuss the results of the methods and the issues still faced by

using the Stoyan-Grabarnik statistic in Sections 4.5 and 4.6, respectively.

4.2 Data and Simulations

We compare the estimated parameter outputs using the SG statistic to those computed via

MLE by using simulated earthquake catalogs using the ETAS parameterization

λ(x, y, t|Ht) = µ(x, y) +
∑
i:ti<t

K(p− 1)cp−1(q − 1)dq−1

π(t− ti + c)p
· eα(m−Mc)

((x− xi)2 + (y − yi)2 + d)q
. (4.1)

For simplicity, we assume a homogeneous background rate though in applications an inho-

mogeneous background rate would be more appropriate. For our simulations, we select 75

time periods to simulate over uniform randomly between 100 and 7,000 days. We also set

the parameter values to be (µ = 0.5, K = 0.25, c = 0.02, p = 1.3, α = 0.75, d = 0.05, q = 1.8).

Additionally, we set the value of β in our simulations, which is used to describe the mag-

nitude distribution based on Gutenberg and Richter (1944), to equal 0.5. Our simulations

use power laws for both the spatial and temporal decay of aftershocks along with expo-

nential productivity for magnitudes and exponential magnitude density. Spatial locations

are simulated in the unit square and aftershocks are located isotropically around its parent

event.

We also use a simpler temporal ETAS model to diagnose estimation issues which arose

in using equation 4.1 for our simulations. The parameterization used for the temporal ETAS

model is

λ(t|Ht) = µ+
∑
i:ti<t

K(p− 1)cp−1

(t− ti + c)p
· eα(m−Mc). (4.2)
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where, again, we assume a stationary background rate and simulate three time periods

between 5,000 and 10,000 days. We set parameter values for equation 4.2 to be (µ =

0.2, K = 0.2, c = 0.5, p = 2, α = 1.5) and we set β = 2.4.

Finally, we use an earthquake catalog of 542 events which occurred around the time of the

1999 Hector Mine earthquake. Similar catalogs were analyzed in Ogata et al. (2003) as well

as Schoenberg (2013). For this earthquake catalog, we constrain magnitudes to be M ≥ 3

in the region falling between latitude 34 and 35 and longitude −117 and −116 between the

dates 1999/10/16 and 2000/12/23. Data for this catalog were recorded by the Southern

California Seismic Network (SCSN) and obtained from the Southern California Earthquake

Data Center (SCEDC) (California Institute of Technology (Caltech) 1926; SCEDC 2013)

4.3 Methods

4.3.1 Stoyan-Grabarnik statistic

The Stoyan-Grabarnik (SG) statistic (Stoyan and Grabarnik 1991), denoted as

∑
i:si,tt∈Bj

1

λ(s, t)
,

is a statistic which relates the sum of the inverse conditional intensity for a set of points in

space-time bins to the volume of space-time bins. For λ(s, t) > 0, and space-time bin Bj,

the SG statistic states

E

 ∑
i:si,tt∈Bj

1

λ(si, ti)

 = E

(∫
1

λ(s, t)
dN

)

= E

(∫
1

λ(s, t)
λ(s, t)dtds

)
= |Bj|

by the martingale formula where |Bj| denotes the volume of the space-time bin. In Baddeley

et al. (2005), the SG statistic was proposed as a diagnostic method for point processes. More

recently, Cronie and Lieshout (2018) proposed using SG as a method of bandwidth selection
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for kernel smoothing. Here, we layout the framework for using the SG statistic as a method

of parameter optimization.

For a set of points in some space-time window, {(s, t) : s ∈ S, t ∈ T}, we divide the entire

spatial-temporal window into n disjoint space-time bins Bj for j = 1, 2, . . . , n such that

(si, ti) ∈ Bj implies (si, ti) /∈ Bk when j ̸= k. Figure 4.1 illustrates the binning procedure

graphically for 2× 2 spatial bins and 4 temporal bins.
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Figure 4.1: An example of the binning procedure to separate points in a spatial-temporal

window S × T into individual space-time bins, B. Plot (A) shows the spatial binning of

points into 2× 2 bins. Plot (B) shows the temporal binning with 4 bins.

For a given parameterization of a point process model and a given loss function (loss),

we can compute the parameter estimates using conjugate gradient methods from the R pro-
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gramming language’s optim() (Nash and Varadhan 2011; Nash 2014) function to optimize
n∑

j=1

loss

 ∑
i:si,tt∈Bj

1

λ(s, t)
− |Bj|

 .

Within optim, we use the conjugate gradient methods with Beale-Sorenson updates. We

also set the maximum number of iterations to 5,000 so each optimization run has enough

time to converge. Starting values for each optim run were set to be 20% larger than the

actual values used to create the simulated catalogs. For our simulated results in Section 4.4,

we adopt the L1 loss function and discuss why we opted not to use the L2 loss function in

Section 4.6.1. That is, we optimize the function
n∑

j=1

∣∣∣∣∣∣
∑

i:si,tt∈Bj

1

λ(s, t)
− |Bj|

∣∣∣∣∣∣ . (4.3)

When computing parameter estimates using the SG statistic for our simulated earthquake

catalogs, we optimize our parameters using two different sets of bins. First, we separate the

spatial locations into an equally sized 2× 2 grid and 5 equally sized temporal bins. For the

second set of bins, we use 3×3 equally sized spatial bins and 10 equally sized temporal bins.

4.3.2 Maximum likelihood estimation

As described in Chapter 2, the log-likelihood for a self-exciting point process is

ℓ(θ) =
N∑
i=1

log(λ(si, ti|Ht))−
∫
S

∫ T

0

λ(s, t|Ht) dtds.

