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Abstract

MESSENGERS is a distributed system based on the principles of au-
tonomous objects. It facilitates distributed parallel computing as coopera-
tive work among autonomous objects called Messengers, which carry their
own behavior in the form of a program. Messengers exhibit two abilities:
navigational autonomy and dynamic composition. They create and navi-
gate through a modifiable computational network, and coordinate dynamic
function invocations as they visit new nodes. Hence, problems including
nondeterminism can be solved in parallel by Messengers. This flexibil-
ity is realized by having an interpreter daemon running at each physical
node. The MESSENGERS interpreter daemon is distinct from that of other
autonomous-object-based systems in terms of its support for efficient paral-
lel processing. It functions as a micro-kernel for autonomous objects rather
than a simple interpreter. It supports inter-Messengers communication,
synchronization, and virtual-time-based function scheduling. In this pa-
per, we describe the architecture of MESSENGERS, focusing specifically
on performance-oriented features, present its performance evaluation, and
discuss optimal granularity of each object.
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1 Introduction

For many years, most distributed systems have been based on the computing paradigm
where each machine runs a program embedding all computing “intelligence” and ex-
changing passive computed results as messages. Since a program running at each
machine is precompiled and calls library functions optimally coded for inter-process
communications, computation-intensive distributed applications can perform with ul-
timate efficiency obtained from underlying hardware and the operating system. On
the other hand, such a computing paradigm does not provide the support to deal
with non-deterministic problems which, for example, require network reconfigura-
tions, non-deterministic communication, and dynamic process coordination. There-
fore, each application needs to include its own anticipated dynamic features a prior
or inevitably limit its flexibility.

Recently, autonomous objects have begun to be recognized as a new computing
paradigm for distributed systems. They carry the “intelligence” or control of appli-
cations over a network. In other words, autonomous objects decide their behaviors
and network navigation dynamically as they propagate through the network. This
is achieved by having each machine running an interpreter daemon which exchanges
autonomous objects with other daemons, interprets each object as a program, and
carries out the tasks requested by each object. The more high-level dynamic fea-
tures the interpreter daemon provides, the more flexible decisions can be made by
autonomous objects at run time. For example. if the interpreter keeps track of all
its neighboring nodes, an autonomous object can propagate itself to all neighbors
of the current network node without having to enumerate all the nodes. Instead it
uses high-level operations, supported by the interpreter, which replicates the object
as necessary and sends a copy to all neighbors. At the same time, the interpreter
should be efficient enough to realize fast context switching and task execution, since
multiple autonomous objects must be typically exchanged over the system in order
to maintain a certain level of the parallelism. Hence, a good trade-off between flexi-
bility and efficiency to obtain high performance for various applications is of a great
interest.

Existing systems based on autonomous objects include Telescript [Whi94], WAVE
[SB94], and HTTP-base mobile agents [LDD95]. Since these systems are intended
primarily for information retrieval, electric commerce, or interactive transactions,
their interpreters put their greatest emphasis on network resource utilization and
security rather than distributed parallel computing. None of them has reported any
study of trade-offs between flexibility and efficiency as discussed above, nor have they
published any performance evaluations.

In this paper we describe MESSENGERS, an autonomous-object-based system
developed at the University of California, Irvine, which aims at distributed parallel
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computing. An autonomous object called a Messenger in our system, carries a com-
plete program (referred to as its script), together with its current status information,
including a program counter and local variables. This defines the Messenger’s be-
havior. The program is written in a subset of C language, which we will refer to
as MESSENGERS-C. This includes two kinds of predefined functions, which allow
network navigation and task coordination. At each machine, a Messenger interpreter
daemon exchanges Messengers with other daemons and interprets the scripts of vis-
iting Messengers. The primary emphasis of MESSENGERS implementation is on
performance-oriented features provided by the interpreter daemon while keeping the
paradigm’s flexibility. This paper first presents its most important such features,
then describes the system architecture realizing these features, and finally examines
the performance and the appropriate computation granularity of various distributed

lications.
applications %

2 MESSENGERS Paradigm

2.1 Distinctive Features

MESSENGERS consists of interpreter daemons, each of which runs on a different
machine and communicates with the other daemons through an underlying com-
mon network protocol (Unix sockets in our present implementation), similar to other
autonomous-object-based systems. These daemons realize a network-transparent en-
vironment where any logical computational network can be constructed regardless of
the actual physical network. A Messenger has its own identity as an autonomous
object and can decide at run time where it wishes to navigate next and what tasks
it is to perform there. The behavior of each Messenger is described by its script,
which it carries along as it moves through the computational network. According to
a classification defined in [BFD96], MESSENGERS is superior to others in terms of
its combined navigation and coordination capabilities:

e Navigational autonomy _
This is the ability of each object to navigate through the network according to
its own behavioral script. A Messenger’s navigational autonomy is provided by
built-in navigational statements that allow the Messenger to go to specific nodes
in the network, follow specific links emanating from the node in which it cur-
rently resides, or cloning itself to pursue independent paths. The navigation may
take advantage of the current network topology or state of the computation. For
example, a Messenger may be propagated to all neighboring nodes, broadcast
to all existing nodes, or follow all links which have the same link weight. Log-
ical computational networks are dynamically constructed by Messengers using



navigational statements that create and delete logical nodes at run time and
do not necessarily correspond to the underlying physical network. As a result,
Messenger scripts for network navigation and construction are independent from
and reusable for any physical network structure.

e Dynamic composition
This is the ability of each object to coordinate the invocation of functions pre-
compiled into the machine’s native mode. A Messenger’s dynamic composition
is realized by built-in task-coordinating statements that permit the Messenger
to invoke and control the execution of unrestricted precompiled C functions at
each visited node. A Messenger can choose three styles of function coordinations:
(1) invoking a node-resident precompiled program as an independent child pro-
cess of the current interpreter daemon, (2) linking and running a node resident
precompiled program as part of the daemon process dynamically, or (3) carry-
| ing as part of its script a program image in some form, (i.e. as source code,
intermediate code, or native code) and invoking it at a visited node. Hence, a
Messenger orchestrates the execution of a group of native-mode functions dy-
namically. The Messenger’s script itself is interpretive, and thus slow, however
it offers the flexibility of a dynamically changeable environment for open-ended
applications, where predicting all possible scenarios a priori may not be possible.

2.2 Execution Model

The MESSENGERS system is implemented as a daemon running a language inter-
preter at each physical node (Sun Workstation in our present implementation). The
system distinguishes the following three layers of networks:

1. physical network: This is an existing electrical hardware link, (i.e. LAN or WAN)
connecting workstations.

2. daemon network: This network is created onto the physical network. It includes
all participating workstations as its nodes. Hence, the nodes are the subset of
the underlying physical network nodes. Daemon network links can be made
regardless to the underlying physical network. They are used for automatic
distribution of logical network nodes which Messengers dynamically create onto
this daemon network. Their explanation are given below.

