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Abstract

Some basic characteristics of subjects' use of mental
models of physical systems are discussed. Many
representations for physical knowledge suggested so far,
including qualitative-reasoning-based models, do not
account for these experimental findings. This paper
presents a connectionist architecture which suggests an
explanation of these experimental results. Two
simulation experiments are described which demonstrate
how mental models of physical systems may evolve
and why grounding symbols used by a mental model to
a quantitative representation is necessary.

Mental Models of Physical Systems

Recent studies of physical knowledge acquisition have
focused on the way a mental model of a physical
system can be created from a set of elementary pieces of
knowledge about the physical world. In this context,
mental model means a structured representation of
knowledge about a specific system. Norman (1983)
observes the following facts. (1) Mental models evolve
through interaction with the system they model. (2)
Mental models are used to facilitate the interaction
between the subject and the physical system, and are
not accurate descriptions of the physical system. (3)
Mental models are runnable, i.e. subjects can run their
mental models and predict a particular future state of the
system. (4) People are notoriously bad in running
mental models through a large number of stages or for
a long time. Also, people are often hesitant about the
validity of their mental-model-based judgements. All
these characteristics relate to the performatory aspect of
mental models, that is to the actual behavior of
subjects in experiments in which, presumably, they use
their mental models. Most research in this domain has
focused on the form of knowledge representation which
gives rise to these behavioral patterns.

Qualitative Reasoning Theory
The qualitative reasoning theory (Weld & deKleer,

1990) evolved out of research into mental models of
physical systems. Often, when subjects apply their
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physical knowledge, their behavior and reports are
incompatible with any theoretical law of physics.
Thus, an alternate, simpler "qualitative” physics theory
has been formalized. A qualitative-reasoning based
mental model is a list of qualitative equations
describing the physical system. The qualitative
equation is an expression describing the interaction
between coarse-valued variables. Special qualitative
arithmetic is defined to operate on these qualitative
values. Expressed this way, some physical concepts
e.g. "flow" can be expressed by specifying their
interactions with other concepts such as height of liquid
columns (deKleer & Brown, 1990).

Difficulties. Critics of the symbolic paradigm
however, claim that a qualitative-reasoning-based
mental model, is not a satisfactory model for any
cognitive process since it gives rise to the symbol
grounding problem (Hamnad, 1990). Symbols cannot
be arbitrary forms which are assigned meanings
independently of the cognitive model. Rather, their
form must be causally determined in a bottom up
manner.

A further difficulty with symbolic knowledge
representation is its artificial distinction between
competence and performance. The theory of qualitative
reasoning does not account for how mental models
evolve through interaction, why mental models are
runnable, and why subjects are so bad in running them
over many stages. The symbolic framework excludes
these confounds from any discussion about the
knowledge representation form. An alternative
framework, under which both competence and
performance confounds will be explained by the
postulated knowledge representation form should be
preferred on the grounds of parsimony.

This paper presents a modular connectionist
architecture for mental models of physical systems
which allows the transition from quantitative to
qualitative knowledge, and which avoids the problems
described above. The architecture generates symbols
which are assigned "real-world meanings" as a natural
and necessary quality of the processes by which they
evolve. Relations between the generated symbols
constitute an alternative to the symbolic notion of
compositional structure (Fodor and Pylyshyn, 1988).

The distinction between competence and
performance is eliminated by using a connectionist
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knowledge representation form. (1) Due to the
connectionist training process, the representation
gradually evolves through interaction with the
environment. (2) By imprinting the behavior of the
physical system in a connectionist network, a model
can be "rerun” later in order to make predictions on the
system’s future state. (3) The statistical nature of the
knowledge representation built makes it hard to run the
model for many stages or for a long period as errors
propagate and accumulate quickly.

