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Journal of Biomedical Optics 16(10), 107005 (October 2011)

Spatial frequency domain spectroscopy
of two layer media

Dmitry Yudovsky and Anthony J. Durkin
University of California, Irvine, Beckman Laser Institute, Laser Microbeam and Medical Program,
1002 Health Sciences Road, Irvine, California 92612

Abstract. Monitoring of tissue blood volume and oxygen saturation using biomedical optics techniques has
the potential to inform the assessment of tissue health, healing, and dysfunction. These quantities are typically
estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the
dermis. However, estimation of blood related absorption in superficial tissue such as the skin can be confounded
by the strong absorption of melanin in the epidermis. Furthermore, epidermal thickness and pigmentation varies
with anatomic location, race, gender, and degree of disease progression. This study describes a technique for
decoupling the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large
range of skin types and thicknesses. An artificial neural network was used to map input optical properties to
spatial frequency domain diffuse reflectance of two layer media. Then, iterative fitting was used to determine the
optical properties from simulated spatial frequency domain diffuse reflectance. Additionally, an artificial neural
network was trained to directly map spatial frequency domain reflectance to sets of optical properties of a two
layer medium, thus bypassing the need for iteration. In both cases, the optical thickness of the epidermis and
absorption and reduced scattering coefficients of the dermis were determined independently. The accuracy and
efficiency of the iterative fitting approach was compared with the direct neural network inversion. C©2011 Society of
Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3640814]
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1 Introduction
Diffuse optical spectroscopy (DOS) characterizes the optical
properties of a medium by measuring the amount of radiative
energy remitted from a medium.1–3 Spatial frequency domain
imaging (SFDI) is based on DOS principles and uses patterned
illumination to determine, with appropriate light transport mod-
els, the absorption and reduced scattering coefficients of a tur-
bid medium based on the spatial frequency reflectance function.
The method has been described in detail in the literature.4–12

Instead of measuring the total reflectance,1–3 spatial frequency
domain techniques measure the attenuation of specific spatial
frequency components of the illuminating pattern as it propa-
gates in a tissue. Illumination by a one-dimensional sine-wave
pattern with controlled spatial frequency fx is the simplest way
to probe a medium’s attenuation of a distinct spatial frequency.
The spatial frequency fx can be chosen to have higher sensitiv-
ity to a particular physical depth since higher frequencies tend
to probe a more superficial volume. Furthermore, higher spatial
frequencies have been shown to be more sensitive to the tissue’s
scattering coefficient. On the other hand, lower frequencies (i.e.,
fx = 0 mm−1) have been shown to be sensitive to the tissue’s
absorption coefficient.4–7, 13, 14

An accurate and efficient model of light transfer through op-
tical media is required to extract quantitative optical properties
from SFDI data. Such a model should map the forward and
inverse relationships between a set of optical properties and a
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spatial frequency dependent reflectance function. The radiative
transfer equation (RTE) is an accurate description of light propa-
gation in turbid media irradiated with structured light. However,
exact solutions to the RTE are known only for a few idealized
cases and for planar illumination.15, 16 Monte Carlo simulations
offer an accurate solution of the RTE and can be adapted to
a wide range of multilayered configurations and illumination
geometries. However, these are computationally intensive and
may not be suitable for real-time applications when immediate
estimation of the concentration of tissue constituents such as
oxyhemoglobin and deoxyhemoglin concentration are required.
The diffusion approximation is frequently used in biomedical
optics because it can be a computationally efficient method for
estimating light transport in strongly scattering biological tis-
sues. Multiple adaptations of the diffusion approximation exist
that account for index mismatch,17 multilayered tissue struc-
ture, and nondiffuse light sources such as collimated irradiation
in plane-parallel media.18 This approach has also been used to
model light transfer in the spatial frequency domain. However,
its applicability is limited to the near-infrared (NIR) since visible
light is strongly absorbed by the melanin of the epidermis and
the blood in the dermis.19, 20 The assumptions of the diffusion
approximation become invalid in the visible and UV, with ab-
sorption coefficient equaling or exceeding the reduced scattering
coefficient.21

This study presents a spatial frequency domain model of two
layer media. The forward and inverse model presented here can
be used to remove the effects of epidermal absorption from a
reflectance signal to facilitate tissue spectroscopy from a large
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population with varying skin tone. Additionally, it can be used
to directly quantify the optical thickness of the epidermis, and
thus may be useful in the study of disease mechanisms that
thicken or darken the epidermis. To achieve this, an artificial
neural network was developed that maps a set of input optical
and geometric properties to a spatial frequency dependent re-
flectance function. An additional artificial neural network was
developed that directly solves the inverse problem by mapping
a spatial frequency dependent reflectance function to a set of
optical and geometric properties, thus avoiding computationally
intensive iterative least-squares fitting.

