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Alternative approach to general coupled linear optics

Andrzej Wolski*
Lawrence Berkeley National Laboratory, Berkeley, California 94720.
(Dated: November 29, 2005)

The Twiss parameters provide a convenient description of beam optics in uncoupled linear beam-
lines. For coupled beamlines, a variety of approaches are possible for describing the linear optics;
here, we propose an approach and notation that naturally generalizes the familiar Twiss parameters
to the coupled case in three degrees of freedom. Our approach is based on an eigensystem analysis
of the matrix of second-order beam moments, or alternatively (in the case of a storage ring) on
an eigensystem analysis of the linear single-turn map. The lattice functions that emerge from this
approach have an interpretation that is conceptually very simple: in particular, the lattice functions
directly relate the beam distribution in phase space to the invariant emittances. To emphasize
the physical significance of the coupled lattice functions, we develop the theory from first princi-
ples, using only the assumption of linear symplectic transport. We also give some examples of the
application of this approach, demonstrating its advantages of conceptual and notational simplicity.

PACS numbers: 29.20.Dh, 29.27.Bd

I. INTRODUCTION

Linear optics in uncoupled beamlines are convention-
ally described by means of the Twiss parameters. The
Twiss parameters or lattice functions relate the beam
distribution in phase space at any point in a beamline to
conserved quantities — the emittances — that are proper-
ties of a bunch traveling along the beamline. For exam-
ple, the horizontal mean square beam size (x2) is related
to the horizontal emittance by (z2) = B.€,, where 3,
is the horizontal Twiss beta function that varies along
the beamline, and ¢, is the horizontal emittance (a con-
served property of the beam). Coupling in a beamline
can transfer motion from one degree of freedom into an-
other; this can arise, for example, from the presence of
skew quadrupoles, or from RF cavities at locations of
non-zero dispersion.

Two approaches for describing the transverse optics in
coupled beamlines are well known. In one approach, in-
troduced by Edwards and Teng [1] and developed by oth-
ers [2-4], coupled betatron motion is analyzed by defining
a “decoupling transformation” that puts the 4 x 4 trans-
fer matrix into block-diagonal form. The lattice functions
are obtained from the block-diagonal components of the
transformed transfer matrix by a procedure similar to
that used for uncoupled motion. Additional functions to
describe the coupling are obtained from the decoupling
transformation. A disadvantage of this technique is that
the lattice functions are not directly related to the beam
sizes. Also, the procedure does not easily generalize to
more than two degrees of freedom.

In the second approach, a transformation is found from
the eigenvectors of the transfer matrix, that puts the
transfer matrix into “normal form”, i.e. the transfer ma-
trix is transformed into a pure rotation. The lattice func-
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tions are defined in terms of elements of the normalizing
transformation. This is the basis of the approach used
by Ripken [5, 6] and by Lebedev and Bogacz [7]. These
authors minimize the number of lattice functions used
to describe the optics, and as a result the interpreta-
tion of the various lattice functions is not as simple as it
might be. Also, the theory is developed only for motion
in two degrees of freedom. However, in an accelerator,
the coupling between transverse and longitudinal motion
(described by the dispersion) is often not negligible, and
it is desirable to have a description of the optics that ap-
plies as naturally and easily to three degrees of freedom
as to two.

In this paper, we develop a description of coupled lin-
ear optics that addresses issues inherent in previous ap-
proaches. In particular, we aim to develop a description
of the optics that maintains the conceptual simplicity of
the uncoupled case (by providing lattice functions that
directly relate the beam emittances to the beam distribu-
tion in phase space), and is capable of describing motion
in any number of degrees of freedom with equal ease. We
start from the eigenvector analysis, but differ from previ-
ous work in that we do not aim to reduce the number of
lattice functions to the absolute minimum. We feel that
it is more useful to have functions that have clear physi-
cal significance, than to know that all the functions in the
theory are truly independent of one another. Since there
is a natural systematic notation in our approach that em-
phasizes the physical significance of the lattice functions,
it is easy to keep track of the various functions and to
manipulate expressions in which they appear. Our ap-
proach is general in that we make no assumptions about
the beamline (beyond requiring linearity and symplec-
ticity) or about the form of the beam distribution (our
analysis applies to gaussian and non-gaussian beam dis-
tributions).

