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correspondence

Reply to ‘DNA methylation haplotypes as cancer 
markers’
Diep and Zhang reply: We thank Greally 
and colleagues1 for pointing out a number 
of inaccuracies in our publication2 and 
the issue of potential overfitting, due to 
incomplete separation of test and training 
datasets. We have conducted a thorough 
internal audit and discovered that several 
components of the analysis indeed mixed 
training and test datasets and were 
therefore overfit to the published data. We 
acknowledge this as a major weakness of 
our published study. However, we would 
like to stress that our analysis based on 
methylation haplotype load and methylation 
haplotype blocks is reproducible and capable 
of deconvoluting heterogeneous tissue 
samples such as plasma DNA. To address 
the concern of overfitting, we performed 
an independent analysis of the data while 
carefully maintaining separation of training 
and test datasets. The results of this new 
analysis still support the three major 
conclusions of the publication2:
 1. The haplotype-based metric methyla-

tion haplotype load (or MHL) is better 
able to identify tissue-specific differ-
ential methylation than the commonly 
used average methylation fraction 
(AMF) metric;

 2. The tumor load of a plasma sample can 
be estimated using cancer tissue meth-
ylation markers;

 3. The tissue of origin of a cancer plasma 
sample can be determined using tissue-
specific methylation markers.

To ensure that our approach is accurate 
and transparent, we have released the 
code for the low-level sequence/haplotype 
processing and high-level statistical analysis 
and included the full data matrices for 
public release. The updated code and data 
matrices are being thoroughly tested and are 
available on GitHub (https://github.com/
dinhdiep/MONOD2). Figure 1 illustrates 
the separation of training and test data for 
our analysis, and additional information  
on study design can be found in the 
Reporting Summary.

To show the utility of the MHL metric 
to identify differential methylation in an 
unbiased manner, we demonstrated the 
advantage of MHL with a published set of 
whole-genome bisulfite sequencing (WGBS) 
data (Schultz et al.3) and computed the AMF 
and MHL metrics in a previously identified 

set of differentially methylated regions 
(Lokk et al.4). As such, these regions were 
selected independently of the definitions of 
methylation haplotype block (MHB) and 
MHL. Using the group-specific index (GSI; 
a marker selection metric defined in ref. 2) 
of the AMF values, we identified the top 150 
differentially methylated regions associated 
with each tissue in the previously published 
marker set. We then plotted a heat map of 
the AMF and MHL values in these regions 
(Supplementary Fig. 1).

From the heat map, both the AMF and 
MHL metrics can be used to discriminate 
tissue types from one another; however, the 
ratio of the diagonal ‘signal’ methylation 
to the off-diagonal ‘noise’ methylation 
value is much higher in the MHL metric 
(Supplementary Fig. 2). The superior signal-
to-noise ratio of the MHL metric allows for 
differential methylation to be more easily 
identified and used in samples with low 
signal (such as plasma).

We wanted to demonstrate that the 
MHL metric could be used to estimate the 
tumor load of plasma samples. We first 
performed pruning and k-nearest-neighbors 
(KNN) imputation on the MHL matrix, 
which removed samples with low coverage 
and imputed missing values. We were left 
with 30 colon cancer plasma samples, 29 
lung cancer plasma samples and 69 normal 
plasma samples. For this analysis, we split 
the 69 healthy plasma samples into ‘training’ 
and ‘test’ sets; 46 samples were set aside 
for feature selection and training, while 
the remainder (23 samples) were used as a 
completely independent dataset to test the 
quantification (Supplementary Table 1).  
We next identified MHBs that were 
hypermethylated in lung and colon cancer 
tissue samples with respect to the training 
set using a one-sided t test (correcting for 
multiple testing with a false discovery rate 
(FDR) of 0.001 and applying a minimum 
difference of 0.3). These regions appeared to 
be hypomethylated in the test set of normal 
plasma samples and showed an intermediate 
methylation level in the plasma samples 
from patients with cancer (Supplementary 
Fig. 3). In fact, across these regions, the 
average MHL value for each group was 
significantly different between the plasma 
samples from cancer patients and the test set 
of normal plasma samples (two-sample t test, 
one-sided; colon cancer: t =  7.4318, degrees  

of freedom (d.f.) =  1,018, P =  1.133 ×  10–13; 
lung cancer: t =  8.8288, d.f. =  1,834,  
P =  2.2 ×  10–16) (Supplementary Fig. 4).