2 Background
2.1 Spatial Frequency Domain Reflectance
Spatial frequency domain spectroscopy involves illumination of
media with a spatial pattern of the form,

q(x, fx ) = P0( fx )cos(2π fx x), (1)

where fx is the spatial frequency expressed in mm− 1, P0( fx )
is the incident optical power at the spatial frequency fx and
measured in milliwatts, and x is the spatial coordinate parallel to
the mediums surface and measured in millimeters. The remitted
energy differs from the illumination pattern due to the opti-
cal and geometric characteristics of the sample.4–7 In fact, the
spatial frequency reflectance measured from a turbid medium
encodes both depth and optical property information, enabling
both quantitation and low resolution depth sectioning of the
spatially varying medium optical properties.5

The depth-sensitivity of spatial frequency domain imaging
has been established by several publications.5, 8–10 Cuccia et al.5

demonstrated that spatially modulated illumination facilitates
quantitative wide-field optical property mapping and sensitivity
to buried heterogeneities in turbid media. They performed spa-
tial frequency domain imaging of tissue simulating phantoms
with embedded heterogeneities using 42 spatial frequencies fx

between 0 and 0.6 mm− 1. They showed that changes in de-
modulated reflectance at low versus high spatial frequencies are
sensitive to the lower versus upper embedded heterogeneities.
This work showed that spatial frequency domain spectroscopy
can detect contrast between background and heterogeneity, but
did not provide a quantitative technique for determining the op-
tical properties of the heterogeneity itself. Konecky et al.8 used
spatial frequency domain imaging to detect tube heterogeneities
buried in homogeneous tissue simulating phantoms. They mea-
sured spatial frequency dependent reflectance from the hetero-
geneous phantoms at 11 spatial frequencies. They then used an
inverse method based on the diffusion approximation to recon-
struct tomographic contrast images of the buried tubes. This
model, however, may not be applicable if the highly absorbing
heterogeneity is close to the surface (i.e., the epidermis of the
skin).

2.2 Artificial Neural Networks
The present work takes a semi-empirical approach toward
quantifying heterogeneity in two layered media. Instead of
estimating the spatial frequency dependent reflectance with
an analytical or approximate model, we performed multiple
Monte Carlo simulations and then fit a machine learning
algorithm—an artificial neural network—to the output data. An

artificial neural network is a data structure that can accurately
approximate a nonlinear relationship between a set of input
and output parameters from multiple samples of input–output
pairs.22 Unlike approximate models such as the diffusion
approximation, a neural network can be trained to predict
tissue reflectance for strongly and weakly absorbing media.
Furthermore, a neural network can be trained to directly
estimate an inverse relationship between measured tissue
reflectance and the tissue’s optical properties, thus avoiding
iterative techniques such as nonlinear least-squares fitting.

Neural network-based approaches to determining optical
scattering and absorption coefficients of biological tissue from
tissue and phantom reflectance measurements have been pro-
posed by other investigators.23–29 For example, Farrell, et al.
trained a neural network to determine the absorption and re-
duced scattering coefficient of homogeneous biological tissue
from spatially resolved diffuse reflectance measurements at
eight source-detector separations.26, 27 The authors solved for
the spatially resolved diffuse reflectance function for multiple
input optical properties using the spatially resolved diffusion
approximation. The artificial neural network was then trained
to map the spatially resolved reflectance to the set of optical
properties. This resulted in a functional inverse relationship be-
tween a measurement of reflectance and tissue optical proper-
ties without the need to perform iterative least-squares fitting.
In fact, the model proposed by Farrell et al.26, 27 was later used
by Bruulsema et al.30 to measure changes in the skin’s scatter-
ing coefficient as a function of changes in blood glucose con-
centration. Since the underlying function used to generate the
training set was the diffusion approximation in a semi-infinite,
homogeneous medium, the analysis presented by Farrell et al.
is limited to wavelengths in the NIR and for weakly absorbing
media that are approximately homogeneous.26, 27 On the other
hand, Pfefer et al. developed an artificial neural network-based
technique for extracting the absorption and reduced scattering
coefficients from spatially resolved reflectance measurements
of highly absorbing media.28 Their approach was similar to that
of Farrell et al.,26, 27 however, Monte Carlo simulations were
used as the underlying photonics model in strongly absorbing
media. Additionally, Wang et al. developed a neural network to
detect the optical properties of two layer media using spatially
resolved reflectance measurements.31 They produced a training
set from Monte Carlo simulations and then validated the trained
neural network on two layer tissue simulating phantoms. They
then used their inverse model to detect the absorption and re-
duced scattering coefficients of two layer media in the ultraviolet
and visible ranges, for which absorption coefficient is typically
greater than reduced scattering coefficient. However, they re-
ported large prediction errors in all their parameters (absorption
and scattering coefficients of the top and bottom layer) that
ranged between 0.15 and 1.21 mm− 1 (20% to 120%).

