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ABSTRACT OF THE DISSERTATION

Efficient Processing of Novel Reachability-Based Queries on Large Spatiotemporal
Datasets

by

Elena V. Strzheletska

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2018

Dr. Vassilis J. Tsotras, Chairperson

The prevalence of location tracking systems has resulted in large volumes of spa-

tiotemporal data generated every day. Addressing reachability queries on such datasets is

important for a wide range of applications, such as security monitoring, surveillance, pub-

lic health, epidemiology, social networks, etc. While traditional graph reachability queries

have been studied extensively, little work exists on processing reachability queries on large

disk-resident trajectory datasets. What makes spatiotemporal reachability queries different

and challenging is that the associated graph is dynamic and space-time dependent. As the

spatiotemporal dataset becomes very large over time, a solution needs to be I/O-efficient.

Given two objects OS and OT , and a time interval I, a spatiotemporal reachability

query identifies whether information (or physical item etc.) could have been transferred from

OS to OT during I (typically indirectly through a chain of intermediate transfers). In the

previous research on spatiotemporal reachability queries, it is assumed that information can

be passed from one object to another instantaneously, which may not always be the case.

In this dissertation, we introduce several novel reachability-based queries. For all
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our problems, we assume that instant transfer is not possible, and consider reachability

queries with different types of delays (processing and transfer delays), as well as queries

with information decay. First, we propose the RICC (Reachability Index Construction by

Contraction) framework for processing spatiotemporal reachability queries with processing

delays. Next, using this framework, we address reachability queries with transfer delays (or

meetings). For this purpose we design two algorithms, RICCmeetMin that precomputes

some reachability events considering the shortest valid meetings duration, and RICCmeet-

Max which uses the longest possible meeting duration.

Our next work considers reachability queries under the scenario of information

decay. Such queries arise when the value of information that travels through the chain of

intermediate objects decreases with each transfer. This leads to an interesting extension:

if there are many different sources of information, the aggregate value of information an

object can obtain varies. As a result, we examine a top-k reachability problem, identifying

the k objects with the highest accumulated information.

All proposed algorithms consist of two stages: preprocessing and query processing.

To prune the search space during query time, they precompute and store some reachability

information. This approach allows for efficient reachability query processing on large disk-

resident datasets.
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Chapter 1

Introduction

1.1 Introduction

Spatiotemporal reachability queries arise naturally when determining how diseases,

information, physical items can propagate through a collection of moving objects. Such

queries are significant for many important domains like epidemiology, public health, social

networks, surveillance, and security monitoring. The last two application areas involve

performing reachability queries on spatiotemporal datasets, which are the main interest of

this dissertation. Such datasets may, for instance, contain information about locations of a

set of moving objects collected during some period of time.

Let O = {O1, O2, ..., On} be a set of moving objects. Two objects Oi and Oj have

a contact at time tk (denoted as < Oi, Oj , tk >), if they are within some threshold distance

dcont from each other at that time instant [43]. During the encounter, the proximity between

Oi and Oj gives them an opportunity to exchange physical items or information (perhaps

wirelessly), or a virus. As they move through the network, Oi and Oj may encounter
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other objects, and participate in further exchanges. This pattern permits moving objects to

function as couriers, allowing two objects that remain far apart to nonetheless communicate

with each other via intermediaries. A spatiotemporal reachability query determines whether

two given objects OS (the source) and OT (the target) could have communicated (possibly

through other objects), within a given time interval.

The time to exchange information (or physical items etc.) between objects affects

the problem solution and it is application specific. Previous work assumes an ’instant ex-

change’ scenario (where information can be instantly transferred and retransmitted between

objects), which may not be the case in many real world applications. In this dissertation,

we introduce several novel types of spatiotemporal reachability queries without the ’instant

exchange’ assumption.

We consider two types of delays that may occur during an exchange: processing

delay and transfer delay. After two objects had a contact, the contacted object may have to

spend some time to process the received information (processing delay) before being able to

exchange it again; consider for example repackaging the physical item at the receiver object

before resending. In other applications, for the transfer of information to occur (transfer

delay), two objects are required to stay within the contact distance for some period of

time; we call such elongated contact a meeting. An example appears if two cars exchange

messages through Bluetooth and thus have to travel closely together for some time. We

name these two problems reachability with processing delay and reachability with transfer

delay. Later, we present efficient solutions for processing both types of reachability queries

with delays.
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In two reachability scenarios described above, we thought of a transferred item (e.g.

information) as having a constant value, independently of the number of times the item was

transferred. It is not always true in real-world applications: for example, if two people

communicate over Bluetooth-enabled devices, due to some technical issues, the recipient

may not get the message completely, and thus some information may be lost. During the

further exchanges, the portion of the received information continues to decrease. In this

situation, it is reasonable to limit the number of transfers (hops) that an item is allowed

to travel from the source object. We name the problem that follows this scenario the

reachability problem with transfer decay.

An extension of this problem is a top-k reachability problem. It may arise, for

example, if there are many different sources of information that carry different items of

possibly different values. Then the aggregate value of information an object can obtain

may vary significantly from one object to another. A top-k reachability query would be to

identify the k objects with the highest accumulated weight. Later, we describe our solutions

for both, reachability with decay as well as k-top reachability queries.

There are two naive approaches that could be used to answer a reachability query

on a small spatiotemporal dataset. The first approach (no-preprocessing) is to traverse the

dataset at query time, from the beginning to the end of the query time interval, collecting

all the objects that were reached by the source, and checking whether the target is among

the collected objects (in which case the search can be stopped before the end of the interval

is reached). If not, the search proceeds, etc. The second approach (precompute-all) is to

precompute and store the reachability between every pair of objects for each possible time
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interval in advance. Both approaches are infeasible for our problem size, since they would

require either too much time or space.

In this work, we consider large sets of moving objects, that are being observed

over long periods of time. This means that the trajectory data cannot fit in main memory,

and thus the solution must be I/O efficient.

1.2 RelatedWork

Static Graph Reachability. There are many approaches that have been pro-

posed for the static graph reachability problem and their performance lies between the two

naive approaches mentioned in the previous section. They are categorized in [25] as using:

(i) transitive closure compression, (ii) hop labeling, and (iii) refined online search. The first

category encompasses methods that compute and compress a transitive closure. Examples

include interval labeling [1], dual labeling [53], chain decomposition, tree cover, etc. The

next category includes hop labeling methods: 2-hop cover [11], 3-hop cover [26] and path-

top [7]. For instance, in the 2-hop approach a node u in a graph G is assigned a label,

which consists of two sets of nodes: a set Lin that contains nodes that can reach u, and a

set Lout of those nodes that can be reached by u. Then a node v is reachable from u if and

only if Lin and Lout have a non-empty intersection. Representatives from the third category

include GRAIL [57], which uses indexing based on randomized multiple interval labeling,

and PReaCH [32], that applies the Contraction Hierarchies technique [18] to the reachabil-

ity problem and utilizes topological levels from GRAIL. GRAIL and PReaCH outperform
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other reachability methods on large static graphs.

Shortest Paths on Road Networks. In our model, the reachability question is

equivalent to a shortest path query in a supergraph with edges of weight 1 for consecutive

object positions and edges of weight 0 for contacts, with the restriction that a path should

not contain two consecutive 0-weight edges in a row. Contraction Hierarchies [18] represent

the state-of-the-art for solving shortest path problems on road networks. The preprocessing

of CH consists of assigning an order to each node in the road network, and then contracting

the nodes in that order, introducing shortcut edges to preserve the shortest path weight

for any two nodes in the graph. A shortest path query is being answered by performing a

Dijkstra search in the resulted contracted graph. Nevertheless, directly applying CH would

not be efficient for our reachability problem. CH benefits from creating a hierarchy of nodes

on the basis of their importance for the given road network, while in the spatiotemporal

reachability problem, there is no node preference between the graph nodes. Algorithm

PReaCH [32] discussed above, applies CH on the static reachability problem (and thus does

not exploit the spatiotemporal properties of data).

Evolving Graphs. Evolving graphs (social, citation, biological networks, etc.)

have recently experienced high popularity and received increased interest in the research

community. In [29], the DeltaGraph is introduced, an external hierarchical index structure

that enables efficient storing and retrieving of historical graph snapshots. For large dynamic

graphs, [60] constructs a reachability index, based on a combination of labeling, ordering,

and updating techniques. The work in [48] utilizes graph reachability labeling methods to

develop techniques for analyzing temporal distance and reachability of temporal graphs. In-
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formation, stored in such datasets, is of a different nature, if compared with spatiotemporal

data. Our problem is complicated by the need to compute the contacts between the objects,

while such contacts are already available in evolving graph applications. In addition, out

data has spatial properties, which is usually not the case in the analysis, for example, of

social and citation networks.

Spatiotemporal Databases. Spatiotemporal Access Methods. There has been

a large number of works on spatiotemporal access methods; these typically involve some

variation on hierarchical trees [30, 39, 59, 19, 52, 12, 58, 10], or some form of a grid-based

structure [38, 56] or indexing in parametric space [36, 8, 5]. A recent survey appears

in [35]. Nevertheless, existing spatiotemporal indexes typically support traditional range

and nearest neighbor queries and not the reachability queries we examine here.

Complex Queries on Spatiotemporal Datasets. Recent work has focused on query-

ing/identifying the behavior of moving objects. Various methods have been developed for

determining patterns and similar behavior of a group of objects during a particular time

interval. Examples include discovering moving clusters [23, 28], flock patterns [49], and

convoy queries [24].

Spatiotemporal Reachability Queries. Recently, [43] provided the first disk-based

solutions for the spatiotemporal reachability problem, namely ReachGrid and ReachGraph.

These are indexes on the contact dataset that enable faster query times. In ReachGrid,

during query processing only a necessary portion of the contact network which is required

for reachability evaluation is constructed and traversed. In ReachGraph, the reachability at

different scales is precomputed and then reused at query time. Among the two approaches,
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ReachGraph is superior (and showed that it also greatly outperforms traditional graph

reachability solutions like GRAIL [57]). However, what enables ReachGraph is the assump-

tion that a contact between two objects can be instantaneous, and thus during one time

instance, a chain of contacts may occur. Conceptually, this ’instant exchange’ assumption,

allows ReachGraph to be smaller in size (the new graph uses a single vertex for all objects

that could be contacted at a given time instant) and thus reduce query time. On the other

hand, ReachGrid does not require the ’instant exchange’ assumption and is compared with

our proposed methods through experimentation.

The work in [45] introduces two types of the ’no instant exchange’ spatiotemporal

reachability queries: reachability queries with processing delay and transfer delay, and pro-

poses a solution to the first type. For the index construction, it utilizes the path contraction

idea, introduced in Contraction Hierarchies [18]. The algorithm for processing reachability

queries with transfer delays (meetings) is given in [46]. It proposes two algorithms, RIC-

CmeetMin and RICCmeetMax. In order to reduce the search space during query processing

time, these algorithms precompute the shortest valid meetings (RICCmeetMin), and the

longest possible meetings (RICCmeetMax) respectively.

Top-k Queries. A well known Fagin’s Algorithm for answering top-k queries, was

described in [14]. It was modified and further developed in [16] and [34], and described

in [15] . These algorithms are designed for large databases that contain objects with different

attributes (color, shape, etc.). To answer a query, these algorithms access the lists with

objects’ information in particular order, while an aggregated function combines the scores

of the attributes of the objects, and reports k objects with the highest aggregate scores.
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Among very popular today are top-k spatial k-word queries and top-k spatial preference

queries. The first type of queries asks to report k objects that are closest to the query

location and satisfy the keyword requests [13], [54], [55], [3]. An experimental evaluation

of spatial k-word query processing algorithms is given in [9]. The queries of the second

type request k data objects with highest scores, where the scoring depends on the feature

objects in the data objects’ spatial neighborhood [40], [4]. An example of such query may

be: find k hotels with the best restaurants and golf courses nearby. Finally, the work on

top-k spatiotemporal queries [2], [44] identifies highest scored terms in the given location

at the given time. To the best of our knowledge, the existing work on top-k queries does

not address querying spatiotemporal datasets of moving objects.

1.3 Dissertation Overview

The rest of the dissertation is organized as follows: Chapter 2 presents the RICC

(Reachability Index Construction by Contraction) approach for processing spatiotemporal

reachability queries with processing delay. Chapter 3 proposes two RICCmeet algorithms

that solve reachability with transfer delay (or reachability with meetings) problem and

compares their performance. In Chapter 4, we present the RICCdecay algorithm for solving

the reachability with transfer decay problem and RICCtopK algorithm for processing top-k

reachability queries with decays. Finally, Chapter 5 concludes our work.
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Chapter 2

Answering Reachability Queries

with Processing Delay Efficiently

2.1 Problem Description

In this chapter, we discuss one of the two earlier mentioned types of spatiotemporal

reachability queries without the ’instant exchange’ assumption, namely, reachability queries

with processing delay. Recall, that a contact occurs between two objects Oi and Oj at time

tk (it was denoted as < Oi, Oj , tk >), if at this time instant they are within some threshold

distance dcont from each other [43]. During such contact, object Oi may transfer to Oj

some information (or physical item, virus). Further, Oi and Oj may communicate with

other objects, dispersing information throughout the network. As a result, two objects that

have never been in contact with each other, still may have communicated through other

objects.
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t = 0                           t = 1              t = 2  T(time)

O1

O2

O4

O3

O2
O3

O4

O1O1

O4
O3

O2

Figure 2.1: Positions and contacts between a set of moving objects during the time interval
[0, 2].

An example appears in Figure 2.1, where four moving objects are shown at con-

secutive time instants. Lines between objects denote contacts at those time instants. For

example, objects O1 and O2 are in contact at times t = 0 and t = 2. Note, that objects O1

and O3 never contacted each other explicitly, however O3 is reachable from O1 within the

time interval [0, 1] through object O2 (O1 could pass information to O2 at time t = 0, and

O2 could pass it to O3 at time t = 1).

Depending on the problem application, transfers between objects may follow dif-

ferent scenarios, and this affects the problem solution. Earlier we talked about two possible

kinds of delays: processing delay and transfer delay. The processing delay occurs after the

contact, in case if the object that just received information needs some time to process it

before it is ready to start retransmission. The transfer delay requires two objects to stay

within the contact distance for some period of time (i.e. to have a meeting).

Thus one may consider the reachability problem with no delays, one type of de-

lay (processing or transfer), and both types of delays. To distinguish among the various

scenarios we use P to denote the existence of processing delay and T for transfer delay;
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t = 0                                t = 1                                t = 2       

O1

O2

O3

O4

O5

O1

O3

O4

O5

O2 O1

O2

O3

O4

O5

Figure 2.2: Contact graphs for a set of moving objects during time interval [0, 2].

their absence will be denoted by P̄ and T̄ respectively. If no delays are present (i.e., P̄ T̄ )

the exchange is considered (almost) instantaneous. This scenario (we will call it ’instant

exchange’) is assumed in [43]. In our work, we consider reachability scenarios with ’no

instant exchange’.

Consider the example in Figure 2.1 where at time t = 1 a chain of contacts occurs:

object O2 contacts O3, and O3 contacts O4. Assuming instantaneous exchanges, at this

time instant information can travel from O2 to its immediate contacts, and at the same

time to all the current contacts of its contacts, etc., resulting in object O4 been reached

by O2 during just one time instant t = 1. As another example, consider the case PT̄ ,

that is, with processing delay (i.e., an object receiving information at time t may not

immediately retransmit it) and no transfer delay (i.e. a simple contact is enough to transfer

the information). In Figure 2.1, at time t = 1, object O2 contacts object O3, and O3

contacts O4, but information from O2 does not reach O4 at that time instant.

A trajectory of a moving object Oi is a sequence of pairs (lj , tj), where lj is the

location of object Oi at time tj . We assume that time is discrete, described as a sequence

of time instants (t1, t2, ..., ti, ...) and the interval between two consecutive time instants is

11
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O2
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O4

O1O1

O4
O3

O2

t = 0                           t = 1                           t = 2            T(time)

Figure 2.3: Constructing a supergraph on the time interval [0, 2] by combining the contact
graphs with the object trajectories.

constant (denoted as ∆t). Moreover, each object reports its location at each time instant.

We further assume that all contacts between objects are identified by looking at their

location records (that is, ∆t is small enough that we do not miss any contact between

consecutive time instants).