3. logical network: This is an application-specific computation network which Mes-
sengers create onto the underlying daemon network. Multiple logical network
nodes can be created onto the same daemon network nodes, thus assigned onto
the same physical node.
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Figure 1: Network Layer

Figure 1 shows how each layer is mapped onto the next lower layer. The interpreter
daemon exchanges Messengers with other daemons, and multiplexes logical nodes
mapped to its physical node. When a Messenger creates a new logical node, it can
not only choose a specific physical node but also let the system map this logical node
to a certain physical node automatically. In the latter case, such a new logical node
will be assigned onto the current physical node or one of physical nodes reached from
the current node along its daemon links.

For each new Messenger, the interpreter continues processing its statements until
it encounters one that is navigational or task-coordinating. At a navigational state-
ment, the interpreter passes the Messenger on to the appropriate destinations node(s)
in the logical network. If this is within the same physical node, the Messenger is sim-
ply moved to the appropriate queue, where it awaits its turn as the interpreter is being
multiplexed between the different logical nodes. If the destination is in a different
physical node, the Messenger is sent there using Unix sockets. At a task-coordinating
statement, the interpreter executes the task as a function. A context switch to an-
other ready Messenger will occur when the interpreter encounters a task-coordinating
statement and before it actually processes this statement. Hence, the interpretation of
Messenger is serialized between any two navigational or task-coordinating statements.
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—>hop(node = A); hop(node = A); hop(node = A);

hop(node = B); —>hop(node = B); hop(node = B);
func(name = f); func(name = f); func(name = f);
hop(node = C); hop(node = C); —>hop(node = C);

hop(...) hop(...) hop(...)
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Figure 2: MESSENGERS Execution Model

Figure 2 illustrates these basic principles graphically. It shows two physical net-
work nodes, each running the Messenger interpreter as one of its applications. A
logical network of 4 nodes (named A through D) is mapped onto this architecture
as shown. A Messenger is received by node A (marked as step 1 in the figure). Its
current statement is navigational (hop(node = B)), which causes the Messenger to be
forwarded to node B (step 2). The next statement, func(name = f), causes the invo-
cation of the node-resident function f() (step 3). Upon returning from the function
call, the interpreter carries out the next statement, hop(node = C), which causes a
replica of the Messenger to be sent to the neighbors incident to the current node B
whose name is C (step 4). Only node C receives this Messengers in this case and thus
continues interpreting the next statement, denoted by hop(...) in the figure (step 5).

2.3 Language Specification

MESSENGERS-C distinguishes three types of variables, referred to as messenger,
node, and network variables. Messengers variables are private to and carried by
each Messenger as it propagates through the logical computational network. Node
variables are resident in nodes and shared by all Messengers currently running on the
same logical node. Network variables are predefined at each logical node and give



General Form: Ezample:

Node variable declaration; #node "node_variables”

Messenger variable definition; int a, b =1, ¢ = 2; double x;

S1; a=b+c

Sa; hop(node = "node”; link = "link_X");
— S exec(file = "echo”; in = $node);

Figure 3: General Form of Messenger Script and an Example

each Messenger access to the network information local to the current node, (i.e. the
current node’s address and name, and the last traversed link’s name and weight.) At
any point in time, each Messenger has access to its own messenger variables, declared
node variables of the current node, and network variables of the current node. Access
to node and messenger variables is achieved using ordinary assignment statements.
Network variables can only be modified through navigational statements.

Figure 3 shows the general form of a Messenger script and its possible instantiation
as an actual example. Every Messenger script starts with a variables declaration
that has the same style as in C. The declaration allows all standard C data types,
excluding pointer, union, and unsigned variables. First, node variables are declared in
a separate file specified after the keyword #node, (i.e. “node_variables” is a file name
in the example). Their declaration only provides the necessary mapping information
between the Messenger code and the node-resident variables. The actual allocation
and content initialization is done by the first Messenger to arrive at a node. Following
the node variable declaration, variables local to and carried by the Messenger, (i.e. a,
b, ¢, and z in this example) are declared as messenger variables. Their initial contents
may be also defined at this point. Network variables, (e.g. $node in the example) are
referred to without explicit declaration.

The remainder of a Messenger script consists of statements, denoted by S;. The
arrow is used to indicate the current statement, (i.e. the one to be interpreted next).
This corresponds to a program counter in a conventional language but must be made
part of the Messenger, rather than the processor state, since the Messenger migrates
between different nodes. Each S; is one of the following three types of statements:

Computational statements:

1. assignment: A Messenger residing in a particular node may: (1) read and update
this node’s variables; (2) read and update its own messenger variables; and (3)
read the current node’s network variables. Arbitrary expressions are permissi-
ble in the assignment and may include all of the common arithmetic and logic
operators provided in C.



2. control statement: A Messenger may perform all the common control statements
supported in C, such as if-then-else, while, do-while and break. These may access
the same types of variables as assignment statement.

Navigational statements:

A Messenger may create new logical links and nodes, change or delete existing ones,
and move arbitrarily through the network by following links or jumping to specific
nodes.

1. create(node, link, weight, physical): Create a new logical link leading to the
specified physical node, along which the Messenger moves during this operation,
associate weight with this link, and create a new logical node at the end of the new
link, (i.e. on the physical node which the Messenger reaches). All parameters
are optional. If omitted, the new node/link has no explicit name or weight
and is created on a physical node chosen automatically by the system. Hence
the last parameter allows the user to explicitly control the logical-to-physical
node mapping. For instance, create(node=a) makes the system choose a certain
physical node automatically, create a new physical node named ‘a’ onto this
physical node, and move the requesting Messenger onto it.

2. hop(node, link, weight, physical): Cause the Messenger to be forwarded to node
on physical node along link if the link has the associated weight. As with create,
all parameters are optional, which offers great flexibility in specifying the Messen-
ger’s next node destinations. If there are multiple destinations, a separate copy
of the Messenger is propagated to each destination. For instance, hop(node=a)
propagates the Messenger along all logical links emanating from the current node
to all neighboring nodes named “a”. If a node address is given as a node pa-
rameter, the Messenger jumps directly to the specified node. In addition, the
parameters support “wild card” matching, which results in a powerful multicast
mechanism for each Messenger. For instance, hop(node=*; physical="laguna’)
sends a copy of the Messenger to all nodes on the physical node named "laguna’,
regardless of any logical links.

3. delete(node, link, weight, physical): Forward the Messenger as with hop, but
also delete the links traversed by each copy of the Messenger. In addition, if this
action erases all links from the departing node and there are no other Messengers
currently residing in it, the node is also deleted. No direct jump to the specific
node is allowed in this statement.

Task-coordinating statements:
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This allows the Messenger to load and execute ordinary C functions, precompiled
in native mode of and residing on the current physical node, or being carried by the
Messenger as it propagates.

1. ezec(filename, arguments, [nowait]): Invoke a precompiled function specified by
filename as a separate concurrent process and pass arguments to it. If nowait is
specified, the function may continue operating even after the Messenger has left
the node (or has terminated).