This study that we have carried out presents a forward and
inverse model designed for spatial frequency domain measure-
ments of two layer media. First, the practical limitations of
spatial frequency domain imaging are discussed in terms of
coupling between top layer absorption coefficient and thick-
ness, and insensitivity of measured reflectance to the top layer’s
reduced scattering coefficient. Then, a practical description of
a two layer tissue model is developed and tested in simulated
reflectance spectra from human skin.

Journal of Biomedical Optics October 2011 � Vol. 16(10)107005-2



Yudovsky and Durkin: Spatial frequency domain spectroscopy of two layer media

1
'

1,1, ,, nsa μμ

12
'

2,2, ,, nnsa =μμ

10 =n
One dimensional structured light illumination

z

0=z

11 dz =

x

( )xfPxq xπ2cos)( 0=

Fig. 1 Illustration of the two layer geometry, optical properties, and
illumination considered.

3 Analysis
3.1 Two Layer Tissue Model
Figure 1 shows the two layer geometry, optical properties, and
illumination considered in this study. The superficial layer was
illuminated by a collimated light source. The spatial frequency
fx of the illumination pattern was considered to range between
0 and 0.25 mm− 1. The index of refraction, absorption coeffi-
cient, reduced scattering coefficients, and thickness of layer 1
are denoted by n1, μa,1, μ′

s,1, and d1, respectively. The index
of refraction n1 was assumed to be 1.40 to represent biological
tissue.32 The absorption coefficient μa,1 was assumed to range
between 0.10 and 2.00 mm− 1 (Refs. 32–38). The reduced scat-
tering coefficient μ′

s,1 was assumed to range between 0.50 and
2.00 mm− 1. Finally, the thickness d1 was assumed to range be-
tween 15 and 150 μm which is typical of many regions of the
human body.39–41

The index of refraction, absorption coefficient, and reduced
scattering coefficients of layer 2 are denoted by n2, μa,2, and
μ′

s,2, respectively. For simplicity, the index of refraction of layer
1 was assumed to be equal to that of layer 2 but not equal to that
of air (i.e., n1 = n2 = 1.40). The absorption coefficient of layer
2, μa,2, was assumed to range between 0.01 and 0.20 mm− 1,
while reduced scattering coefficient μ′

s,2 was assumed to range
between 0.50 and 2.00 mm− 1 (Refs. 32–38).

The spatial frequency dependent reflectance
R(n1, d1, μa,1, μ

′
s,1, μa,2, μ

′
s,2, fx ) was determined with

Monte Carlo simulations. Monte Carlo simulation software de-
veloped by Wang and Jacques42 was used to calculate the radial
diffuse reflectance function R(n1, d1, μa,1, μ

′
s,1, μa,2, μ

′
s,2, ρ),

where ρ was the radial distance from the simulation’s origin.
Then, the spatial frequency domain diffuse reflectance function
was calculated with the Hankel transform using the method
suggested by Cuccia et al.,6 namely,

R(n1, d1, μa,1, μ
′
s,1, μa,2, μ

′
s,2, fx )

= 2π

∫ ∞

0
ρ J0(2π fx )R(n1, d1, μa,1, μ

′
s,1, μa,2, μ

′
s,2, ρ)dρ,

(2)
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Fig. 2 Estimates of the reflectance as a function of spatial frequency
fx for n1 = 1.4, d1 between 15 and 150 μm, μa,1 equaling 1 mm− 1,
μ′

s,1 between 0.50 and 2.50 mm− 1, μa,2 equaling 0.01 mm− 1, μ′
s,2

equaling 2.00 mm− 1, and fx between 0 and 0.25 mm− 1 predicted
by Monte Carlo simulations. Each bundle of curves was generated by
sweeping μ′

s,1 between 0.50 and 2.50 mm− 1 while keeping all other
parameters constant.

where J0 is the 0’th order Bessel function of the first kind.
Each simulation was run with 106 photon packets. For clarity
of notation, the spatial frequency domain diffuse reflectance
R(n1, d1, μa,1, μ

′
s,1, μa,2, μ

′
s,2, fx ) shall be referred to simply as

R( fx ).
Figure 2 shows an example of this procedure and illus-

trates the minimal effect of large changes in μ′
s,1 on R( fx ).