We compute the estimates of our simulated earthquake catalogs using the ETAS parameter-

ization shown in equation 4.1 by using conjugate gradient methods using R’s optim function

and by numerically approximating the integral term of the MLE using the suave() function

in the R2Cuba R package (Thomas Hahn; Interface to R was written by Annie Bouvier and

Kiêu 2015). Similar to our optimization routine using the SG statistic, we set the maximum

number of optim calls to 5,000 and use Beale-Sorenson updates for the conjugate gradient

method. We also use starting values that are 20% larger than the parameter values used to

create each simulated earthquake catalog. For the suave numerical integration function we

use the default set of options.
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4.3.3 Residual ratios and output comparison

For comparing individual parameter estimates to their actual values used in our simulations,

we compute the residual error ratios where for parameter θ and its estimated value θ̂ we

compute

errorθ =
θ̂ − θ

θ
.

To summarize the overall fit of the p parameters for our models, we compute the root sum

of squared errors

RSSE =

√√√√ p∑
i=1

error2θi .

4.4 Results

4.4.1 Simulations

Figure 4.2 shows the elapsed time for optim to converge, using both MLE and SG parameter

estimation routines for 75 simulated catalogs of varying size. Each estimation procedure was

run for the same set of simulated catalogs to make results comparable. For the parameters

estimated using the SG statistic, we show the results for both bin schemes described in

Section 4.3.1. Time to convergence for both estimation routines increased as the simulated

earthquake catalog increased and time to convergence was slightly longer using the SG

statistic with 3× 3× 10 bins than for the SG statistic with 2× 2× 5 bins. The optimization

routine using the SG statistic was markedly faster than the optimization routine using the

MLE regardless of the number of bins used to compute estimates using the SG statistic. As

the size of the simulated catalogs approach 4,000 events per catalog, the MLE took longer

than 3 hours to converge while the SG statistic took less than 2 hours to converge using

3× 3× 10 bins and less than 1 hour using 2× 2× 5 bins.

The error ratios for the individual parameters using each method are shown in Figures

4.3 and 4.4. Figure 4.3 shows error ratios for all simulated catalogs while Figure 4.4 shows

only the error ratios that were greater than -1 and less than 2.
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Figure 4.2: Computation times to complete parameter estimation via MLE, SG with 2 × 2

spatial bins and 5 temporal bins, and SG with 3 × 3 spatial bins and 10 temporal bins.

The x-axis for each plot is the number of events in each simulated earthquake catalog and

the y-axis shows the length of time required for each method to converge using conjugate

gradient methods in optim
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There were a handful of instances when the parameter values computed using the MLE

were extremely poor resulting in, for instance, parameter estimates for p which were 10 times

larger than the actual parameter value used in simulations. There are also parameter values

for both MLE and SG that remained stuck at, or near, their starting values such as µ for

MLE and K, c, α, and q for SG using 2× 2× 5 bins.

Comparing the different binning schemes used for parameter optimization using the SG

statistic, the binning scheme with more bins tended to result in error ratios that were much

more variable than the binning scheme with fewer bins. The binning scheme with more

bins, however, did result in parameter values that moved below their starting values for

parameters α and d when compared to the binning scheme with fewer bins.

Figures 4.5 and 4.6 show the RSSE for simulated catalogs using each optimization routine.

Figure 4.5 shows the RSSE for all of the simulated catalogs while Figure 4.6 caps the y-axis

to be less than 6 to better show the typical RSSEs.

Similar to what was shown in the individual parameter plots, there were a handful of

instances when the parameter estimates using the MLE were extremely poor. That is, there

were instances when the RSSE was in excess of 10. Moreover, the RSSE using the MLE

tended to be more variable than using SG with 2 × 2 × 5 bins but less variable than using

SG with 3 × 3 × 10 bins. For each method, as the size of the simulated catalogs increased,

there is a reduction of the variation in the RSSE with the variation of the RSSE using SG

with 2× 2× 5 bins showing the greatest reduction as simulated catalog size increased. For

the MLE and both SG optimization routines, the smallest values of RSSE tended to be no

less than 0.46 except in once instance where SG produced an RSSE of 0.35.

Comparing the different binning schemes using the SG statistic, we note that using more

bins tended to result in a much poorer performance for the simulated catalogs shown. Using

more bins also drastically increased the variability of the RSSE compared to the SG using

fewer bins.
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Figure 4.3: Individual parameter error ratios for parameters estimated via MLE, SG with

2× 2 spatial bins and 5 temporal bins, and SG with 3× 3 spatial bins and 10 temporal bins.

The x-axis for each plot is the number of events in each simulated earthquake catalog and

the y-axis shows the error ratios for each parameter and each estimation procedure. Limits

of the y-axis are determined by the variability in error ratios for each parameter.
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Figure 4.4: Individual parameter error ratios for parameters estimated via MLE, SG with

2× 2 spatial bins and 5 temporal bins, and SG with 3× 3 spatial bins and 10 temporal bins.

The x-axis for each plot is the number of events in each simulated earthquake catalog and

the y-axis shows the error ratios for each parameter and each estimation procedure. Limits

of the y-axis are manually set from −1 to 2 to better compare the more typical estimates

across methods.
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Figure 4.5: Root sum of squared error ratios for parameters estimated via MLE, SG with

2× 2 spatial bins and 5 temporal bins, and SG with 3× 3 spatial bins and 10 temporal bins.

