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Abstract

Purpose of review—The effects of dietary sugar on risk factors and processes associated with 

metabolic disease remains a controversial topic, with recent reviews of the available evidence 

arriving at widely discrepant conclusions.

Recent findings—There are many recently published epidemiological studies that provide 

evidence that sugar consumption is associated with metabolic disease. Three recent clinical 

studies, which investigated the effects of consuming relevant doses of sucrose or high fructose 

corn syrup along with ad libitum diets, provide evidence that consumption of these sugars increase 

risk factors for cardiovascular disease (CVD) and metabolic syndrome. Mechanistic studies 

suggest that these effects result from the rapid hepatic metabolism of fructose catalyzed by 

fructokinase C, which generates substrate for de novo lipogenesis and leads to increased uric acid 

levels. Recent clinical studies investigating the effects of consuming less sugar, via educational 

interventions or by substitution of sugar-sweetened beverages for non-calorically sweetened 

beverages, provide evidence that such strategies have beneficial effects on risk factors for 

metabolic disease or on BMI in children.

Summary—The accumulating epidemiological evidence, direct clinical evidence, and the 

evidence suggesting plausible mechanisms support a role for sugar in the epidemics of metabolic 

syndrome, CVD and type 2 diabetes.
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Introduction

In August 2009, the American Heart Association Nutrition Committee recommended that 

women consume no more than 100 kcal/day and men consume no more than 150 kcal/day of 

added sugar (1). In June 2010, the Report of the Dietary Guidelines Advisory Committee 

(DGAC) on the Dietary Guidelines for Americans 2010, suggested a maximal intake level of 

25% or less of total energy from added sugars (2). While this latter guideline is not 

recommending people consume 25% of their energy as added sugar, it does imply that after 

due consideration of the evidence DGAC concluded that consumption of added sugar at this 

level is not associated with any adverse metabolic effects. The difference in these 2 

guidelines, equivalent to almost three 12-ounce servings of soda for the average woman and 

more than 3.5 for the average man, illustrates the state of controversy that existed 

concerning the effects of sugar consumption on the development of metabolic disease in 

2010.

Are we any nearer a consensus now, 3 years later? The discrepant conclusions summarized 

below from review articles evaluating the available data to 2012 suggest we are not.

• Data from prospective and intervention studies clearly point to high fructose 

consumption, mainly in the form of sugar-sweetened beverages (SSB) as risk factor 

for metabolic diseases in humans (3).

• Although some studies hint towards some potential adverse effects of excessive 

fructose consumption especially when combined with excess energy intake, the 

results from clinical trials do not support a significant detrimental effect of fructose 

on metabolic health when consumed as part of a weight-maintaining diet in 

amounts consistent with the average-estimated fructose consumption in Western 

countries (4).

• Intake of free sugar or SSB is a determinant of body weight (5).

• Randomized controlled trials at levels even exceeding normal human consumption 

have been inconclusive related to SSB and obesity (6).

This review will present the recent epidemiological, clinical, and mechanistic studies 

pertaining to the effects of dietary sugar on risk factors and processes associated with 

metabolic disease, and provide the perspective of researchers directly involved in clinical 

investigations of this topic.

Epidemiological studies

Recent studies add to the already considerable epdemiological evidence that sugar 

consumption is associated with metabolic disease.
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• Men from the Health Professionals Follow-Up Study in the top quartile of SSB 

intake had a 20% higher relative risk of coronary heart disease than those in the 

bottom quartile (7).

• In Hispanic adults, plasma TG, metabolic syndrome and waist circumference were 

associated with consumption of instant SSB and/or regular soda (8).

• In the Nurses’ Health Study II, one serving/d of SSB was associated with increased 

risk for type 2 diabetes (T2DM) (9).

• In participants from the Nurses’ Health Study, Nurses’ Health Study II and the 

Health Professionals Follow-Up Study, SSB consumption was associated with a 

higher risk of T2DM; coffee intake was associated with a lower risk, irrespective of 

the caffeine content. (10)

• In an analysis across 94 countries, every additional percentage point of calories 

from sugar/sweeteners were associated with 5% higher prevalence of diabetes (11).