2. func(filename, function_name, in_arg, out_arg): Invoke a precompiled function
specified by filename and function_name as part of the MESSENGERS inter-
preter, wait for its completion, and return the results back to the invoking Mes-
senger program. filename is given as a Unix path name and is resolved relative
to the file system accessible by the current node. The in_arg and out_arg are
arguments passed to and returned from the function respectively. The invoked
function also receives pointers to the node variables area and the memory space
holding the messenger variables and thus can manipulate them directly. The
loading of the function is triggered dynamically when it is invoked for the first
time.

A function image can be carried by encapsulating it into a character array of
Messenger variable and invoked by jumping to this data area.

2.4 The System Libraries

The MESSENGERS environment provides a library of functions that extend the basic
capabilities of the language and its interpreter as described so far. The library realizes
the creation, destruction, synchronization, and communication of Messengers. Among
those features, the most basic functions implemented thus far are those of creation
and destruction of Messengers.

Messengers Injection:

The injection of new Messengers is accomplished using the function m_inject. This
injects a Messenger from a file containing the Messenger’s behavior. It may also
supply arbitrary initial parameters to the newly created Messenger. The function has
two forms, depending on its intended use: one may be invoked from the Unix shell,
thus allowing the use to create new Messengers on the fly; the other is used inside
Messengers programs, thus allowing Messengers to create progenies at run time. The
duplication of new Messengers is achieved by m_duplicate or m_fork which duplicates
the calling Messenger inside the current node. The only difference is that m_duplicate
has the duplicated Messenger start from the beginning while m_fork has the Messenger
start right after its calling point (like Unix fork).
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The injection of Messengers using these library functions should not be confused
with the automatic replication of Messengers during navigation. The latter is implicit
and is the result of the Messenger’s following multiple logical links during a hop
statement. The functions m_inject, m_duplicate, and m_fork, on the other hand, cause
an explicit creation of a new Messenger inside a node.

Messengers Destruction:

A Messenger may terminate itself by executing the ezit statement or it may be
killed by another Messenger using a function kull.

2.5 Performance-Oriented Features

The introduction of an interpretation layer to the Unix environment brings several
concerns regarding performance. First, function coordination should be realized with
an efficient interface for passing arguments and returning values between these two
layers. Otherwise, a function invocation itself incurs a heavy overhead, thus requir-
ing coarse granularity. Second, the ensemble of Messengers at each node should be
supported by fast synchronization mechanisms. Busy waiting in the interpreter layer
would completely degrade performance. Third, some form of conventional message-
passing facilities should be supported by the daemons, rather than forcing all commu-
nication to be programmed using Messengers. For instance, two messengers running
on different nodes should be able to communicate via a daemon-supported communi-
cation channel rather than employing another Messenger working just as a data car-
rier. Finally, to support certain applications, such as distributed parallel simulations,
the virtual time [Jef85) should be maintained by the daemons rather than broadcast
by Messengers at the user level. These concerns are addressed by the performance-
oriented features of MESSENGERS discussed below. Almost all of these features are
accessible through library functions listed in Table 1 at the end of this section.

Function Call Interface

Function calls from the interpretation layer to the Unix environment are made
using the func statement. Figure 4 shows the general form of a func statement and
its possible instantiation as an actual example. Arguments in the func statement, (i.e.
those listed after in= keyword) are copied into a new memory area, and its pointer,
(i.e. *local in Figure 4) is passed to the C function. Any data type of constant
values or variables such as messenger, node, and network variables can be passed as
arguments (by value). In addition to arguments, a C function is given two pointers,
(i.e. *node and *msgr in the example) to the node variables area of the current node
and to the messenger variables area of the calling Messenger. Multiple values can
be returned to the calling Messenger by invoking a library function, back2messenger.



In Messenger’s script
General Form: Ezxample:

func(file=filename; name=funcname; in=args: out=ret_vals); func(file="a.out”; name=“funcl”; in=x,y; out=a,b);

In C program
General Form: Ezample:
typedef struct { .... } NODE;
typedef struct { .... } MSGR;
typedef struct {double x, y;} LOCAL;

func_name(node_pointer, local_pointer, msgr_pointer) funcl(node, local, msgr)
char *node_pointer, *local_pointer, *msgr_pointer; NODE *node, LOCAL *local, MSGR *msgr;
{ {
statement; m = local—x * local—y
back2messenger(pointers_to_return_values); back2messenger(&m, &n);
} }

Figure 4: Function Interface

They are copied into variables listed after out= keyword of func statement in the
enumerating order. Hence, a C function can get direct access to variables in the
MESSENGERS interpretation layer and reflect its multiple computation results to
this layer without any data conversion or replication. However, using pointers to node
and messenger variable areas has the disadvantage that a priori knowledge of all node
and messenger variables is coded into the function body.

Inter-Messengers Communication
There are two communication channels: ~

1 shared node variables
2 mailboxes (one per logical node)

Any Messenger can read/write any node variables on the node where it currently
resides. To access node variables on remote nodes, the Messenger would dispatch a
special Messenger to carry data to/from the remote node. In most cases, this is unnec-
essarily complex to programs and inefficient in terms of overhead. Hence mailboxes
have been provided. They are available for both local and remote communication
and provided through library functions: m_send and m_recv. (See Table 1.) Their
restriction is that a logical node’s mailbox is shared by all Messengers on this node.

Synchronization

Since node variables are shared among Messengers residing on the same logical
node, it is natural to use these variables for inter-Messengers synchronization. This
is accomplished by telling the interpreter daemon which node variable a Messenger
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wants to synchronize on and what condition the variable should satisfy. At each
interpretation cycle the daemon checks in native mode whether the variable satisfies
the specified condition, and if so, resumes a Messenger waiting on this condition
immediately. A Messenger describes the desired synchronization condition to the
daemon using the library function, m_sched_node shown in Table 1. This scheme is
much faster than busy waiting, where a Messenger repeatedly checks the condition in
interpretive mode.

Global Virtual Time Maintenance

The concept of virtual time plays an important role in distirbuted computing.
For instance, an application may consist of several stages, each of which must start
after the complete termination of its previous stage. This is known as a ditributed
termination detection. Another example is the distributed parallel simulation, where
Messengers behave as simulation entities on a computational network representing a
simulation space as incrementing their simulation time. With the concept of virtual
time, Messengers can be scheduled along their virtual time line that is associated
with each different stage of a ditributed termination problem or a simulation time.
In order to make virtual time consistent over the system, its management should
be supported by the system with efficient system-wide synchronizations rather than
reimplemented at user level for each new application.