Next, we tested the ability of these cancer-
associated blocks to quantify the tumor load 
of any given plasma sample. To calibrate the 
relationship between tumor load and the 
MHL values in these regions, we performed 
20 sets of simulations in which we mixed 
sequencing reads from cancer tissue samples 
and normal plasma samples at a ratio of 
1:5, 1:10, 1:20, 1:100 and 0:1 (for a total of 
100 simulated datasets). We then computed 
the average MHL value in these regions for 
each simulation; as expected, the MHL value 
was highly correlated with tumor fraction 
(Supplementary Fig. 5). Finally, using the 
standard curve determined by simulations, 
we estimated the tumor load of each cancer 
plasma sample. As expected, the tumor 
load in the cancer plasma samples was 
statistically significantly higher than  
in the test normal plasma set (two-sample  
t test with unequal variance, one-sided; colon 
cancer: t =  2.7338, d.f. =  32.033, P =  0.005055; 
lung cancer: t =  3.7686, d.f. =  41.718,  
P =  0.002547) (Supplementary Fig. 6).  
This finding shows the ability to identify 
biological signals from plasma DNA using 
MHL values.

We further demonstrated that we 
could utilize tissue-specific differentially 
methylated regions identified from human 
normal tissue data to determine the tissue 
of origin of cancer plasma. To do this, we 
used an independent set of WGBS data 
from human tissues to identify a set of 
tissue-specific markers and then used these 
markers to classify each plasma sample to 
its tissue of origin. To be clear, the previous 
method also used WGBS tissue data to 
identify tissue-specific markers; however, 
additional features selection was performed 
with the plasma samples outside of the 
cross-validation loop of the original model-
training process. Thus, while the previous 
set of markers demonstrated that tissue-
of-origin mapping of plasma DNA was 
possible, these markers were difficult  
to generalize.

To overcome this weakness, we first 
identified a set of MHB regions that could 
be used to determine the tissue of origin 
of a sample. We used a set of training 
WGBS tissue data from the following nine 
tissues: GI (colon, small intestine, stomach, 
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esophagus), lung, neural, heart, liver, lung, 
pancreas, kidney and fat. For each MHB, 
we first calculated the haplotype load for 
the methylated haplotypes (MHL) and the 
unmethylated haplotypes (uMHL), with 
which we then calculated the GSI within 
this training set; MHBs with high GSI scores 
tended to be methylated or unmethylated 
in specific tissue types. We then selected 
a subset of 11,396 MHBs (Supplementary 
Table 2) that had (i) low signals in white 
blood cells, (ii) detectable signals in the  
nine normal tissue types or tumors, and  
(iii) a certain level of tissue specificity  
(GSI >  0.3 for cancer detection; GSI >  0.45 
for tissue-of-origin classification). We want 
to emphasize that up to this point no plasma 
sample was used and hence all MHBs were 
solely selected and further weighted on the 
basis of the tissue specificity among human 
tissues, completely independent of plasma 
samples from cancer patients or healthy 

controls. We then generated a data matrix 
for all plasma samples on these MHBs. To 
reduce the number of features and avoid 
overfitting on small sample size, we took 
the weighted mean of all MHBs with similar 
tissue specificity and reduced a data matrix 
with 11,396 MHBs into a much smaller 
matrix with 132 tissue-specific features. 
For classification of tissues of origin, we 
further removed all cancer-related features 
and reduced the search space to 69 features 
related to the normal tissues.

To avoid overfitting in model building, 
we randomly sampled 75% of plasma 
samples to create a training dataset from the 
reduced-representation bisulfite sequencing 
(RRBS) plasma samples (90 for cancer 
versus normal classification; 42 for colon 
versus lung classification). The remaining 
25% of samples (29 for cancer versus normal 
classification; 13 for colon versus lung 
classification) were held out as a test dataset 

(Supplementary Table 1). We performed 
the testing in two stages: first, with a binary 
classifier (i.e., testing the ability of the 
model to identify a plasma sample as either 
‘normal’ or ‘cancer’) and second, with a 
tissue-of-origin classifier separating  
colon cancer plasma from lung cancer 
plasma samples.

By using a random forest–based binary 
classifier, we were able to distinguish 
normal from cancer samples at an area 
under the ROC curve (AUC) of 0.83 and 
lung cancer from colon cancer at an AUC 
of 0.76 (Supplementary Fig. 7) in the 25% 
of samples held out for testing. To further 
evaluate stability, we repeated the random 
splitting of training and test samples 50 
times and determined the interquantile 
range (IQR) for cancer versus normal 
classification as [0.71, 0.84] and for lung 
cancer versus colon cancer classification 
as [0.64, 0.83]. Note that our models 
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Fig. 1 | Marker discovery and validation workflow. a, The workflow is divided into three steps. The first step to define features (MHBs) was performed in ref. 2  
with comparison of the AMF and MHL metrics using data from refs 3,4. The second step to perform features filtering was carried out for identification of  
tumor-specific MHBs, tissue-specific MHBs, and colon- or lung-specific MHBs separately. The third step is to identify markers. b,c, The third and final step  
of marker discovery is performed either with synthetic mixing to generate a function that converts average MHL to tumor load (b) or binary classification 
using random forest (c).
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were derived on very limited sample sizes 
during the training stage. These prediction 
accuracies represent a proof of concept  
for the methylation-haplotype-based 
approach and should be further improved 
when more samples are available for  
model building.