The x-axis for each plot is the number of events in each simulated earthquake catalog and

the y-axis shows the root sum of squared error ratios for each estimation procedure. Limits

of the y-axis are determined by the variability in root sum of squared error ratios for each

parameter.
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Figure 4.6: Individual parameter error ratios for parameters estimated via MLE, SG with

2× 2 spatial bins and 5 temporal bins, and SG with 3× 3 spatial bins and 10 temporal bins.

The x-axis for each plot is the number of events in each simulated earthquake catalog and

the y-axis shows the root sum of squared error ratios for each estimation procedure. Limits

of the y-axis are manually set from 0 to 6 to better compare the more typical values across

methods.

4.4.2 Stoyan-Grabarnik simulation performance issues

As noted above, there were many instances in which estimated parameter values remained

at, or very near, the starting values used in the optimization procedure. To diagnose the

potential causes of this issue, we ran a new batch of simulations using the simpler temporal-

ETAS model shown in equation 4.2 and then compared parameter estimates using MLE and

SG. Further, we estimate parameters using SG in an iterative fashion to help us to diagnose

whether the estimation issues are due to the flatness of the conditional intensity, an issue with

the method itself, or a coding issue. That is, we start by estimating one parameter, µ, and

treat the other parameters as known. We then continue to estimate additional parameters

in the order µ, α, p, c and K until all 5 parameters are treated as unknown. The estimated
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parameters using the MLE were estimated all at once.

Figure 4.7 (A) shows the results of our iterative estimation procedure for parameter

estimation using SG and MLE. Each column shows the estimated parameter values using

SG where the parameters which were treated as unknown are listed at the end of the rows

and compares the values estimated using SG with those computed via the MLE.

As shown, the estimated parameter values computed using SG are either similar to or

better than those computed using the MLE when up to four parameters are treated as

unknown. However, once K is introduced as a parameter to be estimated, the estimates for

µ, α, and c tend to start performing much more poorly. For instance, when K is considered

known, and all other parameters were considered unknown, the average estimates for µ were

0.184 which was only slightly smaller than the actual value used in the simulation (where

µ = 0.2). When K is introduced as an unknown parameter, the average estimate of µ drops

to 0.096, or roughly half of what the estimated parameter was when K was treated as known.
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Figure 4.7: Estimated parameter values, plot (A), and RMSEs, plot (B), using both SG

and MLE parameter estimation techniques. Columns for each plot separate the number of

parameters which were estimated versus assumed known when estimating parameters via

SG. Rows, for (A), indicate indicate which parameters were estimated. For plot (B), each

panel compares the RMSE of SG and MLE for just the parameters which were estimated.

Figure 4.7 (B) shows the root mean squared error for just those parameters that were

treated as unknown using our iterative estimation procedure where error is defined as the
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error ratio described in Section 4.3.3. That is, the left most pane shows the RMSE of SG

and MLE where µ is the only parameter included in the computation whereas the right most

pane shows the RMSE of all the parameters for each estimation procedure.

When only one parameter, µ, is treated as unknown, the RMSE using SG and MLE

are very similar with mean RMSEs of 0.0357 for SG and 0.0323 for MLE. As the number

of parameters treated as unknown increases up to four unknown parameters, we see that

the RMSE for SG starts to outperform the estimates of the same parameters computed

using MLE (0.47 mean RMSE for SG and 2.21 mean RMSE for MLE). However, once K is

introduced as an unknown parameter, the RMSE for SG performs much more poorly than

the MLE with mean RMSEs 3.1 for SG and 2.21 for MLE.

4.4.3 Hector Mine earthquake catalog

In Section 4.1, we note that one proposed method to speed up convergence times when

estimating Hawkes processes is to rewrite the triggering function as a density and to estimate

the integral term inside the MLE as the sum of an approximation. In Schoenberg (2013), the

author uses a similar Hector Mine data set as the one described in Section 4.2 to estimate

parameter values using the ETAS model parameterization shown in Equation 4.1 using both

the approximation as well as MLE estimates computed using a numerical approximation of

the integral term. The estimated parameter values from Schoenberg (2013) are shown in

Table 4.1.

Using our Hector-Mine catalog, we re-estimated the parameter values using the SG statis-

tic optimization method with 2 × 2 spatial bins and 5 temporal bins. The results of our

estimation are also included in Table 4.1. For the estimation using the SG statistic, we used

the estimated parameter values from Schoenberg (2013) as starting values.

Optimizing with the SG statistic took 7.6 seconds and largely agreed with the parameter

estimates Schoenberg (2013) computed via MLE. Only two parameters, p and q were dras-

tically different between the estimated parameters computed using the SG statistic and the

values computed via MLE.
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µ K c p α d q

Integral Approximation

(Schoenberg 2013)

0.03920 0.45600 0.05930 1.37000 1.14000 0.00010 1.67000

MLE (Schoenberg 2013) 0.11300 1.95000 0.00662 1.25000 0.08590 0.00016 2.09000

SG (2x2x5) 0.11530 1.93883 0.00692 1.60596 0.08988 0.00021 1.49397

Table 4.1: Estimated parameter values using the Hector-Mine data. The parameter values

using the approximation method described in Schoenberg (2013) as well as the parameters

estimated by Schoenberg (2013) using MLE are shown in the first two rows. The parameter

values estimated using the SG statistic with 2 × 2 spatial bins, 5 temporal bins and using

the Integral Approximation’s estimates as starting values are shown in the third row.