In our implementation, each interpreter daemon maintains its virtual time, so
that Messengers can synchronize their execution along the virtual time line. This is
realized by library functions, m_sched_time_dlt and m_sched_time_abs, which suspend
the calling messenger for a certain virtual time interval or until a specified absolute
virtual time, respectively. If there is no more ready Messenger at the current virtual
time, the interpreter daemon increments its virtual time and resumes Messengers
scheduled at the new virtual time. Since interpreter daemons work at their own
speeds independently, a time lag may occur among their virtual times. When the
daemon receives a Messenger whose time stamp is older than its current virtual time,
it rolls back its computation to this time stamp. Such a rollback may require sending
anti-Messengers to annihilate Messengers which have been mistakenly sent out. This
is known as optimistic simulation. All interpreter daemons also communicate with one
another to find the system-wide minimum virtual time which is known as the global
virtual time (GVT). This is the lower bound beyond which the computation will
never be rolled back [Fuj90]. Since GVT maintenance imposes significantly increased
inter-daemons communications, virtual-time-based computation may be turned on
and off by calling library functions, m_gvtstart and m_gvtstop, respectively. However,
GVT concept always remains even in the case when virtual-time-based computation
is turned off. (In other words, m_guvtstart resumes GVT at the virtual time which has
been stopped by the last m_gvtstop.)

Adaptive Function Scheduling
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This feature automatically varies the rate of invocation of a function called from a
Messenger, based on the values being computed. In an event-driven simulation, where
continuous change, typically described by differential equations, is approximated by
discretized function, one of the main difficulties is determining an appropriate time
step At for the next event. This is because a small At increases cost while too large
a At may loose the fidelity of the computed results, and consequently require the
computation to be rolled back. Such a user-driven rollback is not only expensive
due to its interpretive mode but also difficult to program. To solve this problem,
MESSENGERS offers a facility called adaptive function scheduling, where choosing
appropriate At and the possible rollbacks of the computation are handled automat-
ically. The basic idea is to increase, (e.g. double), the At at which the function is
reinvoked as long as the predicate is satisfied, and to decrease it when the predicate is
false. This permits the rate of function invocation to be continuously and automati-
cally adjusted based on an arbitrary predicate involving any messenger variables. See
the m_sched_derivativel, 1, and 2 library functions listed below.

Inter-Messengers Communication

1. m_send(address, data) sends the content of data to the node specified by a system-unique
node address.

2. m_recv(address, data) receives the oldest message sent to the node specified by address and
copies the content into data.

Synchronization

1. m_sched_node(node_variable, predicate_function, messenger_varible) schedules the calling Mes-
senger to resume its execution when node_variable satisfies predicate_function. The latter takes
messenger_variable as its arguments and returns true or false.

GVT Scheduling

1. m_sched_time_dlt(delta_time) suspends the calling Messenger for a virtual time interval spec-
ified in delta_time.

2. m_sched_time_abs(abs_time) suspends the Messenger until an absolute virtual time abs_time.

Adaptive Function Scheduling

1. m_sched_derivativeO(function, predicate_function, messenger_variable) involves only the cur-
rently computed value of function, which is passed a pointer to a messenger variables area. It
keeps increasing the invocation interval of function, as long as the predicate_function, taking
messenger_variable as its argument, returns true.

(3]

m.sched_derivativel (function, predicate_function, messenger_variable) involves the current
and the last value of function, that is, it considers the estimated first derivative of func-
tion (its slope) based on its current and previous values. It keeps increasing the invocation
interval, as long as the the rate of change (function') satisfies predicate_function.

3. m_sched_derivative2(function, predicate_function, messenger_variables) involves the current
and the last two values of function, that is, it estimates the rate of change of function’s slope,
(i.e. the second derivative, function) over the last two intervals, and keep increasing the
interval, as long as function” satisfies predicate_function.

Table 1: Library Functions to Interface to Performance-Oriented Features
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3 System Architecture

This section discusses the implementation techniques of MESSENGERS. First, we
describe data structures used to schedule Messengers, manage logical computational
networks, coordinate functions, and to communicate with external user processes.
Then, we explain how the MESSENGERS interpreter use and manipulates these
structures, considering issues of higher performance.

3.1 Network Structure

Daemon to Physical Network Mapping

Each daemon maintains network information necessary to communicate with other
daemons. It maintains a Physical Routing Block (ROUTE) for each physical node
containing a daemon to which it is connected. This includes its I[P address, socket
address structure and socket descriptor.(See Figure 5.) The ROUTE is the only
data structure affected by the underlying network protocol, (i.e. the socket in our
implementation). This implements the mapping of the daemon network onto the
physical network.

Logical to Daemon Network Mapping

Each logical node is maintained by a Node Control Block (NCB), which contains
the node address, logical name and a pointer to its node variables area and a list
of logical links emanating from this node. The node variables area includes a list of
Messengers sharing this area in addition to the actual node variables.

Each logical link within the same daemon node is implemented as a pair of LINK
structures connected via pointers to the corresponding NCB. Each logical link span-
ning two daemon nodes is split into two pairs of LINKSs, one pair residing on each
daemon node. They are connected on one side to their corresponding NCBs and on
the other side to a ROUTE, which allow them to communicate. To identify the source
and destination NCBs residing on a remote daemon node, a LINK contains the remote
NCB's system unique node address in addition to its link name and weight. Figure 5
describes the implementation of these logical-to-daemon and daemon-to-logical net-
work mappings.

3.2 Messenger Management

Each Messenger has its own identity, including an independent program and private
data, like a Unix process. However, it is regarded as only an intelligent message
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Figure 5: Implementation of Logical Network

interpreted by daemon processes, therefore it does not need its own virtual address
space, file descriptors, and a full processor status. Of importance is that a Messenger
must have a weight light enough to migrate to different physical nodes quickly and
to be switched from one to another frequently. The run-time interpretation of a
high-level language not only requires much processing time but also carries a large
amount of status information, including parsing trees and symbol tables. To resolve
this problem, each Messenger script is transformed into a machine-independent byte
code by the MESSENGERS compiler before being injected into the system. Hence,
the amount of information necessary to manage a Messenger is comparable to a
thread, rather than a Unix process. The information is contained in a Messenger
Control Block (MCB), which is allocated to each Messenger upon its injection into
the system. As shown in Figure 6, an MCB mainly consists of the Messenger’s ID,
its byte code’s file name, and several pointers indicating the byte code, the current
code position to be interpreted, its messenger variables area, and the node variables
area of the current node.

The scheduling mechanism is realized using three types of queues: a ready mcb
queue to include MCBs that are ready for interpretation, a suspended mcb queue
to include MCBs that are waiting for the return from a precompiled function, and
outgoing mcb queues, each of which keeps MCBs leaving for each physical destination.

e e e = e e = = e -
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Figure 6: Messenger Control Block (MCB)

(There will be further improvements to realize a prioritized scheduling scheme in the
future.)

3.3 Function Scheduling

As explained in Section 2.5, a Messenger has the ability to invoke specialized func-
tions that suspend it for a certain period of time or to schedule the invocation of
arbitrary functions as future events based on virtual time. This is implemented by
maintaining an FVENT data structure, which records a function invocation sched-
uled at the current logical node. Each entry contains the calling Messenger’s MCB,
the entry/continuation point of this function, and the virtual time to resume its exe-
cution. Whenever a Messenger calls a precompiled function, an EVENT is allocated
to schedule its invocation at the same virtual time. (As described in Section 2.5,
virtual time concept is always maintained.) When the scheduling library function,
m_sched_time(time), is called, an EVENT is allocated to schedule the calling Messen-
ger or function at time.