Consider the PT̄ reachability scenario: for simplicity we assume that the process-

ing delay is ∆t, and after a contact occurs, retransmission starts at the next time instant

(our solution can be easily modified to consider the case where the processing delay is a

multiple of ∆t). The goal of a reachability query Q: {OS , OT , I} is to determine whether ob-

ject OT (target) is reachable from object OS (source) during time interval I = [ts, tf ], or in

other words if there exists a chain of subsequent contacts < OS , Oi1, t1 >, < Oi1, Oi2, t2 >,

... , < Oim, OT , tk >, with ts ≤ t1 < t2... < tk ≤ tf . Moreover, if such a chain exists, we

would like to find the earliest time instant when OT was reached (this can have implications

on the application: trying to control the spread of the disease fast, or identify the shortest

time that information traveled through a network).
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Note again how the answer to a reachability query depends on the transfer re-

quirements. Consider the example in Figure 2.2: here the collection of five moving objects

is observed during three time instants. Let I = [t0, t2]. The answer to the query {O1, O4, I}

under the P̄ T̄ scenario is t = 0. Under the PT̄ scenario, the answer is t = 2. Another

query, {O1, O5, I}, will be answered with t = 0 in the first case, however, for the second

case, the answer is t =∞. In general, the set of objects, reached by some object Oi during

time interval I under the P̄ T̄ scenario is a superset of the set of objects reached under the

PT̄ scenario.

The traditional graph reachability problem examines whether a path exists be-

tween two vertices of a static graph, such as a road network. Spatiotemporal reachability

is more complex, since even the underlying graph is determined by the time-varying re-

lationships between the positions of objects traversing the road network. Moreover, the

contact distance dcont is a parameter, and not an edge of a static graph. One could reduce

spatiotemporal reachability into static graph reachability by combining the contact graphs

with the object trajectories into a supergraph (by adding an edge connecting two consec-

utive occurrences of each object). This appears in Figure 2.3 where dotted edges connect

consecutive object positions. However this approach will be inefficient as the supergraph

is very large and does not exploit the spatiotemporal properties of the dataset. The first

efficient disk-based solution for a spatiotemporal reachability problem was recently given

by [43]. The problem that this paper considered, was reachability with no delays (P̄ T̄ ).
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In this chapter, we present the RICC (Reachability Index Construction by Con-

traction) algorithm for the PT̄ reachability problem. In the next chapter, we show how it

can be modified to work with no processing but transfer delays (P̄ T ).

RICC balances preprocessing time, storage consumption, and query performance

time. Its preprocessing consists of several steps: the contact network construction, the

reachability network construction, and the contact and reachability index construction. For

the reachability network construction, we utilize the path contraction idea, introduced in

Contraction Hierarchies (CH) [18]. A contraction replaces a path between two nodes of a

graph with a (shortcut) edge, which preserves the distance between these nodes. Methods

based on CH are currently the fastest known approaches for answering shortest path queries

on road networks [18, 17]. However, there are two major differences between our problem

and computing shortest paths on road networks. CH gains its speed up from creating a

hierarchy of nodes on the basis of their importance for the given road network, while in the

spatiotemporal reachability problem, there is no preference between the graph nodes. In

addition, road networks are typically static graphs, while our environment is dynamic. We

thus created our version of path contraction, which decreases the size of the spatiotemporal

reachability network, and thus reduces the space search, and consequently the reachability

query time.

Figure 2.4(a) represents the supergraph G1 constructed on time interval I = [t0, t2)

for the contact graphs in Figure 2.1, under the ’instant exchange’ assumption (P̄ T̄ ). At

time t = 1 object O2 can pass the information to the object O3, which then can pass it

further to O4 at the same time instant. The supergraph G′1 in Figure 2.4(b) is constructed
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Figure 2.4: (a) G1 is the supergraph under the P̄ T̄ assumption; (b) DAG G′1 is the super-
graph under the PT̄ assumption; (c) the reachability graph G2 constructed from G′1 for
interval I = [t0, t2).

using the same contact graphs but under the ’no instant exchange’ assumption. To disallow

the ’instant exchange’ in G′1, for each pair of contacting objects Oi and Oj at time tk, we

remove edges that represent contacts between them. Next, we connect Oi at time tk with

Oj at time tk+1, and vice versa. The resulting graph G′1 satisfies the required condition: in

G′1 at time t = 1 object O2 can pass the information to O3, but O3 cannot retransmit it

to O4 at the same time instant. Finally Figure 2.4(c) represents the reachability graph G2,

obtained from G′1 by contracting reachability paths and replacing them with new shortcut

edges (and thus G2 is a much smaller graph than G′1 while maintaining the same reachability

properties).

The rest of the chapter is organized as follows: Section 2.2 introduces the RICC

algorithm, its index construction and reachability query processing. In Section 2.3, we

evaluate the performance of RICC using large spatiotemporal datasets representing objects

moving on a real road network (created by the Brinkhoff generator [6]) as well objects

moving freely on a 2-dimensional plane (based on the random waypoint model). Finally,
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Section 2.4 concludes the chapter.

2.2 RICC: Reachability Index Construction by Contraction

We proceed with the description of RICC. First we describe the preprocessing

needed to maintain the contact and reachability networks and the indexing used to enable

fast query time. Then the query processing algorithm is introduced.

2.2.1 Preprocessing

We start the preprocessing by dividing the entire time interval covered by the

dataset into a number of non-overlapping subintervals, which we call time blocks; each of

the created time blocks contains the information about the locations of all objects during

the corresponding time interval. We call the number of time instants in each time block the

contraction parameter C. Next, we partition the area covered by the dataset into spatial

blocks (or grid cells), such that each cell is inscribed into a square with a side no greater

than the contact distance dcont.

For each time block, our algorithm performs several steps: multiple contact graph

construction, reachability graph construction, and contact and reachability index construc-

tion. During the preprocessing, each time block is read into main memory only once, and

all work on a block could be done as soon as the data for this particular block is collected.

Contact Graph Construction For this step, we need to materialize a contact

graph for each time instant. To efficiently find all contacts between the objects during a

given time instant, we start with partitioning the set of all objects that are active during
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this time instant into subsets on the basis of their location, and according to the area

partitioning described above. Due to the size of each grid cell, all contacts of object O are

located either in the same cell with O, or in adjacent cells. We can start, for example, with

the left bottom cell of the grid, find all contacts between the objects in this cell, then all

contacts between objects in this cell and objects in all adjacent cells. Further, we move to

the next cell and proceed until all cells are visited.

After all contacts are found, a contact graph for this time instant is constructed:

each object is represented by a vertex, and each contact between two objects - by an edge.

Subsequently, when a contact graph is constructed for each time instant of the block, the

information is recorded in the file Contacts as described later. First, all data about contacts

between all the objects during each time instant of a block is collected. The set of the objects

is being partitioned on the basis of their location at the first time instant of the block. This

time, the size of the grid H (we will call it a grid resolution as in [43]), is much larger,

than for the previous partition.(In the Experiments section we describe how to find a good

value for H empirically.) Next, objects are sorted according to the order of cells that they

belong to. Further, in this order, information about the contacts of each object during the

time block, is sequentially written on disk into the file Contacts. A record for each object

contains its contacts at each time instant of the block in time order. An example of the

Contacts file appears in Figure 2.6.

Reachability Graph Construction To construct the reachability graph on one

time block of the dataset, we start with creating a directed supergraph by collecting contact

graphs for each time instant of a block (in time order) and connecting them by introducing
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Figure 2.5: (a) Supergraph; (b) Path contraction between O
(0)
1 and O

(2)
3 ; (c) Non-trivial

reachability graph on interval I = [t0, t2) (contraction parameter C = 2).

an edge for each two consecutive occurrences of each object. Figure 2.5(a), shows a super-

graph, constructed on a time block with contraction parameter C = 2 from two contact

graphs given in Figure 2.1. The next step is to contract the reachability graph. Let O
(i)
k

denote an occurrence of object Ok during an i-th time instant of a block.

Theorem 1 Let Gs be a supergraph constructed over a time block B. There exists a path

in Gs from O
(0)
k to O

(C−1)
l , if and only if, O

(C−1)
l is reachable by O

(0)
k during B.

It follows, that to capture all reachability cases during a block, we need to answer,

whether there is a path between every pair of vertices O
(0)
k and O

(C−1)
l in the supergraph

constructed for that block. A path non-trivial if k 6= l. Next, we consider that any instance

of object Ok is reachable from its later instance (there is a trivial path from O
(i)
k to O

(j)
k for

i ≤ j), and will not record it.

If there is a non-trivial path in Gs between O
(0)
k and O

(C−1)
l , we contract this path,

and replace it with an edge. In Figure 2.5(a), there is a path between O
(0)
1 and O

(2)
3 , thus

O3 is reachable from O1 during this block. This path can be contracted, and replaced by
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Figure 2.6: Two-level index on files Contacts and Reached.

a shortcut edge as in Figure 2.5(b). We can effectively find all the paths by using multi-

source BFS from each object O
(0)
k in Gs. Figure 2.5(c) depicts the final reachability graph.

Upon construction of the reachability graph for a given block, all reachability information

is written sequentially into file Reached in the same object order as for the contact graphs

(Figure 2.6).

Contact and Reachability Index Construction. To efficiently retrieve infor-

mation from disk, we use a two-level index, constructed on the files Contacts and Reached.

An example of this index appears in Figure 2.6. The first level (TimeBlockIndex), is

ordered by time block number: each record consists of the time block number, and two

pointers to disk pages in the second level indexes, namely the ContactsIndex and the
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ReachedIndex. Each record in the ContactsIndex is comprised of an object id and a

pointer to the page in the file Contacts, which contains, which objects and when were

contacted by this object during the given time block. Each record in the ReachedIndex is

composed of object id and a pointer to the page in the file Reached, which contains, which

objects were reached by this object during the given time block. The order of objects in each

page of the ContactsIndex and ReachedIndex is the same as in Contacts and Reached

respectively. Note that in Figure 2.6 with the exception of the Time Block Index, the time

block numbers (left columns) are depicted for clarity (i.e., they are not part of the index).

2.2.2 Query Processing

Consider a query (OS , OT , I), where OS is the source object, OT is the target

object, and time interval I = [ts, tf ]. Before processing this query, we need to identify

the time blocks that ts and tf belong to. Suppose, ts ∈ Bs, and tf ∈ Bf+1. Using

the TimeBlockIndex, we can identify the starting positions of each block Bi (such that

Bs ≤ Bi ≤ Bf ) in the ContactsIndex and ReachedIndex. In most cases, the second level

indexes, ContactsIndex and ReachedIndex, are accessed at most once per block, before

accessing data related to contacts and reachability respectively. Let Sreached denote the set

of objects that have been reached so far. Initially, Sreached contains only one element, the

source object OS . As the query proceeds, new elements are included into this set, and as

soon as OT is added to it (or the end of the last block is reached), the query processing

terminates, as either the target, or the end of the query interval is reached.

Straightforward Query Processing. After Sreached is initialized with OS , a

straightforward approach would be to start query processing from file Contacts. We discover
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objects that were in contact with OS at time ts, and add them to Sreached. The process

has to be repeated, however now the contacts need to be found for each object that belongs

to the updated Sreached at time ts+1. We proceed this way until the last time instant of

the block Bs is processed. The next step is to find block Bs+1 in file Reached, determine

all objects that could be reached by each object from Sreached, and update Sreached. The

algorithm iterates through these steps in Reached until either Bf−1-st block is processed,

or the target is reached. Finally, the process returns to file Contacts. If OT has not been

reached, the remaining query interval that belongs to block Bf needs to be checked. On the

other hand, if OT was reached during or before Bf−1-st block, then the last block, processed

in Reached has to be traversed in Contacts once again, to determine the exact time of the

contact, when target was reached.

Optimized Query Processing. At the beginning and at the end of the query,

when processing information from Contacts, new objects are added to Sreached at each time

instant. This leads to an increase of disk accesses as parts of file Contacts that cover the

first and the last blocks may be read multiple times (in the worst case, C times, where C

is the contraction parameter). This can be avoided if query processing begins from reading

file ReachedIndex.

Theorem 2 Let I and I ′ be two time intervals such that I ⊆ I ′. If OT is reachable from

OS during I, then OT is reachable from OS during I ′ as well. Also, if OT is not reachable

from OS during I ′, then OT is not reachable from OS during I.

The optimized query processing algorithm (Algorithm 1) starts from theReached−

Index (from the page, pointed by the TimeBlockIndex), and attempts to find a record for
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Algorithm 1 Reachability query processing

1: procedure Query Processing(OS , OT , I)

2: SReached = {OS}, tReached =∞

3: find Bs and Bf , Bcur = Bs

4: CInd = readT imeBlockIndex(Bs, Bf ) . Find position of each Bi in

5: RInd = readT imeBlockIndex(Bs, Bf ) . ContactsIndex and ReachedIndex

6: while (OT /∈ SReached and Bcur 6= Bf+1) do

7: RpageIDs = {∅} . RpageIDs - list of pages to be read from Reached

8: while (RpageIDs = {∅} and Bcur 6= Bf+1) do

9: RpageIDs = readReachedIndex(Rind, SReached)

10: Bcur + +

11: Stemp = {∅} . Stemp is the set of objects, reached during the block

12: Stemp = findReached(RPageIDs, SReached, Bcur)

13: if (Bcur = Bs or Bcur = Bf or OT ∈ SReached) then

14: CpageIDs = {∅} . CpageIDs - list of pages to be read from Contacts

15: CpageIDs = readContactsIndex(Cind, SReached, Stemp)

16: Snew = filterContacts(CPageIDs, SReached, Stemp)

17: SReached = SReached ∪ Snew

18: if (OT ∈ SReached) then update tReached

19: else(SReached = SReached ∪ Stemp)

20: Bcur + +

21: return tReached . If tReached =∞, then the target has not been reached
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the source object (it will start at Bs and continue until either some record is found, or

the end of the interval reached). If such record is found, it points to the page in Reached,

from where we can determine all objects, that were reached by OS during the current time

block. However, if the current block is the first block of the query, and ts is not the first

time instant of this block, caution is needed, as (according to the theorem above) the set of

objects, reached by OS during Bs is the superset of the set of objects, reached by OS from

ts to the end of Bs. Hence, we need to traverse Contacts to make sure that we filtered

all the objects that do not satisfy the time condition (the only time they were reached by

the source was before the beginning of the query). After the set Sreached is finalized, the

algorithm switches to file Reached again, and proceeds as in the previous version, with

the exception of the last time block. Suppose, we arrived at the end of Bf−1, collected

all objects that were reached so far, but OT was not among them. Now, we continue in

Reached, and record all objects that were reached during Bf . If the target is not one of

them, the query processing is completed. However, if OT was reached during Bf , and tf

is not the last time instant of this block, then (again, it follows from the theorem above)

we have to return into Contacts, and confirm that the target was reached before the end

of the query interval. Although this algorithm may read from Contacts at the beginning

and/or at the end of the query, just like the straightforward query processing, the major

difference is that in this case, we read a time block (or rather its portions) only once, thus

minimizing the number of I/Os.
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2.3 Experiments

2.3.1 Dataset Description

We tested the proposed algorithm on two types of realistic datasets. Three of the

datasets were created by the Brinkhoff data generator [6], which generates traces of objects,

moving on real road networks. For our experiments we chose the San Francisco Bay area

road network, which covers an area of about 30000km2. Three datasets contain the informa-

tion about 1000, 2000, and 4000 moving (within the speed limit) vehicles respectively; the

location of each vehicle was recorded every 5 seconds and collected during a four month pe-

riod (a total of 2, 040, 000 time instants). Further, we assume that wireless communication

is held via the Dedicated Short-Range Communications protocol (DSRC), which can afford

contacts for up to 300 meters. Thus, for the experiments on these datasets dcont = 300

meters. We will refer to these sets as the Moving Vehicle datasets (or MV1,MV2, and MV4

for sets of 1000, 2000, and 4000 objects respectively).

For the second type of datasets, we created our own data generator, which utilizes

the popular random waypoint model, frequently used for modeling movements of mobile

users. According to this model, each user chooses the direction, speed (between 1.5m/s

and 4m/s), and duration of the next trip, then completes it, after which chooses the pa-

rameters for the next trip, and so on. The three generated sets simulate the movements of

10000, 20000, and 40000 individuals respectively, whose location is recorded every 6 seconds

for a period of one month (432,000 time instants total), and cover the area of 100km2 each.