4.5 Discussion

By avoiding the need to constantly compute numerical integrals, parameter estimations via

the SG statistic converged much faster when compared to the MLE. As the size of the

simulated catalog increased, the time savings using the SG statistic versus the MLE was

on the order of hours. Using the MLE for even larger catalogs would be untenable while

using the SG statistic would remain a viable option. The computation of the values for the

conditional intensity at the points were computed using C/C++ to increase convergence

times but the code to compute these values is far from optimized. For instance, when points

lie far away from each other in space time, and thus would have minimal covariance between

the two, our code continues to loop through these points whereas establishing a break point

in the code might increase convergence times even further. We also note that we are using

optim for parameter optimization and did not test other optimization procedures.

Computation times using the SG statistic were also impacted by the binning scheme used

with the binning scheme using fewer space-time converging faster than those using more bins.

In the build up to the work shown in this chapter, we attempted parameter estimation with

using a variety of binning schemes including using very few and using many bins. In the

end, we settled on using the bin sizes shown but neither of the binning schemes should be
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considered optimal in terms of computation time and parameter estimate accuracy. One

heuristic which showed some promise while working with the temporal-ETAS model was to

choose
√
n equally sized temporal bins where n is the size of the earthquake catalog.

Our results reveal a few issues in terms of individual parameter estimates for both opti-

mization routines. For one, there were numerous instances where the MLE resulted in very

poor parameter estimates. The maximum likelihood estimates appear to be volatile and to

depend critically on particular clustering features of the catalog that can vary substantially

from one realization to the next.

Another issue revealed in Figure 4.4 is that some parameter estimates remained at, or

near, their starting values. For instance, the error ratio for µ remains at 0.20 as catalog size

increases while the same error ratio using the SG statistic with 2× 2× 5 bins converges to

the actual value. A similar phenomenon was observed for parameters K, c, α, d and q for

parameter estimates using the SG statistic with 2× 2× 5 bins. Comparing these parameters

to their counterparts computed using MLE though reveals that the MLE also had difficulty

in converging to the actual parameter values and in fact often had larger error ratios than

those using SG with 2×2×5 bins. This would partly explain the RSSE for SG with 2×2×5

bins appears to converge to rather quickly to the value of 0.46 in Figure 4.6 while the RSSE

for the MLE tended to be more variable, but still no less than 0.46.

To assess the reason for these issues, we simulated earthquake catalogs which included

time but not location coordinates for each point and then computed parameter estimates

using a temporal-ETAS model. From the results shown in section 4.4.2, we find that the

issues we encountered when estimating parameters for our simulated catalogs was due to

the flatness of the conditional intensity functions whereby the overall flatness of the density

makes it difficult for the optimization routine to recover the actual parameter values.

The binning scheme used for parameter estimates using SG were also hugely impactful

on the parameter error ratios. Comparing SG with 2 × 2 × 5 bins and SG with 3 × 3 × 10

bins, we see that using more bins resulted in much more variation for the error ratios. The

increased variation for individual parameter error ratios also explains why the RSSE for SG
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using 3× 3× 10 bins also exhibited much more variation. We also note however that using

more bins also helped lead the optimization routine away from its starting values, for better

or worse.

For the RSSE shown in Figure 4.6, except in a couple instances, the RSSE for each

optimization routine never fell below the value 0.46. Indeed, each method seems to be

converging to this value. One reason this might occur would be because there were many

instances across optimization routines where estimated parameter values remained at their

starting values and this is most evident for SG with 2× 2× 5 space-time bins. It could very

well be the case that the MLE estimates would be improved by increasing the accuracy of

the numerical approximation of the integral term, though this would also drastically increase

computation times.

Comparing our estimates of the Hector-Mine data compared to results previously shown

in Schoenberg (2013) demonstrates the promise of estimating parameter values using the

SG statistic. As shown in Table 4.1, estimation via the SG statistic largely agreed with the

estimates generated using the MLE even when using starting values that were relatively far

away from their eventual convergence values. The two parameters that are markedly different

between estimation via MLE via the SG statistic, p and q, were also not so radically different

that they would be considered unreasonable. This shows that estimation using the SG

statistic would seem to be a reasonable alternative to approximating the integral term while

still remaining much more computationally efficient than using the MLE. It is also interesting

that the issues we noted when computing parameter values using simulated catalogs did not

appear when using the Hector-Mine catalog. And again, this has to do with the simulated

catalogs being much more flat, in terms of their densities, than the Hector-Mine catalog.

4.6 Conclusion

In this chapter, we have shown a new method for computing parameter estimates for spatial-

temporal point processes which avoids the need to numerically integrate the intractable

integral found in current methods. Our results show that estimating via the SG statistic
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is faster than using the MLE and often results in estimates that are comparable. The

final results however show that estimating parameter values for ETAS can be extremely

challenging when the conditional intensity function is relatively flat over space-time.

From these results, we are inspired to continue working on this problem and highlight

the ongoing issues and areas for future work below.

4.6.1 Ongoing issues and future work

While estimation via the SG statistic is promising, much work is still needed to make it a

robust estimation procedure. One big issues we face, and are indeed still working to solve,

is researching methods which will allow us to computed reliable parameter estimates even

when the conditional intensity is relatively flat over its domain.

Another issue that we are interested in solving are methods to choose the optimum

combination of spatial-temporal bins. As shown in this chapter, the size and number of the

bins is incredibly impactful to the final parameter results. Developing methods to choose an

optimal number of space-time bins is one of our top priorities in the near term. And while

we focused on using equal sized bins, we have not yet looked into the effect of using bins of

varying size and volume, nor have we investigated how one might choose bins of varying size.