All allocated EVENTs are maintained by a splay tree [ST85] for each logical node
so that the leftmost leaf always contains the earliest EVENT in virtual time for this
logical node. The individual splay trees for all logical nodes on the same daemon
are also maintained as a splay tree such that the leftmost leaf always contains the
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Figure 7: Hierarchical Structure of Event Queues

earliest EVENT over all logical nodes of the given daemon. Figure 7 shows the
resulting hierarchical splay tree structure of EVENTs. The reason why we employ
this scheduling queue is that MESSENGERS will be able to migrate logical nodes
between daemons for dynamic load balancing in the future. This hierarchical structure
permutes all future EVENTSs associated with a migrated logical node to be found and
packed efficiently.

3.4 External Interface

Messengers and external Unix processes, for example a TCL manager, need to have
a specific communication channel rather than use the Unix file system, for reasons of
performance. Upon initialization, each interpreter daemon acquires a Unix-supported
shared region and a message queue associated with a user-defined key, and allows
Messengers to use them to interface with external processes running on the same
physical node. The key is specified in a .messengers_profile file that is located in a
user’s home directory and used for a daemon initialization. The external processes
can access these Unix-supported shared region and message queue by reading the key
and calling the shmget and msgget Unix system calls with this key.
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1. Interface Buffer (IFBUF): This is a Unix-supported shared memory region which
consists of two sub-spaces. One shows the interpreter daemon’s current status
and the other is open for communications with external processes.

2. Interface Port (IFPORT): This is a Unix-supported prioritized 2k-byte message
queue. Several priorities are reserved for the MESSENGERS daemon but the
others may be used for communications with external processes.

Since both IFBUF and IFPORT are only static interface media, a synchronization
protocol between Messengers and external processes must be agreed upon a prior.

3.5 Behavior of the Interpreter

Figure 8 describes the interpreter daemon’s behavior. The MESSENGERS interpreter
daemon alternates the following two phases: (1) interpreting Messengers until there
is no more ready Messengers, (line 3-23) and (2) executing scheduled functions unless
there is any ready Messengers (line 24-27). During each phase it also exchanges

Messengers with other daemons whenever a certain combination of conditions are
satisfied (line 21-22 and 28-29).

(1) Interpretation

Once the interpreter daemon picks up a ready Messenger, it continues processing
its statements while they are computational (line 5-6 in Figure 8). Upon encountering
a hop statement (line 9), the daemon traces all LINKs from the current node, (i.e.
NCB) to locate the destinations. If the destination is a local NCB, the current
Messenger, (i.e. MCB) is simply attached to this NCB (line 10) and goes to the end
of ready meb queue for the next interpretation. If the destination is a remote node
(line 11), (i.e. ROUTE), the MCB is enqueued into the end of the ROUTFE’s outgoing
meb queue to wait for being sent (line 12). The other navigational statements, namely
create and delete achieve the creation and deletion of a node respectively (line 7-8) in
addition to the operations shown above.

Upon encountering a func or ezec statement (line 14-15), a new EVENT to schedule
a function invocation is inserted into the current node’s future event queue (line 16).
This insertion entails tree rotations of the hierarchical future event queue. The current
MCB is linked into suspended mcb queue.

Figure 9 illustrates how a Messenger is handled by the interpreter daemon from
its creation to migration. A new Messenger is injected from an external process onto
IFBUF, enqueued into a ready mecb queue, and waits for its interpretation. Once it
is picked up from ready mch queue, the Messenger is processed as described above,




1 daemon() {
2 for(3;) {
3 while ((mcb = ready.mcb_dequeue()) != NULL) {
4 for () {
5 switch(mcb—instruction[mcb—counter++]) {
6 case COMPUTATIONAL: compute(); continue;
7 case CREATE: createnew._ncb(); goto HOP;
-8 case DELETE: delete_current.ncb();
9 case HOP: if(nextncb == LOCAL) {
10 relink(mcb, nextncb); ready mcb_enqueue(mcb);
11 } else
12 outgo_mcb_enqueue(mchb, next_route);
13 break;
14 case FUNC:
15 case EXEC: event—messenger = mchb;
16 local future_event_enqueue(event); susp.mcb_enqueue(mcb);
17 break;
18
19 break; /* context switch */
20 }
21 if (communication_conditions == TRUE)
22 exchange messengers();
23
24 if (ncb = global future.event_dequeue() != NULL)
25 if (event = local future_event _dequeue(ncb) != NULL) {
26 execute(event—function); ready_mcb_enqueue(event—messenger);
27
28 if (communication conditions == TRUE)
29 exchange messengers();
30 }
31 }

Figure 8: Pseudo Code of Interpreter

enqueued into an appropriate outgoing mcb queue when it wants to migrate to a
remote node, and sent out onto a socket in the next communication phase.

As described before, the interpretation of each Messenger is serialized between
any two navigational or task-coordinating statements. This means that a Messenger
must explicitly relinquish control to another Messenger using one of create, delete,
hop, func and ezec statements. Although such a non-preemptive scheduling carries
the risk of hanging an interpreter daemon easily by a Messenger in an infinite loop, it
has two advantages from the performance point of view. One is reducing the number
of context switches between Messengers. Another is that non-interruptibility (e.g. for
critical region enforcement) is guaranteed without any explicit user-defined synchro-
nization mechanisms. If such non-interruptibility is programmed in each Messenger
script. inter-Messenger coordination must be enforced at interpretation level, which
will degrade the system performance. Instead, when synchronization is needed for co-
operation, Messengers may use the m_sched_node function (see section 2.5), supported
as a library function. Hence, the CPU time will not be wasted unnecessarily.

(2) Function Ezecution
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Figure 9: Interpreter’s Behavior

Function executions are initiated only when there is no more ready Messengers to
interpret. This design is based on the following two observations. First, Messengers
which do not call precompiled functions should be interpreted and sent to their next
destinations as quickly as possible without the overhead incurred by dynamic function
linking. Second, under a virtual-time-based computation, Messengers do not have
their own virtual time recorded with their MCBs. Only when they are exchanged
among daemons, are they sent with the source daemon’s latest virtual time. An
interpreter daemon updates its local virtual time when it executes a precompiled
function scheduled at a certain virtual time. Hence, all Messengers inside this daemon
are regarded to have the same new virtual time. If the daemon executes a scheduled
function although there are still ready Messengers to be interpreted, even Messengers
which do not call a scheduling function at all, are inevitably shifted into a new virtual
time.

The interpreter daemon picks up of the leftmost NCB leaf of the hierarchical
event queue, the leftmost EVENT leaf, and then executes a function specified in this
EVENT. If such a function is not linked yet, the daemon performs a dynamic link
system call to load this function before its execution. This deletion of the EVENT
reorganizes both levels of the future event queue by tree rotations so that the next
EVENT to be processed is ready to be picked up.