These sets will be referred to as Random Waypoint datasets (or RW1, RW2, and RW4 for

sets of 10000, 20000, and 40000 objects respectively). We perform two sets of experiments
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Table 2.1: (a) Size of datasets and indexes, and (b) System specifications

OS Linux 2.6

Disk Size 3TB, 7200 RPM

CPU 3.3 GHz

RAM 16 GB 

Page Size 4096 B

(a)   Size of datasets and indexes                                         (b) System specifications       

Dataset

Size of 

Dataset 

(GB)

Index Size (GB)

RICC ReachGrid

MV1 54 17 54

MV2 107 56 100

MV4 213 175 194

RW1 97 31 99

RW2 194 120 197

RW4 387 419 392

on these datasets. For the first, we presume the communication over a Bluetooth connec-

tion and a contact distance of dcont = 25 meters. For the second set of experiments, we

assume that the individuals have to transfer a physical item in order for the contact to

occur, and set a contact distance to be dcont = 2 meters. The size of each dataset is given

in Table 2.1(a).

Since we consider disk-resident datasets, the performance is evaluated using the

number of disk accesses (I/Os) for query processing. The ratio of a sequential I/O to a

random I/O is system dependent; for our experiments this ratio is 20:1 [43]. In the rest, the

total number of I/Os reports the equivalent number of random I/Os (that is, we assume

that 20 sequential I/Os are equal to 1 random, and calculate the total number of I/Os

using this ratio). The specifications for the system used for the experiments are given in

Table 2.1(b).
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Table 2.2: Parameter optimization on dataset MV1

Contraction Parameter (Time instants)

Grid

Resolution

(Thousand 

km)

20 40 60 80

20 9295 5884 5162 5779

40 9277 5876 5192 5738

60 9278 5874 5127 5656

80 9260 5815 5146 5413

2.3.2 Parameter Optimization

The query performance of RICC depends on two parameters: the contraction

parameter C and the grid resolution H, both of which are dataset dependent. To tune

these parameters we used a subset of the dataset (of size 10%). In general, if data is time-

wise homogeneous across a dataset, any portion of it could be used, while if data differs

according to some pattern - day/night, rush hour, etc., a sample that reflects the pattern

should be created. We tested the performance of RICC using a set of 300 queries (the length

of each query was picked uniformly at random between 100 and 500 time instants), and

found the pair (C,H), which minimized the number of I/Os. The results of the parameter

tuning experiments for dataset MV1 are shown in Table 2.2; based on these results for the

rest of the experiments involving MV1 we pick (C,H) = (60, 60) (the values for the other

datasets were picked in a similar way).

2.3.3 Preprocessing and Indexing

Preprocessing Time. The preprocessing time depends on the size of a dataset,

as well as on the contraction parameter. During the parameter optimization phase, if there
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are cases where several pairs of parameters (C,H), give approximately the same query

performance, we choose the pair with the smaller contraction parameter C as this leads to

less preprocessing.

The preprocessing time for our datasets ranged from 90 minutes (for the Moving

Vehicles, 1000 objects dataset) to 43 hours (for the Random Walk, 40000 objects dataset

and dcont = 25 meters). Taking into account the preprocessing speed, as well as the fact,

that during the preprocessing each time block of data is read (consequently) into main

memory only once, we conclude, that RICC can be applied for processing spatiotemporal

data streams.)

Index Size. Fast reachability algorithms often suffer from large index size. The

smallest query time is achieved when the transitive closure is precomputed (which however

requires space that is quadratic on the graph size). Nevertheless, RICC can achieve very

good query performance while its index size is relatively small as it can be seen from

Table 2.1(a). This is because instead of transitive closure we precompute reachability for

small portions of the graph.

2.3.4 Query Processing

For the query processing performance evaluation, we ran different sets of 300

queries on each of the preprocessed datasets. Further we implemented the ReachGrid for

the PT̄ reachability, and optimized its parameters as described in [43].

One-to-One Queries. We first consider one-to-one queries {OS , OT , I}, (one

source and one target). For both, the Moving Vehicles and Random Walk datasets, the
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Figure 2.7: Query performance evaluation for one-to-one queries; MV datasets
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Figure 2.8: Query performance evaluation for one-to-one queries; RW datasets

contact distance was set to 25 meters. We created three sets of queries: 500 sec, 1500

sec, and 2500 sec long for each of the MV datasets, and 600 sec, 1800 sec, and 3000 sec

long for each of the RW datasets. The performance of RICC and ReachGrid was evaluated

and compared on three sets of queries for each dataset by counting the number of I/Os.

The results of these experiments are depicted in Figures 2.7 and 2.8. On all instances, our

approach outperforms ReachGrid.

This improvement is because ReachGrid visits each object in a cell while RICC

focuses on precomputed contacts. As the query length increases the number of objects to
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be checked by ReachGrid increases rapidly. Thus the biggest advantage over ReachGrid

(up to 5x improvement) is reached for the longest queries on the smallest datasets (MV1,

RW1 which have smallest number of contacts).

Scaling. The next set of tests is used to analyze the dependence of the RICC

performance on the query length. When starting processing a query we need to retrieve

only a few objects from the disk. If the query specifies a large time interval, more objects

become carriers, which in turn (depending on the efficiency of an algorithm) may affect the

query performance. We tested our algorithm on MV 1, the Moving Vehicles dataset with

1000 objects, with five sets of queries, with time intervals ranging from 250 to 8000 sec

respectively (after 8000 time instants all objects in the MV1 dataset were reached). As can

be seen from Figure 2.9, while RICC uses a similar number of disk accesses as ReachGrid

for the smallest length queries, it achieves much better query performance for the longer

ones (up to 6.5 times for the 8000 sec interval). Further, RICC scales well with the size of

the query length.
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Long Interval Queries. For this set of experiments we used RW1, the Random

Walk dataset with 1000 objects, setting dcont = 2 meters. Since the contact distance is much

smaller than previously, the average contact degree becomes smaller, which in turn leads to

longer average time for two objects to reach each other. We started with queries that are

6000 time instants long, and extended the query length up to 48000 time instants (which for

this dataset makes about 95% objects reachable by the end of the query interval). For these

experiments, we were not able to optimize the parameters and complete the preprocessing

for ReachGrid, since its query processing was very slow (ReachGrid does not scale well

under the given scenario). As it can be seen from Figure 2.10, RICC can be effectively used

for long interval queries as well (it scales almost linear with the query length).

Many-to-Many Queries. We proceed with the experimental results for many-

to-many queries (i.e., queries with several sources and/or several targets). First we note

that Single Source Multitarget Queries have the same performance as one-to-one queries.

Let (OS , {OT1 , OT2}, I) be a query with the set of targets {OT1 , OT2}. Then the time to

answer this query t = max(tQ1, tQ2), and NIO = max(N1
IO, N

2
IO) (where tQi is the time
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Figure 2.11: Many-to-many queries, RW1.

when and if the target ti was reached (or the end of query interval otherwise), and N i
IO is

the number I/Os, needed to answer the query (OS , OTi , I) ).

More interesting are the Multisource Queries. In this case if an algorithm strongly

utilizes a spatial locality for index construction, its performance should decrease when

executing queries with more than one source. In the worst case (when sources are very

far from each other), the number of I/Os of a query ({OS1 , OS2}, OT , I) becomes NIO =

N1
IO1

+N2
IO2

.

For these experiments we used RW1 (the Random Walk dataset with 10000 ob-

jects). The contact distance dcont was set to 25 meters. The testing was performed on three

sets of queries that are 600 sec, 1800 sec, and 3000 sec long. As we can see from Figure 2.11,

RICC outperforms ReachGrid on this set of experiments as well. Also, with the increase

of the number of sources, the gap between the number of I/Os of RICC and ReachGrid,

becomes larger.
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2.4 Conclusions

We proposed the RICC algorithm for efficient spatiotemporal reachability query

processing (without the instant exchange assumption) on large disk-resident datasets. We

tested our algorithm on two types of realistic datasets and different types of queries. RICC

outperformed the previous known algorithm (ReachGrid) on all experiments. In addition,

our algorithm shows good performance for many-to-many queries and scales well.
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Chapter 3

Efficient Processing of Reachability

Queries with Transfer Delay

3.1 Introduction

Reachability queries are common in various spatiotemporal applications including

security monitoring, surveillance, public health, epidemiology, social networks, etc. Con-

sider a set of moving objects O = {O1, O2, ..., On} (people, cars, etc.). Two objects Oi

and Oj have a contact at time tk, if they are within some threshold distance from each

other at that time instant [43]. While being close in space, Oi and Oj may exchange some

information (directly or wirelessly), a physical item, a virus, etc. As time proceeds, the

location of objects Oi and Oj changes, and each of the earlier ‘contacted’ objects may get

involved in other exchanges later. In this way, the information propagates further through

the network, and more objects become carriers. Even though, two objects may had never
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been in direct contact with each other, information from one object may have reached the

other through some intermediate contacts.

For the purposes of this chapter, it is assumed that the location of each monitored

object is recorded at discrete time instants t1, t2, ..., ti, ..., and that the time interval between

consecutive location recordings ∆t = tk+1 − tk (k = 1, 2, ...) is constant. A trajectory of a

moving object Oi is a sequence of pairs (li, tk), where li is the location of object Oi at time

tk. Formally, two objects, Oi and Oj that at time tk are respectively at positions li and lj ,

have a contact, if dist(li, lj) ≤ dcont, where dcont is the contact distance (a distance threshold

given by the application), and dist(li, lj) is the Euclidean distance between the locations of

objects Oi and Oj at time tk. A contact between objects Oi and Oj at time tk is denoted

as < Oi, Oj , tk >. Object OT is considered to be reachable from object OS during interval

I = [ts, tf ] if there exists a chain of subsequent contacts < OS , Oi1, t1 >, < Oi1, Oi2, t2 >,

...,< Oim, OT , tk >, with ts ≤ t1 < t2... < tk ≤ tf . A reachability query Q: {OS , OT , I}

determines whether object OT (the target) is reachable from object OS (the source) during

time interval I [45].

Traditional graph reachability is performed on a static graph. It is possible to

reduce spatiotemporal reachability into static graph reachability by constructing contact

graphs among the objects (one contact graph per time instant) and combining them into

a supergraph by introducing an edge between two consecutive occurrences of each object.

An example of such a construction is given in Figure 3.1, where solid edges connect objects

that have a contact, and dotted edges connect consecutive object positions.

On a small graph, there are two naive approaches that could be used for answering
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Figure 3.1: Constructing a supergraph by combining the contact graphs with the object
trajectories.

a reachability query: ‘precompute-all’ and ‘no-preprocessing’. The first approach requires

to precompute and store reachability information between every pair of nodes in the graph.

The second necessitates traversing the graph during the query time. Even for traditional

graph reachability either approach is inefficient if a graph is large, since the first requires

too much time and space for preprocessing, while the second has high query time. Spa-

tiotemporal reachability is more complex: the graph is dynamic and object relationships

may change every time instant.

Note that the spatiotemporal reachability query definition above does not consider

the contact’s time duration. Implicitly this assumes that objects may be able to exchange

information (or physical item) instantaneously when a contact occurs. This ‘instant ex-

change’ assumption was considered in [43]. However, under such conditions, during the

same time instant, information can be transferred instantly to all current contacts of an

object (and all current contacts of the contacted objects, etc.)

In [45] the ‘no instant exchange’ reachability scenario is considered (a contacted

object can broadcast its information at the next time instant). This scenario fits applications
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where after a contact between two objects has occurred, the contacted object may require

some processing delay, i.e., time to process information before it can start the retransmission

(it is easy to extend that approach to support any fixed processing delay).

Depending on the assumed scenario, the answer to the reachability query may be

different. Consider Figure 3.1: suppose object O2 carries some information. According

to the ‘instant exchange’ scenario, at time t1, object O2 can transmit this information to

O3, and at the same time instant O3 can retransmit it to O4. Assuming the ‘no instant

exchange’ scenario, at time t1, object O2 can still transmit information to O3, however O3

cannot retransmit it at this time instant. In fact, during the time interval shown in the

graph, O4 will never receive the information.

Nevertheless, for many applications simply having a contact (with or without

processing delay) is not enough for exchanging information between two objects as time

may be needed for the actual information to be transfered (termed as a transfer delay in

[45]). To account for such delay, the objects are required to stay within a contact distance

for some period of time; in other words, the objects need to have a meeting.

In this chapter, we propose the first (to the best of our knowledge) solution to

the problem of spatiotemporal reachability with meetings. As with previous works on spa-

tiotemporal reachability [43, 45], we assume that the queries are issued against a substantial

repository of trajectory data, which is too large to fit in main memory during the prepro-

cessing or query processing; hence we seek disk I/O efficient solutions. In particular, we

present two algorithms, RICCmeetMin and RICCmeetMax that consist of preprocessing and

query answering stages. For simplicity, in the following description we assume no processing
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delay; both algorithms can be easily extended to support processing delays.

The rest of the chapter is organized as follows: Section 3.2 defines the reachability

with meetings problem. The preprocessing and query processing for the two RICCmeet al-

gorithms appear in Sections 3.3 and 3.4, while their performance is compared in Section 3.5.

Finally, Section 3.6 presents our conclusions.

3.2 Reachability with Transfer Delay (Meetings)

When considering the reachability with meetings problem, it is important to deter-

mine when a pair of objects began their meeting, as well as the duration of the meeting (how

long the objects stayed within the contact distance). Previous spatiotemporal reachability

works [43, 45] assumed that contacts between objects could occur only at the time instant

that an object’s location is reported. In reality objects can have their initial contacts (and

thus start a meeting) during the time between two consecutive reported locations.

To capture the beginning of a meeting as accurate as possible, we discretize the

time interval between consecutive position readings [tk, tk+1) by dividing it into a series of r

non-overlapping subintervals [τ0, τ1), ..., [τi, τi+1)... , [τr−1, τr) of equal size ∆τ = τi+1− τi,

such that τ0 = tk and τr = tk+1. Hence ∆t = r∆τ (where r is some positive integer).

Further, we assume that between any two consecutive reported locations each object moves

linearly and with constant speed. We can thus calculate an object’s approximate position

at any time instant τi between two consecutive reported locations. We denote the instance

of object Oi at time τj as O
(τj)
i .

We proceed with the definition of a meeting. Two objects, Oi and Oj , had a
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Figure 3.2: Discovering meetings between the objects on time interval I = [t0, t1].

meeting during the time interval Im = [τs, τf ], if they had been within the threshold distance

dcont from each other at each time instant τk ∈ [τs, τf ]. Such a meeting is denoted <

Oi, Oj , Im >. The duration of this meeting is m = τf − τs.

The transfer delay (time to exchange information between two objects) may be

different from the actual meeting duration. Hence, some meetings are long enough for an

exchange while others are not. We assume that the query specifies the required meeting

duration mq which is the time, needed for the objects to complete the exchange (this allows

a user to examine different transfer scenarios). A meeting < Oi, Oj , [τs, τf ] > between

objects Oi and Oj is thus valid for the query if its duration satisfies m = τf − τs ≥ mq.

Furthermore, if object Oi carried some information, object Oj is considered to

be ‘reached’ after mq time units from the beginning of their meeting (and thus is able to

start retransmitting this information). Hence the earliest time when object Oj is reached

is τR(Oj) = τs +mq.

Consider the example in Figure 3.2. Suppose, ∆t = 3∆τ , and mq = 2∆τ . At

time t0, two pairs of objects have contacts: < O1, O2, t0 > and < O3, O4, t0 >. In order to
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determine whether any meetings between these pairs occurred, we calculate for how long

they had stayed within the contact distance. After the positions of objects O1, O2, O3, and

O4 are determined at τ1 and τ2, we find the durations of each meeting as < O1, O2, [τ0, τ1] >,

and < O3, O4, [τ0, τ2] >. The meeting between objects O1 and O2 is not valid, since it does

not satisfy the required meeting duration condition mq = 2∆τ . Thus the only valid meeting

is < O3, O4, [τ0, τ2] >. Further, if object O3 carried some information before the meeting

with object O4, object O4 becomes reached at time τR(O4) = τ0 + 2∆τ .