It shows estimates of the spatial frequency diffuse reflectance
R( fx ) as a function of spatial frequency fx for n1 = 1.40, d1

between 15 and 150 μm, μa,1 equaling 1 mm− 1, μ′
s,1 between

0.50 and 2.50 mm− 1, μa,2 equaling 0.01 mm− 1, μ′
s,2 equaling

2.00 mm− 1, and fx between 0 and 0.25 mm− 1 predicted by
Monte Carlo simulations and Eq. (2). Each bundle of curves
was generated by varying μ′

s,1 between 0.50 and 2.50 mm− 1

while keeping all other parameters constant. Figure 2 illustrates
the weak dependence of R( fx ) on μ′

s,1 for the range of d1 con-
sidered. Large changes in μ′

s,1 resulted in minimal changes in
the reflectance of the two layer medium. Thus, a limitation of the
present model is that it is insensitive to μ′

s,1 for the range of d1

considered. Therefore, μ′
s,1 was assumed to be equal to 1 mm− 1

in developing the forward and inverse models presented here.
Additionally, Fig. 3 shows estimates of the spatial frequency

dependent reflectance as a function of spatial frequency fx be-
tween 0 and 0.25 mm− 1 predicted by Monte Carlo simula-
tions. It illustrates the strong coupling between μa,1 and d1. For
example, the solid curve indicated by Fig. 3(a) was gener-
ated with μa,1 equaling 0.1 mm− 1, μ′

s,1 equaling 1 mm− 1, d1

equaling 100 μm, μa,2 equaling 0.01 mm− 1 and μ′
s,2 equaling

1.7 mm− 1. On the other hand, the broken curve that overlays the
solid curve was generated with μa,1 equaling 0.21 mm− 1, μ′

s,1

equaling 0.5 mm− 1, d1 equaling 50 μm, and the same values of
μa,2 and μ′

s,2. It is apparent that increasing μa,1 and decreasing
d1 can produce nearly identical spatial frequency dependent re-
flectance function. Figure 3 also shows a solid curve indicated by
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Fig. 3 Estimates of the diffuse reflectance as a function of spatial fre-
quency fx between 0 and 0.25 mm− 1 predicted by Monte Carlo simu-
lations. The solid curve indicated by (a) was generated with μa,1 equal-
ing 0.1 mm− 1, μ′

s,1 equaling 1 mm− 1, d1 equaling 100 μm, μa,2

equaling 0.01 mm− 1, and μ′
s,2 equaling 1.7 mm− 1, while the broken

curve was generated with μa,1 equaling 0.21 mm− 1, μ′
s,1 equaling

0.5 mm− 1, d1 equaling 50 μm and the same values of μa,2 and μ′
s,2.

The solid curve indicated by (b) was generated with μa,1 equaling
0.2 mm− 1, μ′

s,1 equaling 2 mm− 1, d1 equaling 20 μm, μa,2 equaling
0.01 mm− 1, and μ′

s,2 equaling 1.0 mm− 1 while the broken curve was
generated with μa,1 equaling 0.1 mm− 1, μ′

s,1 equaling 1 mm− 1, d1

equaling 50 μm and the same values of μa,2 and μ′
s,2.

(b) that was generated with μa,1 equaling 0.2 mm− 1, μ′
s,1 equal-

ing 2 mm− 1, d1 equaling 20 μm, and μa,2 equaling 0.01 mm− 1

and μ′
s,2 equaling 1.0 mm− 1. Again, a similar spatial frequency

dependent reflectance function was generated with μa,1 equal-
ing 0.1 mm− 1, μ′

s,1 equaling 1 mm− 1, and d1 equaling 50 μm
for the same values of μa,2 and μ′

s,2. Increasing the top layer’s
thickness has approximately the same effect as increasing its
absorption coefficient. This coupling phenomenon was also ob-
served for all τ ′

1 > 0. In fact, for τ ′
1 greater than 4, the top layer

was almost completely occluded the bottom layer and the two
layer medium effectively became a single layer medium with
the optical properties of the top layer. Thus, a limitation of the
present model is that the individual values of μa,1 and d1 were
not detectable from spatial frequency dependent reflectance. For
this reason, this study was limited to determination of the re-
duced optical thickness τ ′

1 defined as

τ ′
1 = d1(μa,1 + μ′

s,1). (3)