• An increased consumption of 100-mL/day of SSB was associated with increased 

HOMA IR and systolic blood pressure among children ≥85 percentile for BMI in 

the Quebec Adiposity and Lifestyle Investigation in Youth Study, and with 

increased systolic blood pressure and waist circumference in children with 

impaired glucose tolerance (12).

• In healthy adults in Scotland, uric acid levels were positively associated with SSB 

consumption (13).

• SSB consumption was positively associated with serum uric acid concentrations in 

adolescents in Taiwan, as was BMI, body fat, and systolic blood pressure. 25% of 

the 2727 subjects consumed more than 500 ml of SSB/day (14).

• Among participants of the Nurses’ Health Study, Nurses’ Health Study II and 

Health Professionals Follow-Up Study substitution of water, coffee, tea, diet 

beverages, or low-fat milk for one serving of SSB was associated with weight loss, 

with the greatest effect occurring with water (15). The genetic association with 

BMI was stronger among participants with higher intake of SSB than those with 

lower intake (16).

• In adults, frequency of SSB, but not diet beverage, intake was positively associated 

with proportion of visceral (VAT) to subcutaneous abdominal adipose tissue (SAT) 

(17).

• In teenagers, fructose intake was associated with VAT, but not SAT (18).

In contrast to the above reports, an analysis of the NHANES 1999-2006 indicated that 

fructose and non-fructose sugar consumptions at levels representative of the American diet 

were not associated with indicators of the metabolic syndrome (19).

Clinical studies – Interventions with increased sugar intake

Recent clinical studies have investigated the effects of fructose or sugar consumption by 

providing subjects with SSB or control beverages that were consumed along with ad libutum 
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quantities of the subjects’ usual diets. The longest of these studies was conducted in 

Denmark where subjects consumed 1 liter/d of sucrose-sweetened cola (~20% energy 

requirements (ER)), isocaloric amounts of low-fat milk, 1 liter/d aspartame-sweetened 

beverages, or 1 liter/d water for 6 months. Body weight at the end of the intervention period 

was not significantly different from baseline in any group. Subjects consuming sucrose 

exhibited increased VAT, liver and muscle TG, and fasting TG and cholesterol levels, while 

the other 3 groups did not. The sucrose-induced increase of liver TG was significantly larger 

compared with all 3 of the other groups, and the increase in visceral fat was significantly 

greater compared with the subjects who consumed low-fat milk and who exhibited a 

comparable change in body weight (Sucrose: +1.3%; Milk: +1.4%) (20).

Aeberli and colleagues have published two recent reports in which young men participating 

in 6-arm (21) or 4-arm crossover trials (22) consumed low (40 g/d, ~6.5% ER) or moderate 

(80 g/d, ~13% ER) amounts of fructose, glucose, or sucrose as beverages along with ad 

libitum diets for 3 weeks. In the 6-arm crossover, LDL particle size was reduced compared 

with baseline during consumption of moderate fructose or sucrose, and redistribution to a 

more atherogenic LDL subclass distribution was observed after these interventions plus the 

low fructose intervention. These 3 interventions also increased waist:hip ratio, even though 

low glucose was the only intervention that resulted in significant weight gain compared with 

baseline (21). In the 4-arm crossover, total and LDL cholesterol were increased after 

moderate fructose or sucrose compared with moderate glucose consumption. Hepatic insulin 

sensitivity, indexed by endogenous glucose production during euglycemic-hyperinsulinemic 

clamps, was decreased during moderate fructose compared with moderate glucose 

consumption, while whole body insulin sensitivity was not different (22).

Our group demonstrated that young, healthy subjects consuming 25% ER as HFCS-

sweetened beverages for 2 weeks exhibited significant increases of fasting LDL, non-HDL-

cholesterol and apolipoprotein B (apoB), and postprandial TG, remnant-cholesterol and -TG, 

and small dense LDL (sdLDL), which were comparable to those observed in subjects 

consuming fructose, and greater than those in subjects consuming glucose (23). In contrast, 

Silbernagel et al. reported that when subjects consumed 150 g/d of fructose or glucose, the 

only significant difference between groups was an increase of fasting TG concentrations in 

the fructose group (24). They did not measure postprandial TG, fasting apoB or sdLDL. 