We begin in Section II by making some general defi-

nitions. In Section III, we consider linear beam optics
in storage rings, using the concept of a matched distri-



bution to define a set of coupled lattice functions that
directly relate the matched distribution to a set of con-
served quantities — the beam emittances. We then con-
sider in Section IV the propagation of the lattice func-
tions along a transport line (non-periodic beamline), and
also obtain the phase advance along such a beamline. Fi-
nally, in Section V we give some practical examples that
illustrate how our approach and notation provide a con-
venient way for describing coupled linear optics in storage
rings and transport lines.

II. GENERAL DEFINITIONS

The beam distribution is described by a symmetric ma-
trix X3 of second-order moments. The components of X
are given by:

o5 = (Ti%5) (1)

where the brackets () denote an average over all particles
in the beam. The co-ordinates x; are components of the
phase-space vector of a particle:

x=|Y (2)

We shall implicitly assume that the beam has vanishing
first-order moments, i.e.

<Iz> =0 (3)

If necessary, it is straightforward to perform a transfor-
mation to variables in which this condition is satisfied.

The variables (x,pg), (y,py) and (z,6) form three sets
of canonical conjugate pairs. In this case, the linear
transfer matrix between any two points in a beamline
will be symplectic. Note that z is the distance that a
particle is ahead of the reference particle; ¢ is the rela-
tive energy deviation:

E - E,
Ey

where Ej is the reference energy.
For convenience we define some 2 x 2 matrices:

o = (0 7) ®)
07) ©)

5= (4)

I, =

A matrix M is symplectic if it satisfies the condition:
MTSM = S (10)
where S is the antisymmetric matrix:

Sy
S = S, (11)
S

III. STORAGE RINGS

In this section, we consider the case of beam optics
in a storage ring. This allows us to define the concept
of a matched distribution, which will be used to spec-
ify the values of the lattice functions at each point in
the ring. We begin by showing an equivalence between
the eigenvectors of the single-turn linear map M, and
the eigenvectors of the matrix XS constructed from the
beam distribution matrix. We then show that the beam
emittances are the eigenvalues (within a factor +i) of
3.S. This leads (via a definition of the action as a con-
served quantity of the motion of a particle under linear
symplectic transport) to a natural definition of the lat-
tice functions as quantities that relate the matched beam
distribution in phase space at any point in a storage ring
to the beam emittances. We end this section by show-
ing that in the special case of zero coupling, the lattice
functions we derive in this way correspond to the familiar
Twiss parameters.

A. Eigenvectors of the single-turn matrix and the
beam distribution matrix

Since the linear single-turn map M is symplectic, it has
six eigenvalues that can be arranged in reciprocal pairs:

A =1 (12)

where k = I, II, III. The eigenvectors e, of M are de-
fined by:

Meik = )\ikeik (13)
and are normalized so that:

(14a)
(14b)

eEkSekf = iékk/

e_p = e}

If the storage ring lattice is linearly stable, then the eigen-
values of the single-turn map will lie on the unit circle:

el =1 (15)
and the three tunes v are given by:

Air = exp (£2mivg) (16)



We now construct the matrix E from the set of eigen-
vectors e4. Explicitly:

E= (e e e_; e; ey ey ) (17)
With the normalization (14), E obeys the relation:
E'SE =S (18)
We note that:
E'ME = A (19)

where A is a diagonal matrix constructed from the eigen-
values of M.

In a storage ring, there is a unique beam distribution,
the matched distribution, that is invariant under a trans-
formation given by the single-turn matrix, M:

x — Mx Y- MIM'=X (20)

From the symplectic condition (10) for the single-turn
matrix M, and the invariance of the matched distribution
under a transformation given by M (20), it follows that:

(2S)"'M(ZS)=M (21)

This relationship is satisfied by any matrix M that can
be written as:

M = EAE™! (22)

where A is a diagonal matrix and E is a matrix con-
structed from the eigenvectors of XS:

(ZS)E = ED (23)

with D the diagonal matrix constructed from the eigen-
values of ¥S. But the diagonalization of M is uniquely
given by the eigensystem of M. Hence, we must have:

E = E

A=A

(24a)
(24b)

In other words, the eigenvectors of M are the same as
the eigenvectors of 3S.