Object OT is considered to be (meeting)-reachable from object OS during time

interval I = [τ ′s, τ
′
f ] if there exists a chain of subsequent meetings < OS , Oi1 , Im0 >, <

Oi1 , Oi2 , Im1 >, ... ,< Oik , OT , Imk
>, where each Imj = [τsj , τfj ] is such that τfj−τsj ≥ mq,

τ ′s ≤ τs0 , τfk ≤ τ ′f , and τsj+1 ≥ τfj for j = 0, 1, ..., k − 1. To specify that object OT can

be reached under the meeting duration mq, we will say that OT is (mq)−reachable . Also,

the earliest time when OT can be reached (or the earliest ’reached’ time) we will denote as

τR(OT ).

A reachability with meetings query Qmeet: {OS , OT , I,mq} checks whether object

OT (target) is (mq)-reachable from object OS (source) during time interval I = [τs, τf ], and

reports the earliest time instant when OT was reached.

Figure 3.3 illustrates the difference between the graphs that represent the ‘instant

exchange’, the ‘processing delay’, and the ‘transfer delay’ reachability scenarios. The graphs

are constructed on the dataset used for Figure 3.1 for time interval I = [t0, t2]. In all

graphs, edges connecting the same object represent the object’s trajectory over time. For

the ‘instant exchange’ case (Figure 3.3(a)) and the ‘processing delay’ case (Figure 3.3(b))
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Figure 3.3: (a) graph G1 represents the ‘instant exchange’ scenario; (b) graph G2 depicts
the ‘processing delay’ scenario with delay λ < ∆t; (c) graph G3 assumes the ‘transfer delay’
scenario (the time interval is I = [t0, t2]).

edges connecting different objects represent contacts. For the ‘processing delay’ case we

assumed that the duration of the delay is λ < ∆t (as described in [45]). For the ‘transfer

delay’ case (Figure 3.3(c)) edges between different objects represent possible meetings. Since

mq is query specified, it is unknown at preprocessing time. In the above example, the graph

is shown for only two mq values, namely: mq = 2∆τ and mq = 3∆τ .

Clearly pre-constructing the meetings graph for all possible mq values is not prac-

tical since it significantly increases the size of the corresponding graph and thus the problem

complexity.

3.3 Preprocessing

As with classic graph reachability, there are two extreme approaches to answer

a spatiotemporal reachability query with meetings Qmeet: {OS , OT , [τs, τf ],mq}. The ‘no-

preprocessing’ approach contains the following steps: first the distances between OS and all
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the other objects Oi at time instant τs are computed, and all contacts of OS are identified;

this is repeated for time instants τs+1, τs+2, ... If two consecutive contacts between a pair

of objects (OS , Oi) are discovered, they create a meeting. If the meeting between objects

OS and Oi reaches the duration of mq time units, Oi becomes reached, and is added to the

set of reached objects. The process continues until the target object OT becomes reached

or τf is processed. Clearly this approach leads to prohibitively slow query time since for

every reached object, distances with all other objects need to be computed and recomputed

for every following time instant.

Instead, ‘precompute-all’ calculates the reachability between every pair of objects

for every possible time interval and value of mq, which results in prohibitive preprocessing

time and space.

To enable fast query processing while maintaining a reasonable preprocesssing, we

balance the two extreme approaches by precomputing only some information. We proceed

with the description of the two proposed algorithms, namely RICCmeetMin and RICCmeet-

Max. In Section 3.5 we compare them with a baseline algorithm ReachGridmeet, which

is a modified version of ReachGrid [43] adapted to answer the reachability with meetings

problem. All three algorithms include preprocessing that efficiently computes all object

contacts. In addition, for the RICCmeet algorithms, we precompute all meetings, as well

as the reachability between the objects for specific required meeting duration (mq) values

on short time intervals.

We assume that the dataset is organized in records of the form: (t, object id, location),

ordered by the location reporting time t. As with [43] to take advantage of temporal locality
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Figure 3.4: Preprocessing Workflow for RICCmeet algorithms

(since meetings involve trajectory locations of nearby times), the time domain is divided

into a non-overlapping subintervals, or time blocks. Each time block (denoted as Bk) con-

tains the records with reporting times in the corresponding time period. The number of

time instants that are combined into one time block is the contraction parameter C; we

discuss how to tune the value of C in Section 3.5.

For each time block, the preprocessing of each RICCmeet algorithm completes the

following four steps: (i) candidate contact computation and contact verification (performed

for each tk), (ii) meetings identification, (iii) reachability precomputation, and (iv) index

construction. Based on the contacts within this time block, a meetings graph is constructed

that contains all meetings during this time block. Further, each algorithm pre-constructs a

reachability graph; the two algorithms differ on how these reachability graphs are created.

The workflow of the preprocessing stage of the RICCmeet algorithms is shown in Figure 3.4.

We take advantage of spatial locality by partitioning the area into cells with side H
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Table 3.1: Notation used in the chapter

Notation Definition

∆τ Duration between two consecutive time instants
∆t Duration between two consecutive reporting times
OS , OT A source and a target objects

O
(τj)
i Instance of object Oi at time τj

dcont, dcc Contact distance, candidate contact distance
mq Required meeting duration (query specified)
µ Minimum meeting duration
τR(Oi) Earliest time when object Oi was reached
Bk, Ik Time block k that spans time interval Ik.
C Contraction parameter
H Grid resolution

(the grid resolution) - a parameter, whose tuning is discussed in Section 3.5. In computing

contacts (as discussed below), we follow the movements of objects and their relative positions

during the time period between two consecutive readings ∆t. To capture this finer spatial

locality, we further partition each cell with side H into many smaller cells with side dcc

(candidate contact distance); here dcc depends on the maximum distance traveled by any

object within ∆t.

During preprocessing, for each object Oi we maintain important information in

a data structure named objectRecord(Oi). In particular, an objectRecord has the following

fields: Object id, Cell id (the object’s placement in the grid with side H), ContactsRec (a

list that will maintain the contacts for the given object), MeetingsRec (a list that will store

the meetings for the given object). At the beginning of each time block, we start with an

empty objectRecord for each object Oi, and update it as the preprocessing proceeds. The
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Cell id field is filled using the coarse cell (side H) that contains Oi’s location during its first

appearance in the time block. This Cell id will not be changed even if the object moves to

another coarse cell during this time block (with a large enough H this object will remain

in its original coarse cell, or nearby ones, still capturing spatial locality). Finally, for each

time block we maintain a hashing scheme, that allows fast access to each objectRecord(Oi)

by Oi.

3.3.1 Computing Contacts

Let dmax denote the largest distance that can be covered by any object during

∆t. Two objects Oi and Oj are candidate contacts at reporting time tk if they are within

distance dcc = 2dmax+dcont (termed as candidate contact distance) from each other at that

time instant. Effectively such objects can potentially have a contact between tk and tk+1.

We thus assign all objects reported at time tk into cells with side dcc. Due to the size of

this finer partition, candidate contacts can only appear in the same or neighboring cells.

Hence we need only to compute the (Euclidean) distance between all pairs of objects that

are in the same or the neighboring cells which greatly reduces computation.

When the object locations are read at the next reporting time tk+1, we can verify

for every pair of candidate contacts whether a contact indeed occurred at some time instant

τi ∈ [tk, tk+1) (using our assumption that between consecutive reporting times objects move

linearly). For every object Oi, when a contact with Oj at time τ is verified, it is appended

as a contact record (τ , Oj), in the list ContactsRec of objectRecord(Oi) (such records are

ordered first by contact time and then by the contact’s object id). This contact will also be

appended in the ContactsRec list of objectRecord(Oj).

44



3.3.2 Identifying Meetings

While each object updates its contacts in list ContactsRec we can start creating

meetings. When considering Oi, if an object Oj was a contact at two consecutive time

instants, these contacts are merged into a meeting. As meetings for object Oi are found,

they are written as meeting records in the MeetingsRec list of objectRecord(Oi). Each

meeting record consists of the meeting companion (say Oj ) as well as the beginning time

and the end time of the meeting. If the same companion appears consecutively, the meeting

duration is extended. This process continues until we process the time block at which point

the meeting durations are computed.

Our preprocessing does not assume the knowledge of the (query specified) required

meeting duration mq. Instead, we assume that there is a minimum time duration µ required

by any transfer; that is, ∀mq,mq ≥ µ. As a result, any meeting with duration less than µ

can be pruned. Note that meetings that start at the beginning of the time block and have

duration less than µ during this block, need special attention since they may have started

in the previous time block and thus qualify as valid meetings. Similarly meetings that are

active at the last time instant of the time block but with duration less than µ, can still

be valid because they may extend into the next time block. Such ‘boundary’ meetings are

recorded as valid regardless of their length (and verified during query processing).

At the end of the current time block all meetings are persisted in file Meetings.

During this step objectRecords are accessed in H cell order (so as to maintain spatial local-

ity); within a cell they are thus ordered by object id, beginning meeting time, and companion

id if meeting intervals are the same for two contacted objects.
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3.3.3 Identifying Reached Objects

Let’s assume for the time being that the value of mq is known. To speed-up the

query time, during the preprocessing for each block Bk, we can find and record for every

object Oi all objects Oj , that are (mq)-reachable from Oi during Bk. A naive solution

would compute (mq)-reachability for every directed pair (Oi, Oj) which leads to computing

O(n2) (mq)-reachability calculations (n is the number of objects). Instead we propose an

algorithm that requires O(n) (mq)-reachability calculations .

We can solve our problem as a traditional reachability problem on a static graph,

where computing reachability for an object is equivalent to finding a path on the graph.

Let’s assume that we were to construct such a static reachability graph. We could start

with constructing a meetings graph GMk for each time block Bk. Given the Meetings file,

the meetings graph GMk for time block Bk can be created as follows: for each meeting

< Oi, Oj , [τs, τf ] > we introduce vertices (if they are not already created): O
(τs)
i , O

(τf )
i ,

O
(τs)
j , O

(τf )
j . We also introduce edges that connect two consecutive occurrences of the same

object (e.g., connecting O
(τs)
i with O

(τf )
i ), and meeting edges that indicate the possible

transfer of information during this meeting. Hence, for the above meeting we create two

meeting edges: (O
(τs)
i to O

(τf )
j ) and (O

(τs)
j to O

(τf )
i ). All edges are directed (from smaller

to larger time instants). The meetings graph for the dataset in Figure 3.5 is depicted in

Figure 3.6(a).

To turn a meetings graph GMk into a reachability graph GRk (mq), for each meeting

< Oi, Oj , [τs, τf ] > we do the following: (1) if τf − τs < mq we remove a pair of ‘meeting’

edges; (2) if τf − τs > mq we introduce a vertex for each instance of objects Oi and Oj
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Figure 3.5: Computing the (mq)-reachable objects from O1 (mq = 2)

during each time instant of the interval (τs, τf ), and replace a pair of meeting edges between

objects Oi and Oj with a set of pairs of meeting edges that start at the instances of Oi and

Oj at each time instant of the interval [τs, τf−mq ] and correspond to meetings of duration

mq. The last modification is needed to account for the fact that a transfer of information

does not necessarily start at the beginning of a meeting, and that the objects are required

to be companions for at least mq time units after the transfer starts.

In the GRk graph, an object Oj is (mq)-reachable by Oi if and only if it belongs

to some path that starts from a vertex that represents the first instance of Oi during block

Bk. To efficiently discover all such paths, we can combine a Depth-First Search (DFS)

and a plane-sweep algorithm. Our algorithm proposes the following strategy for the GRk

graph traversal. We start by visiting the earliest instance of object Oi in GRk , move to the

next available instance of Oi, and continue in DFS manner until the last instance of Oi is

visited. While visiting a vertex, we explore all outgoing meeting edges from this vertex.
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Figure 3.6: Meetings and reachability graphs construction: (a) Meetings graph GM ; (b)
Reachability graph GR(µ) for meeting < O1, O2, [τ0, τ4] >

These meeting edges point to the objects, reached by Oi. We record the earliest instance

of each reached object that was discovered during the traversal of Oi into a priority queue

SPQ (giving priority to the objects that were reached earlier). After the last instance of

Oi is visited, the search backtracks to the vertex that represents the instance of an object,

which is at the top of the priority queue. This process continues until the last vertex from

SPQ is extracted.

Note, that the above discussion serves as a sketch of proof for the correctness of

our algorithm; we do not actually need to construct the GkM and GkR graphs. The proposed

algorithm emulates the same strategy described above (DFS and plane sweep) by visiting

the objectRecords (and the meetings stored within such records).

The reachability status of each object is recorded into a temporary reachability

table, which is created once per time block, and is being updated as time proceeds. This

table adds a row when an object is reached and has one column per time instant of the time
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block. Consider example in Figure 3.5. For simplicity, Table (a1) shows the actual meetings

between all objects during one time block. Tables (b1) - (b5) show how the reachability

table evolves over time; here ′R′ stands for the earliest time when an object was reached,

and ′r′ - for each subsequent time instant. For this example, we set mq = 2∆τ , while the

time block’s interval is 9∆τ .

The figure shows how to find all objects reached by object O1. At τ0 only O1

is reached (b1). During the given time block, O1 had meetings with objects O2 and O3,

which can result in them being reached by times τR(O2) = 2 and τR(O3) = 8 (in (a2, b2) ).

(Once a meeting < Oi, Oj , [τs, τf ] > is discovered, it is represented as a line segment with

endpoints at τs and τf on the plane.) To decide which object to visit next, the plane is

swept with a line in increasing time order, starting from τ = 0. We move to O2 - the object

with the earliest reached time, and check all meetings of O2 that end after τ = 2. Consider

meeting < O2, O3, [1, 6] > (a3). Even though it starts at τ = 1, object O2 itself was not

reached until τ = 2, and only at this time it may start retransmission. Thus O3 can be

reached at τ = 4 (earlier than it was reached by object O1), and we can update information

in table (b4). Due to this update, O3 now has enough time to reach O4(a4), which leads to

τR(O4) = 7 (a5, b5).

The procedure for computing all objects that are (mq)-reachable by OS is gen-

eralized in Algorithm 2. The SReached set keeps all objects for which the earliest reached

time has been finalized. The algorithm maintains a priority queue SPQ, which contains

reached objects that are not in SReached yet; objects in SPQ are prioritized according to

their ‘reached’ times. After object Oi with the earliest ‘reached’ time is extracted from
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Algorithm 2 Reach(mq)

1: Input: OS

2: for each Oi do τR(Oi) =∞

3: procedure ReachFixedM(OS ,mq)

4: time = 0, τR(OS) = 0, SPQ = {OS}, SReached = {∅}

5: while ((SPQ) 6= {∅} and time ≤ τend) do . τend is the last

6: Oi = ExtractMin (SPQ) . time unit of a block

7: SReached = SReached ∪Oi, time = τR (Oi)

8: for each companion Oj of Oi do

9: if Oj /∈ SReached then

10: τRnew(Oj) =∞

11: while τRnew(Oj) ≥ τR(Oj) do

12: read next meeting Mij =< Oi, Oj , [τs, τf ] >

13: compute τRnew(Oj)

14: if τRnew(Oj) < τR(Oj) then

15: Update (SPQ, Oj)

16: if (Mij = last meeting < Oi, Oj , IBk
>) then

17: τRnew(Oj) = −1

18: return SReached
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SPQ, the procedure finds all companions Oj of Oi, that are not in SReached, and for each

Oj it explores every meeting < Oi, Oj , [τs, τf ] > from the time τR(Oi), and until either Oj

is reached (in which case τRnew(Oj) is updated), or the last time instant of the block is

processed. Next, Oj needs to be inserted into SPQ. If Oj was previously found reached by

some other object (at time τR(Oj)), and is already in SPQ, τRnew(Oj) has to be compared

with τR(Oj), and the priority of Oj in SPQ may need to be updated. To precompute reach-

ability during Bk for all objects, Algorithm Reach(mq) has to be repeated for each object

Oi. We proceed with the description of our algorithms RICCmeetMin and RICCmeetMax.

RICCmeetMin. For simplicity the previous discussion assumed that mq is known.

