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Abstract 
There is ample empirical evidence that children can 
sometimes learn during the course of even a few experimental 
trials.  We propose that one mechanism for this is the use of 
analogical generalizations constructed in working memory, 
producing what we call interim generalizations.  Prior 
research suggests that such generalizations can be constructed 
when there is high similarity between closely spaced items.  
This paper describes how structure-mapping simulations can 
be adapted to capture this phenomenon, using automatically 
encoded stimuli.  It is an advance over prior models in that it 
automatically detects when rerepresentation should be tried 
and carries it out to improve its performance. 

Keywords: Analogy; Computational modeling; Symbolic 
Modeling; Cognitive Development. 

Introduction 
People have relational comparison capacities that seem 

to outstrip any other primate (Gentner, 2003; Penn, Holyoak 
& Povinelli, 2008).  Yet young children are prone to focus 
on object matches rather than relational matches.  The 
Relational Shift hypothesis (Gentner & Rattermann, 1991) 
suggests that this difference is due to a lack of knowledge 
about relational structures in younger children, and that as 
they learn more, they gain the ability to make more 
relational matches.  Indeed, there is evidence that, under the 
right conditions, preschool children can learn to carry out 
relational matches.   

In one such study, modeled here, Kotovsky & Gentner 
(1996) explored children’s performance on comparison 
tasks involving simple higher-order patterns, such as 
symmetry and monotonic increase (Figure 1).  In each triad, 
the top figure is the standard, and the bottom two figures are 
the choices from which a participant must pick. One choice 
always has the same higher-order relationship between its 
entities as does the standard, while the other has the same 
entities as the relational choice, but permuted so that the 
relationship does not apply.  The triads in Figure 1 illustrate 
the 2x2 manipulation, namely the polarity (same or 
opposite) of the higher-order relation and the dimension 
(size or brightness) over which the relationship holds. 
Children were asked to choose which one of bottom choices 
was most like the top one. No feedback was given at any 
time. However, some easy high-similar triads were provided 
as check trials.  

The Relational Shift hypothesis predicts that older 
children will do better than younger children, and that all 
children will do better when there are lower-order 
commonalities supporting the higher-order commonalities.  
The results were consistent with these predictions: 4 year 
olds performed below chance on all but the same 
dimension/same polarity stimuli, where they were above 
chance.  By contrast, 6 year old and 8 year old children were 
able to see the relational pattern to some degree without the 
support of first-order relational overlap, but better with it.  
The cross dimension/opposite polarity case was the hardest 
condition, even for eight year olds.  Yet some children 
discovered this match over the course of the study. As 
Kotovsky & Gentner (1996) remark:  

“The emerging appreciation of relational 
commonality can be seen in this comment by an eight 
year old, who after struggling with her first several 
cross-dimension matches, then excitedly articulated 
a startlingly apt description of relational similarity: 
“It’s exactly the same, but different!” She proceeded 
to choose relationally for all the remaining triads” 

 

How can we explain such learning within less than 20 trials, 
without feedback?  It requires that a child be able to detect 
that they do not know a good answer.  There is informal 
evidence for this in that children in the study often puzzled 
over the cross-dimensional triads, saying things like “A dark 
one and a big one make daddies. The other one has two 
twins and a daddy on the side.” Children further need to 
figure out ways to rerepresent the stimuli so that the choice 

 
Figure1: An example of four types of triads for a size 

symmetry standard 
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becomes clear.  This rerepresentation process is aided by the 
experience of comparing and aligning relational structure 
across trials, as Kotovsky and Gentner showed in a second 
study. In that study, 4-year-olds were given a progressive 
alignment sequence: first 8 same-dimension (and same 
polarity) triads, which were relatively easy to align; and 
then 8 cross-dimension triads (also same-polarity). A 
control group received 8 initial size-change triads (so that 
they did not experience easy alignments over the saturation 
dimension. The progressive alignment group performed 
better on the subsequent cross-dimensional triads than did 
the control group). This suggests that successfully aligning 
the same-dimension triads led children to see the higher-
order patterns that they had formerly missed—that is, to 
rerepresent the stimuli.  