B. Eigenvalues of XS

Another useful result is that the eigenvalues of XS are
just the beam emittances. To prove this, we first note
that the eigenvalues of 3S are invariant under a sym-
plectic transformation of the phase-space co-ordinates:

¥S - UXU'S = UxSU* (25)

x — Ux

Here, U is any symplectic matrix, and the final equality
follows from the fact that U is symplectic. Note that 3S
and UXSU ! have the same eigenvalues (this is true for
any matrices U and 3S). Now let U be the symplectic

matrix that puts the single-turn matrix M into normal
form:

UMU !'=R (26)

where R is a rotation matrix. We shall give an ex-
plicit construction of U in Section IIID. In principle,
we can associate U with some beamline that decouples
the beam. The beamline does not have to form a physical
part of the storage ring; it only needs to exist in princi-
ple. Since the single-turn matrix at the end of the beam-
line associated with U is simply a rotation, the matched
beam distribution matrix Xy = UXUT at this point is
diagonal:

(v3)

—~
I8
N
~

By solving the characteristic equation:
det (ZyS—AI) =0 (28)

we find that the eigenvalues of XyS are +ie,, +ie, and
+ie,, where

€ = V(@?)(p7) (29a)
e = /(W) P} (29b)
ez = V(22)(6%) (29¢)

are the rms beam emittances. But since the eigenvalues
of 3S are preserved under any symplectic transformation
of the phase-space co-ordinates, the eigenvalues of 3S
must also be +ie, where k = I, I, or III (each value of
k corresponding to a different degree of freedom). The
diagonalization of 38 is:

E Y(ZS)E=D = iSaey (30)
1So€rm

To summarize, the single-turn matrix M and the ma-

trix XS have the same eigenvectors E, but different eigen-
values:

M = EAE™! (31)

¥S = EDE™! (32)

The eigenvalues A of M are related to the tunes of the

lattice, and the eigenvalues D of XS are related to the
beam emittances.

C. Actions and emittances

We can construct quadratic functions of the phase-
space co-ordinates of a single particle:

1
J = ixTAx (33)



where A is a symmetric matrix. If A satisfies:
MTAM = A (34)

then the quantity J is invariant under the single-turn
map:

x — Mx J—J (35)
With the additional constraint:
detA =1 (36)

J is an action of the particle. In three degrees of free-
dom, there are three possible symmetric matrices A that
satisfy Eqgs. (34) and (36), and hence three actions. Gen-
erally, two of the actions are associated with transverse
motion (the betatron actions) and one with longitudinal
motion (the synchtrotron action).

Now consider again the transformation U that trans-
forms the single-turn matrix M into a rotation R. We
define

Ay= (U AU! (37)
which, from Eqgs. (26) and (34) must satisfy:
R'AyuR = Ay (38)
In general, Eq. (38) has three solutions:
Ay =TF (39)
where:
I
T = 0, (40a)
0,
02
T — I, (40b)
0,
02
T = 0, (40¢)
I,
It follows that, after the transformation U:
1 1
() = 5%+ 5 002) (41a)
1 1
(Ju) = 5(°) +5(p;) (41b)
1 1
<JIII> = §<Z2> + §<52> (41(3)

We also note that under the transformation U, the
matched distribution becomes:

1261
Sy = L (42)
ey
So from Eqs. (41) and (42) we have:
€ = (Jk> (43)

Since the actions Ji of the individual particles and the
emittances € of the beam are invariant under any trans-
formation U, Eq. (43) must be true at any point in the
beamline.

D. Lattice functions

Recall the matrix E that is constructed from the eigen-
vectors of either the single-turn matrix M, or S where
3 is the matrix of second-order moments of the beam dis-
tribution. It is convenient to define a set of lattice func-
tions that describe the matrix E in a physically mean-
ingful way: these lattice functions will describe the linear
optics of the lattice.