I further describe two simulation experiments with
the architecture, which lead to a number of interesting
observations. In the current model, adequate symbol
generation is possible only if the system has reached
some level of familiarity with the real environment.
Once this level of familiarity is attained, improving the
system's knowledge of the environment is faster using
the generated symbols than by increasing the system's
familiarity with the environment. The question arises
as to the computational status of symbols. First,
"grounding” the symbols is no longer a mere
philosophical requirement.  Rather, it is a
computational requirement in order for symbols to be
functional. Second, the role of symbols might be
conceived as efficient knowledge modifiers rather than
arbitrary shapes used as building blocks for some
compositional structure.

The Modular Architecture: From
Quantitative to Qualitative

The proposed architecture consists of two inter-related
modules. The first interacts with the environment to
construct a non-symbolic mental model of it. The
second uses the internal analog representations built by
the first module and associates qualitative symbols with
these representations (see Figure 1). The entire model
is then able to make qualitative statements and
predictions about the state of the environment, given
any qualitative specification of an initial scenario.

The Quantitative Module

The first module is a feed-forward three-layered network
which is exposed to a representation of the environment
(The exact form will be discussed in the next section).
The input consists of a representation of the state of the
environment at time ¢. The expected output is a
representation of the state of the environment at time
t+1 (See Figure 2). The module is trained using the

- ion rule (Rumelhart, Hinton, &
Williams, 1986).

There are two important facts regarding the coupling
of this module with the environment. First, even
though (technically speaking,) back-propagation is a
supervised training scheme, in this case, with the
environment supplying both the input and the correct
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Figure 1: A functional diagram of the proposed architecture

output, the training is teacher-less and thus
psychologically plausible. Second, since the forms of
the input and the output of this network are identical,
the network should be viewed as a recurment petwork
with one input/output layer and one hidden layer. For
computational simplicity, the network is trained as a
three-layers feed-forward network.

The motivation for using this particular architecture
for the first module is twofold. First, a three layered
feed-forward network trained by error back-propagation
is capable of learning complex interactions in the
environment. Second, it allows for the generation of
an internal representation of the environment over the
hidden layer which already encompasses some
information about what the next state of the
environment will be. This internal representation is
then available for further processing.

The Qualitative Module

The second module auto-associates verbal labels and
qualitative values with activation pattemns over the
hidden layer of the first model. As demonstrated in the
next section, the labels and qualitative values do not
have to correspond to explicit representations in the
input for the first module. This module consists of a
recurrent network trained using the Widrow-Hoff (1960)
leaming rule. An expansion of the "Brain State in a
Box" (BSB) algorithm (Anderson, Silverstein, Ritz and

state(t+1) 1 time unit

Network

predicted
state(t+1

state(t+1 l

Figure 2: A functional diagram of the first, quantitative
module.
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Figure 3: A diagram of the full activation cycle of the
proposed architecture. The first component of the state
vector is used as a “state” descriptor or a memory cell. The
second and third components have the word and a
qualitative value representations. The flow prediction is
eventually extracted from the last 40 units of the last state
vector.

Randal, 1976) is used as the network activation
scheme. The proposed architecture employs the basins
of attraction of the BSB model to achieve qualitative
linguistic judgements. (See Hopfield, 1982; Anderson,
Silverstein, Ritz and Randal 1976; and Golden, 1986;
for a formal analysis of the effect of basins of
attraction).

The manner in which the entire architecture
functions is similar to a finite-state-automaton where
the "internal representation" component of the
activation vector functions as the "state." A word, and
possibly a qualitative value, is the input which allows
transition from the current state to the next state using
the BSB dynamics (see Figure 3). The following
sections describe a low-scale implementation of the
architecture for modelling the generation of mental
models of physical systems.

Simulation Experiments

The architecture was used to construct a mental model
of liquid flow between reservoirs (See Figure 4).
Liquid flow was chosen because: (1) it is familiar,
subjects can make good qualitative predictions about its
basic behavior; and (2) though fairly simple, liquid
flow presents the difficulties mentioned above
conceming people's representation of its behavior.