Given the similarities between this study (24) and our group’s study (23) (both parallel arm, 

subjects of comparable age and BMI, similar amounts of sugar consumed), it is interesting 

to consider why there were numerous differential effects between glucose and fructose on 

lipids in our study, and only one in this study. A potential reason for the lack of group 

differences in the study by Silbernagel et al. was the highly significant weight gain that 

occurred in subjects consuming glucose (+1.7 ± 0.4 kg, P = 0.001 vs baseline, P = 0.056 vs 

fructose), but not in subjects consuming fructose (+0.2 ± 0.6 kg) (24). This difference may 

possibly be due to fructose malabsorption (25), which they did not assess. As shown in 

Figure 1, sub-division of the 48 subjects who participated in our study (23) into groups that 

gained or did not gain body weight, illustrates that weight gain has a marked effect on the 

sugar-induced increases of fasting cholesterol, LDL and apoB concentrations.
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The studies by Maersk et al. (20), Aeberli et al. (21, 22) and Stanhope et al. (23) provide 

direct evidence that consumption of sugar can increase risk factors for metabolic disease. 

These results are relevant to public health in that the sugars investigated included the 

commonly-consumed sugars (sucrose and HFCS as opposed to pure fructose) and in 

quantities comparable to that consumed by a significant number of people (21, 22), and 

within the maximal intake level of 25% suggested by DGAC (2). Obtaining stronger 

evidence will require clinical trials in which all study food is formulated and provided 

throughout the investigation to ensure that there are no diet variations between the 

experimental groups or interventions that may confound results.

Clinical studies providing mechanistic insights

Other recent clinical studies investigating the effects of hyper-energetic feeding protocols 

and/or pure fructose have provided mechanistic insights. In an overfeeding study in which 

diets were supplemented with 1000 kcal/d as candy/SSB, within 3 weeks subjects exhibited 

increased body weight (+2%), liver fat (+27%) and increased DNL. The increase of DNL 

was proportional to the increase in liver fat (26). While the lack of a control group prevents 

differentiating the effects of sugar from those of overfeeding, these results suggest that DNL 

is involved in the process by which surplus sugar in the context of positive energy balance 

increases liver fat. Importantly, our group has previously reported that DNL was increased 

in subjects consuming fructose with energy-balanced, steady state meals, but not in subjects 

consuming glucose (27).

However, a recent review of fructose metabolism and isotopic tracer studies concluded that 

a small percentage of ingested fructose (<1%) appears to be directly converted to plasma TG 

(28). This figure is clearly an underestimation, based on acute feeding studies that do not 

take into account that DNL-derived lipid can spend from 24 to over 72 hours in the liver 

prior to being packaged into very low density lipoprotein (VLDL) and secreted into the 

circulation (29, 30). The actual percentage of fructose converted to fat is difficult to 

quantify, especially under physiologically relevant meal-fed conditions, and has yet to be 

determined. Accurate estimations will require assessments of DNL and VLDL production, 

secretion and clearance using non-steady state tracer kinetic models. However, the above 

studies and others demonstrate that DNL is upregulated concurrently with fructose-induced 

postprandial hypertriglyceridemia (27, 31, 32) and liver fat accumulation (26). The seminal 

study from Donnelly et al. (29) shows that in patients with NAFLD, 26% of both intra-

hepatic fat and VLDLTG are made de novo (29). Furthermore, when hepatic DNL is 

induced, not only are new lipids synthesized and non-esterified fatty acids re-esterified, but 

hepatic lipid oxidation is down-regulated. Our group has recently reported that the subjects 

who exhibited increased DNL during fructose consumption, also exhibited inhibition of 

post-meal lipid oxidation (33). These combined events create an imbalance between hepatic 

lipid “input” and “export”, leading to net intrahepatic fat accumulation. While we did not 

measure hepatic lipid in these subjects, the 17% decrease in insulin sensitivity (27) supports 