To derive the desired lattice functions, we first con-
struct a real matrix N from E:

N =EQ (44)
where

Q2
Q = Q:
Q2

=705

With the normalization (14) of the eigenvectors, N is
symplectic. Using N, we can transfrom the single-turn
matrix M into block-diagonal form:

(45a)

(45b)

NilMN = R(,LLI,,UH,HIH)
R2(MI>
= RQ(,U:H) (46)
R2(N1H)

where ui = 27y, and Ra(0) is the 2 x 2 rotation matrix:

cosf sinf
Ra(0) = ( —sinf cosf > (47)

Note that Eq. (44) gives us an explicit construction for
the matrix U that we previously used to transform the
single-turn map into a pure rotation:

U=N"! (48)

We now construct a vector J from the phase-space vector
of a single particle:

J=N"x (49)

Under a transformation given by the single-turn matrix,
we have:

J=N"!'x - N 'Mx=N"T'MNN'x=RJ (50)

This means that J must be of the form:

vV 2J; cos ¢y
—+/2J; sin ¢,
v 2Jy; cos ¢y
J= . 51
—/2J; 8in ¢y (51)
V' 2J 111 €OS Py
—v/2J 1y 8in ¢y



where the actions Jj are invariant under the single-turn
matrix, and the angles ¢ transform as:
x — Mx Or — P + Lk (52)

To make the connection with the invariant action intro-
duced in Eq. (33), we note that:

1 1
ixTAkx = 5JTNTA’“NJ
= lyrrrg
2
= Ji (53)

where we have used Eqgs. (37), (39) and (48). From the
definition of the emittance (43) and assuming that the
angles of different particles in the beam are uncorrelated,
we can write:

@I = ) The (54)

k=L,I1,I1I
It then follows that the beam distribution can be written:
¥ = (xxT)
= N(JJT)N*
> NT'N"¢, (55)
k

If we define three matrices:

B¥ = NT*NT

= ET'E" (56)
where

T = 0, (57a)

02
T" = I, (57b)

02
T = 0 (57¢)

I

then we can write:

¥ =) B (58)

k

Note that Eq. (56) may also be written:

1
i = Mgl + nionjo (593.)
11
i = Mi3N;3 + 13454 (59b)
1T
i = M55 + NieNj6 (59C)

where the quantities n;; are the components of the ma-
trix N. We identify the elements ij of B¥ as the lattice

functions that relate the beam emittances to the beam
distribution. In Section IIIE we show that in the un-
coupled case, the non-zero elements of B¥ correspond to
the usual Twiss parameters. We note that an equation
corresponding to Eq. (58) was obtained by Chao [8] in
an analysis of the equilibrium beam distribution in an
electron storage ring.

The lattice functions defined in Eq. (56) can be used
to parameterize the single-turn matrix. First, we use
Eq. (31) to write:

E'ME=A = Z(Tk cos py, +iTFSsinpy)  (60)
k

Using Egs. (18) and (56), we find:
(B¥S)? = —E(T*S)’E™' = —-ET*E"!  (61)

It then follows that we can write the single-turn matrix
M in the form:

M= Y (B*Ssinu — (B"S)*cos ) (62)
k=I,II,IIT

E. Special case: uncoupled lattices

In the special case that the single-turn matrix is block-
diagonal, the motion is uncoupled in the sense that the
co-ordinate in any plane is determined by just one of the
three actions. If we identify k& = I with the horizontal
plane, and k£ = II with the vertical plane, then there are
simple relationships between the lattice functions defined
in Eq. (56) and the familiar Twiss parameters. In the
horizontal plane:

Bz = ﬂh (63a)

ay = —f1s (63b)

Yo = B (63c)
and in the vertical plane:

By = B33 (64a)

oy = —f3 (64b)

Yy = Bia (64c)

In a storage ring, the single-turn matrix is usually not
completely block-diagonal, but the transverse planes are
coupled to the longitudinal plane through the dispersion.
For example, the horizontal co-ordinate of a particle is
given by:

T = /208, cos pp + 10 (65)

where 7, is the horizontal dispersion. It follows that:

(x0) = ns(0%) (66)



In terms of the lattice functions defined in Eq. (56) we
can write:

<$(5> = 6{1616111 (67)
<§2> = élﬁleln (68)

It immediately follows that the horizontal dispersion is
given by:
111

e = S (69)
66

Similarly, the dispersion in the vertical plane is given by:

36
v = (70)
66

IV. TRANSPORT LINES

In a storage ring, the matched distribution is defined
by the condition that the beam distribution matrix be
invariant under the transformation given by the single-
turn matrix. In a transport line (i.e. any non-periodic
beamline), there is no corresponding requirement, and
we must start instead from some assumed distribution.
Given the second-order moments 3 of the distribution at
some point in the beamline, we can find the correspond-
ing lattice functions by constructing the eigenvectors e
of XS, and proceeding as in Section IIID. Alternatively,
we can assume values for the lattice functions at some
point, and construct the distribution using Eq. (58). The
question then is how we propagate the lattice functions
(or, equivalently, the beam distribution matrix) along the
beamline.