If the mental model simulation generates a concept
which corresponds to the physical measure of flow
from the sensory information, without starting with an
explicit representation of flow, it exemplifies how
physical concepts might emerge and how symbols (the
symbol for "flow" in this case) may be grounded. In
addition, if a training process leads to the generation of
a system of qualitative relationships describing the
physical system being modeled, it demonstrates how a
qualitative-reasoning based mental model could arise.

s
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Figure 4: The liquid flow system being modeled. The real,
continuous time dimension across which the process of
flow occurs is divided into digital units at which the state
of the physical system is sampled.
Q;-The flow-rate at time t, is given by Torriceli's law:

Qp =2m2\[2g/h1, -h2,/

where hl and h2 are the heights of the liquid column in the
two reservoirs and r is the radius of the pipe connecting
them. Therefore, the heights of the liquid level after a
single time unit will be:

if hI>h2: if hl<h2: if hl=h2:
hlgyp=hl-QJawl  hlg,y=hl+QJnwl hl,, j=hl,
h2py 1 =h2+QJmw2  h2y, =h2,QJmw2  h2,, =h2,
where wl and w2 are the widths of the two reservoirs.

Input and Output Representation and
Training Order

The first module consisted of a three layered network
with 200 input units, 80 hidden layer units and 80
output units. The second module consisted of 160
fully connected units (See Figure 5).

The qualitative module

80+40+40 units
Input layer . Gxddm layer of the /
of the o AN\ quantitative module
quantitative
module 0

0) /
0
O
O
O
O output layer of the
8 word J Quantitative
module - 80 units
/
qualitative
value
/ /

— —
Figure 5: The proposed architecture



The input to the first module consisted of
quantitative representations of the heights of the water
columns in the two reservoirs, the width of the two
reservoirs and the width of the pipe connecting them.
Each measure was represented in an area of 40 units in
which a sliding bar of five units indicated the value.
For example, a water height of 50 in the first reservoir
is represented by:

0000000000000000000000000000000000011111

The total dimensionality of the input layer was
therefore 5x40=200 units. For reasons of simplicity
and computational feasibility, the output layer was
only 80 units long and had only the two heights of the
two water columns. It should be noted that bar code
representations have some biological appeal since they
resemble brain maps that have been described in
different areas of the brains of many species. It is
therefore plausible to assume bar-code representations
as a general quantitative representation form.

Given any quantitative initial condition, this module
predicts the quantitative condition at the next time unit.
The training phase included exposing this module to
2000 different flow scenarios; each scenario begins by
choosing random values for the five input measures and
then uses Toricelli's law to calculate the states of the
system in the following time units until equilibrium is
achieved.

The input to the second module consisted of
the internal representation of the physical system's state
generated over the hidden layer of the first, quantitative,
module, plus an arbitrary representation for a word and
a qualitative value. Since the word and the qualitative
value are arbitrary symbols (grounded by training this
module), they were represented by arbitrary
representations that maximize orthogonality. The
hidden layer of the first model was 80 units long. The
word and qualitative value were each represented by 40
units. Therefore, this module consisted of 160 fully
connected units.

The words represented were: "HEIGHT-1",
"HEIGHT-2", "WIDTH-1", "WIDTH-2", "WIDTH-
PIPE" and "FLOW". The qualitative values represented
for all the words but "FLOW", were "HIGH",
"MEDIUM" and "LOW". For the word "FLOW", the
value field was segmented into two parts, the first
representing the qualitative strength of the flow:
"HIGH", "MEDIUM" or "LOW" and the second
representing the direction of the flow: "FROM-1-TO-2"
or "FROM-2-TO-1" or "NONE". For flow value of
"NONE", the magnitude field was ignored.

Training the second module started by presenting
each one of the 2000 initial states used to train the first
module to the first module. Then, the internal
representation generated over the hidden layer of the
first module was auto-associated with each of the six
words and with the qualitative value corresponding to
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the quantitative initial condition. The quantitative
range associated with each qualitative value was chosen
so that all qualitative values would occur with equal
frequency.