3.2 Generating Training Set
The model parameters d1, μa,1, μa,2, and μ′

s,2 were sampled
according to a uniform distribution,

f (x) =
⎧⎨
⎩

1

b − a
, a < x < b

0, otherwise
(4)

between their upper (a) and lower (b) bound values for a total of
50,000 samples. When only 10,000 samples were used, the neu-
ral network simply memorized the training points and did not

generalize the spatial frequency reflectance functions to the val-
idation set. That is, the mean squared prediction error decreased
for the training set but not for the validation set. The scatter-
ing coefficient μ′

s,1 was equal to 1 mm− 1 because changing
this parameter had little effect of the spatial frequency domain
reflectance. Monte Carlo simulations were performed to deter-
mine the spatial frequency dependent demodulated reflectance
for each sample in the training set.

3.3 Generating a Validation Set
A validation set was generated to test the performance of the
neural network. Ten values for each model parameter d1, μa,1,
μa,2, and μ′

s,2 were selected along a uniform four dimension
grid for a total of 10,000 samples. The number of test samples
was chosen such that the entries of the covariance between the
model parameters d1, μa,1, μa,2, and μ′

s,2 and R( fx = 0) for
both the training and validation sets were within 1% of each
other. This ensured that the test set was statistically close to the
training set. As with the training set, the scattering coefficient
μ′

s,1 was equal to 1 mm− 1. Then, Monte Carlo simulations were
performed to determine the spatial frequency domain diffuse
reflectance for each test sample. Training was performed on the
training set and assessment of model accuracy was performed
with the validation set.

3.4 Training
A neural network was trained to map a set of input model pa-
rameters to a frequency domain diffuse reflectance,

NN f (d1, μa,1, μa,2, μ
′
s,2) = R( fx ). (5)

This network consisted of 4 input nodes, 2 hidden layers, and
11 output nodes. Each of the 4 input nodes corresponded to
a model parameter while each of the 11 output nodes corre-
sponded to a spatial frequency uniformly spaced between 0 and
0.25 mm− 1, inclusive. The first and second hidden layers had
20 and 5 nodes, respectively. A single layer architecture could
not be trained to accurately estimate R( fx ). An architecture
with two hidden layers was attempted and the number of hidden
nodes in each layer was increased until further addition of nodes
stopped improving the performance of the neural network. A
hyperbolic tangent sigmoid transfer function was used in the
hidden layer and a linear transfer function in the outer layer.22

This transfer function seemed a natural choice due to the ap-
pearance of the hyperbolic tangent in many solutions of light
transfer problems in multilayered slab geometries.20, 43, 44 The
forward model NNf(d1, μa,1, μa,2, μ

′
s,2) was later used as part

of a nonlinear iterative least-squares fitting algorithm.
A second neural network was trained to map the spatial fre-

quency domain reflectance R( fx ) to a set of model parameters
τ1, μa,2, μ

′
s,2, namely,

NNi [R( fx )] = 〈τ1, μa,2, μ
′
s,2〉, (6)

where N Ni is an inverse relationship. This model was used as
a faster alternative to nonlinear iterative least-squares fitting.
Four neural networks were trained. Each neural network had 6
input nodes, 2 hidden layers, and 1 output node. The 6 input
nodes corresponded to R( fx ) at a discrete spatial frequency
between 0 and 0.25 mm− 1. We intentionally chose few spatial
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s,2 between 0.50 and
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predicted by Monte Carlo simulations and the trained neural network
for the validation set.

frequencies to minimize the time required to acquire spatial
frequency domain reflectance data in practice.6 The first and
second hidden layers had 20 and 5 nodes, respectively. The
output node corresponded to d1, μa,1, μa,2, or μ′

s,2. A hyperbolic
tangent sigmoid transfer function was used in the hidden layer
and a linear transfer function in the outer layer.22
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minimizing L in Eq. (7). (b) Histogram of the relative percent estimation
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Prior to training, the model parameters and the spatial fre-
quency dependent reflectance were normalized to range be-
tween − 1 and 1. Training was performed using the MATLAB

software package (The MathWorks, Incorporated, Natick, Mas-
sachusetts) with Neural Networks and Chemometrics toolbox
routines. Each neural network converged in less than 1000
iterations.