A. Propagating the lattice functions

Propagating the beam distribution is simple. We write
the transfer matrix from position s; to position s, in a
beamline as Moq:

X9 = M21X1 (71)
From Eq. (1), it follows that 3 transforms as:
Yo =M 31 M7, (72)

Clearly, it is possible to derive the lattice functions at
s by finding the eigenvectors of X5. However, since the
lattice functions are independent of the beam emittances,
we can construct an artificial distribution at s; from the
known lattice functions at that point:

3*(s1) = B¥(s1) (73)

The matrix ¥ describes the distribution of a beam that
has €, = 1 for some chosen value of k, and zero emit-
tances in the other two degrees of freedom. It then fol-
lows that the lattice functions are propagated along the
beamline simply by calculating the matrix product:

B*(s2) = My B*(s1)M3, (74)

B. Phase advance

It is often useful to know the phase advance between
different points of the beamline. We first observe that
there is a degeneracy in the matrix IN that puts the ma-
trix XS into block-diagonal form. The degeneracy in N
corresponds to the fact that the absolute phase at any
point is not determined: given two points in the beam-
line, only the phase advance between them is significant,
since the phase advance gives the change in the angle,
a dynamical variable, of any particle traveling from one
point to the next. To fix a reference point, we must
impose some conditions on N to remove the degener-
acy. There are many ways to do this; one possible set
of conditions, corresponding to the conventions used for
uncoupled motion, may be written:

N1z = N34 = Nsg = 0 (75)

In general, it is possible to find a rotation matrix R that
can be used to transform N such that these conditions
are satisfied; a matrix transformed in this way retains the
defining property of block-diagonalizing 3S. We denote
the “standardized” version of N by N.

From the standardized matrix Ny that puts 31 S into
block-diagonal form, we can construct:

N2 = MglNl (76)

It is straightforward to show that Ny puts 35S into
block-diagonal form; however, in general, it will not be
standardized, i.e. the conditions (75) will not be satis-
fied. To perform the standardization, we simply apply a
rotation:

Ny = NoR™' = My N;R™ (77)
where
R=R (A¢Ia A¢Ila A¢HI) = N2_1M21N1 (78)

The rotation angles A¢y are the required phase advances.

V. APPLICATIONS

The principal value of the lattice functions defined by
Eq. (56) is that they provide a conceptually simple way
to describe the linear optics in a coupled system. We also
find that useful formulae can be expressed in an elegant
and concise way using these functions. In this section,
we give examples of both these benefits.

A. Phase advance and lattice functions

In an uncoupled lattice, the horizontal phase advance
is related to the horizontal beta function by:
dg, 1

ds E (79)




(and similarly for the vertical plane). We can find an
analogous expression in the case of coupled optics. For
simplicity, we consider the phase advance in the plane
k = I; the analysis is easily generalized to the other
planes.

First, we find from Egs. (75), (76) and (77) that the
phase advance resulting from the transformation Mo, is
given by:

e
tan Ag, = —= (80)

2
”51)

where ngg) are the elements of No. Ag, is just the ro-
tation angle needed to satisfy the standard phase choice
(75). In an accelerator beamline, the form of My is
constrained by Maxwell’s and Hamilton’s equations. By
considering the linear transfer matrices for drift spaces,
dipoles, normal and skew quadrupoles and solenoids, we
find that particle transport over a short distance As in
any of these linear elements has the result (to first-order
in As):
2 = 1y, =

% _ D22 +72ksn32 As (81)

ny] ni
where k, is the solenoid field strength normalized to the
beam rigidity, and 71;; are the elements of Ny. Combining
Egs. (80) and (81), and taking the limit As — 0, we find:
dgy  Nop + skszs

== 2
ds ni1 (8 )

Using Eq. (56), we can write Eq. (82) in terms of the
lattice functions. The result is:

do, 1 Alizs + gksAlyog (83)
ds  Onh VAL,
where we have defined:
k _ ok gk k ok

Note that the solenoid strength enters explicitly in
Eq. (83); otherwise, the right hand side is expressed
purely in terms of the lattice functions. In the uncoupled
case, ks = 0 and Al},, = 1, and we recover Eq. (79).