However, mq is query-specified, and thus unknown at the time of the preprocessing. Recall

that the minimum meeting duration µ is the minimum time that is required to complete any

transfer, and µ ≤ mq. Let SReached(mq) denote the set of objects that are (mq)-reachable

from object OS . Then SReached(mq) ⊆ SReached(µ). If Oi is not (µ)-reachable from Oi,

it is not (mq)-reachable as well, which leads us to RICCmeetMin. We assume for the

preprocessing that the required meeting duration is µ, and precompute SReached(µ) for each

object Oi. (During query processing, all objects that are (mq)-reachable from some object

Oi will be among the objects that are found to be (µ)-reachable). Algorithm 1, described

above computes Sreached for any mq, including mq = µ, and can be used without any

modifications for RICCmeetMin.

RICCmeetMax. Consider again example in Figure 3.5 (a). If mq = 2, object O1

can reach objects O2, O3, and O4. However if mq = 3, O2 and O3 are still reachable by

O1, while O4 is not. Finally, if mq = 4, only O2 remains reachable by O1. In real datasets,
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meeting duration can vary significantly, depending on the direction and speed of the moving

objects. Thus, RICCmeetMax precomputes the (mmax)-reachability for each pair of objects;

in other words, for each pair of objects Oi and Oj , it finds the meeting duration mmax, such

that Oj is (mmax)-reachable from Oi, but is not (mmax + 1)-reachable.

Algorithm 3 ReachMax

1: Input: OS , SReached(µ) . SReached(µ) is the result of Reach(µ)

2: for each Oi ∈ SReached(µ) do

3: τR(Oi) =∞

4: m = µ

5: while SReached(m) 6= {∅} do

6: m = m+ 1

7: Reach(OS, m, SReached(m− 1))

8: Update SmaxReached

9: for each Oi ∈ SReached(m) do

10: τR(Oi) =∞

11: return SmaxReached

The process of computing (mmax)-reachability can become time and resource con-

suming. A straightforward way would be to find, for each object Oi and each mq, all paths

in the reachability graph GRk (mq), from Oi to all the other objects, and determine those

that afford the longest meeting duration. We can design a more efficient algorithm by using
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procedure ReachFixedM from Algorithm 2. Reach(µ) explores and prunes a number of meet-

ings that do not result in reachability, and SReached(µ) is a small subset of visited objects.

It is clear that SReached(m) ⊆ SReached(µ) if m ≥ µ. We modify procedure ReachFixedM

(and call a new procedure Reach) by replacing the condition in line 9 with the following: if

(Oj ∈ SReached(m − 1) and Oj /∈ SReached(m)). Here SReached(m − 1) is the set of objects,

that were reached by object OS during the previous iteration. Algorithm 3 summarizes the

steps. The initialization takes place in lines 2,3. In line 4, ReachMax checks whether the

set of objects that can be reached under the current meeting duration is not empty. The

algorithm iterates through steps in lines 5 - 8 by increasing the meeting duration, testing

which objects can still be reached by OS under the new m, and updating their ’reached’

times. This process terminates when SReached(m) is empty. The output of the algorithm

is a set of tuples (Oi,mmax), where the object, reached by OS is followed by the longest

meeting duration.

Once the reachability for each object of the given time block is computed, the

reachability records are written (sequentially) into the file Reached(Min) (respectively into

the file Reached(Max)). Each record in file Reached(Min) consists of object Oi itself, and

a list of all objects that are (µ)-reachable from Oi. A record in file Reached(Max) consists

of the object Oi followed by the list of tuples of the form (Oj , mmax). Reachability records

are written to the Reached file in the same order as in Meetings file, thus they maintain the

same cell order. Within a cell they are ordered by object id.
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Figure 3.7: Two-level index on files Meetings and Reached(Max)

3.3.4 Index Construction

In addition to the Meetings and Reached(Min) (or Reached(Max)) files, we create

three index structures: the Meetings Index, Reached Index, and Time Block Index (Fig-

ure 3.7). Records in the Meetings Index are clustered by time block. Each record consists

of an object id and a pointer to the page with the first record for this object (for the given

time block) in file Meetings. Similarly, in the Reached Index, each record has an object id

and a pointer to the page with the first record for this object (for the given time block) in

file Reached. Finally, each record in the Time Block Index points to the beginning of a time

block in each of the other two index files.
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3.4 Query Processing

The query processing step is the same for both RICCmeet algorithms. To start

processing query Qmeet: {OS , OT , [τs, τf ],mq}, we compute which time blocks Bs, ... ,Bf

contain data for the time interval [τs, τf ]. Next, from the Time Block Index (which needs

to be accessed only once per query) we find what pages in the Meetings Index and Reached

Index correspond to the required blocks.

In file Reached, we access the record for OS during Bs, and find all objects that are

reachable from OS . Note that the set of reached objects may differ, depending on the used

algorithm. RICCmeetMin collects all objects that are (µ)-reachable by the given object.

Hence, every object Oi that is shown to be reached by OS in file Reached(Min), is added

to the set of reached objects S′Reached. RICCmeetMax records in Reached(Max) both, a

companion, and the value mmax. If the longest meeting between OS and Oi, mmax < mq,

then Oi is not (mq)-reachable from OS , and thus not added to S′Reached. Reached objects

are saved in S′Reached with the block number, during which each object was reached. This

allows to read data efficiently from the file Meetings. After the processing for Bs is finished,

we proceed to the next block in Reached with the updated set S′Reached, and continue until

either object OT is added to S′Reached (say during the block Bi), or Bf is processed.

If OT was not discovered by the end of Bf in Reached, the query terminates, as

OT cannot be reached. Otherwise, it moves to the block Bs of file Meetings, where the

process of discovering of reached objects for each time block is similar to the one described

in Algorithm 2. While crossing the boundary between two consecutive time blocks, special

attention is given to the boundary meetings. A meeting between a reached object Oi and
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its companion Oj that ends at the end of the time block is considered to be incomplete until

we start processing the next block. If there is a meeting between Oi and Oj that starts at

the beginning of the following block, we merge the two boundary meetings into one new

meeting.

If OT was not confirmed to be reached by the end of Bi, and Bi 6= Bf , the search

will move again to file Reached. This process continues until OT is confirmed to be reached

by the information received from Meetings, or the last block Bf is processed.

3.5 Experimental Evaluation

We evaluate and analyze the performance of each of the proposed RICCmeet

algorithms, and compare it with ReachGridmeet, a modification of the ReachGrid algorithm

[43] that works under the ‘no instant exchange’ assumption. All experiments are performed

on a system running Linux with a 3.4GHz Intel CPU with 16 GB RAM, 3TB disk and 4K

page size. For all experiments, we set ∆τ=1 sec.

3.5.1 Datasets

The performance of both of our algorithms was tested on six datasets of two

types: Moving Vehicles (MV) and Random Walk (RW). The MV datasets were created by

the Brinkhoff data generator [6], which generates traces of objects, moving on real road

networks. The underlying network is the San Francisco Bay road network, which covers

an area of about 30000 km2. These sets contain 1000, 2000, and 4000 vehicles respectively

(denoted as MV1, MV2, and MV4). Each vehicle’s location is recorded every ∆t = 5 seconds
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during 4 months (2, 040, 000 records for each object total). We assume dcont = 100 meters

(for a Bluetooth connection).

The RW datasets, were created with our own data generator, which utilizes the

modified random waypoint model [31], often used for modeling movements of mobile users.

According to this model, each user chooses the direction, speed (in our case, between 1.5m/s

and 4m/s), and duration of the next trip, then completes it, after which chooses the pa-

rameters for the next trip, and so on. In our settings, at each time instant, only 90% of

individuals are moving, while the remaining 10% are stationary. These three sets simulate

the movements of 10000, 20000, and 40000 people respectively (denoted as RW1, RW2, and

RW4). The location of each individual is recorded every ∆t = 6sec for a period of one

month (or 432,000 records for each person total), and each set covers an area of 100 km2.

For these sets, we assume dcont = 3 meters (typical for individuals to pass a physical item

or virus).

The performance was evaluated in terms of disk accesses (I/Os) during query

processing. The ratio of a sequential I/O to a random I/O is system dependent; for our

experiments this ratio is 20:1 (hence 20 sequential I/Os take the same time as 1 random).

Using this ratio we present the equivalent number of random I/Os.

3.5.2 Parameter Optimization

To tune parameters C,H, we use a 5% subset of the dataset. We preprocess this

subset for various values of (C,H), and test the performance of the algorithms on a set

of 300 queries. (The length of each query was picked uniformly at random between 500
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Table 3.2: Size of datasets, auxiliary files and indexes

Dataset
Size of 
Dataset 

(GB)

Auxiliary Files and Index 
Size (GB)

RICCmeet
Min

RICCmeet
Max

MV1 54 4.6 5.2

MV2 107 23.0 27.3

MV4 213 83.3 98

RW1 97 11.6 12.7

RW2 194 44.9 50.0

RW4 387 157 178.7

and 4000 sec.) The parameters were varied as follows: grid resolution - from 500 to 40000

meters for MV datasets, and from 250 to 2000 meters for RW ; contraction parameter -

from 1 to 140 min. For each dataset, we identified the pair of parameters that minimizes

the number of I/Os and used them for the rest of the experiments. For example, for MV1

we use: H = 20000 meters, and C = 10 min.

3.5.3 Preprocessing Space and Time

The sizes of the auxiliary files (Meetings and Reached) as well as the index sizes

for the two algorithms appear in Table 3.2. As expected RICCmeetMax uses more space

because it stores the actual meeting duration mmax per each reached object. Further, in our

experiments RICCmeetMax typically takes about 20% more time than for RICCmeetMin

(since the algorithm continues until it finds mmax). The time needed to preprocess one hour

of data for RICCmeetMin ranges from 13 sec for MV1 to 56 min for RW4.
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3.5.4 Query Answering

The performance of RICCmeet algorithms was tested on sets of 100 queries of

different time intervals ranging from 500 sec to 6.7 hours and different mq varying from 2

to 16 sec, while µ was set to 2 sec.

RICCmeet vs. ReachGridmeet (Shortest Queries). We start with a brief

description of ReachGrid algorithm [43]: ReachGrid partitions the dataset into spatial

grid cells and time blocks. Each record (which consists of object id, its location and time)

is assigned to a cell according to the location of the object. Data of each block is being

sorted, first according to object ids, then by time. Finally an index is constructed which for

each object, at each time instant, records the cell id to which the object belongs. Within

each time block, for each cell the page id where the records for this cell start is recorded as

well. In ReachGrid, all relationships (contacts) between the objects have to be discovered

at the query time.

To speed up query time, in ReachGridmeet, we precompute all the contacts be-

tween the objects during preprocessing, while leaving the index structure the same as in

ReachGrid. For computing contacts, we use the same algorithm as for both RICCmeet

algorithms. After all contacts are discovered, they are recorded in the same order as the

data was recorded for ReachGrid. During query processing in ReachGridmeet, at each time

instant, after new contacts are discovered, they have to be merged with the previous con-

tacts or meetings into new meetings; lastly, the reachability is checked the same way as in

the Algorithm 2.

We evaluate the query performance of the three algorithms while varying mq on
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Figure 3.8: RICCmeet vs. ReachGridmeet

short queries (the query interval was set to 500 sec). Figure 3.8 shows the query performance

when using the MV1 dataset and varying mq from 2 to 16 sec. (In all figures, the Number

of I/Os reflects the number of random pages accessed per query.) RICCmeetMin and

RICCmeetMax access the same number of pages for mq = 2 sec, while RICCmeetMax

performs best for the remaining mq; in comparison, ReachGridmeet accesses about 3.5

times more pages than RICCmeetMin. In clock time, the RICCmeet algorithms answered

these queries in under 1 sec, while it took 80 sec for ReachGridmeet. The query processing

of ReachGridmeet is much slower because the algorithm needs to compute meetings and

every reachability event during query processing. This was observed consistently in all of

our experiments hence its performance is eliminated for the remaining figures.

Minimum Meeting Duration Queries. In this experiment, we compared the

query processing of the two RICCmeet algorithms on queries with mq = µ (µ = 2 sec.).

On each dataset, we ran a set of 100 queries varying query time interval (from 500 to 3500

sec for MV datasets and from 600 to 4200 sec for RW datasets respectively), and learned

that in each case either RICCmeetMin outperformed RICCmeetMax, or both algorithms

accessed the same number of pages. The greatest difference between the two algorithms’
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performances (up to 4.8%) was observed for RW2 dataset, which we presented in Figure 3.9.

This result was expected: both RICCmeet algorithms precompute all µ-reachability events,

while for RICCmeetMin the size of the auxiliary files is smaller, and thus less data needs

to be traversed during the query processing.

Varying mq. To analyze the impact of mq on the performance of RICCmeet

algorithms, we ran a set of 100 queries varying mq from 2 to 16 sec; each query’s interval

was picked uniformly at random from 500 to 3500 sec for MV datasets, and from 600 to

4200 sec for RW datasets. The results are presented in Figure 3.10 (a1 − b3). It is clear

that RICCmeetMax outperforms RICCmeetMin in all tests when mq > µ.

As mentioned earlier, during the query processing, we first read file Reached, and

may not need to access file Meetings if, according to Reached, the target object is not

reached by the end of the query interval. We say that a query was pruned if file Meetings

has not been accessed during the query processing. Recall that aQmeet query checks whether

object OT is reachable from object OS . If the answer is positive, we will call such query an

R-query (for ”reached”), and R̄-query otherwise. The ratio of the number of pruned queries
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Figure 3.10: Varying mq

to the number of R̄-queries defines the effectiveness of pruning and depends on mq. As mq

increases, the ratio of queries pruned by RICCmeetMax increases from 0.82 to 0.96 while

the corresponding ratio of queries pruned by RICCmeetMin decreases from 0.82 to 0.59

(see Figure 3.11). Since RICCmeetMin precomputes only (µ)-reachability, it does not have

the pruning ability of RICCmeetMax (which has the greatest advantage when answering

reachability queries with the longest mq).

Varying Query Length. Next, we compare the performance of RICCmeet al-

gorithms while varying query interval length. Each test was ran on a set of 100 queries

varying query length from 500 to 3500 sec for MV datasets, and from 600 to 4200 sec for

RW datasets, while mq was picked uniformly at random from 2 to 16 sec. The results are

shown in Figure 3.12. While both algorithms show almost linear increase in the number
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Figure 3.11: Pruning

of I/Os with the increase of the query length (a benefit of spatial organization of data in

the files), RICCmeetMax is superior to RICCmeetMin in all the tests with the maximum

advantage achieved for the longest queries.
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Figure 3.12: Varying query length

Scaling. We tested the effect of scaling the query interval length on the perfor-

mance of RICCmeetMax. (Since RICCmeetMin performs worse on all but (µ)-reachability
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queries, we did not include it into the remaining tests.) For this experiment, we used RW1

since, compared to all the other datasets, the average time needed for two objects in RW1

to reach each other is the longest. We started with queries that are 3000 sec long, and

extended the query length up to 24000 sec also varying mq from 2 to 16 sec. Figure 3.13

presents the results. With the increase in query interval, there are more meetings, and

thus less pruning. The slowest queries were those with mq = 16 sec, which still showed a

reasonable number of I/Os.
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Figure 3.13: (a) Scaling, (b) Many-to-many queries: dataset RW1, query length 4200 sec.

Other Reachability-Based Queries. Until now, we discussed only one-to-one

queries: queries that have one source and one target objects. Our algorithms are also

efficient in answering other types of queries: one-to-many, many-to-one, and many-to-many.