4 Results and Discussion
4.1 Forward Problem: NN f

Figures 4(a) and 4(b) compare estimates for 10,000 valida-
tion samples of the diffuse reflectance by the neural network
N N f (d1, μa,1, μa,2, μ

′
s,2) and Monte Carlo simulation for fx

equaling 0 and 0.21 mm− 1, respectively, for the validation
set with d1 between 15 and 150 μm, μa,1 between 0.10 and
2.00 mm− 1, μ′

s,1 equaling 1 mm− 1, μa,2 between 0.01 and
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0.20 mm− 1, and μ′
s,2 between 0.50 and 2.00 mm− 1. The average

relative difference between estimates of R( fx = 0) by Monte
Carlo simulation and the neural network was 0.25%, while the
maximum absolute difference was 3.33%. Similarly, the average
relative difference between estimates of R( fx = 0.21) by Monte
Carlo simulation and the neural network was 0.38%, while the
maximum absolute difference was 4.34%. Figure 4 illustrates
that the neural network generalized the relationship expressed
in Eq. (5) from the 50,000 training examples. The goodness of
fit between estimates of the reflectance by Monte Carlo simu-
lations and the neural network to a linear model (y = x) was
calculated for 21 values of fx between 0 and 0.25 mm− 1 and
found to be greater than 0.9998 for all cases considered. An
r-squared value of unity suggests a perfect linear relationship.
It is apparent that the present neural network model exhibits a
nearly perfect correlation to Monte Carlo simulations for all fx

considered.

4.2 Inverse Problem with the Least-Squares Fitting
The forward model N N f (d1, μa,1, μa,2, μ

′
s,2) defined in

Eq. (5) was used along with an iterative inverse method to
estimate parameters d̂1, μ̂a,1, μ̂a,2, and, μ̂′

s,2 from a spatial fre-
quency dependent reflectance Rref( fx ). This is done by choosing
d̂1, μ̂a,1, μ̂a,2, and μ̂′

s,2 to minimize a quadratic cost function,

L =
N∑

i=1

[N N f (d̂1, μ̂a,1, μ̂a,2, μ̂
′
s,2, fx,i ) − Rref ( fx,i )]

2, (7)

where Rref ( fx,i ) is the spatial frequency dependent reflectance
at spatial frequency fx,i and N is the total number of spatial
frequencies. In this study, L was minimized with the Levenberg–
Marquardt algorithm implemented in MATLAB. Twenty-one spa-
tial frequencies fx between 0 and 0.25 mm− 1 were used
(N = 21). Initial conditions for the iterative minimization were
chosen randomly within 50% of the true value of d1, μa,1, μa,2,
and μ′

s,2. Two percent (2%) uniform noise was added to Rref( fx,i )
to simulate instrumentation error.
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Fig. 7 (a) Estimates of μa,2 for d1 between 15 and 150 μm, μa,1 be-
tween 0.10 and 2.00 mm− 1, μ′

s,1 equaling 1 mm− 1, μa,2 between
0.01 and 0.20 mm− 1, and μ′

s,2 between 0.50 and 2.00 mm− 1 deter-
mined by minimizing L in Eq. (7). (b) Histogram of the relative percent
estimation error.

The values of d1 and μa,1 could not be found with any cer-
tainty with this method. In fact, the converged values d̂1 and μ̂a,1

were strongly dependent on the initial conditions chosen for min-
imization while μ̂a,2 and μ̂′

s,2 where not. However, the product
τ̂ ′ = d̂1(μ̂a,1 + μ̂′

s,1) was stable with respect to initial condi-
tions. Figure 5(a) compares the error between the true value of
τ̂ ′ and the value estimated by minimizing L in Eq. (7) for d1

between 15 and 150 μm, μa,1 between 0.10 and 2.00 mm− 1,
μ′

s,1 equaling 1 mm− 1, μa,2 between 0.01 and 0.20 mm− 1, and
μ′

s,2 between 0.50 and 2.00 mm− 1. Figure 5(b) also shows a
histogram of the relative percent error in estimating τ̂ ′. In this
range, the average absolute percent relative error between the
input and estimated parameters was 57%. To identify the reason
for this high average relative error, we defined a sensitivity of
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Fig. 8 (a) Estimates of μ′
s,2 for d1 between 15 and 150 μm, μa,1 be-

tween 0.10 and 2.00 mm− 1, μ′
s,1 equaling 1 mm− 1, μa,2 between

0.01 and 0.20 mm− 1, and μ′
s,2 between 0.50 and 2.00 mm− 1 deter-

mined by minimizing L in Eq. (7). (b) Histogram of the relative percent
estimation error.