B. Tune-shift from perturbative focusing error

It is often useful to know the tune-shift that results in
a storage ring from a perturbative focusing error at some
point in the lattice. Let us consider a focusing error that
may be represented by the transfer matrix:

10 00 0 O

k11 1 k13 0 k15 O
0O 01 0 0 O
K= k31 0 k33 1 k35 O (85)
0O 0 0 0 1 0
k51 0 ks3 0 Kss 1

Note that the symplectic condition on K requires that:

K31 = K13 (86&)
K51 =— Ki5 (86b)
KR53 = K35 (86C)

Let M be the single-turn transfer matrix in the absence
of the focusing error, at the location of the error. In the
presence of the focusing error, the single-turn matrix may
be expressed as:

MK = NRN 'K
= NRN 'KNN! (87)

where N is the normalizing transformation for M, and R
is a block-diagonal rotation matrix. The rotation angles
in R are the lattice tunes multiplied by 27. N determines
the lattice functions; to find the perturbative tune-shift
to first-order in the focusing error, we can neglect the
variation in the lattice functions from the focusing error,
and assume that IN normalizes MK as well as M. Hence,
we write:

MK = NR-AR-N"! (88)
where
AR =N"'KN (89)

is (close to) a rotation matrix, with rotation angles equal
to the tune-shifts resulting from the focusing error.
Since N is symplectic, we have:

S- AR = N"SKN (90)

For small tune-shifts, the tune-shifts may be obtained
from the diagonal elements of S - AR:

1 T T

Ap ~ 5 (INTSKNJ,, + [N"SKN],,)  (91a)
1 T T

A~ 5 (INTSKNJy, + [N"SKN],,)  (91b)
1 T T

A ~ 5 (INTSKNJg; + [N"SKN]gg) - (91c)

Using Eq. (56), we find that for symplectic focusing errors
of the form (85), the tune-shifts can be expressed as:

1
AVk ~ _E Z Z—Hij (92)
4,7=1,3,5

where, as usual, k& = LILIII. Equation (92) has been
found (in a slightly different form) by Venturini [9] in the
context of space-charge tune shifts in a coupled lattice.

In the special case of an uncoupled lattice, Eq. (92)
reduces to the familiar form:

1
Al/l' = _76.11’%.1,

ppm (93a)

1
Ay, = _Eﬂy’% (93b)

for the horizontal and vertical planes, where x, = k11,
and ky = K33.



C. Flat-beam to round-beam transformer

The space-charge tune shifts in large lattices at low
energy can become large when the vertical emittance
is small, as is the case in some designs for linear col-
lider damping rings, for example [10]. Coupling bumps
have been proposed as a way to make the vertical beam
size large even when the vertical emittance is small, thus
reducing the charge density and mitigating potentially
harmful space-charge effects. The basic concepts have
been described by Derbenev et al, see for example [11].
Here, we briefly describe the required transformations,
and give the coupled lattice functions in an implementa-
tion in one design for a 16 km lattice for the ILC damping
rings [12].

We treat only the transverse degrees of freedom. Con-
sider a point in the lattice where the (uncoupled) Twiss
beta functions are equal in the horizontal and vertical
planes, 3, = B, = 3, the Twiss alpha functions are zero
and there is no coupling. The 4 x 4 beam distribution
matrix is given by:

Be, 0 0 O
0 <« 0 O
- B
%= 0 0 Be O (99)
0 0 0 %
Now we take a symplectic transformation V:
~ 0 ~ /T
V=R(-7)Rs (3. R(]) (95)
where R represents a rotation in co-ordinate space:
cosf 0 sind 0
~ 0 cos@ 0 sinf
R(O)=| _ sinf 0 cosf O (96)
0 —sinf 0 cos#

and Rg represents a linear transformation in phase space
(with different phase advances in the horizontal and ver-
tical planes):

cosp  Psinp 0 0

B —%sinu cos [ 0 0
Ry (0, 1) = 0 0 —sinp  Beosp
0 0 f%cosu —sinp

(97)
After the transformation V, for any value of the phase
advance u, the distribution matrix becomes:

%ﬂq 1O 9 %e_
0 =€ —se_ 0
_ T _ 28+ 2
v =VXV'= 0 —%e, §ﬁe+ 0 (98)
56_ O 0 %64_

where ex = €, £ ¢,. After the transformation, the hor-
izontal and vertical beam sizes are equal, and the beam
has no tilt. The required transformation can be achieved

using a set of three equally-spaced skew quadrupoles,
with parameters:

22

ml = == (99a)
1 1
d = b (99¢)

21442

where k1L is the integrated strength (normalized by the
beam rigidity) of the central skew quadrupole, akiL is
the normalized integrated strength of each of the outer
two skew quadrupoles, and d is the distance between the
skew quadrupoles. The same transformation can be used
to decouple the beam, as long as the phase advances of
the two transverse modes are equal between the trans-
formations.

Figure 1 shows an example of a flat-beam to round-
beam transformation at one end of a long straight section
in a design for a 16 km damping ring lattice for ILC. The
straight section is 6 km long, and has high beta functions,
to allow large separation between quadrupoles. The flat-
beam to round-beam transformation is implemented at
the entrance to the straight section, where a matching
section is used to set the beta functions to 140 m, and
the alpha functions to zero. The coupling transforma-
tions are implemented using thin multipoles, with the
exact strengths and separations given by Eqgs. (99). The
resulting lattice functions can be seen in Fig. 1: note that
the skew quadrupoles are located at 2148 m, 2193 m and
2238 m. A second transformation (not shown) is used to
decouple the beam at the exit of the long straight section.
The lattice functions in Fig. 1 are the matched functions
in the complete damping ring lattice, calculated in MER-
LIN [13] using the techniques described in Section III.

The effect of the flat-beam to round-beam transforma-
tion on the beam distribution is easily understood from
Fig. 1, given the relationships between the beam distrib-
ution and the coupled lattice functions:

<£E2> = ﬁilﬁ"‘ﬁﬂen (100&)
() = Bise+ Bizen (100b)
(zy) = Biger + Blsen (100c)

The middle plot in Fig. 1 shows that after the flat-beam
to round-beam transformation, even with vanishing e
the vertical beam size is comparable to the horizontal
beam size, since €, makes a significant contribution to
{(y?). The bottom plot gives the correlation (xy), which
is zero before the transformation, and remains small
(though non-zero) after the transformation.

D. Longitudinal focusing

RF cavities provide longitudinal focusing analogous to
the transverse focusing provided by quadrupoles. The
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FIG. 1: Coupled lattice functions in a flat-beam to round-beam transformer.

lattice function (fZ provides a natural analog of the

transverse lattice functions 8, and (,, and describes the
effect of the longitudinal focusing on the bunch length,
which varies around the ring. In most storage rings, the
focusing is so weak that the variation in bunch length
around the ring is small enough that it may be neglected,
but in some regimes it may be significant. This occurs,
for example, in the 16 km ILC damping ring previously
referred to (Section V C), where the combination of large
RF voltage and high momentum compaction leads to a
large synchrotron tune.

Figure 2 shows the longitudinal lattice functions in
part of the damping ring lattice. The section shown in-
cludes one arc (consisting of a bend through 270° followed
by a reverse bend through -90°), followed by an RF sec-
tion. The rest of the lattice consists of long straight sec-
tions, in which there are no longitudinal dynamics, and
a second arc/RF section identical to the one shown. The
lattice functions were calculated in MERLIN [13].

The interpretation of the longitudinal lattice functions
is straightforward. In this case, the bunch length and en-
ergy spread have negligible dependence on the transverse
emittances ¢; and €1, so the longitudinal distributions can
be written:

<Z2> = 5%1516111 (1018,)
(20) = Prgem (101b)
(0%) = Bgem (101c)

The top plot in Fig. 2 shows that the rms bunch length
varies by about 7% through the lattice. The middle plot
shows the correlated energy spread.