In addition to the analysis presented 
above, we also want to take the opportunity 
to address a few points raised by Greally and 
colleagues1. We appreciate their comments 
on the supplementary deconvolution 
analyses we presented in Supplementary 
Table 7a–d of ref. 2. It is correct that only the 
samples with a whole blood (WB) fraction 
above 0.3 were selected in the summary 
table, as specified in Supplementary Table 7a.  
The cutoff of 0.3 allowed separation of a 
distribution that looked bimodal when  
we generated a plot similar to that in  
Fig. 1 from Greally and colleagues1. As 
shown in Supplementary Fig. 8a of ref. 2,  
the deconvolution accuracy was only  
high when the fraction to estimate was 
low. While all the information was clearly 
presented in the table, we apologize for 
not making this explicit in the main text. 
Note that the motivation for this particular 
analysis was to create a benchmark with 
a previously published method5 and to 
document aspects where the method seemed 
to have worked. This analysis is completely 
independent of the second deconvolution 
analysis presented in Supplementary  
Figs. 3–6 and in Fig. 4 of ref. 2 and of the 
detection of tumor and tissue of origin in 

plasma presented in Supplementary Fig. 7 
and in Fig. 5 of ref. 2.

We respectfully disagree with the 
comment on the biological significance 
of MHBs. First, we would like to stress 
that there was no technical error in the 
calculation of enrichment or the MHL 
metric. Second, the motivation for 
developing the concept of methylation 
haplotypes and MHBs was to investigate 
regions in the human genome that  
exhibit differences in CpG methylation 
patterns from one cell type (or cell state) to 
another. The genomic regions that  
show static methylation patterns (either 
fully methylated or unmethylated across  
all cell or tissue types) are not covered  
by MHBs on the basis of our definition; 
these regions are not related to cell-type-
specific regulation and are therefore not 
of interest in this study (and most other 
studies concerning epigenetic variation  
and regulation). Third, MHBs and the  
MHL metric allow us to capture CpG 
methylation trends that are coordinated 
locally along single DNA molecules. 
This is related to de novo methylation 
or demethylation mechanisms and the 
processivity of the related enzymes; one 
hypothesis on how local methylation 
patterns can be established is that a 
methyltransferase or demethylase enzyme 
can reach a CpG site, add or remove a 
methyl group, and then slide along the 
DNA or ‘hop’ locally to process nearby CpG 
sites. The enrichment of MHBs in variably 

methylated regions (VMRs) favors this 
hypothesis.

Code availability. Full data matrices and 
codes can be accessed at GitHub (https://
github.com/dinhdiep/MONOD2).

Data availability. The raw sequencing 
data can be accessed through the Gene 
Expression Omnibus (GEO) with accession 
GSE79279. ❐
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Life Sciences Reporting Summary
Nature Research wishes to improve the reproducibility of the work we publish. This form is published with all life science papers and is intended to 
promote consistency and transparency in reporting. All life sciences submissions use this form; while some list items might not apply to an individual 
manuscript, all fields must be completed for clarity. 

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research policies, 
including our data availability policy, see Authors & Referees and the Editorial Policy Checklist. 

    Experimental design
1.   Sample size

Describe how sample size was determined. We determined that with a significance level of 0.05, sample sizes of 23 
and 30, and power of 0.8, we can detect large effect sizes (~0.7-0.8) for 
two groups using the T-Test.  

2.   Data exclusions

Describe any data exclusions. Some plasma data were excluded in tumor load estimation because they 
had low coverages/many missing values. Then other samples were 
determined to have abnormally high genomic DNA levels which could 
interfere with the signal from cell free DNA, and thus, they were excluded.

3.   Replication

Describe whether the experimental findings were reliably reproduced. Experimental findings were reliably reproduced. 

4.   Randomization

Describe how samples/organisms/participants were allocated into 
experimental groups.

We used randomization to determine whether the results would be able 
to generalize. Therefore, we used 70-80% of the data selected using 
randomization softwares for training and the remainder for testing.

5.   Blinding

Describe whether the investigators were blinded to group allocation 
during data collection and/or analysis.

Investigators were not blinded to group allocation during analysis.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods 
section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample 
was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study. The code were deposited in GitHub at: https://github.com/dinhdiep/
MONOD2 (The data from this publication was generated using "v2" 
branch).

For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 
request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 
materials or if these materials are only available for distribution by a 
for-profit company.

No unique material was used.

9.   Antibodies

Describe the antibodies used and how they were validated for use in 
the system under study (i.e. assay and species).

No antibody was used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No cell line was used.

b.  Describe the method of cell line authentication used. No cell line was used.

c.  Report whether the cell lines were tested for mycoplasma 
contamination.

No cell line was used.

d.  If any of the cell lines used in the paper are listed in the database 
of commonly misidentified cell lines maintained by ICLAC, 
provide a scientific rationale for their use.

No cell line was used.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived materials used in 
the study.

No animal was used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population characteristics of the 
human research participants.

Not applicable.
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