(3) Network Communication

The interpreter daemon initiates an inter-daemons communication when:

e there are no more ready Messengers, or
e the number of outgoing Messengers exceeds a given threshold, or
e an interval timer generates an interrupt, or

e the local virtual time exceeds a given interval

Until any of the above conditions is satisfied, the daemon pools outgoing Mes-
sengers into an outgoing mcb queue for each destination ROUTE. If a Messenger is
duplicated to two or more remote logical nodes located on the same physical node,
only one copy of the Messenger is enqueued into the destination ROUTE’s outgoing
mcbh queue. The parameters for the above communication triggering conditions, (i.e.
the number of outgoing Messengers to be sent at once, the real time interval, and the
virtual time interval) are specified by a user upon the daemon initialization and can
be changed at run time through IFBUF. These are used for adjusting the amount of
data transferred between physical nodes in one burst for the better performance.

4 Performance Evaluation

In this section discussion, we first summarize the current implementation status, next
we show the overhead incurred by the interpretation on a single machine and the
network latency, and finally discuss the performance results for parallel computing
using various applications. We will also discuss the best computation granularity for
each application.

4.1 Current Implementation Status

We have implemented the MESSENGERS interpreter and language compiler. The
system library currently includes primary functions to create, duplicate, identify and
destroy Messengers; other functions are still under the construction. The system does
not yet support inter-Messengers synchronization and virtual-time-based scheduling.
Thus, these two features must still be handled by each application independently.
Since any function invocation causes a context switch between Messengers, synchro-
nization is currently realized by testing a given node variable and calling a dummy
function if the node variable does not satisfy a given condition. The virtual time is
maintained by broadcasting a new virtual time to all nodes using hop(node = *).
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Item | Descriptions

Workstations Sun SPARC Station ELC, 16M memory

Communication Media | 10Mbps Ethernet

Network Nodes 18 Workstations (One of them is an NFS server.)
+ 43 PCs without bridge/router

Table 2: Physical Configuration for Performance Evaluation

The interpreter daemon is currently running as a single Unix process. It does
not spawn any threads. Only blocking read and write operations are used for data
transfers over the network. Hence, there is no concurrency inside a daemon. Table 2
summarizes the current physical configuration used for our performance evaluation.

4.2 Performance of Interpreter

First, we concentrate on the performance of the interpreter itself when it interprets
Messengers without any precompiled code. Our performance goal is to keep the
interpreter’s overhead within one order of magnitude slower than the execution speed
in native mode.

The performance evaluation consists of six tests. Test 1 compares MESSENGERS’
arithmetic interpretation with native arithmetic computation. The arithmetic oper-
ation is a 500,000-time repetition of a floating-point division, (i.e.a = b/c). Test 2
shows the performance of a func statement interpretation vis-a-vis an ordinary func-
tion call in native mode. The test repeatedly calls a dummy function 100,000 times.
Test 3 compares the creation of a Messenger with that of a thread and a Unix process.
The creation is repeated 30,000 times. A Messenger’s size is 640 bytes, whereas a
thread allocates only 177-byte data which correspond to messengers variables and an
MCB. Test 4 examines the context switch of a Messenger and of a thread. 24,000 con-
text switches of Messengers are generated by having 1,200 Messengers call a dummy
function 20 times. 24,000 context switches of threads are similarly generated. Test 5
evaluates a Messenger’s local hop within the same physical node. The elapsed time of
24,000 local hops is compared with that of 24,000 context switches of threads. Test
6 compares a Messenger’s hop over a physical network with an inter-threads commu-
nication through a socket. The byte size of the hopping Messenger is 800 bytes and
is the same as that of the data transferred between threads. This test repeats 3,000
data transfers over a physical network.

As shown in Table 3, for all the tests except Test 2, the time required by the
interpreter was less than 13 times the native execution time. The result of Test 2
is caused by the fact that a function invocation always involves a context switch
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Test # programs time (seconds) magnitude (times as slow)
Test 1 Arithmetic interpretation vs erecution

(a) Sequential C program 2.117 1.0

(b) Messengers 27.193 12.8
Test 2 Func statement vs ordinary function call

(a) Sequential C program 0.190 1.0

(b) Messengers 32.506 171.1
Test 3 Creation: Messenger vs thread/process

(a) Thread 26.569 1.0

(b) Messengers 77.996 2.9

(c) Unix process 3879.680 146.0
Test 4 Context switch: Messenger vs thread

(a) Thread 9.759 1.0

(b) Messengers 11.185 1:1
Test 5 Local hop vs thread’s context switch

(a) Thread 9.759 1.0

(b) Messengers 101.52 10.4
Test 6 Remote hop vs thread communication with a socket

(a) Thread/socket 10.266 1.0

(b) Messengers 70.913 6.9

Table 3: Performance Result on a Single Machine

operation. This indicates that a further improvement of the interpreter daemon is
needed to avoid invoking a meaningless series of context switch operations when there
is only one Messenger on a physical node. Test 4 shows that there is little difference
between Messengers and threads in terms of their context switch. The overhead seen
in Test 3 is for a complete duplication of a Messenger as compared to thread. The
overhead observed in Test 5 and 6 includes the destination node search and the flow
control over the physical network.

As a result, it is hard to limit the interpreter’s overhead within several times
of the native speed, however with our goal, if a Messenger invokes a precompiled
function which includes more than 1,000 floating-point operations, the performance
degradation will be held within only several percent even on a single machine.

4.3 Network Latency

The physical network communication is the major factor that diminishes the effect of
parallelism. In order to hide the network latency, the application program needs to
overlap communication with computation or, when the application does not permit
that, granularity of computation will be coarse enough to outweigh the communication
overhead. We have investigated the latter by following test: from a single node, a
Messenger is duplicated to a given number ¢ of other physical nodes, where each
computes a given number j of dummy floating:point divisions. All Messengers then
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Figure 10: Network Latency Test

return to the original station node. For comparison, a sequential program executes the
same amount of computation that includes z x 7 divisions. Figure 10 shows the result.
This shows that the order of 15,000-30,000 floating-point operations are necessary at
each physical node to compensate for the network latency. In the following subsection,
we will show the performance of four kinds of applications, some of which are very
simple and include only several or even no floating-point operations. Therefore we
cannot expect their performance to be very good compared to sequential execution.
However, assuming that programs from the similar application arenas but with much
large grain size exist, we have conducted the same communication-versus-computation
test shown above for each application, and will show the grain threshold necessary to
overcome the communication overhead.

4.4 Performance of Applications
We coded the following four application programs:

1. Pharmaco-kinetic Simulation: This program simulates the distribution over time
and metabolism of various toxins by different organs of a living organism. In col-
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Figure 11: Pharmaco-Kinetic Simulation of Inhaled Styrene

laboration with UCI’s College of Medicine, we implemented a Styrene-inhalation
program using MESSENGERS as a control language to coordinate the operation
and interaction of compiled node-resident functions, which carry out the actual
computations of the model [FMB*96]. The basic approach is to map each of five
organs onto a separate logical node as shown in Figure 11. This node contains
the necessary sets of differential equations and constants describing the organ’s
behavior. The Styrene-carrying fluids, such as blood, are implemented as waves
of consecutive Messengers, which pass from the lung node to the other organs
and back along the predefined paths. As they pass through the organs, they
trigger the execution of appropriate functions to compute the new Styrene con-
centrations for the current simulated time increment. The lung node becomes
the generator of the virtual time increments, which it sends to all other organs
with each wave of Messengers. This program is an example of dynamic model
computation (also referred to as intra-Messengers coordination in [FBD96]).