One thought we have had is to use Voronoi tessellations which might result in bins which

better accounts for the density of points in space-time.

Besides developing methods of bin sizes, more work is needed to decide which loss function

to use in the optimization routine. While not shown in this chapter, we did experiment with

using an L2 loss function but had issues with parameter estimates blowing up. One reason

this might have occurred was because there were often bins much greater or smaller than

the mean number of points. This in turn a small number of bins with values of the SG

statistic that were distinctly different from the rest. The L2 loss function seemed to be more

sensitive to these outlying values and, we believe, chased parameter values to optimize the

few outlying bins at the expense of the rest.

We have also yet to experiment with loss functions besides the L1 and L2 loss functions.
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Nor have we experimented with adding weights to the values of the SG statistics for each

bin. We hope that developing an optimal loss function might resolve issues such as the opti-

mization routine settling on the starting values as well as the issues of parameter estimates

blowing up when using the L2 loss function.

Last, but certainly not least, establishing the theoretical underpinnings of the method

and the mathematical properties thereof is a huge concern which we hope to address. One

of the benefits of using the MLE is the desirable asymptotic properties of using it. Finding

out which asymptotic properties are shared with the SG optimization routine would lead

to a much more robust understanding of the method. Besides the desirable asymptotic

properties, we are also interested in those properties, such as bias, which are undesirable.

There exists a huge number of theoretical issues we are yet to explore but look forward with

working them out in the future.
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CHAPTER 5

Conclusion

Motivated by the desire to improve our ability to accurately forecast earthquakes, the first

half of this dissertation examined the ability of focal mechanisms to predict the direction of

future seismicity and the desirability of including such covariates in non-parametric Hawkes

models. As shown, the errors which occur in the estimation of focal mechanisms lead them

to be not as as predictive as hoped, yet the improvements seen in the performance of non-

parametric Hawkes models which include directionality based on focal mechanisms does seem

to indicate that there still some signal within the noise. Beyond hoping for new methods

to come about which lead to better focal mechanism estimates, there is still viable work

that statisticians can engage in for the prediction of aftershock locations. For example, the

develop of hybrid methods wherein the information contained in focal mechanisms is coupled

with other seismic data to create models which offer increased predictive ability. Further,

methods for discriminating fault planes from auxiliary planes would also be a significant step

forward to the application of fault estimates within earthquake forecasting model.

One aspect which became apparent during our work on seismic point process models was

the incredible difficulty in computing parameter estimates for these models. It took some

computations a week to finish for the results in the first half of this dissertation and this

challenge was a primary motivation for the latter half of the work presented herein.

Computing parameter estimates for point process models by utilizing the Stoyan-Grabarnik

statistic is a promising development in the applied point process literature. Though admit-

tedly, much work is still to be done for this method. Still, the development of a computational

technique which converges more quickly, is easier to implement and produces outputs which

are comparable to estimates computed using maximum likelihood estimation is a significant
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development for the application of point process models in the future. It is our hope that

this new computational method will allow scientists in fields outside of seismology to rapidly

develop, test and apply new point process models in their respective fields.

The work displayed in this dissertation represents an exciting start to research we hope

to continue pursuing long into the future.
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APPENDIX A

Stoyan-Grabarnik estimation code

In this appendix, we show the code used to conduct parameter estimation via the Stoyan-

Grabarnik statistic. Most of the code is written in the R statistical programming language (R

Core Team 2017) except when indicated. It is our hope that the code will inspire additional

development in what we have shown to be a promising alternative to point process parameter

estimation.

A.1 Earthquake simulation code

The code below can be used to simulate an earthquake catalog under various distributional

assumptions for the time and location of aftershocks. The code was written by Professor

Frederic Paik Schoenberg and modified by James Molyneux.

The simulations use a space-time ETAS process with a homogeneous Poisson background

process. That is, we simulate from

λ(x, y, t|Ht) = µρ(x, y)+
∑
i:ti<t

K(p− 1)cp−1(q − 1)dq−1

π(t− ti + c)p
· eα(m−Mc)

((x− xi)2 + (y − yi)2 + d)q
. (A.1)

Points are simulated in the unit square, [0, 1] × [0, 1] in the temporal window [0, time].

The end points of the spatial window can be adjusted by setting the x1 and y1 arguments.

The time argument is used to expand or narrow the length of time to simulate over and the

simulation times are considered to be in days.

The spatial density of the background rate can be changed using the rho argument and

can currently takes the value of unifrho (uniform spatial density).

The temporal triggering density, gt, can be used to simulate temporal aspects of the

simulations using a power law, powergt, or exponential distribution, expgt. Similarly, the
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spatial triggering density, gxy, can take on a power law distribution, powerxy, or an expo-

nential distribution, expxy.

The magnitude productivity, gmi, uses either an exponential productivity, expprod,

or a constant point productivity (K), pointprod. Additionally, the magnitude density,

mdensity, is assumed to have an exponential distribution, expmag.

The arguments sor and keep control whether the points should be sorted in chronological

order and whether only points occurring within the space-time window should be kept,

respectively. Both arguments take on values {0, 1} where 1 indicates points should be sorted

or only points within the spatial-temporal window should be kept, respectively. Additionally,

as.df is a logical argument which, when as.df = TRUE, outputs the simulated catalog as a

data.frame. Otherwise, the simulated catalog is output as a list.

Finally, the parameters used within the simulation should be input, as a list, using

the params argument. Here, b governs the magnitude distribution in the simulation but is

not a parameter which is estimated. Note, if the function will return an error if the input

parameters leads to a super-critical branching process.