Rref ( fx ) to τ ′ as,

S(R( fx ), τ ′) = ∂NN f (d1, μa,1, μa,2, μ
′
s,2)

∂τ ′ . (8)

Figure 6 shows the sensitivity S(R( fx ), τ ′) as a function of spa-
tial frequency fx for the case of an optical thick top layer and
weakly absorbing bottom layer (τ ′ = 0.242, μa,1 = 0.05 mm−1,
and μa,2 = 1 mm−1), and optically thin top layer and strongly
absorbing bottom layer (τ ′ = 0.152, μa,1 = 0.20 mm−1, and
μa,2 = 1 mm−1). In both cases, the sensitivity decreases with
increasing spatial frequency. While the two curves exhibit sim-
ilar trends, the sensitivity for an optically thick top layer and
weakly absorbing bottom layer is on average 8 times larger than
for the opposite case. Consequently, if the top layer thickness d1

was restricted to be greater than 50 μm and μa,2 restricted to be
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Fig. 9 (a) Estimates of τ ′ for d1 between 15 and 150 μm, μa,1 between
0.10 and 2.00 mm− 1, μ′

s,1 equaling 1 mm− 1, μa,2 between 0.01 and
0.20 mm− 1, and μ′

s,2 between 0.50 and 2.00 mm− 1 determined by the
direct neural network approach. (b) Histogram of the relative percent
estimation error.

smaller than 0.09 mm− 1, the average absolute percent relative
error between the input and estimated parameters fell to only
15%.

Figure 7(a) shows the input and estimated values of μa,2 for
d1 between 15 and 150 μm, μa,1 between 0.10 and 2.00 mm− 1,
μ′

s,1 equaling 1 mm− 1, μa,2 between 0.01 and 0.20 mm− 1,
and μ′

s,2 between 0.50 and 2.00 mm− 1 determined by minimiz-
ing L in Eq. (7). Figure 8(b) shows a histogram of the relative
percent estimation error in estimating μa,2. In this range, the
average absolute percent relative error between the input and
estimated parameters was 14.7%. Similarly, Fig. 8(a) shows the
input and estimated values of μ′

s,2 for d1 between 15 and 150
μm, μa,1 between 0.10 and 2.00 mm− 1, μ′

s,1 equaling 1 mm− 1,
μa,2 between 0.01 and 0.20 mm− 1, and μ′

s,2 between 0.50 and
2.00 mm− 1 determined by minimizing L in Eq. (7). Figure 8(b)
shows a histogram of the relative percent estimation error in

Journal of Biomedical Optics October 2011 � Vol. 16(10)107005-7



Yudovsky and Durkin: Spatial frequency domain spectroscopy of two layer media

(a) 

(b) 

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

Input absorption coefficient, μμμμa,2
 (mm-1)

E
st

im
at

ed
 a

b
so

rp
ti

o
n

 c
o

ef
fi

ci
en

t,
 μμ μμ

a,
2 (

m
m

-1
)

-30 -20 -10 0 10 20 30
0

200

400

600

800

1000

1200

Relative % error in estimating μμμμa,2

O
cc

u
rr

en
ce

 o
u

t 
o

f 
10

,0
00

Fig. 10 (a) Estimates of μa,2 for d1 between 15 and 150 μm, μa,1 be-
tween 0.10 and 2.00 mm− 1, μ′

s,1 equaling 1 mm− 1, μa,2 between
0.01 and 0.20 mm− 1, and μ′

s,2 between 0.50 and 2.00 mm− 1 de-
termined by the direct neural network approach. (b) Histogram of the
relative percent estimation error.

estimating μ′
s,2. In this range, the average absolute percent rela-

tive error between the input and estimated parameters was 4.3%.

4.3 Direct Approach with Neural Network: NN i

Iterative least-squares fitting techniques are effective for de-
termining optical properties from diffuse reflectance measure-
ments. However, the accuracy and computational efficiency of
least-squares fitting may be susceptible to initial conditions.
A direct mapping between a spatial frequency dependent re-
flectance and optical properties is desired and was denoted in
this study by N Ni . A neural network was trained on the same set
of data presented in Sec. 4.2. However, six spatial frequencies
between 0 and 0.25 mm− 1 were used as inputs and the parame-
ters τ ′

1, μa,2 and μ′
s,2 were used as outputs in an effort to create a

direct relationship between measured tissue reflectance and its
optical properties
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Fig. 11 (a) Estimates of μ′
s,2 for d1 between 15 and 150 μm, μa,1 be-

tween 0.10 and 2.00 mm− 1, μ′
s,1 equaling 1 mm− 1, μa,2 between

0.01 and 0.20 mm− 1, and μ′
s,2 between 0.50 and 2.00 mm− 1 de-

termined by the direct neural network approach. (b) Histogram of the
relative percent estimation error.