the concept that hepatic DNL is a mechanism leading to increased hepatic lipid production, 

hepatic lipid accumulation, and thereby to hepatic insulin resistance (34).
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Bortolotti et al. invetigated the hypothesis that high dietary protein content would reverse 

the inhibition of lipid oxidation and the increase in postprandial TG levels caused by 

fructose consumption. The concurrent feeding of fructose and protein did not increase lipid 

oxidation, and in opposition to the hypothesis, it increased postprandial TG levels. The 

authors suggest that the supplemental protein may have enhanced hepatic VLDL synthesis, 

assembly and secretion (35).

Our group has also recently reported that 10-weeks consumption of fructose, but not 

glucose, led to significantly increased 24-h uric acid profiles (36), which suggests that the 

epidemiological associations (13, 14, 37-39) between sugar consumption and uric acid levels 

are causal. Fasting concentrations of markers of inflammation; monocyte chemoattractant 

protein-1, plasminogen activator inhibitor-1, and E-selectin; as well as retinol binding 

protein-4 and the liver enzyme, gamma glutamyl transferase, were also increased in these 

same subjects consuming fructose (36, 40).

Our recent report of the postprandial glucose and insulin responses in the subjects 

consuming glucose or fructose for 10 weeks (41) has clinically relevant implications to the 

potential role of the glycemic index (GI) in metabolic disease risk. The adverse metabolic 

effects of dietary sugars have been attributed by some to GI (42, 43). The GI of fructose is 

23 compared with 100 for glucose. The calculated relative GI of the baseline high complex 

carbohydrate diet, the high glucose and the high fructose intervention diets, consumed 

during the 24-h blood collections in our studies, were 64, 83 and 38, respectively. As 

expected, for this study (27), and our more recent 2-week study (23), the glucose and insulin 

excursions of the diets paralleled the GI, with exposure being highest on the glucose diet, 

intermediate on the complex carbohydrate baseline diet, and lowest on the fructose diet. 

However, it was subjects consuming the high fructose diets with the lowest GI and glycemic 

exposure, who exhibited increased VAT and decreased insulin sensitivity (27) and increases 

of LDL, apoB, and postprandial TG (23, 27). In contrast, when subjects consumed high 

glucose diets, postprandial plasma glucose and insulin excursions increased substantially 

(23, 27), however insulin sensitivity (27) and postprandial TG exposure, LDL, and apoB 

remained unchanged (23, 27). Thus, these results do not support the hypothesis that elevated 

postprandial glucose and/or insulin excursions contribute to dyslipidemia and insulin 

resistance. They also demonstrate that studies investigating the relationship of dietary 

carbohydrates to risk factors for metabolic diseases should accurately determine the glucose 

and fructose contents of the diets. Dietary fructose may be an important contributor to the 

inconsistent reported effects of dietary GI on metabolic disease risk. It is likely that other 

differences between high and low GI diets, with alterations in dietary fiber content being the 

most likely confounder, underlie these inconsistencies. Nonetheless, the available evidence 

indicates that it is the fructose and not the glucose component of sucrose and HFCS that is 

primarily responsible for their adverse metabolic effects.

As the prevalence of pediatric obesity and metabolic syndrome increase, investigations of 

the effects of sugar consumption in children are needed. The 24-h TG profile was measured 

in children, with or without nonalcoholic fatty liver disease (NAFLD), during consumption 

of fructose and glucose in crossover feeding trials (44). As previously shown in adults (45, 

46), postprandial TG levels were higher during fructose compared with glucose 

Stanhope et al. Page 6

Curr Opin Lipidol. Author manuscript; available in PMC 2014 December 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



consumption in all children. Importantly, the fructose-induced increases in TG were higher 

in children with NAFLD than those without NAFLD (44).