Running the Qualitative Mental Model

In order for the system to make a prediction, the

qualitative initial condition must be specified. As

mentioned earlier, the process works much like a finite
state automaton (Figure 3). The process is described
below:

1) Zero the internal representation component of the
second, qualitative module.

2) Load the first word and qualitative value of the
initial condition into the appropriate areas.

3) Run the BSB activation scheme until saturation.

4) Leave the internal representation area as is (since it
functions like the state in a FSA) and load the next
word and qualitative value specifying the initial
conditions.

5) Repeat 3-5 until all the qualitative initial measures
have been specified.

6) Zero the qualitative value.

7) Load the representation for the word "FLOW" to the
word area.

8) Run the BSB activation scheme until saturation.

9) Take the prediction for the flow direction and
magnitude from the qualitative value area (More
precisely, the closest qualitative value to whatever
is taken out of the qualitative value area in terms of
vector cosine).

The evaluation of a prediction takes into
account the fact that when an initial state is specified
qualitatively, more than one qualitative prediction can
be correct. Based on the probability of each prediction
given any initial condition, the following evaluation
scheme is used:
1) Test the network for predictions for all possible
initial condition.
2) Categorize each prediction as either correct (and most
probable), second best choice, third best choice or
3) Assign a grade to the overall performance of the
model by:
Grade =4 * (%correct - %direction error)
- 2 * %third best errors
- 1 * %second best errors.
The grade is mostly affected by the percentage of correct
predictions versus the percentage of direction errors.

Experiment 1: The Importance of
Grounding Symbols

The first experiment tested the importance of the
"grounding knowledge" to the overall performance of
the system. While the amount of training put into the



second module (the symbol associator) was kept
constant, different types of quantitative internal
representations were used.
1) In order to test the importance of the internal
representation component in the dynamics of the
symbol associator, random intemal representations were
used rather then real activation pattems over the hidden
layer of the trained first module. The weights
connecting the units of the first module were assigned
randomly, yielding random activation patterns over the
hidden layer. The same 2000 exemplars were used for
training the second module. If this network is trainable,
then the real knowledge of the specific system must
have no importance; the model would work due to
there being an internal representation component that
"anchors" the symbols arbitrarily, regardless of their
contents. Such a result would suggest that this model
does not offer any advantage over symbolic architecture
because it is indifferent to the meaning assigned to the
symbols.
2) Even if the random internal representations proves
unsuccessful, it is still possible that the system can
function with the real intemnal representations due to the
general structure present in these representations rather
than their particular contents. That is, the presence of
structure might be sufficient to "anchor" the symbols.
In order to rule out this possibility, another version of
the first module was used. As before, the first module
was not trained but was assigned weights in a structured
pattern yielding structured and systematic activation
patterns over the hidden layer which were still non
related to the real flow system!. Again, if this network
is trainable, then the real knowledge of the specific
system has no importance.
3) Finally, it needs to be shown that given the
appropriate training, the system can work. To clarify
the difference between the previous cases and the case of
the real training, I used the two arbitrary weights setups
(the random and the structured) as initial weights for the
first module, and trained it using one introduction of
each of the 2000 flow scenarios. The training of the
qualitative module started only after the quantitative
knowledge was generated. This training was done by
associating the appropriate words and values with the
2000 initial states. Each of the associations was used
10 times on average during the training.
4) To further explore the importance of the qualitative
grounding knowledge, the previous cases were
replicated with the exception that the first module was
further trained by using the same training set once more
before starting the training of the second module.

Over all there were two control systems in which
there was no grounding knowledge, two systems in

1 The weights were setup according to a Gausian formula to
ensure that systematic changes in the input values would
yield systematic changes in the activation pattems over
the hidden layer.
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which there was a certain amount of - grounding
knowledge, and two other systems in which there was
more grounding knowledge. The training of the
qualitative module was identical for the six systems.
The qualitative performance of each system was then
evaluated by the scheme described above and assigned a

grade.