 This paper describes a computational model of this 
phenomenon.  We begin by summarizing the models of 
analogical processes that we are building on.  Then we 
describe the idea of interim generalizations, that is, 
analogical generalizations constructed within working 
memory.  Prior research (Gentner, Loewenstein & Hung, 
2007) has suggested that such generalizations can be formed 
when very similar stimuli are shown in quick succession.  
Here, interim generalization serves as a rapid 
rerepresentation mechanism by focusing attention on 
relations that have proven beneficial in prior comparisons.  
Two simulation studies are described, showing how these 
ideas can account for Experiments 1 and 2 of Kotovsky & 
Gentner (1996).  We close with related and future work. 

Background 
Our model is built on Gentner’s (1983) structure-mapping 
theory.  We build on existing models of matching and 
generalization, so we describe each in turn. 

The Structure-Mapping Engine (SME; Falkenhainer et al. 
1989) models the structural alignment process of 
comparison.  It takes as input two structured descriptions, 
the base and target, which can contain entities, their 
attributes, relations, and higher-order relations.  SME 
produces one or more mappings as its output, via a greedy 
merge process (Forbus et al., 1994).  Each mapping consists 
of three things: (1) A set of correspondences, which 
describe what goes with what (i.e. what entities and 
statements match) (2) A score that provides a numerical 
estimate of similarity, and (3) a set of candidate inferences 
which describe how connected but non-overlapping 
structure can be projected from the base to the target (or in 
reverse, from the target to the base), according to the 
correspondences of that mapping. 

The similarity score can be normalized to be in the range 
[0, 1].  There are two distinct normalization strategies, each 
measuring something different.  The first is to normalize by 
the self-matching score of the base (or target), i.e. what 
SME would compute for matching that description with 
itself.  This value measures how close the target (or base) is 
to the representation used for normalization.  The second 
strategy is to normalize by the average self-matching scores 

of both the base and target.  This value measures how close 
the two representations are to each other.  As explained 
below, both types of scores are used in this model. 

The Sequential Analogical Generalization Engine (SAGE; 
McLure et al 2010) provides a model of analogical 
generalization.  For each concept being learned, SAGE 
maintains a generalization context which represents its 
current model of that concept.  Each generalization context 
contains a set of generalizations and unassimilated 
exemplars.  Generalizations are probabilistic structured 
descriptions, where the probability for each statement is the 
frequency with which assimilated exemplars contain a 
matching statement.  We propose that there are two kinds of 
generalization contexts.  Persistent generalization contexts 
are stored in long-term memory, and are used to accumulate 
models over substantial periods of time (e.g. learning words 
(Lockwood et al 2008), grammar (Taylor et al, 2011) and 
conceptual change (Friedman & Forbus, 2009)).   Interim 
generalization contexts are part of working memory, and are 
used for short-term, within-task comparisons and learning 
(Day & Gentner, 2007).  In interim generalization contexts, 
only a small number of descriptions are maintained and 
retrieval of them is based on similarity, biased via recency.  
Given a new example being processed, the most relevant 
abstraction from the generalization context is chosen on the 
basis of its similarity score normalized with respect to the 
abstraction, and modulated by recency.  

Modeling the Forced Choice Task 
We assume that children have default encoding strategies, 
and that given a forced-choice task, they compare the 
standard to each of the choices, with the standard serving as 
the base.  The choice with the highest base-normalized 
similarity score is then selected as their choice, since they 
are seeking the closest to the standard. 

Figure 2: Graphical representation of the relational choice 
of the Different Dimension/Same Polarity saturation-

change triad 

2472



But what if the two scores are very close?  That is the 
criterion used to trigger rerepresentation efforts: An 
encoding that does not provide a clear choice is not 
adequate.  Such encodings arise in part because the child’s 
default encoding strategies may produce extra, irrelevant 
information that makes it harder for any relational 
comparison to emerge.  We further assume that when a 
choice is clear, a generalization based on that comparison is 
added to the interim generalization context.  Given a 
subsequent new task, if a generalization is retrieved for a 
portion of the stimulus, then only the overlap between the 
stimulus and the retrieved generalization is kept.  This 
provides filtering, to make relevant structure more apparent 
based on experience.  To illustrate, Figure 2 illustrates the 
(automatically produced) initial representation of one of the 
choices in a triad, while Figure 3 shows what remains after 
filtering via an interim generalization. 