1 simulate_catalog = function(x1 = 1, y1 = 1, time = 1e2,

2 rho = unifrho, gt = powergt, gxy = powerxy,

3 gmi = expprod, mdensity = expmag,

4 sor = 1, keep = 1, as.df = TRUE,

5 params = list(mu = 0.5, K = 0.2, c = 0.02,

6 a = 1.5, p = 1.1, d = 0.001,

q = 1.5, b = 0.5)) {

7

8 # Lay down the background points.

9 y = bgpts(x1, y1, time, mu, rho, mdensity , params)

10

11 # Calculate branching ratio. Stop if br > 1.

12 calcbr = mean(gmi(mdensity(1000000, params), params))

13 if(calcbr > 1.0) {
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14 cat("error, branching ratio = ", calcbr, " > 1.")

15 return(0)

16 }

17

18 stop1 = 0

19 if (y$n < 0.5) stop1 = 2

20 w = y

21 while(stop1 < 1) {

22

23 ## Place aftershocks down around y.

24 z = aft(w, x1, y1, time, gt, gxy, gmi, mdensity , params)

25 # cat(z$n," ")

26 if (z$n > 0.5) {

27 y = combine1(y,z)

28 w = z

29 if (min(z$t) > time) {

30 stop1 = 2

31 }

32 }

33 if(z$n < 0.5) {

34 stop1 = 2

35 }

36 }

37

38 ## To keep just the points in the window.

39 if (keep == 1) {

40 y = keep1(y, x1, y1, time)

41 }

42

43 ## To have the points sorted chronologically.

44 if (sor == 1) {
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45 y = sort1(y)

46 }

47

48 ## To make the list a date.frame

49 if (as.df) {

50 y = data.frame(lon = y$lon, lat = y$lat, t = y$t, m = y$m,

51 event_type = y$event_type)

52 }

53 y

54 }

55

56 # Helper function to lay down background points

57 bgpts = function(x1, y1, time, mu, rho, mdensity , params) {

58 z1 = list()

59 n = rpois(1, params$mu * time)

60 z1$n = n

61 xy = rho(n, x1, y1)

62 z1$lon = xy[, 1]

63 z1$lat = xy[, 2]

64 z1$t = sort(runif(n) * time)

65 z1$m = mdensity(n, params)

66 z1$event_type = rep("background", times = z1$n)

67 z1$ztimes = c()

68 z1

69 }

70

71 # Helper functions to place aftershocks around each background event, y

.

72 aft = function(y, x1, y1, time, gt, gxy, gmi, mdensity , params) {

73 z1 = list()

74 z1$t = c()

55



75 z1$n = 0

76 z1$m = c()

77 z1$lat = c()

78 z1$lon = c()

79 z1$ztimes = c()

80

81 ## vector of number of aftershocks for each mainshock.

82 n2 = gmi(y$m, params)

83 for (i in 1:length(n2)) {

84 if (n2[i] > 0.5) {

85 b1 = gt(n2[i], params)

86 z1$ztimes = c(z1$ztimes, b1)

87 z1$t = c(z1$t, b1 + y$t[i])

88 xy = gxy(n2[i], y$m[i],params)

89 z1$lon = c(z1$lon, xy[,1] + y$lon[i])

90 z1$lat = c(z1$lat, xy[,2] + y$lat[i])

91 z1$m = c(z1$m, mdensity(n2[i],params))

92 z1$event_type = c(z1$event_type, "aftershock")

93 }

94 }

95 z1$n = sum(n2)

96 z1

97 }

98

99 # Helper function to combine results

100 combine1 = function(y, z) {

101 z1 = list()

102 z1$t = c(y$t,z$t)

103 z1$n = y$n + z$n

104 z1$m = c(y$m,z$m)

105 z1$lat = c(y$lat,z$lat)
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106 z1$lon = c(y$lon,z$lon)

107 z1$ztimes = c(y$ztimes, z$ztimes)

108 z1$event_type = c(y$event_type, z$event_type)

109 z1

110 }

111

112 # Helper function to keep only the pts of y that are within the

113 # spacetime window [0,x1] x [0,y1] x [0,time].

114 keep1 = function(y, x1, y1, time) {

115 keeps = c(1:length(y$t))[(y$t < time) &

116 (y$lon < x1) &

117 (y$lat < y1) &

118 (y$lon > 0) &

119 (y$lat > 0)]

120 y$t = y$t[keeps]

121 y$m = y$m[keeps]

122 y$lon = y$lon[keeps]

123 y$lat = y$lat[keeps]

124 y$n = length(keeps)

125 y

126 }

127

128 # Helper function to sort the pts chronologically

129 sort1 = function(y) {

130 ord2 = order(y$t)

131 y$t = y$t[ord2]

132 y$m = y$m[ord2]

133 y$lon = y$lon[ord2]

134 y$lat = y$lat[ord2]

135 y$event_type = y$event_type[ord2]

136 y
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137 }

138

139 # Spatial layout of background points: rho.

140 # rho takes an integer n and x1 and y1 and outputs a matrix of n

141 # locations of mainshocks.

142

143 # Homogenous Poisson Process:

144 # Uniform spatial background density rho on [0,x1] x [0,y1].

145 unifrho = function(n, x1, y1) {

146 x = runif(n, min = 0, max = x1)

147 y = runif(n, min = 0, max = x1)

148 cbind(x,y)

149 }

150

151 # Temporal triggering functions: gt.

152 # gt takes an integer n and outputs a vector of n nonnegative times

153 # since mainshock.