Figure 9(a) compares the error between the true value of τ̂ ′

and the value estimated with Eq. (6) for d1 between 15 and
150 μm, μa,1 between 0.10 and 2.00 mm− 1, μ′

s,1 equaling
1 mm− 1, μa,2 between 0.01 and 0.20 mm− 1, and μ′

s,2 between
0.50 and 2.00 mm− 1. Figure 9(b) also shows a histogram of the
relative percent error in estimating τ̂ ′. In this range, the average
absolute percent relative error between the input and estimated
parameters was 43%. In fact, the direct neural network approach
applied to 6 spatial frequencies performed on average 11% better
than the least-squares approach applied to 21 spatial frequen-
cies. Additionally, if d1 was restricted to be greater than 50 μm
and while μa,2 was kept smaller than 0.09 mm− 1, the average
absolute percent relative error between the input and estimated
parameters fell to only 15% for reasons already discussed.

Figure 10(a) shows the input and estimated values of μa,2 for
d1 between 15 and 150 μm, μa,1 between 0.10 and 2.00 mm− 1,
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Table 1 Mean and standard deviation of the relative percent error between estimates of the model
parameters τ ′

1, μa,2, and μ′
s,2 predicted by minimizing L in Eq. (7) and by the direct inverse method given

by Eq. (6) with respect to Monte Carlo simulations. The mean of the absolute relative error is also shown.

Iterative method Direct method

Mean Mean absolute Std. dev. Mean Mean absolute Std. dev.

τ ′
1 − 11% 57% 54% 23% 43% 76%

μa,2 1.6 14.7% 16% − 2.4% 8.0% 11%

μ′
s,2 0.03% 4.3% 4.3% 0.03% 3.8 4.5%

μ′
s,1 equaling 1 mm− 1, μa,2 between 0.01 and 0.20 mm− 1, and

μ′
s,2 between 0.50 and 2.00 mm− 1 determined by the direct

neural network approach. Figure 10(b) shows a histogram of
the relative percent estimation error in estimating μa,2. In this
range, the average absolute percent relative error between the
input and estimated parameters was 8.0%. Indeed, the mean
absolute percent estimation relative error for the direct neural
network model is almost half of the error associated with the
least-squares fitting method presented in Sec. 4.2.

Figure 11(a) shows the input and estimated values of μ′
s,2 for

d1 between 15 and 150 μm, μa,1 between 0.10 and 2.00 mm− 1,
μ′

s,1 equaling 1 mm− 1, μa,2 between 0.01 and 0.20 mm− 1, and
μ′

s,2 between 0.50 and 2.00 mm− 1 determined by the direct
neural network approach. Figure 11(b) shows a histogram of the
relative percent estimation error in estimating μa,2. In this range,
the average absolute percent relative error between the input and
estimated parameters was 3.8%. The neural network performed
slightly better in determining μ′

s,2 than the least-squares fitting
method.

Table 1 summarizes the performance of the iterative and di-
rect inverse methods. It shows the mean, mean absolute, and
standard deviation of the relative percent difference between in-
put values of τ ′

1, μa,2, and μ′
s,2 and their estimates. The mean

error is an indicator of the average bias in prediction of a param-
eter. For example, the iterative inverse method underpredicts the
optical thickness τ ′

1 by 11% while the direct method overpre-
dicts it by 23%. The mean absolute error is an estimate of model
accuracy without regard for sign. For example, the direct method
exhibits a mean absolute error of 8% in prediction of μa,2 while
the iterative inverse method exhibits a larger error of 14.7%.
Finally, the standard deviations reported in Table 1 represent
the width of the error distribution. It is apparent that prediction
of τ ′

1 exhibits a larger variance than the other parameters and
may thus be considered less reliable. Table 1 indicates that the
computationally efficient direct method performs as well as the
iterative inverse method in predicting μa,2 and μ′

s,2, but exhibits
a larger bias in predicting τ

′
1

5 Conclusion
This study describes a technique for analyzing spatial frequency
dependent reflectance of two layer media. An artificial neural
network was used to map input optical properties to a spatial fre-
quency dependent reflectance function of two layer media. Then,
iterative fitting was used to determine the optical properties from

simulated spatial frequency dependent diffuse reflectance. Ad-
ditionally, an artificial neural network was trained to directly
map spatial frequency dependent diffuse reflectance to sets of
optical properties of a two layer media, thus bypassing the need
for iteration and significantly reducing the time required for de-
termining tissue optical properties. The present model can be
used to determine the optical thickness of a strongly absorbing
superficial layer and the absorption and reduced scattering coef-
ficient of a supporting semi-infinite layer. However, the reduced
scattering coefficient, absorption coefficient, and thickness of
the top layer could not be determined independently.
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