We give a definition of the last type. Let SSource = {OS1 , OS2 , ..., OSl
}, and STarget =

{OT1 , OT2 , ..., OTm} be sets of the source and target objects respectively. A many-to-many

reachability with meetings query Q′meet: {SSource, STarget, I,mq} determines whether there
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is an object OTj ∈ STarget, such that: i) OTj is (mq)-reachable by OSi ∈ SSource during time

interval I = [ts, tf ], and ii) if there is more than one reached object, it reports the object

with the earliest reached time. One can answer a Q′meet query by running all possible queries

{OSi , OTj , I,mq} one-by-one, which would lead to a long query processing time. RICCmeet

algorithms are efficient in answering Q′meet as one query. For this experiment, we chose RW1

dataset for the same reason as above. Figure 3.14 shows how performance of RICCmeetMax

varies with the increase in the number of source and target objects for Q′meet queries with

different mq (when running Q′meet as one query). The results varied depending on the query

lengths, with the most interesting being for the longest tested queries of 4200 sec. Most

of the queries with mq = 2 sec were R-queries , while most of queries with mq = 16 sec

were R̄-queries (as one-to-one reachability queries). Among R-queries, most efficiently are

answered many-to-many queries with the largest number of source and target objects (since

reachability is determined faster). Among R̄-queries such queries are processed the least

efficiently (the increase in the number of source and target objects leads to expansion of

the search space).
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3.6 Conclusions

In this chapter, we introduced a new variation on spatiotemporal reachability

queries, i.e., reachability queries with meetings, and proposed two algorithms, RICCmeet-

Min and RICCmeetMax, for efficient processing of such queries on large disk-resident

datasets. In all experiments, the RICCmeet algorithms showed significantly better per-

formance than an adapted previous approach. RICCmeetMax outperforms RICCmeetMin

in all cases except for the shortest meeting duration queries. We also showed that these

algorithms can be adapted to efficiently address many-to-many reachability queries with

meetings.
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Chapter 4

Answering Reachability Queries

with Transfer Decay and Top-k

Reachability Queries

4.1 Introduction

In the previous chapters, we discussed two types of spatiotemporal reachability

problems with ’no instant exchange’: reachability with processing delay and reachability

with transfer delay. They were named PT̄ and P̄ T reachability respectively (see section

2.1). According to the PT̄ reachability scenario, after two objects had a contact, the

contacted object needs to spend some time to process the received information before it can

redeliver it. In the P̄ T reachability scenario, in order to transfer information, two objects

(companions) are required to stay within the contact distance for some period of time (i.e.
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to have a meeting).

While the problems that have been considered until this chapter covered different

reachability scenarios, they had a common feature: the value of information carried by

the source object (the object that initiated the information transmission process) and the

value of information obtained by any reached object was assumed to remain unchanged.

In the problem that we are going to introduce and address in this chapter, we remove this

assumption, since it is not always valid. For example, if two people communicate over

the phone (or a Bluetooth-enabled device), some information may be lost due to faulty

connection.

We name a reachability problem, where the value of the transmitted item expe-

riences a decay with each transfer, the reachability with transfer decay. This problem will

still follow the reachability with transfer delay scenario. The formal definition of the new

problem will be given in the next Section.

Another problem that we would like to present is a top-k reachability problem with

decay. Consider a group of objects (people, cars, etc...), each of which possesses a different

piece of information, and starts its transmission to other objects independently of each

other. The objects that initiated the process form a set of source objects. Each of the

source objects may carry information of a different value (and thus have a different weight),

and during a contact, a decay of each piece of information may not be the same. As time

progresses, any object may receive one or more items that originally came from different

sources (possibly via other objects). It is reasonable to compute the combined weight of

all the items collected by each object and rank the objects according to their aggregate
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weights. Those objects that aggregate most information may be of a special interest. A

top-k spatiotemporal reachability query with decay asks to find the k objects with the

highest aggregate weights.

The rest of the chapter is structured as follows: Section 4.2 gives a description

of the problem of reachability with decay, as well as the top-k reachability with decay;

Section 4.3 introduces our algorithm RICCdecay and describes its preprocessing phase, while

Sections 4.4 and 4.5 present the query processing algorithms for the reachability with decay

and the top-k reachability problems respectively. Section 4.6 provides the experimental

evaluation of the proposed algorithms. Finally, Section 4.7 concludes the Chapter.

4.2 Problem Description

We define two novel spatiotemporal reachability problems: the problem of reacha-

bility with decay and its extension, the problem of top-k reachability with decay. Since these

problems assume the reachability with transfer delay scenario as well, for completeness, we

will restate some of the definitions that were given in Chapter 3.

4.2.1 Background

Let O = {O1, O2, ..., On} be a set of moving objects, whose locations are recorded

for a long period of time at discrete time instants t1, t2, ..., ti, ..., with the time interval

between consecutive location recordings ∆t = tk+1 − tk (k = 1, 2, ...) being constant. A

trajectory of a moving object Oi is a sequence of pairs (li, tk), where li is the location of

object Oi at time tk. Two objects, Oi and Oj that at time tk are respectively at positions
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li and lj , have a contact (denoted as < Oi, Oj , tk >), if dist(li, lj) ≤ dcont, where dcont is

the contact distance (a distance threshold given by the application), and dist(li, lj) is the

Euclidean distance between the locations of objects Oi and Oj at time tk.

The P̄ T reachability scenario (reachability with transfer delay) requires to dis-

cretize the time interval between consecutive position readings [tk, tk+1) by dividing it into

a series of non-overlapping subintervals [τ0, τ1), ..., [τi, τi+1)... , [τr−1, τr) of equal dura-

tion ∆τ = τi+1 − τi, such that τ0 = tk and τr = tk+1. We say that two objects, Oi and

Oj , had a meeting < Oi, Oj , Im > during the time interval Im = [τs, τf ] if they had been

within the threshold distance dcont from each other at each time instant τk ∈ [τs, τf ]. The

duration of this meeting is m = τf − τs. We call a meeting valid if its duration m ≥ mq∆τ

(where mq is the query specifies required meeting duration - time, needed for the objects

to complete the exchange). Object OT is considered to be (mq)-reachable from object

OS during time interval I = [τ ′s, τ
′
f ] if there exists a chain of subsequent valid meetings

< OS , Oi1 , Im0 >, < Oi1 , Oi2 , Im1 >, ... ,< Oik , OT , Imk
>, where each Imj = [τsj , τfj ] is

such that τfj − τsj ≥ mq, τ
′
s ≤ τs0 , τfk ≤ τ ′f , and τsj+1 ≥ τfj for j = 0, 1, ..., k − 1.

A reachability query determines whether object OT (the target) is reachable from

object OS (the source) during time interval I.

Consider example in Figure 4.1. Table (a) shows the actual meetings between

all objects during one time block. The meetings graph on this data is depicted in (b). A

materialized reachability graph shows how the information is being dispersed considering

that it starts with the source object and satisfies the mq requirement. Suppose object O1

is the source object and the required meeting duration mq = 2∆τ . Then graph in (c) is the
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materialized (mq)-reachability graph for source object O1 on data from (a). By looking at

this graph, one can discover all objects that can be (mq)-reached by object O1 during the

time interval I = [τ0, τ8].

(b) G1 (c) G2 (d) G3

O1            O2             O3            O4

O1            O2             O3            O4
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O1            O2             O3            O4
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O1            O2             O3            O4
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O1 O4 0 2

O1 O3 6 8

O2 O3 4 6

O2 O4 2 4

(a)

Figure 4.1: (a) Record of meetings between objects O1 - O4; (b) graph G1 is the meetings
graph; (c) G2 is the materialized reachability graph for ‘transfer delay’ scenario with the
source object O1 and mq = 2∆τ ; (d) G3 is the materialized reachability graph for ‘transfer
decay’ scenario with the source object O1, mq = 2∆τ , d = 0.2, ν = 0.6. The time interval
is I = [τ0, τ8].

4.2.2 Reachability with Decay

In the reachability with transfer delay scenario, to complete the transfer, it is

necessary for the objects to stay within the contact distance for a time interval that is at
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least as long as the required meeting duration mq. In general, mq may vary from one query

to another depending on application. However, even if a meeting between objects Oi and

Oj was long enough to satisfy the mq requirement, under some circumstances, the transfer

may still fail to occur, or the value of the transferred item may go down (e.g., a complete

or partial signal loss during the communication). We propose to consider a new type of

reachability scenario, namely reachability with transfer decay that accounts for such events.

Let d denote the rate of transfer decay - a part of information lost during one

transfer (d ∈ [0, 1)). Then p = 1 − d (p ∈ (0, 1]) will define the portion of the transfered

information. Suppose, the weight of the item carried by a source object OS is w. Then,

during a valid meeting, OS can transfer this item to some object Oi. However, considering

the decay, if d > 0, the value of information, obtained by Oi lessens and becomes wp. With

each further transfer, the value of the received item will continue to decrease. This process

can be modeled with an exponential decay function.

We denote the number of transfers (hops), that is required to pass the information

from object OS to object Oi as h (h ≥ 0). If object Oi cannot be reached by object OS ,

h =∞. Let gw : R→ R be a function that calculates the weight of an item after h transfers.

Assuming that the transfer decay d and thus p are constant for the same item, gw(h) can

be defined as follows:

gw(h) = wph. (4.1)

The number of transfers h in equation (4.1), that an item has to complete in

order to be delivered from object OS to object Oi, depends on the time τj when it is being

evaluated, and thus denoted as h(O
τj
i ). Consider example in Figure 4.1. Suppose again
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that mq = 2∆τ and object O1 is the source object. It can reach object O3 by τ = 6 with

3 hops, while it requires only one hop for object O1 to reach O3 by τ = 8. So, h(Oτ63 ) = 3

and h(Oτ83 ) = 1.

Note, that the scenario with p = 1 corresponds to the reachability with transfer

delay problem described in [46]. If p < 1, with each transfer the value of gw(h) decreases

exponentially. After a number of transfers, this value may become too small, and the user

may decide to discard it. Let ν denote the threshold weight. If after some transfer, the

weight of the item becomes smaller than the threshold weight ν, we disregard that event

by assigning to the newly transferred item the weight of 0. We say, that h is the allowed

number of hops (transfers) if it satisfies the threshold weight inequality

gw(h) ≥ ν. (4.2)

We denote the maximum allowed number of transfers that satisfies inequality (4.2)

as hmax. Let function fw : R→ R be a function that assigns the weight to an item carried

by object Oi at time τj , and denote it as fw(O
(τj)
i ). (For brevity, we say ’the weight of

object Oi at time τj ’.) We define fw(O
(τj)
i ) as follows:

fw(O
(τj)
i ) =


gw(h) if h(O

(τj)
i ) ≤ hmax,

0 otherwise.

(4.3)

The table in Figure 4.1 (a) shows the meetings between the objects O1, O2, O3,

and O4 during the time interval I = [τ0; τ8]. For this example, we assume again that O1

is the source object, mq = 2∆τ and d = 0.2 ( thus p = 0.8). To illustrate the difference
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between the actual weight of an item gw and its assigned weight fw, the values gw, fw1 , and

fw2 are computed for each object at time instants from τ0 to τ8 and recorded in the table

(see Figure 4.2). The values for the assigned weight functions fw1 and fw2 are computed

for ν = 0.6 and ν = 0.7 respectively. The graph G3 in Figure 4.1(d) is constructed for fw1 .

Time O1 O2 O3 O4

�0

gw 1 0 0 0

fw1 1 0 0 0

fw2 1 0 0 0

�2

gw 1 0 0 0.8

fw1 1 0 0 0.8

fw2 1 0 0 0.8

�4

gw 1 0.64 0 0.8

fw1 1 0.64 0 0.8

fw2 1 0 0 0.8

�6

gw 1 0.64 0.512 0.8

fw1 1 0.64 0 0.8

fw2 1 0 0 0.8

�8

gw 1 0.64 0.8 0.8

fw1 1 0.64 0.8 0.8

fw2 1 0 0.8 0.8

Object
Weight     

function

Figure 4.2: The actual weight of an item gw and its assigned weights fw1 and fw2 , calculated
for objects O1 - O4 on data from Table 4.1(a), using object O1 as the source object; p = 0.8,
ν = 0.6 for fw1 and ν = 0.7 for fw2 .
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We say that object OT is (mq, d)-reachable from object OS during time interval

I = [τ ′s, τ
′
f ] if there exists a chain of subsequent valid and successful (under mq, d conditions)

meetings < OS , Oi1 , Im0 >, < Oi1 , Oi2 , Im1 >, ... ,< Oik , OT , Imk
>, where each Imj =

[τsj , τfj ] is such that, τ ′s ≤ τs0 , τfk ≤ τ ′f , and τsj+1 ≥ τfj for j = 0, 1, ..., k − 1. The earliest

time when OT can be reached will be denoted as τR(OT ).

We assume that the values of d and ν are query specified. An (mq, d)-reachability

query Qmd: {OS , OT , w, d, I,mq, ν} determines whether the target object OT is reachable

from the source object OS , that caries an item whose weight is w, during time interval

I = [τs, τf ], given required meeting duration mq, rate of transfer decay d, and threshold

weight ν, and reports the earliest time instant when OT was reached.

4.2.3 Top-k Reachablility

We now consider the problem of top-k reachability with transfer decay. Let S

= {OS1 , OS2 , ..., OSq}, W = {w1, w2, ..., wq}, and D = {d1, d2, ..., dq} be the sets of source

objects, weights, and decays respectively. Each object OSr ∈ S carries a different piece of

information (or physical item), whose weight is wr, and is able to transfer this information

to other objects following the (mq, d)-reachability scenario described above. The transfer

decay for the item carried by object OSr is dr.

As the objects move through the network, source objects OSr encounter other

objects, and may pass information to them. Since each source object owns a different piece

of information, the transferred weight is going to differ not only depending on the number

of hops, but also on the source that it came from.

Let the number of hops, that is required for object OSr to pass the information
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to object Oi be hr (hr ≥ 0). Then we can calculate the actual weight of an item r after hr

transfers using equation (4.1) as

gw(r)(hr) = wrp
hr
r ,

where r = (1, 2, ..., q). As in the previous problem, we require that each threshold weight

inequality has been satisfied:

gw(r)(hr) ≥ ν

for r = (1, 2, ..., q) and threshold weight ν.

Let hmax(r) be the maximum allowed number of transfers that satisfies the inequal-

ity above for each r = (1, 2, ..., q). Similarly to (4.3), function fw(r) assigns weight to the

rth item carried by object Oi at time τj (it will be denoted as fw(r)(O
(τj)
i ). We define the

assigned weight fw(O
(τj)
i ) as follows:

fw(r)(O
(τj)
i ) =


gw(r)(hr) if hr(O

(τj)
i ) ≤ hmax(r),

0 otherwise.

(4.4)

Furthermore, each object may receive more than one item. We denote the aggregate

weight function Fw : R→ R that assigns weight to the collection of items carried by object

Oi at time τj as Fw(O
(τj)
i ), and define it as follows:

Fw(O
(τj)
i ) =

q∑
r=1

(fw(r)(O
(τj)
i )), (4.5)

where each fw(r)(O
(τj)
i ) is computed as in (4.4).
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Table 4.1: Notation used in the chapter

Notation Definition

∆τ Duration between two consecutive time instants
∆t Duration between two consecutive reporting times
mq, µ Required meeting duration and minimum meeting duration
OS , OT A source and a target objects

O
(τj)
i Instance of object Oi at time τj

τR(Oi) Earliest time when object Oi was reached
d, p Transfer decay and portion of transfered information
h, hmax Actual and maximum allowed number of hops (transfers)
ν Threshold weight
gw(h) Actual weight of an item after h transfers

fw(O
(τj)
i ) Weight, assigned to an item carried by O

(τj)
i considering ν

Fw(O
(τj)
i ) Assigned aggregate weight of all items carried by O

(τj)
i

Bk, Ik Time block k that spans time interval Ik
C, H Contraction parameter and grid resolution

A top-k reachability with decay queryQtopK is given in the form {S,W,D, I,mq, ν, k}.

The goal of QtopK is to find k objects with the highest aggregate weight Fw (computed ac-

cording to 4.5), that was obtained during the time interval I.

4.3 Preprocessing

As with other reachability problems discussed above, there are two naive ap-

proaches to solve (mq, d)-reachability problem: (i) ’no-preprocessing’, and (ii)’precompute

all’. Neither one of them is feasible for large graphs: the first does not involve any prepro-

cessing, and thus too slow during the query processing, while the second requires too much

time for preprocessing and too much space for storing the preprocessed data. To overcome
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the disadvantages of the second approach and still achieve fast query processing, we pre-

compute and store only some data. We follow with the description of the preprocessing,

and later, in Sections 4.4 and 4.5, describe the query processing.

In order to simplify the presentation, we assume that the minimum meeting du-

ration µ (µ ≤ mq), that may be required for a transfer by any application, is known before

the preprocessing, and set mq = µ, thus fixing it. However, the proposed algorithm can be

extended to work with any query specified mq (as opposed to mq = µ) by combining it with

RICCmeetMax that was described in Chapter 3 and in [46].