Clinical studies – interventions to reduce sugar intake

Several recent clinical studies have demonstrated beneficial effects on metabolic parameters 

by providing subjects with educational programs aimed at reducing sugar/fructose 

consumption. Obese African-American and Latino adolescents participated in a 16-week 

nutrition education intervention focused on decreasing added sugar intake to ≤10% of daily 

calories and increasing fiber intake. Despite unchanged BMI, subjects exhibited improved 

insulin sensitivity compared with the control group (47). Goran et al. have recently reviewed 

the inter-relationship between genetic factors, liver fat, and sugar consumption, (48) which 

appear to make Latino children (49) and adults (50) particularly vulnerable to the adverse 

effects of sugar.

In another study, patients with chronic kidney disease followed dietary instructions and 

lowered fructose consumption to 12 g/d. After 6 weeks, they exhibited significant decreases 

in fasting insulin, high sensitivity C-reactive protein and soluble intercellular adhesion 

molecule, and nonsignificant (P<0.1) decreases in blood pressure and uric acid levels (51).

Three recent studies provide evidence that dietary education programs designed to reduce 

sugar and fructose consumption (52), or blinded (53) or unblinded (54) replacement of SSB 

with noncaloric-sweetened beverages have beneficial effects on BMI in children. Previous 

studies suggest that consumption of non-caloric sweeteners compared with sucrose or HFCS 

also has beneficial effects on BMI in adults (55-57). The explanation for these results could 

be as simple as people tend to over-eat sugar because they like the sweet taste. However, 

recent studies on the central effects of sugars in the brain (58-60), made possible by 

functional magnetic resonance imaging technology, suggest the answer could be more 

complicated. The most recent of these studies reports that consumption of a fructose-

sweetened beverage resulted in greater hypothalamic activation, which would be associated 

with less appetite suppression, than consumption of a glucose-sweetened beverage in young 

healthy adults (59). Corroborating these results, the subjects recorded significantly higher 

ratings of fullness and satiety after the glucose, but not fructose, drink (59).

These data provide a plausible link for the associations between the consumption of sugar-

sweetened beverages and body weight gain (16, 61-63). Confirming this link will be 

important not only for combating the obesity epidemic, but also the obesity-related increases 

of metabolic syndrome, CVD and T2DM. Recent research (20-23, 27) and older research 

(64-69) demonstrate that consumption of fructose and fructose-containing sugars has 

adverse effects on risk factors for metabolic disease that are independent of body weight 

gain. These results, the results in Figure 1, and the potential link between sugar consumption 

and body weight gain suggest that sugar promotes the development of metabolic disease 

through two mechanisms; directly via the adverse effects of fructose on lipid and 

carbohydrate metabolism, and indirectly by promoting body weight gain (See Figure 2).
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Animal and in vitro studies investigating mechanisms of the metabolic 

effects of fructose

Numerous recent studies, more than can be discussed in this review, have investigated the 

links between dietary fructose and adverse metabolic effects in animal models or in vitro 

systems. We have included a few studies that provide insight into the underlying 

mechanisms by which fructose induces lipid dysregulation.

The initial phosphorylation of dietary fructose is largely catalyzed by fructokinase, which is 

not regulated by hepatic energy status. This results in high levels of fructose uptake by the 

liver with little of the ingested fructose reaching the systemic circulation. Ishimoto et al. 

have provided compelling evidence concerning the importance of fructokinase in mediating 

the adverse effects of fructose (70). They report that fructokinase exists as two isoforms: 

fructokinase A which is widely distributed and has low affinity for fructose; and 

fructokinase C, which is expressed primarily in liver, intestine, and kidney and has high 

affinity for fructose. They demonstrated that fructose-induced metabolic syndrome is 

prevented in knockout mice lacking both isoforms, but is exacerbated in fructokinase A 

knockout mice compared with wild-type mice (70). These results demonstrate that 

fructokinase C is the key driver of the adverse effects induced by fructose. It also suggests 

that fructokinase A offers some protection against the adverse effects of fructose by 

allowing for some fructose metabolism in peripheral tissues.