154

155 # Power law for temporal triggering:

156 powergt = function(n, params) {

157 v = runif(n)

158 params$c * (1 - v)^(1 / (1 - params$p)) - params$c

159 }

160

161 # exponential triggering function in time gt, with mean beta2.

162 expgt = function(n, params) {

163 rexp(n, rate = 1 / params$beta)

164 }

165

166 # Spatial triggering functions: gxy.

167 # gxy takes an integer n and magnitude m and outputs a matrix of n
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168 # locs from mainshock.

169

170 # Power law triggering in space according to ETAS (2.3), gxy, of

171 # Ogata (1998).

172 # NOTE: The density does not depend on magnitude of the mainshock.

173

174 powerxy = function(n, m, params) {

175 v = runif(n)

176 dist1 = sqrt(params$d * (1 - v)^(1 / (1 - params$q)) - params$d)

177 thet1 = runif(n) * 2 * pi

178 x = cos(thet1) * dist1

179 y = sin(thet1) * dist1

180 cbind(x,y)

181 }

182

183 # Exponential triggering in space.

184 # NOTE: the density does not depend on magnitude of the mainshock.

185

186 expxy = function(n, m, params) {

187 v = rexp(n, rate = params$alpha)

188 dist1 = sqrt(v)

189 thet1 = runif(n) * 2 * pi

190 x = cos(thet1) * dist1

191 y = sin(thet1) * dist1

192 cbind(x,y)

193 }

194

195 # Magnitude triggering functions: gmi

196 # Takes a vector of magnitudes , m, and outputs a vector of number of

197 # aftershocks per mainshock.

198
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199 ## Exponential productivity with parameters K and a for gmi.

200 expprod = function(m, params, M0 = 2.5) {

201 rpois(length(m), params$K * exp(params$a * (m - M0)))

202 }

203

204 ## Constant point productivity where each point has productivity K.

205 pointprod = function(m,params) {

206 rpois(length(m), params$K)

207 }

208

209 # Magnitude density: mdensity

210 # mdensity takes an integer n and lower mag threshold m0 and outputs a

211 # vector of n magnitudes.

212

213 # Exponential magnitude density mdensity with minimum m0 and mean

214 # m0 + b1.

215 expmag = function(n, params, M0 = 2.5){

216 rexp(n, rate = 1 / params$b) + M0

217 # rexp(n, rate = params$b) + m0 # Testing (DELETE)

218 }

A.2 ETAS conditional intensity of points

The following C code is the code which computes the conditional intensity of the points

in an earthquake catalog using Equation A.1. It was written by Professor Frederic Paik

Schoenberg and modified by James Molyneux.

The function calc_intensity uses arguments x and y to set the spatial region to be

[0, x]×[0, y]. The vector of event times, t, should be in terms of days while the vector of event

magnitudes minus the magnitude cut-off (mi − Mc, where Mc is the minimum magnitude
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for the cut-off) should be included using the hm argument. The n argument indicates the

number of events in the earthquake catalog and arguments x1 and y1 should be set to the

vectors of longitudinal and latitudinal locations, respectively. The theta argument should

be the ordered vector of input parameters, (µ,K, c, p, α, d, q), where the order should be as

shown. Finally, est should be a vector of length n which will end up being the outputted

conditional intensities for each point.

1 #include <R.h>

2 #include <Rmath.h>

3 #include <math.h>

4

5 void calc_intensity(double *x, double *y, double *t, double *hm, int *n

,

6 double *x1, double *y1, double *theta, double *est)

7 {

8 int i,j,w;

9 double r2, const1, eps, mu, K, c, p, a, d, q, b1;

10 eps = .00000001;

11 mu = theta[0]; K = theta[1]; c = theta[2];

12 p = theta[3]; a = theta[4]; d = theta[5]; q = theta[6];

13

14 // Assign each point the baseline background value

15 for(i = 0; i < *n; i++) {

16 est[i] = mu / (*x * *y);

17 }

18

19 // Compute the constant values, which do not depend on the

20 // spatial-temporal locations of the events

21 const1 = K * (p-1) * pow(c,(p-1)) * (q-1) * pow(d,(q-1)) / 3.141593;

22

23 // Loop and add the self-exciting contribution of the triggering
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24 // density to each point

25 for(i = 0; i < *n-1; i++){

26 w = 0;

27 for(j=i+1; w < 1; j++){

28 if(j > *n-2) w = 2;

29 r2 = (x1[i]-x1[j]) * (x1[i]-x1[j]) + (y1[i]-y1[j]) * (y1[i]-y1[j

]);

30 b1 = const1 * pow(t[j]-t[i]+c,(-p)) * exp(a*hm[i])*pow(r2+d,(-q))

;

31 est[j] += b1;

32 }

33 }

34 }

We now compile the C code above and load the function into R code in order to imple-

ment the computation of the conditional intensity in R.

1 # Compile and load the calc_intensity

2 system("R CMD SHLIB calc_intensity.c")

3 dyn.load("calc_intensity.so")

4

5 calc_intensity <- function(x, y, t, m, M0 = 2.5, theta) {

6

7 # Calculate the values that are fed into the function

8 hm = m - M0

9 N = length(x)

10

11 # This assumes each point falls in the spatial window

12 # [0, 1] x [0, 1]

13 intensity = .C("calc_intensity", as.double(1.0), as.double(1.0),

14 as.double(t), as.double(hm), as.integer(N), as.double(

x),
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15 as.double(y), as.double(theta), est = double(N))

16 intensity$est

17 }

A.3 Binning function for parameter estimation using the Stoyan-

Grabarnik statistic

The following function takes in a set of points and a number of bins and assigns each point

to the appropriate bin. Currently, bins are equally sized. The function outputs a list of

point assignments, interval sizes and cut-values which can be used to assign points to bins

and also compute the volume of the spatial-temporal bins

The arguments needed for bin_it are x, the vector of points in terms of unidimensional

location (either x or y but not both) or time, min_x, the smallest value to start binning,

max_x, the largest value to end binning and n_bins, the total number of bins desired.