Suppose, our spatiotemporal datasets contain records of objects’ locations in the

form (t, object id, location), ordered by the location reporting time t. Similar to the previous

RICC algorithms, we start the preprocessing by dividing the time domain into a non-

overlapping time intervals of equal duration (time blocks). Each time block (denoted as Bk)

contains all records whose reporting times belong to the corresponding time period. The

number of the reporting times in each block is the contraction parameter C. How to find

an optimal value of C will be discussed in Section 4.6.

For each time block, during the preprocessing stage of the algorithm, the following

steps have to be completed: (i) computing candidate contacts, (ii) verifying contacts (has

to be performed for each tk), (iii) identifying meetings, (iv) computing reachability, and

(v) constructing index. Steps (i), (ii), (iii), and (v) are similar to those in Chapter 3,

which contains a detailed description of them. Thus we go over these parts briefly, and

concentrate on step (iv), computing reachability, which is the central and most difficult

step of the preprocessing.
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During preprocessing, information regarding each object Oi is saved in a data

structure named objectRecord(Oi), which is created at the beginning of each time block

Bk and deleted after all the needed information is written on the disk at the end of Bk.

ObjectRecord(Oi) has the following fields: Object id, Cell id (the object’s placement in the

grid with side H when it was first seen during Bk), ContactsRec (a list of the contacts of Oi

during Bk), MeetingsRec (a list of meetings of Oi during Bk). The grid side H is another

parameter (in addition to the contraction parameter C), which needs to be optimized. We

will discuss this question in Section 4.6. Also, area partitioning is performed into cells with

side H at the beginning of each time block, and into cells with side dcc at each tk, which is

described in detail in Section 3.3. In addition, for each time block we maintain a hashing

scheme, that enables to access each object’s information by the object’s id.

4.3.1 Computing Contacts and Identifying Meetings

Two objects Oi and Oj are candidate contacts at reporting time tk if the distance

between them at that time is no greater than candidate contact distance dcc = 2dmax+dcont

(where dmax is the largest distance that can be covered by any object during ∆t). Candidate

contact objects can potentially have a contact between tk and tk+1. In order to force all

candidate contacts of a given object Oi to be in the same or neighboring with Oi’s cells,

at each tk we partition the area covered by the dataset into cells with side dcc. Now, to

find all candidate contacts of object Oi, we only need to compute the (Euclidean) distance

between Oi and objects in the same and neighboring cells. (The distance between any pair

of candidate contacts needs to be computed only once.)

Using our assumption that between consecutive reporting times objects move lin-
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early, at tk+1, we can verify if there were indeed any contacts between each pair of candidate

contacts during the time interval [tk, tk+1). If a contact occurred, it is saved in the list

ContactsRec of objectRecord of each contacted object.

If an object Oi had Oj for its contact at two or more consecutive time instants,

these contacts are merged into a meeting, and written in the MeetingsRec list of (Oi). This

process continues until we process the time block, at which point the meeting durations are

computed. At the end of the block all meetings with duration m < µ (with the exception

of boundary meetings) are pruned, while all the remaining meetings are recorded into file

Meetings. Boundary meetings (meetings that either start at the beginning or finish at the

end of Bk) are recorded regardless of their duration since they may span more than one

block, which needs to be verified during the query processing.

4.3.2 Computing Reachability

To speed up the query time, during the preprocessing stage, for each object Oi

(which is active during the given time block Bk), we would like to precompute all objects

that are (µ, d)-reachable from Oi during Bk. Here we are facing a challenge: to find, which

objects can be (µ, d)-reached by Oi, we need to know the transfer decay d and weight

threshold ν, which are assumed to be unknown at the preprocessing time.

To overcome an issue of unknown d and ν, we turn our problem of reachability

with decay into hop-reachability problem. Recall that one of the requirements for object

OT to be reachable from object OS is that each meeting in the chain of meetings from OS

to OT has to be a successful meeting.

It follows from 4.2, that after each meeting, for each companion object Oi, the
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following condition must hold:

gw(h) = wph ≥ ν.

Thus, the allowed number of transfers (or hops) h for a successful meeting should satisfy

the following inequality:

h ≤ logp
ν

w
,

and finally

hmax = blogp
ν

w
c. (4.6)

Now the problem can be stated as follows: for each object Oi, compute all objects,

that are (µ, hmax)-reachable from Oi. In other words, we aim to discover all objects that

can be reached by Oi within hmax transfers, under the required meeting duration mq = µ.

Moreover, for each object Oj reached by Oi, we would like to find the minimum number of

such transfers hmin ≤ hmax.

Our algorithm makes use of plane sweep algorithm, where an imaginary vertical

line sweeps the xy-plane, left-to-right, stopping at some points, where information needs to

be analyzed. In our case, the x-dimension is the time-dimension, and y-dimension is the

order in which the meeting are discovered.

We demonstrate how the algorithm works on the Example in Figure 4.3, and later

provide a pseudo-code and detailed explanation. Consider the data in the table (a1). It

contains records of all actual meetings between all objects during one time block. Figures

(a2)-(a6) describe how reached objects and meetings are been discovered. The information

about the ’reachability’ status of each object is being recorded into a temporary table, which

is created at the beginning of each block. A row is added to the table for each reached object
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at the time when it is reached, and it is updated with any new event. The development of

the reachability table is shown in Figures (b1)-(b6).

We show how to compute all objects that are reached by object O1 during the

given time block, assuming that µ = 2∆τ . At the beginning of the block, the sweep line is

positioned at τ = 0, and only object O1 is reached (with hmin = 0), which is recorded in

table (b1). During the given time block, O1 has only one meeting, < O1, O3, [0, 3] > which

is placed on the plane (a2). As a result of this meeting, object O3 is reached at time τ = 2,

with the minimum hop-value hmin = 1, which is recorded in the table (b2). The sweep line

moves to the time τ = 2 - time, when object O3 was reached. Next, all meetings of O3

that are either active at τ = 2 or start after this time, are materialized. These are meetings

< O3, O2, [1, 5] > and < O3, O4, [5, 7] >. Consider the first meeting: < O3, O2, [1, 5] >.

Even though it begins at τ = 1, the retransmission does not start until τ = 2, since only

at this time O3 becomes reached. As a result of these two meeting with object O3, O2 and

O4 become reached at τ = 4 and τ = 7 respectively, with hmin = 2 ((a3), (b3)). The line

changes its position to τ = 4. This process continues until the sweep line reaches the end

of the time block. Note that the earliest reached time for an object may change, also an

object’s hmin value may decrease with time. For example, object O4 was reached by O2

with hmin = 3 at τ = 6 ((a4), (b4)), however as a result of the meeting with object O3, its

hmin value went down to hmin = 2 at τ = 7 ((a3), (b3)).

The process for computing all objects that are (hmin)-reachable by OS during

one time block is generalized in Algorithm 4. Procedure UpdateHmin initializes and then

updates the table that records the reachability status of each reached object. The SReachHop
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(b2)  

(b3)    

(b4)    

(b5)     

(b6)

Object 1 Object 2 Meeting 

started 

Meeting 

finished 

O1 O3 0 3

O2 O3 1 5

O2 O4 4 7

O2 O5 2 4

O3 O4 5 7

O4 O5 6 9
(a1)                                                                                                                  (b1)

Time
Obj.

0 1 2 3 4 5 6 7 8 9

O1 0 0 0 0 0 0 0 0 0 0

O2 2 2 2 2 2 2

O3 1 1 1 1 1 1 1 1

O4 2 2 2

O5

Time
Obj.

0 1 2 3 4 5 6 7 8 9

O1 0 0 0 0 0 0 0 0 0 0

O2 2 2 2 2 2 2

O3 1 1 1 1 1 1 1 1

O4 3 2 2 2

O5 3

Time
Obj.

0 1 2 3 4 5 6 7 8 9

O1 0 0 0 0 0 0 0 0 0 0

O2 2 2 2 2 2 2

O3 1 1 1 1 1 1 1 1

O4 3 2 2 2

O5

Time
Obj.

0 1 2 3 4 5 6 7 8 9

O1 0 0 0 0 0 0 0 0 0 0

O2 2 2 2 2 2 2

O3 1 1 1 1 1 1 1 1

O4 3 2 2 2

O5

Time
Obj.

0 1 2 3 4 5 6 7 8 9

O1 0 0 0 0 0 0 0 0 0 0

O2

O3 1 1 1 1 1 1 1 1

O4

O5

(O1, O3)

0         2          4          6         8  time

(O2, O3)

(O2, O4)

(O3, O4)

(O4, O5)

(O1, O3)

0         2          4          6         8  time

(O2, O3)

(O2, O4)

(O3, O4)

(O1, O3)

0         2          4          6         8  time

(O2, O3)

(O2, O4)

(O3, O4)

(O1, O3)

0         2          4          6         8  time

(O2, O3)

(O3, O4)

(O1, O3)

0         2          4          6         8  time

Time
Obj.

0 1 2 3 4 5 6 7 8 9

O1 0 0 0 0 0 0 0 0 0 0

O2

O3

O4

O5

(a2)  

(a3)    

(a4)    

(a5)     

(a6)

Figure 4.3: Computing all (hmin)-reachable objects from O1 (µ = 2).
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Algorithm 4 Reach(hmin)

1: Input: OS

2: procedure UpdateHmin (Oi, τs, τf , h)

3: for for each τk ∈ [τs, τf ] do hmin(Oτki ) = h

4: for each Oi do

5: τR(Oi) =∞

6: UpdateHmin(Oi, τ0, τend,∞) . τ0 and τend are the first and last time units of a block

7: procedure ReachHop(OS)

8: time = 0, τR(OS) = 0, UpdateHmin(OS , τ0, τend, 0), SPQ = {OS}, SReachHop = {∅}

9: while ((SPQ) 6= {∅} and time ≤ τend) do

10: Oi = ExtractMin (SPQ)

11: SReachHop = SReachHop ∪Oi, time = τR (Oi)

12: for each Oj that had a valid meeting with Oi do

13: if Oj /∈ SReachHop then

14: τRnew(Oj) =∞

15: while τRnew(Oj) ≥ τR(Oj) do

16: read next meeting Mij =< Oi, Oj , [τs, τf ] >

17: compute τRnew(Oj)

18: if τRnew(Oj) < τR(Oj) then

19: Update (SPQ, Oj), h = hmin(Otimei ) + 1

20: if τR(Oj) =∞ then τR(Oj) = τend+1

21: UpdateHmin(Oj , τRnew, τR(Oj)− 1, h))

22: if (Mij = last meeting < Oi, Oj > in Bk) then

23: τRnew(Oj) = −1

24: return SReached
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set keeps all objects for which all hmin values as well as the earliest reached time had been

computed and finalized. Those objects that were found to be reached, but not in SReachHop

yet, are placed in the priority queue SPQ, where priority to the objects is given according

to their ‘reached’ times. When an object (say object Oi) that has the earliest reached time

(τR(Oi)) is extracted from SPQ, it is placed into SReachHop (lines 10, 11). At this time, all

meetings of objects that can be reached by Oi (but not in SReachHop) are analyzed (lines

13 - 23). As a result, both τR(Oj) (and their priority in SPQ) as well as their hmin values

can be changed (lines 19 and 21). This algorithm has to be performed for each object of

the dataset that is active during the given time block.
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Figure 4.4: Two-level index on files Meetings and Reached(Hop).
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4.3.3 Index Construction

The index structure of RICCdecay is similar to the one of RICCmeet algorithms:

in order to enable an efficient search of information in the files Meetings and Reached(Hop)

during the query processing, we create three index files: Meetings Index, Reached Index,

and Time Block Index in addition to the files Meetings and ReachedHop (Figure 4.4). The

records in Meetings Index are organized and follow the order of time blocks. Each record

contains an object id and a pointer to the page with the first record for this object (for the

given time block) in file Meetings. In the Reached Index, each record consists of an object

id and a pointer to the page with the first record for this object for the given time block

in file Reached(Hop). Each record in Time Block Index points to the beginning of a time

block in Meetings Index and Reached Index.

4.4 Reachability Queries with Decay: Query Processing

The reachability with decay query Qmd is issued in the form Qmd:{OS , OT , w, d,

[τs, τf ], µ, ν}. (Recall that during the preprocessing, for simplicity, we set mq = µ.) First,

using equation 4.6, we rewrite the problem as hop-reachability problem, replacing three

parameters, w, d, and ν from Qmd with hmax. Now the new query can be written as Qmh:

{OS , OT , hmax, [τs, τf ], µ}.

The processing of Qmh starts from computing the time blocks Bs, ... , Bf that

contain data for the query interval I = [τs, τf ]. File Time Block Index (accessed only once

per query) points to the pages in the Meetings Index and Reached Index that correspond to

the required blocks. The last two index files (accessed once per time block) in turn point
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to the appropriate pages in files Meetings and Reached(Hop) respectively.

The set of reached objects S′reached is initialized with object OS at the beginning

of the query processing. We start reading file Reached(Hop) from block Bs, retrieving all

records for object OS . Recall that in Reached(Hop) every object Oj that can be reached by

object Oi is recorded together with the smallest number of transfers hmin that is required

for Oi to reach Oj . Thus during the query processing, an object Oj cannot be considered

as reached during the block Bk unless hmin(OBk
j ) ≤ hmax (where hmin(OBk

j ) is the value

hmin of object Oj at the end of Bk). So, each objects Oj that was found to be reached

by OS (a companion of OS), is added to S′reached, along with the corresponding number of

hops hmin, provided that hmin(OBs
j ) ≤ hmax. Next, we proceed to block Bs+1. This time,

retrieving all the companions of each object from S′reached and updating it by either adding

new objects or adjusting the hmin value for the objects that are already in the set. Such

adjustment may be needed if, for some object Oi ∈ S′reached, hmin(OBs
j ) > hmin(O

Bs+1

j ).

The process continues until the target object OT is added to S′reached while reading some

block Bi(i < f) or the last block Bf is reached.

If at the end of processing Bf , S′reached does not contain the target object OT ,

the query processing can be aborted, otherwise it moves to the file Meetings. Now the

process of identifying reached objects inside each block is the same as the one described in

Algorithm 4. If there is a meeting between objects Oi and Oj , that ends at the end of the

time block, but is shorter than mq, we check if it continues in the next block, and merge

two meetings into one if needed. Also, if object Oi was reached by the source object OS

during the block Bk with hmin(OBk
i ) = h1, and in a later block Bm, object Oj was reached

87



by Oi within h2 hops, hmin(OBm
j ) = h1 + h2. Object Oj is considered to be reached by OS

if hmin(OBm
j ) ≤ hmax.

If by the end of Bi, OT was not found to be reached, and Bi < Bf , the search will

switch to file Reached(Hop). This process continues until OT is confirmed to be reached by

the information received from Meetings, or the last block Bf is processed.

4.5 Top-k Reachability: Query Processing

To process top-k reachability queries efficiently, we will use the preprocessed data

and index structure from RICCdecay, described in the previous section. For that reason,

we named our top-k reachability query processing algorithm RICCtopK. The top-k query

QtopK is issued in the form {S,W,D, [τs, τf ], µ, ν, k}, where S = {OS1 , OS2 , ..., OSq}, W =

{w1, w2, ..., wq}, and D = {d1, d2, ..., dq} are the sets of source objects, weights, and decays

respectively. To make use of the precomputed data from RICCdecay, the top-k reachability

with decay problem has to be translated into top-k hop-reachability problem. To achieve

this, for each source object OSr ∈ S, we compute the maximum number of allowed transfers

(hops) hmax(r) applying inequality (4.6) to each triple {OSr , wr, dr} as follows:

hmax(r) = blogpr
ν

wr
c,

where pr = 1− dr, and r = {1, 2, ...q}.

Now each top-k query can be thought of as written in the form {S,Hhop, [τs, τf ], µ, ν,

k}, where Hhop = {hmax(1), hmax(2), ..., hmax(q)}. Note that the top-k query processing is the

extension of the reachability with decay query processing algorithm, and thus we will avoid

repeating some details concerning the use of the index structure during the query processing
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that were described earlier in section 4.4.

First, the set of Top-k Candidates is initialized by adding to it all source objects.

We start reading file Reached(Hop) from time block Bs, checking all records for each source

object from set S (in order of their appearance in the file). Once an object, that was reached

by at least one source object, is discovered, it is added to Top-k Candidates. For each top-k

candidate Oi, we keep the information about the source object(s), that it was reached by,

as well as the smallest number of hops hmin(r) required to transfer information from each

source to Oi. The search continues in this manner until time block Bf is processed, after

which the weight of each object from Top-k Candidates is computed. Note, that this is not

the actual weight Fw of an object, but the maximum weight Fmax that this object may

receive.