Recent studies have investigated the regulation and effects of fructose-induced DNL. Erion 

et al. compared the effect of treatment with carbohydrate response element-binding protein 

(ChREBP) and control antisense oligonucleotides (ASO) in rats fed high fructose or high fat 

diets (71). Treatment with ChREBP ASO decreased plasma TG concentrations compared 

with control ASO in both diet groups, but hepatic lipid content and insulin sensitivity were 

unaffected. The reduction in plasma TG was more pronounced in the fructose-fed group and 

attributed to measured decreases of hepatic expression of fructokinase, lipogenic genes, and 

microsomal TG transfer protein, and decreased hepatic TG secretion (71).

Ren et al. compared mice fed high fat diet or high fructose diets. Liver lipid levels increased 

within 3 days and indicators of impaired glucose tolerance and insulin signaling were 

exhibited within one week in both groups. As expected, DNL and lipogenic gene expression 

were increased in fructose-fed mice and decreased in fat-fed mice. Interestingly, fructose 

feeding activated two endoplasmic reticulum stress pathways, but high fat feeding did not. 

The authors suggest that endoplasmic reticulum stress is involved in DNL per se rather than 

resulting from hepatic steatosis or insulin resistance (72).

Extensive recent work by Richard Johnson and co-workers suggests that fructose-induced 

increases of uric acid may contribute to the adverse effects of fructose. They report that in 

fructose-exposed human hepatocytes, uric acid upregulates fructokinase expression (73) and 

inhibits AMP-activated kinase activity (74), thus amplifying the lipogenics effects of 

fructose. A series of experiments involving hepatocytes, allopurinol-treated mice, and 

hyperuricemic patients with low BMI provides evidence that the lipogenic effects of 

fructose may be partially mediated through direct effects of uric acid to stimulate hepatic fat 
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accumulation (75). Most recently Tapia et al. studied 3 groups of rats receiving: 1. Uricase 

inhibitor treatment, 2. SSB, 3. Uricase inhibitor + SSB. Uricase inhibitor induced glomerular 

hypertension and SSB induced insulin resistance. In combination, they produced both 

effects, plus synergistic effects on systemic and glomerular pressure, plasma glucose, 

hepatic TG, and oxidative stress (76).

Conclusion

The extent to which the adverse metabolic effects of dietary sugar consumption result from 

direct effects of fructose on lipid and carbohydrate metabolism, to indirect effects resulting 

from increased body weight and adiposity, or to direct metabolic actions that are 

exacerbated by weight gain, has not been determined.

However, the accumulating epidemiological evidence, direct clinical evidence, and the 

evidence suggesting plausible mechanisms support a role for sugar in the epidemics of 

metabolic syndrome, CVD and T2DM.
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Key points

• Recently published epidemiological studies that provide evidence that sugar 

consumption is associated with metabolic disease.

• Three recent clinical studies, which investigated the effects of consuming 

relevant doses of sucrose or high fructose corn syrup along with ad libitum diets, 

provide evidence that consumption of these sugars increase risk factors for 

cardiovascular disease and metabolic syndrome.

• Mechanistic studies suggest that the adverse effects of sugar consumption result 

from the rapid hepatic metabolism of fructose catalyzed by fructokinase C, 

which generates substrate for de novo lipogenesis and leads to increased uric 

acid levels.

• Recent clinical studies investigating the effects of consuming less sugar, via 

educational interventions or by substitution of sugar-sweetened beverages for 

non-calorically sweetened beverages, provide evidence that such strategies have 

beneficial effects on risk factors for metabolic disease or on BMI in children.
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Figure 1. Effect of body weight gain on the changes of fasting cholesterol, LDL and apoB in 
subjects consuming sugar
Changes in fasting lipid outcomes in subjects who gained and did not gain body weight 

while consuming 25%E HFCS-, fructose-, or glucose-sweetened beverages for 2 weeks with 

ad libitum diets (*P < 0.05, **P < 0.01; 2 week vs baseline).
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Figure 2. Two mechanisms by which sugar increases metabolic risk
Consumption of sugar increases risk for metabolic disease via the direct effects of fructose 

on lipid and carbohydrate metabolism. Consumption of sugar may also promote body weight 

gain. The increased body weight/adiposity further increases risk for metabolic disease. Thus 

consumption of sugar increases risk for metabolic disease both directly and via effects to 

promote weight gain.
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