Filtering based on prior generalizations is one simple 
form of rerepresentation.  Another, as proposed by Gentner 
et al. (1995), involves recognizing that dimension-specific 
comparative relations can be recast as a combination of 
functions that denote dimensions and a domain-independent 
comparative relation.  For instance,  

(darkerThan A B) 
(biggerThan C D) 

might be rerepresented as 
(greaterThan (Darkness A) (Darkness B)) 

(greaterThan (Area C) (Area D)) 
where Area refers to the 2D area of the depicted entity.  
This greatly improves the match, because structure-mapping 
permits non-identical functions to align (here, Darkness 
and Area) when doing so would support a larger relational 
structure matching.  Figure 4 illustrates how this changes 
the example of Figure 3. 

What signal should be used to determine when—and 
which—rerepresentations are performed?  That there is a 
problem making a decision is clear when the scores for the 
two choices are very close, as noted above.  But there are 
many possible rerepresentations between any two 
descriptions.  To decide which pair within the triad to focus 

on, our model uses the average self-matching score, since 
that measures which pair is more promising.  Particular 
rerepresentation opportunities are spotted and carried out via 
techniques described in (Yan et al. 2003).  The base-
normalized score is then recomputed based on the new 
representations, and if there is now a clear difference, the 
most similar choice is selected.  Otherwise, rerepresentation 
continues until the model runs out of techniques to try or a 
resource bound is hit.  

Experiments 
We used the Companion cognitive architecture (Forbus et al 
2009) to conduct two simulation experiments, 
corresponding to the first two experiments in Kotovsky & 
Gentner (1996). Our goal was to model the behavior of four 
year olds in the studies. That is, in the first experiment, it 
should do well only on same dimension/same polarity 
triads, and in the second experiment, given progressive 
alignment, it should learn to do well on different dimension, 
different polarity triads. 

In the original study, two shapes (circles and squares), 
two higher order relations (symmetry and monotonicity) and 
two dimensions for the standards (size and color) were used.  
This provided the basis for 16 relational patterns, 8 for each 
polarity. The opposite polarity cards were only used as 
relational choices, thus providing 8 standards.  A stimulus 
that is a standard in one triad will appear as a relational 
choice in another.  16 non-relational choices were 
constructed by permuting the objects in the relational 
choices. We constructed 32 cards as PowerPoint slides and 
used CogSketch (Forbus et al 2011), an open-domain sketch 
understanding system, to generate qualitative visual and 
spatial representations. CogSketch is useful for this purpose 
because it can provide automatic encoding for experiments 
(e.g. Kandaswamy & Forbus 2012), with a representation 
vocabulary that has proven useful in modeling human visual 
problem solving (Lovett & Forbus, 2011).  Figure 2 

Figure 3: Graphical representation of the relational 
choice after rerepresentation based on reminding. 

Figure 4: Graphical representation of the relational 
choice after rerepresentation based on candidate 

inferences. 
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illustrates a portion of the representation created for two 
symmetry standards of different dimensions.  

Simulation Experiment 1 
Recall that the four types of triads (ordered in terms of 
predicted difficulty) are: 
1. Same dimension/same polarity (SDSP)  
2. Same dimension/different polarity (SDDP)  
3. Different dimension/same polarity (DDSP)  
4. Different dimension/different polarity (DDDP) 
We created two ordered sets of 16 triads grouped by 
polarity, shuffled so that there would be no more than two 
of the same triad types consecutively, as in Experiment 1 of 
Kotovsky & Gentner (1996). In particular, as in that study, 
same-dimension triads (like the top left triad in Fig. 1) and 
cross-dimension triads (bottom left, Fig. 1) were mixed 
semi-randomly across the study. We evaluated our model on 
the two sets. The model performs the triads task sequentially 
following the determined order. The model uses three 
parameters. The assimilation threshold (0.95) is used by 
SAGE to determine when to assimilate examples into 
generalization. It is also applied during the reminding phase 
to choose the most similar generalization. The 
rerepresentation threshold (0.55) controls when a mapping 
between a base and a target looks promising enough to 
attempt rerepresentation. The size limit (5) determines the 
maximum number of items in the interim generalization 
context. These values were set based on pilot experiments.  
When the model has no clear choice, it does not make a 
decision, unlike the children, who always had to make a 
choice.  (Importantly, the children were not given feedback 
as to whether their choices were correct or not.) The 
Kotovsky & Gentner experiments measured the proportion 
of relational responses.  Table 1 shows the results for four 
year olds along with the model’s responses.  As noted 
above, the correct choice is always the relational choice, so 
the children were above chance only for the SDSP case.  
 