Results of Experiment 1: The results are
shown in Table 1. Although in no cases were the
predictions made by the system perfect, the results still
suggest the following points: (1) Real grounding
knowledge is necessary for better qualitative
performance. (2) Arbitrary structure of the internal
representations is not sufficient for qualitative
knowledge generation. (3) Better grounding knowledge
consistently yields better qualitative results. (4)
Symbols (such as the word "FLOW" and its associated
qualitative values) can serve to generate novel concepts
from internal representations of “sensory inputs." The
relation between the novel concept and the concepts
associated with the "sensory input" is the alternative
this framework offers to the notion of
"compositionality” in the symbolic framework.

itial Ezn:rol Single Two
eights ups quantitative |quantitative
fraining  fraining
cycle cycles
jandom 105 -3
kstructured }105 29

Table 1: Results of experiment 1. The untrained control
groups did the worst. Two quantitative training cycles
improved the performance meaning that "stronger
grounding”, improved the overall results.

Experiment 2: The Importance of
Symbols for Teaching

This experiment examines how the system's predictions
can be improved. One method is to further train the
first module; i.e., let the system "watch" more flow
scenarios. An alternative method would be to retrain
the second, qualitative module if it failed to make the
correct prediction about scenarios which were part of its
training set; i.e., "tell” the system more about how
flow behaves qualitatively. In this method, the first
module is not retrained. The last method I consider is
to only correct the qualitative errors the system does in
the evaluation test. This is much like the manner in
which a teacher would qualitatively test a student on
novel situations and correct his/her errors.

I also wanted to inspect the effect of “grounding
knowledge" on the ability to improve the predictions
made by the system, by making qualitative corrections.
Twelve systems were compared in this experiment.
Four were the systems from the previous experiment
which were grounded to the real physical system. For
each of these four systems, the two qualitative



correcting procedures were applied separately. The
twelve networks were evaluated as before.

[Single  Rualitative qualitative
qualitative correction ction
kraining  fwith thejwith the|
cycle training  jcomplete
et valuation|
-3 -105 105
-29 -116 116
tm‘.bm 2 7 7

antitative

ining Istmclumd 8 7 16

cles

Table 2: Results of experiment 2. Both methods of
qualitative correction worsened the overall performance of
the less grounded networks but slightly improved the
overall performance of the more grounded networks.

Results of Experiment 2: The results are shown
in Table 2. There are two interesting observations: (1)
qualitative correction does not improve performance for
the less grounded systems. On the contrary, it reduces
total performance?. Grounding is not only necessary for
overall performance but also for making qualitative
corrections. (2) In most cases, with some degree of
grounding established, the more efficient qualitative
correction methods enable further learning beyond that
achieved by quantitative retraining.

General Discussion

The paper sketches a general connectionist architecture
that remedies the symbol grounding problem without
giving up the notion of symbols. The generation of
the novel concept of flow, by associating symbols to
an internal representation of simpler interacting factors,
demonstrates how a compositional or hierarchical
conceptual structure might evolve. The connectionist
modelling techniques eliminate the artificial distinction
between competence and performance that prevails in
much of the research on mental models. The proposed
architecture gives a unified account for both the form of
the knowledge representation, and for the empirical
evidence about how subjects perform tasks using this
knowledge.

The generation of a mental model of a the liquid
flow physical system demonstrates the two essential
aspects of the symbols suggested in this paper. On the
one hand, symbols need to be grounded to real-world

2 Because the correction process is used only for wrong
predictions, it can cause the network to forget predictions
that it previously got right, therefore decreasing the
overall grade.
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meanings for the model to work. On the other hand,
once this grounding condition is satisfied, using
symbols has some evident advantages. These results
suggest a wider interpretation of the symbol grounding
problem. Not only do symbols need to be grounded to
explain real-world meaning assignment, but their
grounding is a necessary computational condition. The
grounding is what causally determines the
compositionality (Fodor and Pylyshyn, 1986) of the
symbols. Obviously, this assumption is valid only in
the framework sketched in this paper. The
computational pecessity for grounding, however, may
contribute to the failure of the symbolic architecture to
meet Turing's (1950) vision.
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