Next, the query processing moves to the file Meetings. Here, the algorithm main-

tains two structures: Top-k Candidates and Top-k, that have to be updated at the end of

each block. Top-k Candidates contains: (i) the ids of all reached objects, (ii) their corre-

sponding maximum weights Fmax (both, (i) and (ii), were computed in the previous step),

as well as (iii) the current weight Fw of each candidate top-k object. At the beginning, the

weight Fw of each source object OSr is set to its initial weight wr, while the rest of the

objects’ weights Fw are set to 0 (since these objects have not been seen in file Meetings yet).

Top-k is initialized by adding to it k source objects from set S with the top k weights; the

weight Fw of each top-k object is recorded as well.

Let us denote the lowest weight Fw among the objects in Top-k as Fwmin. If Top-k

contains k objects, and the object with the smallest value carries weight Fwmin, then any

89



object Oi, such that Fmax(Oi) < Fwmin, cannot be among the top-k.

In file Meetings, the query processing starts from time block Bs. After one time

block is processed, the aggregate weight Fw of objects from Top-k Candidates that were

involved in some transfers, may increase, and has to be updated. This may lead to changes

in Top-k. After Top-k and Fwmin are updated, all objects Oi from Top-k Candidates, such

that Fmax(Oi) < Fwmin, can be removed from the set of candidates. When the work on

block Bs is completed, we proceed to the next block. This process continues until either

the last time block Bf of the query is reached or the size of Top-k Candidates is reduced to

the size of Top-k. In either case, the final state of Top-k answers the query.

For example, consider the top-k query with three source object O1, O2, and O7,

whose corresponding weights are 3, 4, and 3. Suppose, the query interval [τs, τf ] is contained

in time blocks B1 - B5. Figure 4.5 illustrates the example. Figures (a1)-(a4) show the time

blocks in files Reached(Hop) and Meetings that are being processed at the given stage, tables

(b1)-(b4) display the Top-k Candidates with their maximum possible aggregate weights

Fmax and current aggregate weights Fw. The last column of tables, (c1)-(c4), keeps track

of the current state of the Top-k set. Both, Top-k Candidates and Top-k are created after

Reached(Hop) is processed and updated after the corresponding time block of file Meetings

is processed.

The query answering begins in Reached(Hop). The relevant data is read from

blocks B1 - B5, and by the end of B5, the superset of all objects that can be reached by

the source object is identified. These objects are Top-k Candidates. They are recorded in

the Top-k Candidates table, together with their maximum possible aggregate weight Fmax
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Meetings

Top-k 

cand. O1 O2 O3 O4 O5 O6 O7

Fmax 10 16 8 12 9 5 20

Fw 7 6 0 0 0 0 8

Top-k 

cand. O1 O2 O3 O4 O5 O6 O7

Fmax 10 16 8 12 9 5 20

Fw 9 12 3 10 0 0 11

Top-k 

cand. O1 O2 O3 O4 O5 O6 O7

Fmax 10 16 8 12 9 5 20

Fw 9 12 3 11 0 0 14

Top-k O2 O1 O7

Fw 4 3 3

Top-k O2 O7 O4

Fw 12 11 10

Top-k O7 O2 O4

Fw 14 12 11

(a1)                                                                                                (b1)                     (c1)                          

(a2)                                                                                                (b2)                     (c2)                          

(a3)                                                                                                (b3)                     (c3)                          

(a4)                                                                                                (b4)                     (c4)                          

Meetings

Meetings

Figure 4.5: Top-K Query Processing (source objects: O1, O2, O7)
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(b1). Since at this stage the aggregate weight Fw is known only for the source objects, the

objects O1, O2, and O7 are placed in the Top-k (c1). The query processing moves to time

block B1 in file Meetings (a2). At the end of B1, the aggregate weight of some objects Fw is

updated, and thus both, Top-k Candidates and Top-k are updated as well ((b2), (c2)). We

notice that the lowest weight of the top-k object O2 Fwmin(O2) = 6. Thus all objects Oi

with maximum weight Fmax(Oi) < Fwmin(O2) can be removed from the set of candidates.

(Such objects are shown in gray in (b3) and (b4).) The next block to process is B2 (a3), and

after updating both tables ((b3) and (c3)), we see that objects O3 and O5 can be excluded

from further consideration. After processing the next block, B3, we remove object O1 from

Top-k Candidates. Even though, the query interval ends only in B5, we can suspend the

query as the size of Top-k Candidates is reduced to the size of Top-k. (In case, if the Top-k

is required to be answered in the order of object’s weights, the remaining blocks will have

to be processed as well.)

4.6 Experimental Evaluation

In this section, we describe the results of the experimental evaluation of our al-

gorithms RICCdecay and RICCtopK. Since there are no other algorithms for processing

spatiotemporal reachability queries with decay, we modified the RICCmeetMin algorithm,

which is presented in Chapter 3, to enable it to answer such queries. We compare the per-

formance of our new RICCdecay and RICCtopK algorithms with that of RICCmeetMin.

All the experiments were performed on a system running Linux with a 3.4GHz

Intel CPU, 16 GB RAM, 3TB disk and 4K page size. All programs were written on C++
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and compiled using gcc version 4.8.5 with optimization level 3.

4.6.1 Datasets

All experiments were performed on six realistic datasets of two types: Moving

Vehicles and Random Walk. The first three datasets, Moving Vehicles (MV) were created

by the Brinkhoff data generator [6], which generates traces of objects, moving on real road

networks. For the underlying network in these experiments we chose the San Francisco Bay

road network, which covers an area of about 30000 km2. These sets contain information

about 1000, 2000, and 4000 vehicles respectively (denoted as MV1, MV2, and MV4). The

location of each vehicle is recorded every ∆t = 5 seconds during 4 months, which results in

2, 040, 000 records for each object. The size of each dataset (in GB) appears in Table 4.2.

For the experiments on these sets, the contact distance dcont is assumed to be equal to 100

meters (for a (class 1) Bluetooth connection).

For the three Random Walk datasets (RW), we created our own generator, which

utilizes the modified random waypoint model [31], and is frequently used for modeling move-

ments of mobile users. In our model, 90% of individuals are moving, while the remaining

10% are stationary. At the beginning of the first trip, each user chooses whether to move

or not (in the ratio of 9 : 1). Further, each out of 90% moving users chooses the direction,

speed (between 1.5m/s and 4m/s), and duration of the next trip, and then completes it.

At the end of each trip, each person determines the parameters for the next trip, and so

on. Random Walk datasets consist of trajectories of 10000, 20000, and 40000 individuals

respectively (denoted as RW1, RW2, and RW4). Each set covers an area of 100 km2. The

location of each user is recorded every ∆t = 6 sec for a period of one month (or 432,000
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records for each person). For the Random Walk datasets, we set the contact distance equal

to 10 meters (the range of a small personal (class 3) Bluetooth-enabled device).

The performance of the algorithms was evaluated in terms of disk accesses (I/Os)

during query processing. The ratio of a sequential I/O to a random I/O is system dependent;

for our experiments this ratio is 20:1 (20 sequential I/Os take the same time as 1 random).

For all our experiments, we present the equivalent number of random I/Os using this ratio.

Table 4.2: Size of datasets, auxiliary files and indexes
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4.6.2 Parameter Optimization

The values of the contraction parameter C and the grid resolution H, that are used

for the preprocessing, depend on the datasets. For each dataset, the parameters C and H

were tuned on the 5% subset as follows. We performed the preprocessing of this subset for

different values of (C,H), and tested the performance of RICCdecay algorithm on a set of

200 queries. The length of each query was picked uniformly at random between 500 and

3500 sec for the Moving Vehicles datasets, and between 600 and 4200 sec for the Random
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Walk datasets. The maximum allowed number of transfers hmax was picked uniformly at

random from 1 to 4. The parameters C and H were varied as follows: grid resolution H

- from 500 to 40000 meters for Moving Vehicles datasets, and from 250 to 2000 meters for

Random Walk datasets; contraction parameter C - from 0.5 to 30 min. For each dataset,

the pair of parameters (C,H) that minimized the number of I/Os was used for the rest of

the experiments. For example, for MV1 we used H = 20000 meters and C = 14 min, while

for RW4 we used H = 500 meters and C = 2 min.

4.6.3 Preprocessing Space and Time

The sizes of the auxiliary files as well as the index sizes for the two algorithms, RIC-

CmeetMin and RICCdecay, appear in Table 4.2. RICCdecay uses about 13.5% more space

compare to RICCmeetMin, since it records more information into the file Reached(Hop)

(For each reached object, in addition to its id, it saves its hop value as well.). The time

needed to preprocess one hour of data for RICCdecay ranges from 14 sec for MV1 to 91

min for RW4. For comparison, the preprocessing time for RICCmeetMin ranges from 13

sec for MV1 to 56 min for RW4.

4.6.4 Query Processing

The performance of RICCdecay algorithm was tested on sets of 100 queries of

different time intervals, ranging from 500 to 3500 sec for the Moving Vehicles datasets, and

from 600 to 4200 sec for the Random Walk datasets. In addition, testing was done on

various maximum allowed number of hop values: hmax = 1, 2, 3, 4. The minimum meeting

duration µ was set to 2 sec, and the initial weight w of the item carried by the source object
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OS was set to 1 for all the experiments.
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Figure 4.6: Increasing maximum allowed number of transfers

Increasing the Maximum Allowed Number of Transfers. In this set of ex-

periments, we analyze the impact of the maximum allowed number of transfers hmax on the

performance of the RICCdecay algorithm, and compare RICCdecay with RICCmeetMin.

(RICCmeetMin’s query processing part was modified to enable it to answer reachability

queries with decay.) We ran a set of 100 queries varying hmax from 1 to 4; each query’s

interval was picked uniformly at random from 500 to 3500 sec for the Moving Vehicles

datasets, and from 600 to 4200 sec for Random Walk datasets. The results are presented

in Figure 4.6 (a1− b3). RICCdecay accesses from 1.8 (for MV 2 dataset) to 11.5 (for RW4

dataset) times less pages than RICCmeetMin. The biggest advantage of RICCdecay over

RICCmeetMin is achieved for hmax = 1 for all datasets, and in general, the smaller the
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maximum allowed number of transfers, the better is the performance of the RICCdecay

algorithm.

This pattern can be explained as follows. When answering a query Qmh, we read

file Reached(Hop) first. File Meetings needs to be read next, but only if during traversing

file Reached(Hop), the target object appears among the objects, reached by the source

(i.e. if OT ∈ S′Reached). However, S′Reached is a superset of the set of objects that can be

reached by OS during the query interval I. We say that a query is pruned, if it aborts after

reading file Reached(Hop) because of not finding the target among the reached objects.

By precomputing the hop value of each reached object, Reached(Hop) gives more accurate

information, than RICCmeet, which reduces the size of S′Reached. The smaller the hmax

value, the less objects are in S′Reached, and thus the higher percent of queries can be pruned.

Increasing Query Length. Now we test the performance of RICCdecay algo-
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rithm for various query lengths. Each test was run on a set of 100 queries varying query

length from 500 to 3500 sec for MV datasets, and from 600 to 4200 sec for RW datasets.

The maximum allowed number of transfers hmax for each query was picked uniformly at

random from 1 to 4. The results of comparison of the performance of RICCdecay with that

of RICCmeetMin are shown in Figure 4.7 (a1 − b3). For these sets of queries, RICCdecay

outperforms RICCmeetMin in all the tests, accessing about 44% less pages in average, and

this result does not change significantly from one dataset to another.

Top-K Reachability Queries. The major difference between all the queries

that were considered in this section until now is that those were one-to-one queries: they

had one source and one target object. Top-k queries that we described in section 4.2 are an

example of many-to-many queries: they may have more that one source and/or one target

objects. Multiple sources lead to the increase in the search space, while multiple undefined

targets prohibit from the early query suspension (in case of one defined target, if the target

is discovered in file Meetings in the middle of the query interval, there is no need to continue

the search). In addition, the need to calculate and compare the aggregate weights of the

reached objects makes it impossible to prune a query (suspend it after just searching the

file Reached(Hop)).

For each of our top-k experiments, we used sets of 100 queries, where query length

was 3500 sec for MV datasets and 4200 sec for RW datasets. For each query, the number

of source objects was 4: S = {OS1 , OS2 , OS3 , OS4}, and each weight was assigned a value of

1. Further, D = {0.10, 0.15, 0.20, 0.25}, ν = 0.6, while k was randomly picked from 4 to 20.

The area covered by each dataset is very large, so to force objects to be reached by several
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sources, for each query, we picked source objects from the same cell (with the side equal

to the candidate contact distance) at the beginning of the query interval. The results are

depicted in Figure 4.8. They indicate that for top-k queries RICCtopK accesses in average

about 37% less pages than RICCmeetMin for the MV datasets, and about 30% less pages for

RW . The advantage of RICCtopK owes to both, the RICCdecay index, constructed during

the preprocessing, and RICCtopK itself (the query processing algorithm). Information

from RICCdecay’s preprocessing allows for computing the maximum possible aggregate

score Fmax using information from file Reached(Hop), while RICCtopK reduces the number

of objects that have to be accessed when the query reads the file Meetings.
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Figure 4.8: Top-k reachablility queries

4.7 Conclusion

In this chapter, we presented two novel reachability problems: reachability with

transfer decay, and top-k reachability with transfer decay. Both problems assume the

reachability with meetings scenario. The algorithms for the reachability with meetings,

RICCmeetMin and RICCmeetMax were presented in the previous chapter. One of this al-
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gorithms, RICCmeetMin was modified to answer reachability with transfer decay and top-k

queries, and served as a benchmark for our new algorithms. We designed two algorithms:

RICCdecay and RICCtopK. The first algorithm allows to process reachability with decay

queries efficiently and consists of the preprocessing and query processing stages. The second

algorithm is designed for answering top-k queries and uses the preprocessing of RICCdecay.

We tested our algorithms on six realistic datasets, varying query duration and the maxi-

mum allowed number of hops. The comparison of the performance of our new algorithms

with that of RICCmeetMin proved that RICCdecay and RICCtopK can answer the types of

queries that they were designed for more efficiently than the algorithm for the reachability

with meetings problem.
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Chapter 5

Conclusions and Future Work

Conclusions. In our work on efficient processing of novel reachability-based

queries on large spatiotemporal datasets, we introduced several types of reachability-based

queries: reachability queries with delayed exchange (considering processing and transfer

delays), as well as reachability queries with transfer decay, and proposed several algorithms

for answering each type of queries efficiently. All algorithms consist of the preprocessing

and query processing stages. For the first stage, we use RICC-index or its modification. All

algorithms were tested extensively on queries of different types, and proved to outperform

their predecessors in the majority of the experiments.

Future Work. To efficiently answer k-top reachability queries with decay (de-

scribed in Chapter 4), our algorithm RICCtopK currently uses the preprocessed data and

index structure from RICCdecay. That allows to compute the upper bound of each reached

object’s aggregate weight and use it later to reduce the number of top-k candidates. The

next step may be to modify the preprocessing part of RICCdecay in such a way that by
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providing more information, it will also allow to find the lower bounds on the reached ob-

jects’ aggregate weights, which should greatly reduce the size of the Candidate top-k set,

and as a result - improve the performance of the top-k algorithm.

One of the interesting directions on spatiotemporal reachability queries is reach-

ability with uncertainty. In such problems, one can, for example, assume that during a

meeting, a transfer occurs with some probability, which may be different from one transfer

to another, depending on the area where the meeting occurred, time, etc. Then the reacha-

bility query, instead of answering whether the source object reached the target object during

some interval I, will have to find the probability of the source object reaching the target

object.

Another useful problem is on reachability with missing data, which frequently

happens in real spatiotemporal datasets when location readings for some objects are not

reported for some time intervals or are not accurate time- or location-wise. Then in order

to complete the preprocessing and answer a query, some predictions will have to be made

about the missing data, and/or multiple trajectory segments in place of each missing one

may have to be considered. This would require very efficient algorithms for both, prepro-

cessing and query processing, that can estimate or predict the missing records.
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