Table1: Proportions of choice types for Experiment 1 
 
 Children 

Reln % 
Model 
Reln % 

Model 
NonReln% 

Model 
No-choice 

SDSP 68% 100% 0% 0% 
SDDP 49% 0% 87.5% 12.5% 
DDSP 49% 37.5% 0% 62.5% 
DDDP 48% 12.5% 12.5% 75% 
 
The results of the model are qualitatively consistent with the 
children’s behavior.  First, the SDSP cases are easiest. The 
model gets 100% of these correct because the automatic 
encoding process, using CogSketch, is deterministic and 
uniform, whereas children (68% correct) are likely to vary 
more in their encodings.  Second, when the no-choice model 
answers are randomly distributed between the two possible 
choices, the model is at chance for DDDP, somewhat better 
than chance for DDSP, and far worse than chance for 
SDDP.  In the SDDP stimuli, there is sufficient relational 

overlap between even a non-relational standard to make the 
base-normalized comparison scores different enough to 
satisfy the system that it has a reasonable answer.  We 
suspect that increasing the required difference in similarity 
between the two alternatives would eliminate this behavior.  
In the DDSP case, while the same dimension triads were not 
consecutive, they were sometimes close enough that 
occasionally interim generalizations were getting created. 
This suggests that our model can form interim 
generalizations a bit more readily than children do.   

 
Table 2: Order of triad pairs in progressive alignment 

condition as in Kotovsky & Gentner 1996 
 

Dimension Dimension of 
Standard 

High Order 
Relation 

same size monotonic-
increase 

same size symmetry 
same color symmetry 
same color monotonic-

increase 
cross size symmetry 
cross color symmetry 
cross size monotonic-

increase 
cross color monotonic-

increase 
 
 

Simulation Experiment 2 
Experiment 2 was designed to test the Progressive 
Alignment hypothesis, i.e. that children who first received 
highly similar (i.e., highly alignable) closely spaced trials 
could then do tasks that were beyond them previously.  The 
stimuli consisted of only same polarity triads. There were 
two conditions. 

1. Experimental condition: Eight same dimension triads 
followed by eight cross dimension triads. The same 
dimension triads consisted of both saturation-change 
and size-change triads. To encourage progressive 
alignment the triads were ordered as shown in Table 
2. The children received two of each type. 

2. Control condition: Same as in the progressive 
alignment condition, but (as in the Kotovsky & 
Gentner 1996 study) the eight same dimension triads 
are all size-change triads, with no saturation-change 
triads.  

The procedure is the same as in Simulation Experiment 1. 
The proportions of relational choices are shown in Table 3 
and Table 4 respectively. Consistent with the human pattern, 
the model was extremely accurate on the same-dimension 
triads in both conditions. Also consistent with the human 
data, the model was far more accurate on the subsequent 
cross-dimensional triads in the experimental (progressive 
alignment) condition than in the control condition. In the 
progressive alignment condition, the model formed interim 

2474



generalizations for both size-change and saturation-change. 
This drove rerepresentation, leading to relational choices 
being preferred. By contrast, in the control condition, the 
model did not form any interim generalizations involving 
saturation-change.   

These results are qualitatively consistent with the results 
of Kotovsky & Gentner (1996). Like the children, the model 
performed better on cross-dimensional triads after 
progressive alignment on both dimensions than after 
progressive alignment only on the size/area dimension. 
However, there are some discrepancies.  The simulation 
performs too well, especially on the same-dimension triads. 
The model’s high degree of uniform encoding, and 
aggressive use of rerepresentation, appears to be going 
beyond what the children are doing.   