1 bin_it <- function(x, min_x, max_x, n_bins = 10) {

2

3 # Create the cut points for the bins

4 bin_intervals = seq(min_x, max_x, length.out = n_bins + 1)

5

6 # sort points into bins

7 pt_assignments <- .bincode(x = x, breaks = bin_intervals)

8

9 # Compute the bin size

10 bin_size <- diff(bin_intervals[1:2])

11

12 # Return the cut points, the point's assignments and the bin size

13 list(bin_intervals = bin_intervals ,

14 pt_assignments = pt_assignments ,

15 bin_size = bin_size)
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16 }

A.4 Stoyan-Grabarnik statistic for optimization

The following code takes an input vector of ETAS parameter values and computes the dif-

ference between the sum of absolute differences between the SG statistic, under a predefined

binning scheme, and the volume of each bin. As with the calc_intensity function, the

order of the parameters should be (µ,K, c, p, α, d, q). Here, we assume that the earthquake

catalog is assigned the name eq_cat. We also assume that the user has installed and loaded

the dplyr library (Wickham et al. 2017) before running the function sg_fit and also that

each point has been assigned to a bin for x, y, and t as x_bin, y_bin and t_bin, respectively.

Finally, we assume that the user has calculated the volume of the individual space-time bin

and assigned the value to the name b_vol.

1 sg_fit <- function(theta) {

2

3 # Calculate the intensity of the points in eq_cat using the inputted

4 # parameter values of theta

5 eq_cat$intensity = calc_intensity(x = eq_cat$lon, y = eq_cat$lat,

6 t = eq_cat$t, m = eq_cat$m,

7 M0 = 2.5, theta = theta)

8

9 output <- eq_cat %>%

10

11 # Group each point by it's bin assignments

12 group_by(x_bin, y_bin, t_bin) %>%

13

14 # Compute the SG statistic for each bin

15 summarize(sg = sum(1 / intensity)) %>%

16
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17 # Undo the grouping

18 ungroup() %>%

19

20 # Compute the sum of absolute differences between the SG statistics

21 # for each bin and the volume of the bin.

22 summarize(sum(abs(sg - b_vol))) %>%

23 as.numeric()

24 output

25 }

A.5 Example code usage

We now demonstrate an example usage of the code shown in Sections A.1 through A.4. Here,

we assume that the user has run the code from each previous section so that the functions

are loaded into their R environment. We also assume that the user has installed the dplyr

and optimx (Nash and Varadhan 2011; Nash 2014) packages before running the code below.

1 library(dplyr)

2 library(optimx)

3

4 # Use set.seed(1) to make code reproducible

5 set.seed(1)

6

7 # Set the Time period to simulate over

8 Time <- 500 # days

9

10 # Set theta_actual for use in simulate_catalog()

11 theta_actual <- list(mu = 0.5, K = 0.25, c = 0.02, a = 0.75,

12 p = 1.3, d = 0.05 , q = 1.8, b = 0.5)

13

14 # Since the order of the parameters matters, and are slightly different
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15 # between simulate_catalog() and sg_fit(), we also set the parameters

16 # values as a vector

17 theta <- c(mu = 0.5, K = 0.25, c = 0.02, p = 1.3, a = 0.75,

18 d = 0.05, q = 1.8)

19

20 # Simulate the catalog

21 eq_cat <- simulate_catalog(x1 = 1, y1 = 1, time = Time,

22 params = theta_actual)

23

24 # Compute point bin assignments using 2x2 spatial bins and 5

25 # temporal bins

26 x_bins = bin_it(x = eq_cat$lon,

27 min_x = 0,

28 max_x = 1,

29 n_bins = 2)

30 y_bins = bin_it(x = eq_cat$lat,

31 min_x = 0,

32 max_x = 1,

33 n_bins = 2)

34 t_bins = bin_it(x = eq_cat$t,

35 min_x = 0,

36 max_x = Time,

37 n_bins = 5)

38

39 # Compute the space-time bin volume

40 b_vol <- x_bins$bin_size * y_bins$bin_size * t_bins$bin_size

41

42 # Include the bin assignments in the simulated catalog

43 eq_cat$x_bin <- x_bins$pt_assignments

44 eq_cat$y_bin <- y_bins$pt_assignments

45 eq_cat$t_bin <- t_bins$pt_assignments
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46

47 # Compute the SG statistic using the input parameters in theta

48 sg_fit(theta)

49

50 # > sg_fit(theta)

51 # [1] 104.5394

52

53 # Use conjugate gradient method in optimx() to compute estimated

54 # parameter values using starting values that are 20% larger than

55 # the parameter values used to create the simulated catalog

56 outputs <- optimx(par = theta * 1.2, fn = sg_fit,method = "CG",

57 control = list(

58 # Raise max iterations to 500

59 maxit = 5000,

60 # Use Beale-Sorenson updates

61 type = 3)))

62 # Print the estimated parameter values

63 outputs[1:7]

64

65 # > outputs[1:7]

66 # mu K c p a d

q

67 # 0.5533382 0.2913035 0.0006948992 1.564469 0.8983599 0.0577397

2.159865
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