. Shortest Path: This program uses Dijkstra’s algorithm [CLR90] to find single-

source shortest paths on a weighted N x N mesh for the case where all edge
weights are nonnegative. We construct such a mesh of logical nodes over the
physical nodes. The logical nodes are named n00 through n(N — 1)(N —1). As
shown in Figure 12, shortest paths from n00 to all the other nodes are found by
a Messenger, injected initially into node n00, and replicated along all vertical
and horizontal links to compute the distances from n00. Upon arriving at each
node, each of Messengers compares its own distance traveled thus far with that
computed by a previously visiting Messenger and stored at that node. If the
Messenger’s distance is shorter, it updates the node’s distance and continues
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its propagation. Otherwise, it goes back to n00 to terminate. Since n00 has
a node variable that keeps the number of active messengers, a Messenger that
reads 0 from this variable is the last active Messenger and thus recognizes the
termination of this distributed application. This application in an example of
inter-Messengers coordination and is expected to benefit from parallelism if the
logical mesh network is mapped over more physical nodes.

. Conver Hull: This is a divide-and-conquer program to solve a convex hull of

n points given in the plane. The program first divides these points into two
subsets, containing [n/2] and |n/2] points respectively, such that all points in
the first subset lie to the left of all points in the second subset along the x-axis.
It then computes the convex hulls of the subsets recursively, using Shamos’s
algorithm [PS85] to merge the hulls at each level as it back-tracks. As shown
in Figure 13, this program dynamically constructs a binary tree, each node of
which combines two convex hulls from its left and right child nodes. This binary
tree is mapped onto physical nodes at run time. Initially, a Messenger is injected
to create the root of this tree. It then replicates itself at each level to create two
child nodes. When reaching a leaf node, each Messenger works as a carrier of a
sub convex hull from the leaf back to the root. Since there is no data dependency
among nodes at the same level of the tree, the divide-and-conquer or bisection is
a typical algorithm applied to loosely coupled memory machines. Given a large
number of points, the more physical nodes are used, the more parallelism is this
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program expected to achieve.

4. Wa-Tor: This is a simple Monte Carlo ecological simulation program implement-
ing a model by Dewdney [Dew84], in which idealized fish and sharks live, move
randomly, breed, and eat one another in a two-dimensional ocean grid. Figure 14
shows this simulated space. It is subdivided into several subspaces (striped along
the y-axis in the present implementation), which are represented by logical nodes
and distributed over physical nodes. Each individual fish selects one unoccupied
neighboring place, as it breeds its progeny in the departing place every certain
period of time. Each shark selects a neighboring place where a fish occupies and
eats it. Otherwise, the shark moves just as a fish does. If it cannot eat any fish in
a given period of time, it starves. Each individual fish and shark is implemented
as a Messenger, which carries its own behavior as described above. This is a
good example of an application requiring efficient inter-Messengers coordination
and hence is a good candidate for studying scalability issues on efficient number
of physical nodes.

The performance of each application has been compared with that of its corre-
sponding sequential program.

Figure 15(a) shows the result of the pharmaco-kinetic simulation (inhalation of
styrene). Since the organism is modeled as five distinct tissue nodes, we used one
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to five workstations. The result is disappointing, showing a 2-3 orders of magnitude
slower for Messengers. There are two main reasons: (1) the computation size at each
tissue node is only several floating-point operations, and hence the resulting paral-
lelism cannot compensate for the high communication penalty, (2) all Messengers be-
having as a styrene carrier, a virtual time watcher, and a file recorder must synchronize
with each other using busy-waiting due to the lack of an inter-Messengers synchro-
nization library function. Next, we have conducted a communication-vs.-computation
test to see how much computation must be preferred at each node to overcome the
communication overhead. Figure 15(b) shows the result when each computation node
performs a given number of (dummy) floating-point divisions. The result shows more
than 10,000 floating operations are required for this type of application.

Figure 17(a) shows the result of the shortest path program. Asshown in Figure 16,
we divided the 8 x 8 mesh of logical nodes into 2, 3, 4, 6, and 9 pieces, each of which is
mapped onto a different workstation. The result of MESSENGERS shows one magni-
tude slower than the corresponding sequential program. The main reasons are: (1) the
amount of computation at each node is minimal (no floating-point operation), (2) the
Messenger program always runs in interpretive mode, never calling any precompiled
function, (3) all Messengers need to go back to n00 node to implement a distributed
termination. To investigate granularity, we had a Messenger invoke a dummy func-
tion at each logical node, which repeats a given number of floating-point divisions.
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Figure 15: Performance Result of Styrene-Inhalation Program and Its Coarse Grain Analogue
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Figure 16: Logical to Physical Network Mapping for Shortest Path Program

We compared MESSENGERS with two different sequential programs: the one that
performs a breadth-first search and the other that performs a depth-first search. The
latter algorithm can be simply coded by using recursive function calls, however it
may search more possible paths than the former one. In MESSENGERS, the inter-
preter always interprets Messengers in a breadth-first fashion, hence the breadth-first
search, (i.e. the better algorithm) is automatically chosen although a user does not
carefully intend it. Figure 17(b) shows this comparison. This type of application re-
quires 2000 to 3000 floating-point operations to compete with the sequential version.
However, MESSENGERS becomes competitive at only 70 floating-point operations
if it is compared with the naive sequential program based on the depth-first search.

Figure 18(a) shows the performance results of the convex hull program which
solves 1024, 4096, and 32768 points respectively. For more than 4096 points, the
effect of parallel processing beats the communication and interpretation overheads.
Since a Messenger has been coded to always carry all points, the more workstations
are given, the more communication overhead is incurred and hence performance does
not improve beyond four machines. In some bisection programs, however, such as
a quadrature problem for numerical integration [GM85], only a single computation
result at each node must be passed back to its parent node, and therefore the amount
of data transferred is insignificant. We have evaluated the performance of such a case
by having a Messenger repeat a certain number of dummy floating-point divisions at
each node of the tree but not carry any data between nodes. Figure 18(b) shows this
result. Similar to the other examples, the threshold to obtain an improvement from
parallel computing is approximately 10,000 floating-point operations at each node.

Figure 19(a) shows the performance results of the Wa-Tor problem. The simu-
lation space is represented as a 32 x 32 matrix and striped into 2, 4, and 8 pieces,
each of which is mapped onto a different workstation. We injected 500 Messengers.
These Messengers do not include any floating-point operations but just several simple
integer assignments. Hence, similar to the shortest path program, the result is not
competitive with the corresponding sequential program. Next, we had each Messenger
execute dummy floating-point divisions. As shown in Figure 19(b), MESSENGERS
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is superior to the sequential program if each Messenger executes 400 or more floating-
point operations. Assuming that 500 Messengers are uniformly distributed over eight
physical nodes, 2,500 floating-point operations at each physical node, which comes
from 400 x 500/8, are a threshold to overcome the network overhead.