 
Table 3: Proportions of choice types for Experiment 2, 

Experimental Condition 
 

Dimension Relational 
choice 

Non-
relational 

choice 

No choice 

same 100% 0% 0% 
different 100% 0% 0% 

 
 

Table 4: Proportions of choice types for Experiment 2, 
Control Condition 

 
Dimension Relational 

choice 
Non-

relational 
choice 

No choice 

same 100% 0% 0% 
different 50% 0% 50% 

 

Related Work 
The DORA model (Doumas & Hummel, 2010) has been 
used to model learning of 3D geon representations, starting 
with synthetic 3D stimuli.  Like our model, they extract 
patterns of overlapping relations and apply them to 
subsequent stimuli, although these are more like SAGE’s 
persistent generalizations, since subsequent trials are 
intended to model the course of development over multiple 
years, versus within a single experiment, as in our model.   

The interaction of perception and cognition has been 
heavily emphasized in the work of Hofstadter’s group, e.g. 
(Mitchell, 1993; French, 1995).  Their models have focused 
on highly interleaving these processes, but building domain-
specific models of them, whereas our model does less 
interleaving, but its components are domain-general and our 
representations are calibrated against human visual problem 
solving in multiple tasks (Lovett & Forbus, 2011; Lovett et 
al 2007). 

There has been increasing interest in rerepresentation in 
analogy research.  Kokinov et al. (2009) examined it in the 
context of rapid visual perception, arguing that it could 

cause shifts to an alternate model retrieved from long-term 
memory.  Davies & Goel (2008) used rerepresentation in 
visual problem-solving, focusing on the classic Duncker 
radiation problem.  Both share our concern with 
understanding how analogy interacts with perception, but 
neither of their efforts have been concerned with modeling 
rapid learning. 

Discussion 
This paper has shown that a model based on structure 
mapping and interim generalizations can simulate the 
progressive alignment effects on 4 year olds found in 
(Kotovsky & Gentner 1996).  We conjecture that the use of 
non-discriminating similarity comparisons to drive 
rerepresentation, and the use of interim generalizations to 
focus on relevant relational structure, are commonly used in 
learning and reasoning.   

There are several avenues of future work to explore.  
First, even though the model’s behavior is qualitatively 
consistent with that of four year olds in the experiment, 
there are differences.  Our model currently does not do 
several things that children probably do during the course of 
development.  For example, it does not change its encoding 
strategy to shift to a more abstract comparative relation, nor 
does it introduce a new higher-order relationship (symmetry 
or monotonicity) to encode the newly-discovered pattern.  
Since the model’s behavior is qualitatively consistent with 4 
year olds without these operations, it may be that the 
children are not doing this, but there is insufficient evidence 
to tell one way or the other.  Second, we note that the 
simulation’s responses are uniform and performance 
improves rapidly, whereas children exhibit a wider range of 
behavior.  For example, even the 8 year olds in the original 
experiment were not at ceiling in this task.  Adding the 
operations suggested above, and expanding the range of 
rerepresentation operations available, as well as looking for 
rerepresentation opportunities in both pairs, would widen 
the search space of the model and perhaps capture the more 
gradual improvement trajectory of children.  Finally, to 
explore these questions we plan to test the model with a 
wider range of forced-choice tasks, to better triangulate 
what combinations of processes and representations can 
better explain these aspects of cognitive development. 
 

Acknowledgments 
This research was sponsored by the Socio-Cognitive 
Architectures for Adaptable Autonomous Systems Program 
of the Office of Naval Research, N00014-13-1-0470. 

References 
Davies, J. & Goel, A. (2008) Visiospatial Re-Representation 

in Analogical Reasoning.  The Open Artificial Intelligence 
Journal, 2:11-20. 

2475



Day, S. B., & Gentner, D. (2007). Nonintentional analogical 
inference in text comprehension. Memory & cognition, 
35(1), 39-49. 

Doumas, L. A. A. & Hummel, J. E. (2010). A computational 
account of the development of the generalization of shape 
information. Cognitive Science, 34, 698-712. 

Falkenhainer, B., Forbus, K. and Gentner, D. (1989). The 
Structure Mapping Engine: Algorithm and examples. 
Artificial Intelligence, 41, 1-63 

Forbus, K., Ferguson, R., & Gentner, D. (1994) Incremental 
Structure Mapping.  Proceedings of CogSci-94. 

Forbus, K, Klenk, M. and Hinrichs, T. (2009). Companion 
Cognitive Systems: Design Goals and Lessons Learned 
So Far. IEEE Intelligent Systems, 24(4), 36-46. 