E. Calculating coupled lattice functions from
phase-advance data

A useful technique for characterizing the optics in
a storage ring involves resonant excitation of low-
amplitude betatron oscillations of a bunch, followed by
the measurement of the trajectory of the bunch over a few
hundred turns. The turn-by-turn readings at each BPM
form a sine wave; the phase difference of the waves from
any two BPMs gives the phase advance (in the plane with
tune corresponding to the excitation frequency) between
those BPMs. It is useful to be able to reconstruct the lat-
tice functions from the phase-advance data. Techniques
for this, which involve assumptions about the transfer
matrices between BPMs, are well-established for the un-
coupled case [14-18]. Here, we consider how the phase-
advance data may be used to construct the coupled lat-
tice functions derived in Section III.

Let us first review the procedure used for an uncoupled
beamline. Consider a point s in the beamline: the phase
advance Aoy from s; to some other point, so, along the
beamline can be found from:

m{2D
cot Aoy = %ﬁ -«
Mg

(102)

where mgjz-l) are elements of My, (the transfer matrix

from s; to s2) and 8 and « are the lattice functions at
s1. Similarly, the phase advance A¢s; from s; to a third
point s3 is found from:

m3D
cot Agsy = 3311) 00—«
Mg

(103)
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FIG. 2: Longitudinal lattice functions in part of a 16 km ILC damping ring lattice.

Conversely, if we know the phase advances Ago; and
Agps1 and the transfer matrices My, and Mgy, then we
can solve Egs. (102) and (103) for the lattice functions 3
and a.

The technique generalizes easily to fully coupled mo-
tion, although because we need more lattice functions to
describe the optics completely, we will need more data.
For simplicity, let us consider only the transverse mo-
tion, and suppose that we measure the phase advance in
the horizontal plane, i.e. by exciting a trajectory corre-
sponding to the horizontal tune. In this case, the phase
advance A¢s; from s; to any point ss can be found from:

2) 4 (21)
cot A(le = h = Z:ZZ— (104)
®) 1 CI.
GP) D ima My T2

where 7;; are elements of the normalizing matrix N; at
s1, with n12 = 0, and nz@) are elements of the normalizing
matrix Ny at so; the phase advance Aggy is just the
angle needed to transform Ny to satisfy nio = 0. Now

we simply write Eq. (104) in the form:

4 4
cot A¢21 (Z mgl)ﬁﬂ) — ngl)ﬁll =0
i=1

1=2

(105)

In general, given the phase advance and the transfer ma-
trices from s; to six other points along the beamline, we
can use Eq. (105) to construct a set of six simultaneous
equations. The symplectic constraint on N provides one
additional equation, and we may then solve the complete
system for the seven unknowns n;;, with i = 1,...,4
and j = 1,2 (and 732 = 0). The lattice functions are
found from Eq. (59). In some cases, some or many of the
transfer matrix elements may be zero, and it may not be
possible to solve for all of the lattice functions. Usually,

however, it will be possible to solve for the “in-plane”
functions, Bi; etc.

An example of the calculation of the lattice functions
from phase-advance data in the PEP-II High-Energy
Ring is shown in Fig. 3. The interaction point is at 733.1
m, and the coupling extends out approximately 150 m on
either side; only the lattice functions in the coupled sec-
tion are shown. The top two plots show the square roots
of the “in-plane” lattice functions (7; and (335, while the
bottom two plots show the square roots of the “cross-
plane” lattice functions (5; and 37}. The values calcu-
lated directly from the model using the methods of Sec-
tion III are shown as solid lines; the values calculated
from simulated phase-advance data in the model using
Egs. (105) and (59) are shown as circles. Note that the
horizontal positions of the circles correspond to the loca-
tions of the BPMs. To calculate the lattice functions at
each BPM from the phase-advance data, we use the phase
advance from that BPM to the nearest three BPMs on
either side. The values of some of the cross-plane lattice
functions near the ends of the coupled section are not
accurately determined, since the equations constructed
from Eq. (105) are not well-conditioned in those cases.
Where this situation occurs, it may be possible to im-
prove accuracy by using the phase-advance data to a dif-
ferent set of six BPMs than the nominal ones chosen.
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