4.5 Discussion

From our performance evaluation we have obtained two numerical results: (1) for a
single machine, the interpreter’s overhead is approximately one order of magnitude
above the sequential execution time, and (2) for applications runining on multiple ma-
chines, MESSENGERS is superior to the corrensponding sequential programs when
each physical node executes 10,000 floating-point operations. These results indicate
the type of applications that will be able to benefit from the MESSENGERS paradigm
and the style of programming necessary to maintain acceptable performance. We also

made several significant observations that emphasize the advantages of programming
applications with MESSENGERS.

1. MESSENGERS versus Recursive Call: As seen in the shortest path and the con-
vex hull program, many algorithms are based on the recursive function call. In
MESSENGERS, such a recursive call can be emulated as its navigational state-
ment. In the shortest path, traversing along all vertical and horizontal paths
from a node is implemented as a recursive call in the sequential version and as
a hop statement in the MESSENGERS version. In the convex hull program, a
recursive subdivision of a given space in the sequential version corresponds to a
creation of a binary tree, which can be made by a repetition of hop statement in
MESSENGERS version. Unless these sequential programs are optimally coded
so that their recursive function call performs a breadth-first search, they may
display a depth-first searching pattern due to the nature of sequential execution.
On the other hand, MESSENGERS always performs a breadth-first interpreta-
tion, which tends to find out an answer faster than the depth-first search. This
means that MESSENGERS works well against naive applications which have
been intuitively coded but not yet optimized.

2. MESSENGERS versus Thread Programming: Programming with multithreaded
processes is an alternative approach to code distributed parallel applications and
1s expected to be more efficient in the following two cases: (1) when a Messenger’s
code size is large, and (2) when Messengers are explosively generated. This is
because each individual Messenger has its own code, whereas threads can share
the same code. Therefore, copying a code is always overhead in MESSENGERS.
However, we have observed that there is no difference between MESSENGERS
and multithreading in terms of context switch. Also, MCBs which have been
used for old Messengers are not completely freed but pooled for the future reuse.
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Hence, MESSENGERS is competitive with multithreading for applications such
that the number of Messengers is kept constantly or its growth is constrained. In
addition, it is obvious that a MESSENGERS user does not have to be concerned
with flow control, scheduling, and memory management, all of which must be
coded by each application program when using multithreaded processes.

3. Interactive Operations: Human-interactive applications such as DIS (Distributed
Interactive Simulations [BBB*93]) generally demand that a response time be
within ;—0 seconds. In our experiment on the network latency, a Messengers
can make a one-round trip between two different physical nodes within an or-
der of ten milliseconds, as performing 10,000 floating-point operations on the
remote node. The same amount of computation is included by general-purpose
benchmark programs such as Livermore Loops. Therefore, the elapsed time in
our experiment can be regarded as a response time just enough to react to a
user’s demand and hence MESSENGERS is capable of supporting such appli-
cations. These types of applications sometimes need to dynamically manipulate
the computation in progress. This is referred to as “computational steering”. For
instance, the next set of actions or parameters is determined based on interme-
diate results already observed from the current computation. Such actions may
include handling intermediate results or rolling back the current computation to
some previous status. Such manipulations are easily realized in MESSENGERS
using its dynamic composition of function execution and GVT features. Hence,

MESSENGERS is practical for interactive open-ended applications : &

4.6 Future Improvements

The current implementation does not overlap the interpretation with the network
communication. Once a network communication is triggered, the interpreter dae-
mon is blocked until it receives all Messengers which have been flushed out from a
sender daemon’s outgoing mcb queue at once. However, the receiver daemon may still
have ready Messengers to be interpreted. Furthermore, once the interpreter receives
the first incoming Messenger, it should immediately start interpreting it so that the
communication delay in receiving the following Messengers can be overlapped with
the interpretation. Using asynchronous I/O handling, the interpreter daemon can
hide the network latency, and therefore the computational granularity at each phys-
ical node may be reduced to less than 10,000 floating-point operations. This can be
realized as two concurrent threads which are in charge of the network communica-
tion and the interpretation respectively. Since Messengers running at different logical
nodes can not modify any data outside of their current node, they can be interpreted
concurrently by spawning an interpretation thread.

Another improvement will be needed for the migration and creation of Messengers.
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Although Messengers and threads do not differ significantly in their context switch
issues, Messengers are much slower than threads in their creation. This is due to
the fact that the complete image of an original Messenger must be copied into a
new Messenger, whereas a new thread needs only a new copy of local variables as its
own stack. However, if the original Messenger and its progenies are implemented to
share the same byte code, the main overhead incurred by a Messenger creation will
be the copying of messenger variables only. This may also be exploited to improve
the migration of Messengers. If a Messenger has once visited a node, its byte code
is saved and reused when the same Messenger returns there in the future. Hence,
Messengers’ weight will further be reduced and their performance will be much closer
to that of threads.

MESSENGERS offers the important capability to develop an application incre-
mentally since new Messengers can be dynamically injected and the underlying com-
putational network is changeable at run time. However, once an application is com-
pletely developed, it may no longer requir this capability, in which case an approach
using multithreaded processes would be more efficient. At that point, the flexibility
provided by MESSENGERS becomes an unnecessary burden, which the user would
like to trade for better performance. This may be accomplished by automatically
converting the Messenger-based application into a fully compiled efficient distributed
program, where multithreaded processes communicate with one another via ordinary
send and receive primitives.

5 Conclusion

In this paper we have described a distributed computing environment for autonomous
objects from two perspectives: flexibility and efficiency. The MESSENGERS paradigm
offers the great flexibility to autonomous objects in terms of their navigational auton-
omy and dynamic composition. They may navigate through dynamically changing
computational networks and schedule function invocations at each node according
to their internal individual behaviors. As we have described in [FBD96], MESSEN-
GERS may be viewed as a coordination paradigm for distributed computations using
a logical network as the underlying computational medium. Such applications fall
into two categories. The first involves intra-Messenger coordination, which regards
a network as a control/data-flow graph where Messengers carry intermediate results
and coordinate functions at each node. The second involves inter-Messengers coor-
dination, which regards a network as a simulated environment or a database where
each Messenger works as an independent computation entity. For both models, MES-
SENGERS system provides efficient support for coordination, so that Messengers can
invoke precompiled functions and interacts with each other with little overhead.
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The MESSENGERS system is now in operation at University of California, Irvine
and has been used by students not only in our group but also in an undergraduate
ICS class, and by a research group of the Community and Environmental Medicine
Department. We have three future plans for MESSENGERS system: (1) implement-
ing GVT features, (2) incorporating the ability of multi-threading and asynchronous
I/O handling, and (3) developing a translator to generate static parallel threaded
programs from Messengers so that an application could execute in native mode under
multithreading. With these features, we will develop several distributed simulation
programs which will be a new basis of our research on dynamic load balancing, prox-
imity management and scalability [MB96].
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