Forbus, K. D., Usher, J., Lovett, A., Lockwood, K. and 
Wetzel, J., 2011. CogSketch: Sketch understanding for 
cognitive science research and for education. Topics in 
Cognitive Science, 3, 648-666. 43. 

French, R. (1995) The Subtlety of Sameness. Cambridge, 
MA: The MIT Press. 

Friedman, S. and Forbus, K. (2009). Learning Naïve 
Physics Models & Misconceptions. Proceedings of the 
31st Annual Conference of the Cognitive Science Society. 
Amsterdam, Netherlands. 

 Gentner, D. (1983). Structure-mapping: A theoretical 
framework for analogy. Cognitive science, 7(2), 155-170. 

Gentner, D. (2003). Why we’re so smart. In D. Gentner and 
S. Goldin-Meadow (Eds.), Language in mind: Advances 
in the study of language and cognition (pp. 195-235). 
Cambridge, MA: MIT Press. 

Gentner, D. (2010). Bootstrapping the mind: Analogical 
processes and symbol systems. Cognitive Science, 34 (5). 
752-775. 

Gentner, D., Loewenstein, J., & Hung, B. (2007). 
Comparison facilitates children's learning of names for 
parts. Journal of Cognition and Development, 8. 285-307. 

Gentner, D., & Rattermann, M. J. (1991). Language and the 
career of similarity. In S. A. Gelman & J. P. Brynes 
(Eds.), Perspective on thought and language: 
Interrelations in development (pp. 225–277). New York: 
Cambridge University Press. 

Gentner, D., Rattermann, M. J., Markman, A. B., & 
Kotovsky, L. (1995). Two forces in the development of 
relational similarity. In T. J. Simon & G. S. Halford 
(Eds.), Developing cognitive competence: New 
approaches to process modeling (pp. 263-313). Hillsdale, 
NJ: LEA. 

Kandaswamy, S. and Forbus, K. (2012). Modeling Learning 
of Relational Abstractions via Structural Alignment. 
Proceedings of the 34th Annual Conference of the 
Cognitive Science Society (CogSci). Sapporo, Japan. 

Kokinov, B., Vankov, I., Bliznashki, S. (2009).   How 
Analogy Could Force Re-representation of the Target and 
Inhibition of the Alternative Interpretation.  In: Kokinov, 
B., Holyoak, K., Gentner, D. (eds.). New Frontiers in 
Analogy Research. Sofia: NBU Press. 

Kotovsky, L., & Gentner, D. (1996). Comparison and 
categorization in the development of relational similarity. 
Child Development, 67(6), 2797-2822. 

Lockwood, K., Lovett, A., and Forbus, K. (2008). 
Automatic Classification of Containment and Support 
Spatial Relations in English and Dutch. Proceedings of 
Spatial Cognition. 

Lovett, A., & Forbus, K. (2011) Cultural commonalities and 
differences in spatial problem solving: A computational 
analysis.  Cognition 121, pp. 281-287. 

Lovett, A. Forbus, K., and Usher, J. (2007). Analogy with 
qualitative spatial representations can simulate solving 
Raven's Progressive Matrices. Proceedings of the 29th 
Annual Conference of the Cognitive Science Society. 
Nashville, TN. 

Matthew McLure, Scott E. Friedman, Kenneth D. Forbus 
(2010). Combining progressive alignment and near-
misses to learn concepts from sketches. Proceedings of 
the 24th International Workshop on Qualitative 
Reasoning. Portland, OR. 

Mitchell, M. (1993) Analogy-Making as Perception: A 
Computer Model.  Cambridge, MA: MIT Press. 

Penn, D. C., Holyoak, K. J., & Povinelli, D. J. (2008). 
Darwin’s mistake: Explaining the discontinuity between 
human and nonhuman minds.  Brain and Behavioral 
Sciences, 31, 109-178. 

Taylor, J. L. M., Friedman, S. E., Forbus, K. D., Goldwater, 
M. and Gentner, D. (2011). Modeling structural priming 
in sentence production via analogical processes. 
Proceedings of the 33rd Annual Conference of the 
Cognitive Science Society (CogSci). Boston, MA. 

Yan, J., Forbus, K. and Gentner, D. 2003. A theory of 
rerepresentation in analogical matching.  Proceedings of 
the 25th Annual Conference of the Cognitive Science 
Society. 

 

2476




